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Abstract. Deep-sea sponge grounds are distributed glob-
ally and are considered hotspots of biological diversity and
biogeochemical cycling. To date, little is known about the
environmental conditions that allow high sponge biomass
to develop in the deep sea. Here, we characterize oceano-
graphic conditions at two contrasting sites off the north-
ern Labrador Shelf with respective high and low sponge
biomass. Data were collected by year-long benthic lander
deployments equipped with current meters, a turbidity and
chlorophyll-a measuring device, and a sediment trap. Addi-
tionally, regional oceanography was described by analysing
vertical conductivity–temperature–depth (CTD) casts, Argo
float profiles, and surface buoy drifter data for the northern
Labrador Shelf from 2005 to 2022. The stable isotopic com-
position of benthic fauna was determined to investigate food
web structure at the sponge grounds. Our results revealed
strong (0.26±0.14 m s−1; mean± SD) semidiurnal tidal cur-

rents at the high-sponge-biomass site but 2-fold weaker cur-
rents (0.14± 0.08 m s−1; mean ± SD) at the low-sponge-
biomass site. Tidal analysis suggests that kinetic energy is
dissipated from barotropic tide to baroclinic tide/turbulence
at the high-sponge-biomass site, which could enhance food
availability for benthic organisms. Bottom nutrient concen-
trations were elevated at the high-sponge-biomass site, which
would benefit growth in deep-sea sponges. Organic matter
flux to the seafloor was increased at the high-sponge-biomass
site and consisted of fresher material. Finally, both sponge
grounds demonstrated tight benthic–pelagic coupling prior to
the onset of stratification. Stable isotope signatures indicated
that soft corals (Primnoa resedaeformis) fed on suspended
particulate organic matter, while massive sponges (Geodia
spp.) likely utilized additional food sources. Our results im-
ply that benthic fauna at the high-sponge-biomass site bene-
fit from strong tidal currents, which increase the food supply,
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and favourable regional ocean currents, which increase the
nutrient concentration in bottom waters.

1 Introduction

Sponges are an ancient group of sessile filter feeders ca-
pable of pumping large quantities of water through their
bodies (Bergquist, 1978; Leys et al., 2011; Vogel, 1977),
thereby exchanging significant amounts of particulate and
dissolved organic matter and nutrients with the water column
(e.g. van Duyl et al., 2008; Maldonado et al., 2012; Kahn
et al., 2015; Rix et al., 2016). In the deep sea, sponges can
form dense aggregations, known as sponge grounds, which
are considered hotspots of macrofaunal diversity and abun-
dance (Beazley et al., 2013; Buhl-Mortensen et al., 2010; Kl-
itgaard, 1995; McIntyre et al., 2016), carbon and nutrient cy-
cling (Cathalot et al., 2015; Kutti et al., 2013; Maldonado et
al., 2020b), and benthic–pelagic coupling (Pile and Young,
2006). Sponge grounds form complex habitats that provide
breeding grounds and shelter for (commercially important)
fish, increasing demersal fish biomass and diversity (Brod-
nicke et al., 2023; Kenchington et al., 2013; Kutti et al., 2015;
Meyer et al., 2019). Finally, they are often classified as Vul-
nerable Marine Ecosystems (VMEs), as defined by the Food
and Agriculture Organization of the United Nations (Hogg et
al., 2010).

Deep-sea sponge ecosystems are currently under threat
from anthropogenic disturbances such as deep-water bot-
tom trawling, deep-sea mining, and climate change. Pham
et al. (2019) found that large quantities of sponges (∼ 4%
of total stock) have been removed by bottom trawling from
sponge grounds in the Flemish Cap region. Deep-sea sponges
are especially vulnerable to bottom fishing due to their
longevity and slow growth (Hogg et al., 2010; Leys and Lau-
zon, 1998). Benthic trawling reduces the density and diver-
sity of deep-sea sponge grounds (Colaço et al., 2022; Morri-
son et al., 2020), and recovery of disturbed sponge habitats
can take decades to centuries (Vieira et al., 2020). In addition,
prolonged exposure to elevated concentrations of suspended
sediments, e.g. due to deep-sea mining, could adversely af-
fect deep-sea sponges (Wurz et al., 2021). Recent studies
suggest that climate change also impacts deep-sea benthic
fauna (Brito-Morales et al., 2020; Jorda et al., 2020). For ex-
ample, modelling predicted that the suitable area for Vazella
pourtalesii on the Scotian Shelf would increase 4-fold in the
coming years due to the warming of colder waters around its
current habitat (Beazley et al., 2021). Nevertheless, research
on the effect of climate change on deep-sea sponges is still in
its infancy, and a better understanding of the environmental
conditions that favour sponge occurrence is needed to predict
the effects of such change on sponge grounds.

