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ABSTRACT

Over the past decade, there has been considerable at-
tention on mitigating enteric methane (CH4) emissions 
from ruminants through the utilization of antimethano-
genic feed additives (AMFA). Administered in small 
quantities, these additives demonstrate potential for 
substantial reductions of methanogenesis. Mathematical 
models play a crucial role in comprehending and pre-
dicting the quantitative impact of AMFA on enteric CH4 
emissions across diverse diets and production systems. 
This study provides a comprehensive overview of meth-
odologies for modeling the impact of AMFA on enteric 
CH4 emissions in ruminants, culminating in a set of rec-
ommendations for modeling approaches to quantify the 
impact of AMFA on CH4 emissions. Key considerations 
encompass the type of models employed (i.e., empirical 
models including meta-analyses, machine learning mod-
els, and mechanistic models), the modeling objectives, 
data availability, modeling synergies and trade-offs as-
sociated with using AMFA, and model applications for 
enhanced understanding, prediction, and integration into 
higher levels of aggregation. Based on an evaluation of 
these critical aspects, a set of recommendations is pre-
sented concerning modeling approaches for quantifying 
the impact of AMFA on CH4 emissions and in support 
of farm-level, national, regional, and global inventories 

for accounting greenhouse gas emissions in ruminant 
production systems.
Key words: feed additive, methane mitigation, modeling, 
mechanistic models, empirical models

INTRODUCTION

Mitigating methane (CH4) emissions emerged as a 
crucial strategy in addressing the pressing issue of cli-
mate change. Enteric CH4 emissions, arising mainly from 
ruminants, account for a substantial portion of global ag-
ricultural GHG emissions (IPCC, 2022). The urgency of 
mitigating CH4 emissions is underscored by its relatively 
short atmospheric lifetime compared with other GHG 
such as carbon dioxide (CO2) and nitrous oxide (N2O) 
and its more than 80 times the warming power of CO2 
over the first 20 yr after it reaches the atmosphere (IPCC, 
2022). In recent years, several CH4 mitigation strategies 
have been proposed (Arndt et al., 2022; Beauchemin et 
al., 2022; Honan et al., 2022). Among these strategies, the 
manipulation of rumen fermentation through the use of 
antimethanogenic feed additives (AMFA) garnered sig-
nificant attention over the past decade. These additives, 
often administered in small quantities, hold the potential 
to significantly reduce rumen methanogenesis (Honan et 
al., 2022). Several AMFA have been investigated for their 
effect on CH4 emissions, showing considerable variation 
in their effectiveness (Arndt et al., 2022). Recent meta-
analyses have demonstrated varied efficacy of several 
AMFA including 3-nitrooxypropanol (3-NOP; Dijkstra 
et al., 2018; Kebreab et al., 2023), seaweeds (Lean et al., 
2021), nitrate (Feng et al., 2020), monensin (Appuhamy 
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et al., 2013; Marumo et al., 2023), and blends of essential 
oils (Belanche et al., 2020). This variability can be at-
tributed not only to the inherent characteristics of AMFA 
and application (e.g., delivery method and dose), but 
also to variations in ruminant production systems. These 
include differences in target animal type (e.g., beef vs. 
dairy), physiological status (e.g., growing vs. lactating), 
feed management system (e.g., confinement vs. grazing), 
and diet characteristics (e.g., forage to concentrate ratio), 
which vary locally and globally (Niu et al., 2018; van 
Lingen et al., 2019b; Belanche et al., 2023).

Given this wide diversity of production scenarios and 
the variation encountered in rumen fermentation condi-
tions associated with this (Belanche et al., 2025; Hristov 
et al., 2025), there is a need to develop models that can 
help to understand and predict the effect of AMFA on 
enteric CH4 emissions across various production systems 
and diets, reducing the reliance on costly experimental 
studies (Hristov et al., 2018). Specifically, models ca-
pable of predicting the variability in response to AMFA 
are required to support farm-level, national, regional, 
and global inventories accounting of GHG emissions 
(del Prado et al., 2025) through life cycle assessments 
(LCA) and farm GHG assessments, capturing synergies 
or trade-offs with additional mitigation strategies. Mod-
els may be developed directly (empirical approaches) 
or indirectly (evaluating mechanistic approaches) from 
sound measurements of factors leading to variation in 
the CH4 mitigating effect (Hristov et al., 2025), which 
are also instrumental from a national inventory, legisla-
tive and regulatory perspective (Tricarico et al., 2025). 
The aim of the present study is to provide guidelines and 
recommendations regarding modeling approaches for 
quantifying the impact of AMFA on enteric CH4 emis-
sions of ruminants.

MODELING THE IMPACT OF AMFA  
AT ANIMAL LEVEL

Several modeling approaches have been applied to 
quantify enteric CH4 emissions at the individual animal 
level. These approaches aim to assess the effects of 
AMFA on CH4 production (g/d), CH4 yield (g/kg DMI), 
or CH4 intensity (g/kg product; e.g., milk or BW gain) 
or one or more of these factors. The distinction between 
metrics is critical in modeling and in determining GHG 
impacts, as they capture different aspects of the underly-
ing biological processes. Methane production represents 
the total absolute emission from the animal, and is pri-
marily influenced by overall DMI, dietary nutrient com-
position, and animal size (Appuhamy et al., 2016). Meth-
ane yield is considered a more biologically meaningful 
metric compared with CH4 production as it accounts for 
the methanogenic potential of feed intake and digestive 

processes. Methane intensity, a metric that represents the 
net CH4 produced per unit of productive output, allows 
for the assessment of ruminant production and efficiency 
(Eckard and Clark, 2020). In evaluating the impact of 
AMFA on CH4 emissions, studies have explored all of 
these expressions of the outcome, to better understand 
the additive’s value proposition (e.g., Kebreab et al., 
2023). Methane mitigation approaches that solely focus 
on emission intensity may inadvertently increase net CH4 
emissions if ruminant production increases more than the 
decrease in CH4 emissions intensity (i.e., unless total 
ruminant production is constrained through additional 
policy measures or interventions). Focusing solely on 
reducing CH4 production may inadvertently decrease 
feed intake or feed digestion and ultimately animal pro-
ductivity. Focusing solely on reducing CH4 yield may 
inadvertently decrease feed digestion or lead to rumen 
acidosis. Thus, quantification of CH4 mitigation requires 
careful consideration of metrics and its implications (for 
further discussion, see Arndt et al., 2022).