In the past decades, research on deep-sea sponges has fo-
cused on their physiology and feeding behaviour (e.g. Leys

and Lauzon, 1998; Yahel et al., 2007; Kahn et al., 2015;
Robertson et al., 2017; Kazanidis et al., 2018; Maier et al.,
2020a; Bart et al., 2021; de Kluijver et al., 2021) and on
assessing their spatial distributions using habitat suitability
models (Beazley et al., 2018; Howell et al., 2016; Knudby
et al., 2013; Murillo et al., 2018). More recently, data on
the environmental conditions in sponge ground regions have
been gathered using long-term measurements from lander-
mounted equipment. These data indicate that sponge grounds
are commonly found in areas with internal waves (Davison
et al., 2019) and comparatively strong tidal currents, which
flush the seafloor with oxygen and nutrient-rich water, and
with a high suspended particle matter load near the seabed
(Hanz et al., 2021a, b; Roberts et al., 2018). In addition,
sponges can alter the hydrodynamic conditions of the benthic
boundary layer by increasing the bottom roughness, creating
conditions favourable for larval recruitment and suspended
particle deposition (Abelson and Denny, 1997; Culwick et
al., 2020). These studies show that sponge grounds are found
in areas with a variety of environmental conditions, but little
is known of the mechanisms controlling their spatial distri-
bution or what controls their biomass.

The Canadian Atlantic continental shelf breaks and upper
slopes, including the northern Labrador Shelf, host extensive
sponge grounds (Kenchington et al., 2010; Knudby et al.,
2013). Sponge assemblages occur over a large depth range
(200–2875 m) and are often aligned along depth contours
with presumably similar environmental conditions (Murillo
et al., 2012; Knudby et al., 2013). On the northern Labrador
Shelf and upper slope, sponge assemblages consist mostly
of Geodia spp. and glass (hexactinellid) sponges (Kenching-
ton et al., 2010) but with locally variable sponge biomass.
Therefore, this region provides a suitable setting to study
which environmental conditions favour high sponge biomass
and to provide insight into the factors that drive the spatial
distribution of sponge assemblages on the eastern Canadian
Shelf. Furthermore, research on the present environmental
conditions on the seafloor is timely, as the Labrador Shelf
region is one of the fastest warming large marine ecosys-
tems globally (∼ 1 °C per decade; Belkin, 2009), and ac-
cording to ensemble-based climate change prediction, crit-
ical water mass properties there, including temperature, par-
ticulate organic carbon, pH, and aragonite saturation, are
likely to change substantially by 2100 (Puerta et al., 2020).
Recent work on the Labrador Sea also shows that Arctic sea-
ice melt can impact the hydrographic conditions in this re-
gion (Yashayaev, 2024). Therefore, analysis of the contem-
porary conditions provides a baseline or a benchmark for ref-
erencing future ocean and ecosystem conditions. This study
presents a valuable reference dataset for the upper slope of
the northern Labrador Shelf against which future changes
could be evaluated.