The general modeling approaches, including the clas-
sification of modeling types, have been defined and 
extensively reviewed elsewhere (France and Thornley, 
1984; Dijkstra et al., 2002; Ellis et al., 2020; Figure 1). 
The most common approaches to modeling CH4 emis-
sions are empirical, involving the degree of association 
between diet, animal performance, environmental fac-
tors, and AMFA inclusions with CH4 emissions. This 
can range from simple regressions on a single dataset 
to meta-analyses (St-Pierre, 2001; Sauvant et al., 2020), 
which combine data from multiple experimental sources. 
Mechanistic models, in contrast, are based on math-
ematical description of underlying biological pathways, 
such as the representation of fermentation and feedstuff 
degradation resulting in rumen and hindgut production 
of CH4 (e.g., Mills et al., 2001; Gregorini et al., 2013). 
To achieve a clear description of the relevant processes 
involved in capturing enteric CH4 abatement through 
the use of AMFA (including trade-offs and synergistic 
effects on animal performance as well as on other GHG 
sources such as excreta), mechanistic models that inter-
pret specific biological pathways occurring in the rumen 
become essential. The main AMFA developed thus far 
act by directly inhibiting methanogenesis (e.g., 3-NOP; 
halogenated compounds), competing for methanogen-
esis substrates (e.g., nitrates), or modulating rumen 
fermentation to decrease H2 production (e.g., lipids and 
plant secondary compounds), with varying effectiveness 
(Honan et al., 2022). Several AMFA have multiple modes 
of action to decrease CH4 emissions. A comprehensive 
overview, including recommendations, is presented else-
where (Belanche et al., 2025).

Beyond these traditional modeling approaches, the 
advent of the fourth agricultural revolution has ushered 
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in advancements in big on-farm data collection, digital 
technology, robotics, sensors, computing, and Internet 
connectivity (Neethirajan and Kemp, 2021). These ap-

proaches have opened new avenues for quantifying CH4 
emissions at the animal level. Machine learning (ML), 
a branch of artificial intelligence, refers to the develop-

Dijkstra et al.: ANTIMETHANOGENIC FEED ADDITIVES MODELING APPROACHES

Figure 1. Illustration of types of models depending on background information used to develop them (A), the presence or absence of time as a 
variable (B), and the presence or absence of random parameters (C). Created by F. Garcia and Sabrina Garay; used with permission.
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ment and use of computer systems that are able to learn 
from data and adapt without following explicit instruc-
tions, by using algorithms and statistical models to ana-
lyze patterns in a training dataset and draw inferences 
and make predictions on new unseen data (Ellis et al., 
2020; Tedeschi et al., 2021). Machine learning represents 
an empirical and data-driven modeling approach that is 
ideally suited for analyzing big data due to its ability to 
handle its volume, variety, velocity of data collection, 
and data veracity (Hackenberger, 2019). This approach 
is ideally suited toward prediction tasks, as opposed to 
documenting and understanding underlying mechanisms.

The availability and quality of data are of paramount 
importance in the development and implementation of 
reliable animal-level CH4 emission models. Although 
many new ML approaches focus on predicting outcomes 
for individual animals, many empirical and mechanistic 
modeling approaches are based on literature data, which 
often reflect group or herd average responses to treat-
ments. Although individual animal data may exhibit high 
variability, and there may be a desire to capture this vari-
ability through models developed from on-farm data, lit-
erature-derived data may provide more intentional, non-
random variation that is valuable for group or herd level 
model development. Mechanistic modeling approaches 
may effectively quantify individual animal differences, 
as far as these are explainable from demonstrated under-
lying physiological differences. This understanding may 
further extend to genotypic differences if such informa-
tion becomes available in the future.

Another challenge to all modeling approaches is the 
variation in CH4 measurement methodologies between in-
dividual studies, which can include the use of respiration 
chambers (van Gastelen et al., 2015), GreenFeed breath-
analyzer stations (C-Lock Inc., Rapid City, SD), non-
dispersive Fourier-transformed infrared (FTIR) breath 
analyzers (“sniffers”) installed in milking parlors or feed 
bins (Lassen et al., 2012), sulfur hexafluoride tracer gas 
technique (Johnson et al., 1994), ventilated hoods (res-
piration boxes; Castelan Ortega et al., 2020), portable 
accumulation chambers (Goopy et al., 2011), face masks 
(Silveira et al., 2019), and laser detectors (Chagunda et 
al., 2013). These methodological differences (discussed 
extensively including recommendations by Hristov et al., 
2025) can contribute to measurement differences and dis-
crepancies (Hammond et al., 2016; Zhao et al., 2020) and 
may lead to relationships or prediction models specific 
to certain measurement techniques (Hristov et al., 2018).

Most studies in the field of AMFA and enteric CH4 
emissions focus on ruminants in confinement-type feed-
ing systems compared with grazing systems (Arndt et al., 
2022). Consequently, there is an imbalance with fewer 
grazing animals represented in the literature compared 
with confined animals (Vargas et al., 2022) and lack 

of information on enteric CH4 emissions and AMFA 
abatement for ruminants in grazing systems (Ungerfeld, 
2022). Of particular relevance to modeling efforts are 
the alternative methods of delivering AMFA and their 
overall effectiveness in the abatement of CH4 emissions 
in grazing systems compared with confinement systems 
(discussed further by Hristov et al., 2025).

In general, current CH4 emissions models do not in-
tegrate microbial -omics data (metagenomics, metatran-
scriptomics, metaproteomics), although recently a wealth 
of -omics data has become available (Muñoz-Tamayo 
et al., 2023). Incorporating microbial data, particularly 
when already available, into mathematical models of ru-
men metabolism may have enhanced power for predict-
ing CH4 emissions (Zhang et al., 2023).

Empirical Modeling

Regression analysis and meta-analysis are 2 commonly 
employed statistical techniques, each serving distinct 
purposes and grounded in unique principles. Regression 
analysis, a well-established method, is used to model the 
relationships between a dependent variable and one or 
several independent variables. This approach allows for 
the assessment of the relationships and marginal effects 
of those independent variables. Various types of regres-
sion (e.g., linear, nonlinear) can be applied depending 
on the nature of the data. The standard principles of 
regression analysis encompass the selection of suitable 
data including data scrutiny for outliers, an appropriate 
model, addressing collinearities, verifying underlying 
assumptions, and evaluating the model’s performance. In 
many cases, studies on a common research question yield 
diverse and occasionally contradictory results (James 
et al., 2013). Therefore, meta-analysis is a quantitative 
strategy employed to aggregate results from different 
studies, providing a comprehensive overview of a re-
search topic and yielding more robust conclusions com-
pared with individual study results. The key principles 
of meta-analysis include study selection, calculation of 
effect sizes, weighting of studies based on factors such 
as sample size and quality, combining effect sizes to 
produce a summary statistic, assessment of heterogene-
ity among study results, and examining the potential 
impact of publication bias (St-Pierre, 2001; Madden and 
Paul, 2011). Essentially, the meta-analysis approach con-
structs a regression model that synthesizes findings from 
multiple studies, while considering random effects and 
heterogeneity among those studies.