To obtain a better understanding of the environmental con-
ditions and ecosystem functioning of high- and low-sponge-
biomass sites on the upper slope of the northern Labrador
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Figure 1. Map of the study area with (a) the general circulation pattern (Curry et al., 2014). Cold Artic Water (AW) flows southward through
the Davis Strait and continues as the surface-intensified Baffin Island Current (BIC). The warmer, more saline West Greenland Current
(WGC) of North Atlantic origin largely follows the continental slope in the depth range of 150–800 m and is deflected westward at approx-
imately 64° N. Cold and fresh water leaves Hudson Strait and joins the BIC and WGC to form the offshore branch of the Labrador Current
(Straneo and Saucier, 2008). (b) Location of lander deployments and CTD casts, with sponge biomass (in kg m−1) based on Kenchington
et al. (2010). Areas delineated with a dashed line indicate the shallow shelf and deeper slope stations (see panel labels) at both sites. HSB
denotes the high-sponge-biomass transect (red symbols), whereas LSB denotes the low-sponge-biomass transect (blue symbols).

Shelf, this study specifically aimed to examine the follow-
ing: (i) differences in ocean dynamics and seawater prop-
erties, (ii) the annual dynamics of near-bed environmental
and hydrodynamic conditions, and (iii) differences in organic
matter flux and isotopic signatures for sponges and asso-
ciated macrofauna. To this end, data on regional oceanog-
raphy of the northern Labrador Shelf were collected from
conductivity–temperature–depth (CTD) casts, Argo float
profiles, and surface drifter buoys. Bottom hydrodynamic-
and environmental conditions were assessed using 2-year-
long benthic lander deployments. Organic matter fluxes were
measured with sediment traps, and benthic macrofauna was
sampled by two rock dredge deployments. This study is the
first to collect year-long hydrodynamic and environmental
data simultaneously at a high- and a low-biomass sponge
ground.

2 Material and methods

2.1 Oceanographic setting and the study area

The study area comprises the northern Labrador Shelf and
upper slope and extends from the southeastern Hudson Strait
outflow region to the base of the Labrador slope (Fig. 1a).
This region is known for intense mixing and water mass

transformation (Dunbar, 1951; Kollmeyer et al., 1967; Grif-
fiths et al., 1981; Drinkwater and Jones, 1987), and four dis-
tinct flow components can be identified (Fig. 1a; Ricketts
et al., 1931; Yashayaev, 2007; Straneo and Saucier, 2008;
Curry et al., 2011, 2014): first, the cold and relatively fresh
Arctic outflow, passing through the Davis Strait via the Baf-
fin Island Current (BIC), enters the region from the north
as Arctic Water (AW) and Baffin Bay Water (BBW; Sher-
wood et al., 2021); second, the West Greenland Current
(WGC) approaches our study site from the northeast; third,
Irminger Water (IW), a warmer and saltier water mass, can
often be seen below the WGC, usually > 150 m depth; and
fourth, Hudson Strait outflow water, which enters the region
from the west. The resulting aggregated boundary current
joins the Labrador Current (LC) flowing southward along the
Labrador Shelf/slope, effectively forming and maintaining a
baroclinic transition between the less-saline shelf water and
the more-saline deep-basin water (Yashayaev, 2007).

The northern Labrador Shelf hosts multiple sponge
grounds with a contrasting sponge community composition,
density, and biomass (Dinn et al., 2020; Kenchington et al.,
2010). We selected a high-sponge-biomass site (HSB; 410 m
depth) in the north and a low-sponge-biomass site (LSB;
558 m depth) in the south of the study area (Fig. 1b; Table S1
in the Supplement), approximately 130 km apart. The sub-
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Figure 2. Images of benthic lander deployment sites, at the high-sponge-biomass (HSB) lander site (a, b) and low-sponge-biomass
(LSB) lander site (c, d). Remotely operated underwater vehicle (ROV) image credits: ArcticNet/Canadian Scientific Submersible Facility
(CSSF)/Department of Fisheries and Oceans (DFO). Laser points in panels (c) and (d) are 6 cm apart.