Within the literature, numerous papers address empiri-
cal modeling of enteric CH4 emissions. One of the first 
studies reporting a regression analysis of enteric CH4 
emission was Kriss (1930), and this has been followed 
by a large number of subsequent studies (recently, e.g., 
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van Lingen et al., 2019b in beef cattle; Belanche et al., 
2023 in sheep). The proliferation of experimental stud-
ies on GHG emissions, driven partly by the development 
of different measurement techniques around the world 
(Hammond et al., 2016), led to the creation of different 
databases containing original GHG emission data such as 
the Emission Factor Database from IPCC (https:​/​/​www​
.ipcc​-nggip​.iges​.or​.jp/​EFDB/​main​.php), FAO databases 
(https:​/​/​www​.fao​.org/​faostat/​en/​#data/​GT), and more 
recently, data specifically related to enteric CH4 emis-
sions (de Ondarza et al., 2023). This surge in data avail-
ability spurred the development of meta-analysis studies 
focusing on GHG mitigating strategies (Arndt et al., 
2022), with some focusing specifically on AMFA (e.g., 
Feng et al., 2020; Lean et al., 2021; Table 1). Whenever 
feasible, these studies consider the response to AMFA 
while taking into account dosage levels of the additives. 
Furthermore, they explore other explanatory factors and 
consider their interaction with the mitigating effects of 
AMFA, including factors such as basal diet composition 
and animal species. The effectiveness of CH4 mitigation 
strategies may significantly differ across ruminant types, 
although such differences in efficacy between dairy 
cattle, beef cattle, and small ruminants are generally less 
pronounced (or absent) with AMFA than with general 
dietary strategies (van Gastelen et al., 2019). There is a 
considerable variation in CH4 production both across and 
within ruminant species (e.g., higher CH4 emissions dur-
ing early versus late-lactation dairy goats; Fernández et 
al., 2021). Consequently, expressing the impact of AMFA 
on a relative basis (e.g., reduction in CH4 emission rela-
tive to the control) may be preferable to using absolute 
measures (e.g., decrease in g of CH4/d). Expressing im-
pact on a relative basis requires standardizing the AMFA 
dose among various studies, usually done by expressing 
AMFA as the amount of additive per unit feed. To ex-
plore variation in relative response at similar standard-
ized AMFA doses, heterogeneity can be examined by 
including variables that potentially explain variation in 
relative response (e.g., categorical variables such as beef 
cattle and dairy cattle may be included in the model to 
reduce heterogeneity). A major issue in these empirical 
modeling studies is the general lack of consideration of 
the method and frequency with which the AMFA is deliv-
ered (e.g., top-dressed; mixed in TMR; infrequent supply 
via concentrate dispensers), which is of particular impor-
tance with ruminants on pasture (Arndt et al., 2022).

Two recent meta-analyses on the antimethanogenic 
effects of 3-NOP (beef and dairy cattle, Dijkstra et al., 
2018; dairy cattle, Kebreab et al., 2023; Table 1) showed 
that CH4 emission reduction is dependent on the dose 
of 3-NOP inclusion. For every 1 mg/kg DM increase 
of 3-NOP from its mean dietary inclusion, there was a 
linear decrease in CH4 production, yield, and intensity. 

Moreover, these studies showed negative and positive 
interactions between the potential to decrease CH4 emis-
sions and dietary factors. Specifically, for dairy cows 
(Kebreab et al., 2023) the decrease in CH4 production, 
yield, and intensity due to supplementation of 3-NOP 
was partially impaired by the presence of greater levels 
of dietary crude fat (not for CH4 intensity) and fiber but 
was increased by the presence of greater levels of dietary 
starch (CH4 yield only; Tables 1 and 2). Furthermore, the 
type of cattle played a role in the response to 3-NOP, 
with 3-NOP supplementation being more effective with 
dairy cows compared with beef cattle (Dijkstra et al., 
2018). This was presumably explained by the generally 
higher feed intake level of dairy cattle compared with 
beef cattle, leading to higher concentrations of fermen-
tation products (e.g., VFA; hydrogen) in the rumen. 
NADH oxidation and type of VFA formed appear to be 
controlled by hydrogen partial pressure, and the modi-
fied VFA profile subsequently affects sinks of ruminal 
hydrogen (van Lingen et al., 2016). This, in turn, results 
in relatively lower concentrations of methyl-coenzyme 
M and elevated inhibitory potential of 3-NOP at greater 
feed intake levels.

In a meta-analysis using data from beef and dairy 
cattle, Feng et al. (2020) demonstrated that supplement-
ing nitrate decreased CH4 production and yield in a dose 
dependent and linear manner. Specifically, for every 1 g/
kg DM increase in nitrate supplementation from its mean 
dietary inclusion, there was a consistent further reduction 
in CH4 production, which was modified by level of feed 
intake (CH4 production only; Tables 1 and 2). Moreover, 
the relative nitrate decreasing effect on CH4 production 
and yield was greater with dairy cows than with beef 
steers, likely because in some studies with beef steers, 
slow-release nitrate was used and this was presumed to 
have a lower CH4 mitigating efficacy than nonprotected 
nitrate (Feng et al., 2020).

Lean et al. (2021) studied the effect of seaweed supple-
mentation on CH4 yield in both dairy and beef cattle. The 
study indicated that supplementation of red seaweed As-
paragopsis taxiformis (3 experiments with 7 comparisons 
to control) and brown seaweed Ascophyllum nodosum 
(1 experiment with 1 comparison to control) decreased 
CH4 yield by 5.3 (±3.5) g/kg DMI (Table 1). The large 
variability is related to the use of various seaweed spe-
cies and the low number of experiments included in this 
analysis. However, the dose-effect relationship was not 
explored, leaving room for further investigation in this 
area.

Appuhamy et al. (2013) conducted meta-analyses to 
assess the effect of monensin on CH4 production and on 
CH4 yield as a fraction of gross energy (GE; CH4 %GE) 
in dairy cows and beef steers. When adjusted for effect 
of dietary fiber content (beef steers) or for dietary fat 
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content and DMI (dairy cows), monensin decreased CH4 
emissions by 19 ± 4 g/d in beef steers (at 32 mg/kg DMI) 
and by 6 ± 3 g/d in dairy cows (at 21 mg/kg DMI). When 
corrected for DMI, monensin decreased CH4 %GE by 
0.33 ± 0.16 percentage units for beef steers and 0.23 ± 
0.14 percentage units for dairy cows (Tables 1 and 3). In 
the combined beef steers and dairy cattle dataset, monen-
sin dose was identified as a significant factor influencing 
CH4 production, contributing to differences observed be-
tween beef and dairy cattle, particularly because higher 
amounts of monensin were included in the diet of beef 
cattle as opposed to dairy cattle.

Lastly, in a meta-analysis, Belanche et al. (2020) 
concluded that supplementing a blend of essential oils 
(Agolin Ruminant) reduced dairy cattle CH4 production 
(−8.8%), yield (−12.9%), and intensity (−9.9%) in longer-
term studies (>4 wk of treatment), whereas shorter-term 
studies had minor and inconsistent effects. It is essential 
to note that most data used in this meta-analysis were 
from unpublished studies or in vitro studies, hampering a 
comprehensive interpretation. Three subsequent longer-
term studies assessing the same essential oils blend did 
not confirm the results of Belanche et al. (2020). In an 
8-wk experiment with dairy cattle, supplementing these 
essential oils did not affect CH4 production and CH4 
yield (Carrazco et al., 2020). It only affected CH4 inten-
sity when expressed per unit milk based on afternoon 
milking, but not when expressed per unit milk based on 
morning and afternoon milking. In a 13-wk experiment 
with dairy cattle, CH4 production and yield, but not CH4 
intensity, decreased upon supplementation with the same 
essential oils blend (Bach et al., 2023). Upon feeding the 
essential oils blend for 10 wk to dairy cattle, CH4 produc-
tion, yield, and intensity were not affected (Silvestre et 
al., 2023). Importantly, in contrast with the meta-analysis 
of Belanche et al. (2020) where longer-term studies (>4 
wk) had a greater CH4 mitigating effect than shorter-
term studies, none of these 3 subsequent peer-reviewed 
studies found any indication of a difference in impact of 
essential oil supplementation on CH4 emission with week 
after first dosing. The discrepancies between results of 
this meta-analysis and the 3 longer-term experiments 
remain to be explained but emphasize the crucial role of 
carefully selecting data in performing meta-analyses.

Mechanistic Modeling

Mechanistic models of enteric fermentation describe 
the process of microbial degradation of feed and micro-
bial biomass synthesis in the rumen, and sometimes in 
the large intestine of ruminants. They quantify methano-
genesis by representing microbial activity and tracking 
the amount and profile of fermentation end products, in-
cluding CH4 and (often) hydrogen production (Tedeschi 
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et al., 2022). Involvement of several subsequent calcu-
lation steps (e.g., substrate degradation and subsequent 
microbial growth, substrate passage) does not inher-
ently classify a model as mechanistic. What distinguishes 
mechanistic models from empirical or ML models is the 
ability of the former to describe the underlying processes 
responsible for the microbial activity outcomes (Dijkstra 
et al., 2002). In employing a mechanistic approach, one 
aims to capture the mode of action of AMFA and account 
for the variation in its efficacy within the model. This 
is in contrast to empirical approaches, where efficacy 
is solely derived from observational data at the animal 
and diet levels, relying on explanatory variables such 
as feed intake, diet type, and diet chemical composi-
tion. The difference between these modeling approaches 
does not hinge on the type of model inputs required but 
rather on the fundamental distinction in how the latter 
elucidates the mechanistic basis of the system (Bannink 
et al., 2016). Similar differences apply when comparing 
mechanistic models with ML models. However, model-
ing approaches may complement each other. It is recom-
mended to explore synergy between different modeling 
methodologies to advance both our predictive capabili-
ties of CH4 production in ruminants and our understand-
ing of the fermentation system (e.g., Ellis et al., 2020).

Published mechanistic models of the rumen fermen-
tation process have been reviewed by Tedeschi et al. 
(2014). Although Tedeschi et al. (2014) identified the 
difference between 2 main types of modeling (i.e., 
adopting a static or a dynamic approach), the implica-
tions of this choice were less thoroughly discussed. 
Static approaches lack a representation of how model 
elements change over time, although they may still 
adopt rate parameters. These approaches typically focus 
on representing processes basis on daily information 
(i.e., assuming a daily steady-state). Consequently, they 
do not require time as a model variable and solutions 
can usually be obtained algebraically. Dynamic models 
include time as a variable to account for changes in 
model elements over time, and usually, if enzymatically 
driven or other nonlinear relationships are involved, 
these models require numerical integration to solve. A 
distinctive feature of dynamic mechanistic models is 
that the changes in model elements over time are con-
centration-dependent (i.e., dependent on the rumen con-
centration of substrate, microbial mass, and potentially 
AMFA). The (diurnal) dynamics of these concentrations 
determine model outcomes. This is a major difference 
from static models, which may prove to be important 
when aiming to describe the impact of diurnal variation 
on rumen H2 dynamics and methanogenesis, as well as 
alternative routes of H2 utilization. It is also crucial for 
modeling the impacts of diurnal variation in substrate 
availability on microbial growth efficiency, the type of 
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VFA produced and associated H2 delivery to methano-
gens, rumen acidity, and rumen fluid volume.

Examples of mechanistic models of enteric CH4 pro-
duction have been reviewed recently by Tedeschi et al. 
(2022). Although the rumen fermentation models of 
Baldwin et al. (1987) and Dijkstra et al. (1992), includ-
ing subsequent model versions derived from these (Te-
deschi et al., 2014), adopted a truly dynamic approach, 
they do not incorporate the prediction of AMFA efficacy, 
except for including the effect of monensin on rumen fer-
mentation and CH4 production (Ellis et al., 2012, 2014). 
There are 2 recent examples of dynamic models with 
the specific purpose of predicting efficacy of AMFA but 
with a less detailed representation of rumen fermenta-
tive processes. A model including the effects of 3-NOP 
and nitrate was developed by van Lingen et al. (2021) 
for in vivo conditions, and a model including the effect 
of bromoform-containing A. taxiformis was based on in 
vitro data by Muñoz-Tamayo et al. (2021). These models 
have not yet been applied in inventory or assessment 
studies (del Prado et al., 2025).