strate at the HSB lander location consisted mostly of peb-
bles, cobbles, and boulders (Fig. 2a, b; Kenchington et al.,
2010; Dinn et al., 2020), whereas a visual assessment of the
sediment type at the LSB lander location suggested the dom-
inance of gravel (Cote, 2020). The seafloor at the HSB lander
was characterized by large-sized massive demosponges (e.g.
Geodia spp.), glass sponges (e.g. Asconema spp.), and large
gorgonian corals (Primnoa resedaeformis; Fig. 2a, b; Kench-
ington et al., 2010; Dinn et al., 2020). The benthic commu-
nity at LSB consisted mostly of small specimens of corals,
including Anthomastus sp., and sponges such as Polymas-
tia sp., Craniella sp., Axinella sp., and possibly Mycale sp.
(Fig. 2c, d; Cote, 2020). The HSB lander was located on the
shelf on a 2° slope, and the slope aspect was directed north-
west at 60°. The LSB lander was located on the upper slope,
east of the shelf break, on a 7° slope, and the slope aspect
was directed southeast at 105° (Fig. S1 in the Supplement).

2.2 Sampling methodology

2.2.1 Near-bed lander deployment

Landers were deployed during research cruise Amundsen
2018 Leg 2C (27 July 2018) and retrieved during research
cruise Amundsen 2019 Leg 1B (1 and 2 July 2019). The
landers were each equipped with a 2 MHz single point mea-
surement acoustic Doppler current profiler (ADCP; upward-
looking, Nortek Aquadopp), a sediment trap, and a combined
optical backscatter sensor (OBS) for turbidity and fluores-
cence (WET Labs ECO FLNTU).

The ADCPs collected data on pressure, water velocity,
echo intensity (ABS; acoustic backscatter signal), and wa-

ter temperature at a 10 min interval. Furthermore, the built-
in accelerometer and magnetometer in the ADCPs collected
data on heading, pitch, and roll. The ADCP was mounted
2 m above the bottom, and the blanking distance was 1.14 m.
Velocity data were recorded in beam coordinates and trans-
formed in MATLAB to ENU (east–north–up) coordinates af-
ter recovery using the transformation matrix provided by the
manufacturer. The 2 MHz ADCPs have a lower particle size
detection limit of 12 µm in diameter and a maximum sensitiv-
ity for particles of 242 µm diameter (Haalboom et al., 2021,
2023). The combined optical backscatter sensor for turbidity
and fluorescence was programmed to measure every 10 min
over the 1-year period. The sediment trap (PPS 4/3, Tech-
nicap Inc.), with a surface area of 0.05 m2, was equipped
with 12 bottles for suspended particulate matter collection
and with the aperture mounted at 2 m above the bottom. Col-
lection started on 15 August 2018 and lasted until the end
of the deployment. Different time intervals of bottle rotation
were set to increase the sampling resolution during the spring
and summer months. The bottles rotated every 15 d from
mid-August to mid-September 2018, every 30 d from mid-
September to mid-November 2018, every 60 d from mid-
November to mid-March 2019, every 30 d from mid-March
to mid-May 2019, and every 15 d again from mid-May to
mid-July 2019. Prior to deployment, a 4 % solution of for-
malin in brined seawater (40 psu, where psu denotes practical
salinity units) was added to each bottle.

2.2.2 Water column and benthic sampling

CTD casts were performed over two cross-shelf transects
crossing the LSB and HSB lander sites (Fig. 1b; Table S1;
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Coté et al., 2018). Two CTD casts were carried out on the
continental shelf and three on the continental slope, where
the third or middle cast was performed above each benthic
lander deployment. The CTD-rosette water column profiling
and sampling package was equipped with a Sea-Bird SBE
911plus system, which contained sensors to measure tem-
perature (Sea-Bird SBE 3plus), conductivity (Sea-Bird SBE
4), pressure (Paroscientific Digiquartz®), dissolved oxygen
(Sea-Bird SBE 43), fluorescence (Seapoint), and a rosette
water sampler with 12 Niskin bottles (12 L each). CTD data
were processed and “cleaned” with the Sea-Bird SBE Data
Processing software (Guillot, 2018). Water samples were
taken from Niskin bottles at five depths (5 m, 50 m, mid-
water, 100 m above bottom, and 10 m above bottom) for the
determination of nutrients (NH+4 , NO−2 + NO−3 , PO3−

4 , and
SiO2) and suspended particulate matter (SPM).