Selection of Empirical and Mechanistic Models

It is not recommended to search for a one-size-fits-
all, universally superior modeling approach for esti-
mating the efficacy of AMFA. Both empirical methods 
(as demonstrated by Niu et al., 2018) and mechanistic 
approaches, whether static or dynamic (as illustrated by 
Kass et al., 2022), can be employed to predict enteric CH4 
emissions. The choice of approach should depend on the 
particular functionality or modeling objective of inter-
est, and recommendations can be made regarding which 
approach aligns best with those objectives and what as-
pects should be represented in the model. An overview of 
various mechanistic model functionalities and modeling 
aims that are relevant to the prediction of AMFA efficacy, 
as well as their implications for the processes and model 
elements that should be incorporated, is given in Table 4. 
The level of detail crucial for representing rumen func-
tionality, the desired degree of aggregation (rather than 
modeling the entire rumen), and the potential advantages 
of a mechanistic or dynamic approach over an empiri-
cal or static approach, are all influenced by the specific 
objectives. In cases where efficacy is known to be de-
pendent on rumen kinetics and on diurnal variations in 
effective concentration of AMFA, a dynamic mechanistic 
modeling approach may be preferable to capture these 
complexities. However, such mechanistic models need 
to be evaluated against independent observational data 
before use. A model containing the required features but 
predicting with much greater error than a simpler model, 
should not be used in practical applications. Attempt-
ing to address such intricacies of kinetics and diurnal 
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variations through an empirical approach would be chal-
lenging due to the lack of comprehensive observational 
databases. Nevertheless, the latter approach may still be 
preferred for practical reasons and better alignment with 
inventory and accounting methodology (del Prado et al., 
2025). Yet, simplicity alone should not be a justification 
for choosing an approach; rather this decision should be 
accompanied by clear documentation explaining why, to 
what extent, and under what conditions the empirical ap-
proach is appropriate. Various aspects need to be handled 
in such documentation. Table 5 lists some important as-
pects for each mode of action of AMFA (Belanche et al., 
2025). Some aspects are relevant for all modes of action, 
while others are specific to a particular one.

Empirical (including ML approaches) and mechanistic 
models both hold significant value. Meta-analyses are 
useful for identifying general patterns and leveraging 
farm data, which can then be explored in greater detail 
using a mechanistic approach. Conversely, empiri-
cal models may benefit from mechanistic modeling in 
identifying limitations or omissions, and how they could 
be improved. Simplification of mechanistic models is 
possible by leveraging insights from nonmechanistic 
approaches, to create lookup tables or relatively simple 
correction methods for AMFA efficacy. For example, 
Bannink et al. (2020) used a dynamic mechanistic 
model (i.e., Tier 3 method in Dutch GHG Inventory; 
Bannink et al., 2018) to determine CH4 emissions fac-
tors for individual feedstuffs in dairy cattle diets. This 
model was adapted to account for the proportion of 
corn silage in roughage and for level of feed intake, 
which have been incorporated into practical farm as-
sessment and C footprint tools. Similarly, mechanistic 
models such as those developed by van Lingen et al. 

(2021) and Muñoz-Tamayo et al. (2021) may be used 
to simplify the representation of AMFA, but examples 
are lacking in literature. Key measurements are needed 
for the further development of models predicting AMFA 
efficacy (Hristov et al., 2025). In addition to diet type 
and AMFA dosage, these measurements should at least 
include a representative estimate of daily rates of rumen 
substrate fermentation and VFA formation, the types of 
VFA formed, and rumen H2 concentration.

Benefits of synergy between ML and mechanistic 
modeling approaches have been described as well (El-
lis et al., 2020). Permutation importance (Altmann et 
al., 2010) is a ML strategy to examine how important 
any given feature (driving variable) is for prediction of a 
specified outcome by the ML model. Such an examina-
tion of ML model behavior may lend insight into features 
of importance in a dataset that might not initially be 
intuitive. As an example from another field, permutation 
importance conducted by You et al. (2022) demonstrated 
the importance of regional outdoor temperature in pre-
diction of pellet quality within a commercial feed mill. 
Such information may lead to further research on the 
effect of air quality being pulled into the mill to cool pel-
lets being manufactured. Likewise, such examinations of 
ML model behavior could assist interpreting nutritional 
or AMFA response data variation in the future, fueling 
ideas for improvement in both empirical and mechanistic 
models. Zhang et al. (2023) recently used a combination 
of ML and statistical modeling approaches to facilitate 
the selection of genera of rumen bacteria for inclusion in 
a modeling approach to improve CH4 prediction accuracy 
for ruminants, without overfitting, providing valuable in-
sights for future research, mitigation strategies and other 
types of modeling.
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Table 5. Aspects that require additional documentation and for which justification is needed on the assumptions made when opting for an empirical 
instead of a mechanistic approach to estimate efficacy with the various modes of action of antimethanogenic feed additives

Mode of action   Aspects for which quantification is required and should be documented and justified

Single mode of action    
  Hydrogen sinks   Sink of hydrogen being single mode of action
    Dynamics of rumen clearance as function of allocation pattern
    Dependency on level of feed intake
    Variation in dietary inclusion and intake/dosing
    Side-effects on microbial activity
  Methanogens inhibitors   Inhibition of methanogens being single mode of action

  Diurnal variation in allocation with feed
  Dependency on level of feed intake
  Dependency on diet type and hydrogen dynamics (rumen fermentation conditions)

    Variation in dietary inclusion and intake/dosing
    Side-effects on overall microbial activity
Multiple modes of action    
  Broad antimicrobial activity or 
  altering the rumen environment

  Change in rumen fermentation pattern (and fermentation-inert high-energy source) being single mode of action
  Dependency on diet type (rumen fermentation conditions)
  Dependency on level of feed intake
  Persistency of efficacy/expected adaptation rumen microbiota
  Variation in dietary inclusion and intake/dosing
  Side-effects on microbial activity



Journal of Dairy Science Vol. 108 No. 1, 2025

366

The relevance of a mechanistic modeling approach 
depends on (1) data availability to allow detailed quan-
titative representation of aspects of rumen fermentation 
conditions and microbial activity, (2) the need to explain 
specificity of AMFA efficacy for certain farm types, ani-
mals, or feed management, and (3) the methodological 
preferences or requirements for national GHG invento-
ries or farm assessment tools. A mechanistic approach is 
recommended when the goal is to relate AMFA efficacy 
to fundamental elements of the rumen fermentative sys-
tem that influence variability in efficacy. These core ru-
men elements may be represented in a static manner (i.e., 
irrespective of the state of the other rumen elements). 
Examples include microbial biomass synthesis calcu-
lated as a fixed fraction of fermented substrate, or fixed 
amounts of VFA produced from fermented substrate. Al-
ternatively, they can be represented dynamically, which 
makes them a function of the state of other rumen ele-
ments. Examples include rumen microbial mass and sub-
strate mass influencing both substrate degradation rates 
and hydrogen and CH4 productions, and the production 
of rumen hydrogen influencing methanogenesis while 
also being affected by VFA production, as governed by 
the principles of thermodynamic control of microbial 
metabolism regulated by rumen hydrogen (van Lingen 
et al., 2019a). Details of the underlying causes of varia-
tion in efficacy of AMFA and the associated modeling 
aims are to be formulated carefully, as this will guide the 
choice of modeling approach.

ML Modeling

Machine learning modeling in dairy farm data has ex-
panded over the past 2 decades, with Shine and Murphy 
(2022) identifying its applications in various domains 
such as feeding, healthcare, animal behavior, milking, and 
resource management. In this mapping study, the largest 
number of studies addressed issues related to the physiol-
ogy and health of dairy cows (32% of 129 publications). 
Nearly half of these studies (48%) analyzed and included 
features derived from on-farms sensors. Although ML is 
a newer method in the context of animal production and 
its use is still emerging for evaluating AMFA, there have 
been instances where ML has been deployed to predict 
CH4 emissions using “big data” on farms. For example, 
Shadpour et al. (2022) predicted CH4 production based 
on milk yield, fat yield, protein yield, and milk mid-
infrared (MIR) spectroscopy data via an artificial neural 
network using 181 weekly average CH4 records from 158 
Canadian dairy cows and 217 records from 44 Danish 
dairy cows. Observed data represented CH4 estimates 
from the GreenFeed system and sniffer methods, respec-
tively. However, when the algorithm was independently 
evaluated on data from 20 Canadian dairy cows, the re-

sults indicated a low correlation (r = 0.229) and high root 
mean square error (154 g/d), indicating the need for more 
or diverse data to enhance predictions. McParland et al. 
(2024) attempted a similar analysis including milk MIR 
as a driving variable as well from 384 lactations of 277 
dairy cows. They concluded that including milk yield and 
DIM in the neural network prediction model resulted in 
superior predictions relative to just MIR spectroscopy 
data alone.

Other studies have approached CH4 emission predic-
tions by correlating video and image data of cows’ intake 
times, estimated using artificial intelligence techniques 
such as computer vision, with observed CH4 emissions. 
For example, Ramirez-Agudelo et al. (2022) developed 
prediction models using video and image data, and then 
evaluated their models against measures from respiration 
chambers. In a different approach, Wallace et al. (2019) 
and Zhang et al. (2023) used ML to link the rumen mi-
crobiome structure with host genetics and phenotype 
(including CH4) and were able to predict CH4 emissions 
from the core microbiome. As mentioned above, there 
may be a useful emerging synergy between this sort of 
analysis and more traditional empirical and mechanistic 
approaches.

Despite the relatively scarce attention given to the in-
fluence of AMFA on CH4 emissions within ML research, 
the potential applications are substantial. For example, 
ML techniques such as random forest or causal forest 
analyses (Knaus et al., 2021) could be instrumental in 
identifying variations in response to AMFA, aiding in the 
understanding of these responses even before experimen-
tal or mechanistic understanding. With the advancement 
of on-farm sensors and big data coupled with ML analy-
sis, there is also a promising future for more accurate 
on-farm evaluation of AMFA strategies and quantifica-
tion of their actual impact on animals, extending beyond 
controlled experimental trials on which other modeling 
approaches are usually based.

Recommendations

●● Large variation in CH4 production exists between 
and within ruminant species. In situations of such 
large variation, the effect size of AMFA in meta-
analyses can be expressed and analyzed in a rela-
tive manner. This requires the AMFA dose to be 
expressed in a standardized way and should include 
an evaluation (i.e., heterogeneity analysis) of the 
impact of between- or within-ruminant species 
variation on the variation in relative response.

●● Alongside the dosage level, the AMFA delivery 
method and frequency should be included in the 
quantitative evaluation of the CH4 mitigating im-
pact of these additives.
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●● Quality of experimental data is central in empirical 
modeling. In classic regression analyses, as well as 
in meta-analytical approaches, to evaluate the im-
pact of AMFA on CH4 emission, it is recommended 
to use data from easily available, preferably peer-
reviewed sources. Data from unpublished sources, 
in particular where essential details are lacking 
(e.g., experimental design, CH4 measurement tech-
nique, length of experiment, and so on) should not 
be used.

●● It is recommended to develop and employ mecha-
nistic models of the impact of AMFA on CH4 emis-
sion when aiming to relate its efficacy with funda-
mental elements of the rumen fermentative system. 
This approach can enhance the understanding of 
their mode of action of AMFA and, consequently, 
provide insight into variations in efficacy.

●● The selected model type and modeling approach 
must be clearly described and justified, encompass-
ing the objectives, boundaries, and limitations of 
the relevant model.

●● The use of ML modeling is still emerging for 
evaluating AMFA. It is recommended to thoroughly 
explore the opportunities presented by ML, given 
the emergence of “big data” on farms. After devel-
opment of ML models, particular attention should 
be given to evaluation of these ML models on inde-
pendent data.

●● Different modeling approaches possess distinct ad-
vantages and disadvantages. It is recommended to 
investigate the complementarity of diverse model-
ing methodologies to enhance our understanding of 
the fermentation system as well as to improve the 
predictive capabilities of AMFA impacts on CH4 
emission in ruminants.

SYNERGIES AND TRADE-OFFS

To assess whether 2 or more AMFA will have a syner-
gistic or antagonistic effect on reducing CH4 emissions, 
researchers typically use a factorial design for treatment 
allocation and employ statistical tools, such as mixed-
model ANOVA (Kutner et al., 2005) to examine the 
interactions between AMFA. If significant interactions 
are observed, the specific type of interaction may be vi-
sualized by interaction plots to illustrate conditional ef-
fects of one treatment given the presence of another, and 
quantitatively determined by comparing least squared 
estimates. Among studies exploring potential synergies 
between 2 CH4 mitigating strategies using AMFA, most 
concluded there was an absence of interaction between 
strategies (i.e., effects were shown to be additive). In 
cattle, there was no interaction between fat source and 
nitrate on CH4 emissions (Guyader et al., 2015; Klop et 

al., 2016), no interaction between fat source and 3-NOP 
on CH4 emissions (Zhang et al., 2021; Kjeldsen et al., 
2024; Ma et al., 2024), and no interaction between mo-
nensin and 3-NOP on CH4 emissions (Vyas et al., 2018). 
In contrast, Maigaard et al. (2024) reported antagonistic 
effects of 3-NOP, nitrate, and fat on CH4 emissions in 
dairy cattle. Although the absence of a significant inter-
action between AMFA on CH4 emissions is frequently 
reported, observed numerical differences are often of 
practical interest. For example, upon dietary inclusion 
of 3-NOP, Kjeldsen et al. (2024) observed a decline 
of 21.5% and 28.0% in CH4 yield without or with fat 
(cracked rapeseed) dietary inclusion, respectively, but no 
significant interaction between both factors. This sug-
gests a restricted statistical power to detect significant 
differences.