Benthic macrofauna samples for stable isotope analysis
were collected at the two lander locations using a rock dredge
on retrieval of the benthic landers (Table S2; Cote, 2020).
A description of the species found at the two locations is
given in Cote (2020). The rock dredge (7 mm mesh size)
was deployed in “drift” mode at HSB, with a maximum
speed of 2 kn (∼ 4 km h−1) for 10–20 min, and “tow” mode at
LSB, with the ship moving at 1 kn for 10 min. During CCGS
Amundsen cruise 2019 Leg 1B, it was the first time that a
rock dredge had been operated on this research vessel; there-
fore, different operational modes of deployment were tested.
At the LSB lander station, the rock dredge collected lots
of soft sediment; therefore, drift mode was used. On deck,
the dredge was rinsed, and the catch was subsampled and
deposited in fish totes (64 L). The remaining material was
sieved through a 2 mm mesh for the analysis of invertebrates
and fishes. The total catch was photographed and preserved
for species identification and quantification. Samples for sta-
ble isotopes were frozen (−20 °C) for further analysis at the
Netherlands Institute for Sea Research (NIOZ).

2.2.3 Regional oceanography, sea-ice cover, and bottom
temperature and salinity profiles

To explore the regional oceanography on the northern
Labrador Shelf and upper slope, vertical Argo float pro-
files collected within the water depth range of 330–2575 m
(Fig. S3) were extracted from the National Oceanic and At-
mospheric Administration (NOAA) National Oceanographic
Data Center (NODC) World Ocean Dataset and profiling
Argo float Global Argo Data Repository archives (Kieke and
Yashayaev, 2015; Yashayaev and Loder, 2017) using the ap-
proach of Kenchington et al. (2017). We used Argo float pro-
file data (N = 1472) collected between 2005 and 2022 to
determine the seasonal variability in temperature and salin-
ity along the northwestern Labrador shelf break. Specifi-
cally, seawater properties of the corresponding water lay-
ers to the depth of the benthic landers (LSB = 350–450 m
and HSB = 550–650 m depth) were assessed. We report the

mean temperature and salinity values binned per water layer.
Argo float profiles below ∼ 59° N latitude were considered
LSB, whereas those above ∼ 59° N latitude were considered
HSB. Temperature and salinity values were detrended for
interannual variability using an eighth-degree least-squares
polynomial fit. Time-averaged surface currents were derived
from trajectories of satellite-tracked surface drifting buoys
(drifters) deployed within the NOAA Global Drifter Program
during 2000–2020 (Centurioni et al., 2019). The trajecto-
ries were obtained from delayed-mode hourly data and real-
time variable time-step data (Elipot et al., 2016, 2022). The
drifter data were temporally interpolated into 15 min time in-
tervals, binned hourly, and a low-pass filter was used to re-
move tidal and inertial oscillations. Then, the surface veloci-
ties were binned into a 1/3° grid. The drifter-derived surface
currents reveal well-defined large-scale cyclonic circulation
of the Labrador Sea, recirculation gyres as well as mesoscale
circulation features.

Sea-ice cover above the two benthic landers was extracted
from weekly ice charts (Canadian Ice Service, 2022). Slope
angle and aspect were estimated for each lander by taking the
wider topography into account (Fig. S1; Gille et al., 2004).
Along-slope and across-slope bottom velocities were derived
from the bottom current direction, slope aspect, and bottom
horizontal current speed.

2.3 Laboratory analysis

Water column nutrient concentrations were analysed with
a SEAL QuAAtro analyser (Bran + Luebbe, Norderstedt,
Germany) following standard colorimetric procedures. SPM
samples were freeze-dried, weighed, and analysed for or-
ganic carbon content and total nitrogen content.