The potential for different CH4 mitigation strategies 
to influence each other’s effectiveness likely depends on 
how their mechanisms of action interrelate (Belanche et 
al., 2025). However, these interactions between 2 cat-
egorical variables (factorial levels) can result as either 
greater than (Figure 2B) or lesser than (Figure 2C) the 
sum of the individual effects when combined—this is re-
ferred to as ordinal interactions. In an ordinal interaction, 
the impact of each combined strategy exceeds that of its 
negative control. In contrast, disordinal interactions oc-
cur when the impact of a strategy changes direction de-
pending on the presence of another strategy (Figure 2D). 
Standard statistical tests used to detect interactions do 
not usually predefine the expected pattern of interaction 
before the analysis. Ordinal interactions usually have 
lower statistical power than disordinal interactions given 
the same experimental unit (Lakens and Caldwell, 2021), 
indicating a larger sample size is required for the detec-
tion of ordinal interactions. Therefore, power analysis 
and sample size calculation for interactions, especially 
with the goal to explore interactive CH4 mitigating ef-
fects, should be considered when designing an experi-
ment (Durmic et al., 2025; Hristov et al., 2025). In this 
respect, a systematic framework for optimizing sample 
size in dairy cow methane studies, including a practical 
web-based tool that simplifies the process of sample 
size calculation, has recently been presented (Ramirez-
Agudelo and Kebreab, 2024).

In addition to examining the synergies and trade-offs 
associated with strategies addressing enteric CH4 emis-
sions, similar considerations may extend to other GHG 
sources, such as N emissions originating from excreta, 
barn floors, and stored or applied slurry or manure. 
Values for these sources are documented in for example 
the DATAMAN database (Hassouna et al., 2023). Ex-
perimentally assessing these alternative sources provides 
specific recommendations for designing experiments 
focused on mitigating enteric CH4 (see Hristov et al., 
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2025). Moreover, acknowledging the impact on these 
diverse GHG sources is crucial when developing farm 
assessment and inventory tools seeking to incorporate 
the mitigating effects of enteric CH4 (see del Prado et 
al., 2025).

Recommendations

●● Statistical models typically have low power to 
detect ordinal interactions, and only with a suf-
ficiently large sample size can synergistic effects 
be reliably identified. Power analyses and sample 
size calculations should always be part of design-
ing an experiment to study the interaction effects of 
AMFA, if possible, based on prediction of mitiga-
tion potential from initial in vitro tests or previous 
in vivo studies. Furthermore, it is recommended 
to employ meta-analysis methods to integrate re-
sults of individual studies, thereby improving the 
estimates of the effect size of additives as well as 
interactions on CH4 emissions.

MODEL APPLICATION

It is important to recognize that the objectives of mod-
els described herein vary. In research, animal-level mod-
els are developed to formulate hypotheses, to understand 
mechanisms, and to document, account for and explore 
response variation. In particular, the quantitative explo-
ration of the efficacy of AMFA can guide future scientific 
inquiries and enhance comprehension of the conditions 
under which an additive might be more or less effective 
at the individual animal level. For example, the meta-
analysis of Dijkstra et al. (2018) indicated that the CH4 
mitigation effect of 3-NOP decreased with increasing 
dietary NDF content. Recognizing this potential impact 
of diet composition on 3-NOP efficacy, an in vivo study 
with dairy cattle by van Gastelen et al. (2022) investigat-
ed whether the CH4 mitigation potential of 3-NOP is af-
fected by the basal diet composition (starch rich vs. fiber 
rich), as an example of interplay between modeling and 
experiments, which confirmed modeling results. Models 
at the animal level are also constructed for direct practi-
cal application – such as calculating and predicting CH4 
emissions for LCA and inventory purposes, although the 
unit in which animals are expressed may differ (described 
extensively, including recommendations, in del Prado et 
al., 2025). These models may not necessarily be the same 
ones used for understanding mechanisms, but they cer-
tainly benefit from the latter with the method of choice 
or approach, accommodating trade-offs or synergies that 
are expected for nonenteric GHG sources. Nevertheless, 
at the animal level, these models serve crucial roles in 
decision support and opportunity analysis on-farm, par-
ticularly if they aid in response-based predictions rather 
than being requirement-based (Dijkstra et al., 2007). 
They enable the formulation of “what if” scenarios, fa-
cilitating decision making processes aimed at reducing 
GHG emissions and increasing animal efficiency, among 
other potential improvements (Jacobs et al., 2022).

Decisions within farm management are often made at a 
broader level than the individual animal due to the vari-
ous trade-offs involved at the level of feed, manure and 
soil, on-farm as well as off-farm. These include trade-offs 
among different GHG (CH4, N2O, CO2) originating from 
enteric emissions and urinary and fecal outputs (e.g., 
Gregorini et al., 2016; van Lingen et al., 2018). Instead 
of trade-offs, synergies may occur in a limited number 
of situations, such as increased animal performance with 
enteric CH4 mitigation (e.g., Belanche et al., 2020; van 
Gastelen et al., 2024), although these require confirma-
tion and carefully obtained experimental evidence (Hris-
tov et al., 2025). There are also trade-offs to consider 
between farm systems: animal, cropping, and manure 
management, and the financial ramifications of changing 
management practices. For example, Van Middelaar et 
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Figure 2. Illustration of various types of interactions between 2 fac-
tors, each with 2 levels. The x-axis marks 2 levels of factor I: (–) for the 
negative control and (+) for the treatment. Different line colors represent 
2 levels of factor II: an orange solid line for the negative control (–) 
and a blue solid line for the treatment (+). The dashed line in scenarios 
(B) and (C) indicates the hypothesis of no interaction between factors I 
and II. Four different scenarios are depicted: (A) No interaction between 
factor I and factor II, where the combined effect of I (+) and II (+) is 
additive; (B) ordinal interaction, where the combined effect of I (+) and 
II (+) is greater than the addition of the 2 individual effects; (C) ordinal 
interaction, where the combined effect of I (+) and II (+) is less than 
the addition of the 2 individual effects; and (D) disordinal interaction, 
where the conditional effect of I (+) and II (+) switches over, and the 
combined effect is less than or has no effect compared with the effect 
of either individual factor. Created by M. Niu and Sabrina Garay; used 
with permission.
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al. (2014) assessed 3 feeding strategies aimed at decreas-
ing enteric CH4 production in dairy cattle (i.e., reducing 
maturity stage of grass and grass silage, supplementa-
tion with extruded linseed, and supplementation with 
nitrate). The evaluation considered financial income at 
the farm level and GHG emissions at the chain level. Al-
though extruded linseed resulted in the most significant 
decrease in enteric CH4 emissions at the animal level, 
the strategy of nitrate supplementation led to the great-
est reduction in total GHG emissions at the chain level, 
whereas the approach of reducing the maturity stage of 
grass and grass silage yielded the highest farm income. 
Thus, it is imperative to integrate accurate estimation of 
CH4 emission responses at the animal level, known for 
their considerable variability, into predictions for higher 
organizational levels such as the farm or region to obtain 
sound predictions of possible trade-offs.

The type of feed management system is particularly 
important when applying models to predict enteric CH4 
emissions (Congio et al., 2023). A specific case is that 
of pasture-based ruminant production systems. In such 
systems, grazed forage is the most representative source 
of nutrients for ruminants, with its significance ranging 
from complete dependency in full grazing systems to 
varying degrees of supplementation with concentrates or 
conserved roughage (Hodgson, 1990). Dry matter intake 
is the key variable explaining enteric CH4 emissions in ru-
minants; however, it is less accurately estimated in graz-
ing systems, often using markers, than in confinements 
where gravimetric methods are employed (Jonker and 
Waghorn, 2020). This inaccuracy in DMI measurements 
in pasture-based systems limits the practical application 
of models that include DMI at the farm level (Congio 
et al., 2023). To enhance the applicability of models 
in predicting CH4 emissions in pasture-based systems, 
variables that are highly correlated with DMI, which are 
more readily available on farm, can be an option. Milk 
yield may be the only current alternative of this kind 
of covariate, but research using biometric images and 
computer vision to predict BW and BW gain, sometimes 
in combination with ML prediction techniques, has been 
advancing rapidly (Greenwood et al., 2018; Cominotte 
et al., 2020), and these variables could be considered as 
proxies in models in the near future. Another character-
istic that differentiates grazing from confinement is the 
factors driving DMI. Although in confinement systems 
DMI is mostly determined by dietary nutrient composi-
tion, in grazing systems sward structure variables (e.g., 
sward height, herbage mass) are equally important in ex-
plaining the variability of both DMI and CH4 emissions 
(da Cunha et al., 2023). In partial grazing systems, where 
animals are supplemented, the AMFA is often mixed into 
just a portion of the total daily feed (i.e., supplement), 
usually consumed once or twice daily, which results in 

a pulse dosing effect and possible low efficacy of the 
AMFA to mitigate CH4 emissions. This contrasts with a 
more continuous feeding effect observed when the AMFA 
is fed in TMR. For example, this pulse-dose effect is ob-
served when the AMFA is top-dressed on a TMR offered 
once daily (Romero-Perez et al., 2014). They reported 
that animals consumed the mix (which included 3-NOP 
plus carrier) within 10 min after presentation when it was 
top-dressed on a TMR. Although the authors observed a 
linear reduction of CH4 emissions from beef cattle fed in-
creasing levels of 3-NOP, the reduction in CH4 yield was 
rather small at the 3-NOP concentration levels applied 
(4.4%, 9.3%, and 33.1% at 51, 161, and 345 mg 3-NOP/
kg DM, respectively) compared with the meta-analysis 
prediction of Dijkstra et al. (2018; i.e., 7.1%, 19.7%, and 
65.3%). An extreme way of pulse dosing of 3-NOP was 
done by Reynolds et al. (2014), where 3-NOP in rumen 
fistulated cattle was delivered directly in the rumen twice 
daily. Daily CH4 production was reduced by 3-NOP but 
inhibitory effects were transitory only, and the effect on 
a daily basis was much lower than when predicted using 
the meta-analysis of Kebreab et al. (2023). This means 
that the delivery method used when applying AMFA on-
farm is an important aspect to evaluate when applying 
models to predict their efficacy.

Finally, in practice, the AMFA will often be used on-
farm for extended periods of time. The long-term (i.e., 
several months at least) impact of AMFA may differ from 
that in short-term (often 2–wk) experiments. This topic 
has received little attention in modeling efforts, likely due 
to a paucity of data from long-term experiments. In an 
evaluation of antimethanogenic effects of monensin us-
ing a meta-analysis, Appuhamy et al. (2013) did not find 
a significant modifying effect of the monensin treatment 
period length (treatment period varied between 15 and 
180 d). In a meta-analysis of antimethanogenic effects 
of a blend of essential oils, the effects were stronger in 
studies with more than 4 wk of treatment, than in shorter 
studies (Belanche et al., 2020). Evaluating the possibility 
of adaptation in long-term studies is hampered by almost 
unavoidable variation in other factors impacting CH4 
production, including changes in diet composition, lacta-
tion stage, and so on (e.g., Van Gastelen et al., 2024). 
Possible adaptation to AMFA, both in terms of mode 
of action and evaluation in experiments, is discussed 
including providing recommendations in Hristov et al. 
(2025) and Belanche et al. (2025), respectively.

Recommendations

●● Models of the impact of AMFA on CH4 emissions 
vary widely. The recommended choice for practical 
applications in inventories and farm assessments 
should be based on: (1) data availability; (2) desired 
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level of detail for predicting rumen fermentative 
processes; (3) the preferred methodology in inven-
tory and farm assessment and (4) predictive ability 
or quality of the model.

●● It is recommended to integrate accurate estimations 
of CH4 emission responses at the animal level, 
which is known for its considerable variability, 
into predictions for higher organizational levels to 
achieve sound and robust quantification of potential 
trade-offs associated with AMFA use.

●● The efficacy of many AMFA depends on the fre-
quency of supply. In pasture systems (full or partial), 
infrequent consumption may lead to a pulse-dose 
effect and altered efficacy. It is recommended to 
assess the mode of action of the additive of interest 
and, in case of transient effects within a day, not to 
apply general models predicting the additive’s im-
pact on CH4 emissions in pasture systems. Instead, 
separate models accounting for transient effects 
need to be developed.

●● Special emphasis should be placed on quantifying 
the potential of adaptation (either reversing or tak-
ing longer to occur) in the antimethanogenic effects 
of AMFA.

CONCLUSIONS

This study provides a set of recommendations for 
modeling approaches aimed at quantifying the impact of 
AMFA on CH4 emissions in ruminants. In summary, the 
quality of data is pivotal in modeling approaches, and 
the use of peer-reviewed sources is strongly encouraged. 
Special attention is recommended for assessing additive 
dosage, delivery method, and transient effects in quan-
titative evaluations. The type of model and modeling 
approach adopted in relation to specific objectives must 
be clearly defined, while further exploring the synergy 
of diverse modeling methodologies, including ML, to 
enhance our understanding and predictive capabilities 
regarding the impact of AMFA on CH4 emission in rumi-
nants. Integral quantitative assessment is recommended 
to evaluate the CH4 mitigating effect of AMFA, consider-
ing synergies or trade-offs, especially in relation to other 
GHG sources.
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