Sediment trap samples were filtered through a 1 mm sieve
to remove large particles and swimmers, split into five sub-
samples using a McLane WSD-10 rotary splitter, rinsed with
demineralized water to remove salts and formalin, and subse-
quently freeze-dried and weighed (Mienis et al., 2012; New-
ton et al., 1994). Lipids were extracted and analysed follow-
ing the method of Kiriakoulakis et al. (2004). Briefly, sam-
ples were spiked with internal standard (5α(H)-cholestane),
extracted by sonication in dichloromethane : methanol (9 :
1; x3). The solvent was removed, and samples were first
trans-methylated (Christie, 1982) and then treated with bis-
trimethylsilyltrifluoroacetimide: trimethylsilane (99 : 1; 30–
50 µL; 60 °C; 1 h) prior to analysis by gas chromatography–
mass spectrometry (GC–MS). GC–MS analyses were con-
ducted using a GC TRACE 1300 fitted with a split/splitless
injector and DB-5MS column (60 m ×0.25 mm internal di-
ameter, a film thickness of 0.1 µm, and a non-polar stationary
phase of 5 % phenyl and 95 % methyl silicone), using helium
as a carrier gas (2 mL min−1). The GC oven was programmed
to rise from 60 to 170 °C at 6 °C min−1 after 1 min, then from
170 to 315 °C at 2.5 °C min−1, and was finally held at 315 °C
for 15 min. The eluent from the GC was transferred directly
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via a transfer line (320 °C) to the electron impact source of
a Thermoquest ISQMS single quadrupole mass spectrome-
ter. Typical operating conditions were as follows: ionization
potential of 70 eV, source temperature of 215 °, and trap cur-
rent of 300 µA. Mass data were collected at a resolution of
600 Da, cycling every second from 50 to 600 Da and were
processed using Xcalibur software.

Compounds were identified by comparison of their mass
spectra and relative retention indices with those available
in the literature or by comparison with authentic standards.
Quantitative data were calculated by comparison of peak ar-
eas of the internal standard with those of the compounds of
interest, using the total ion current (TIC) chromatogram. The
relative response factors of the analytes were determined in-
dividually for 36 representative fatty acids and sterols us-
ing authentic standards. Response factors for analytes where
standards were unavailable were assumed to be identical to
those of available compounds of the same class.

Sponges and other benthic fauna collected using a rock
dredge were subsampled aboard the CCGS Amundsen, as
some parts of the specimens’ bodies were used in separate
studies and other parts for isotopic analysis in this study. In
the laboratory, the collected fauna was freeze-dried and ho-
mogenized with a pestle mortar and ball mill. Subsamples
(ca. 10 mg) were transferred into silver cups and acidified by
addition of dilute HCL (2 %, 5 %, and 30 %) to remove car-
bonates. Organic carbon and δ13C were analysed on acidi-
fied subsamples, and total nitrogen and δ15N was determined
on non-acidified subsamples using an electron analyser cou-
pled to an isotope ratio mass spectrometer (Thermo FlashEA
1112). The δ13C and δ15N isotope values are expressed in
parts per thousand (‰) relative to the international standard
Vienna Pee Dee Belemnite and atmospheric N2 for carbon
and nitrogen, respectively. The standard deviation of δ13C
and δ15N measurements was 0.15 ‰.

2.4 Data analysis

2.4.1 Data processing

The transformation of beam coordinates to ENU coordinates
for the ADCP data was carried out in MATLAB (MATLAB,
2010), and other data processing steps used R. The follow-
ing R packages are used during data analysis: oce, ggplot2,
RColorBrewer, knitr, reshape2, RNetCDF, readxl, lubridate,
xts, tibble, dplyr, mapdata, patchwork, tibbletime, readr, sig-
nal, astsa, and terra (Hijmans, 2023; Becker et al., 2022;
Campitelli, 2021; Grolemund and Wickham, 2011; Kelley
and Richards, 2020; Michna and Woods, 2019; Müller and
Wickham, 2023; Neuwirth, 2022; Pedersen, 2019; R Core
Team, 2019; Ryan and Ulrich, 2023; signal developers, 2023;
Stoffer, 2020; Vaughan and Dancho, 2020; Wickham, 2007,
2016; Wickham and Bryan, 2019; Xie, 2020). Statistics are
presented as means ± standard deviations.

2.4.2 Benthic lander analysis

Occasionally, pitch and roll data from the ADCP sensor at
HSB were shifted for a small period of the deployment,
implying that the lander was occasionally moving slightly
(Fig. S3). The pitch, heading, and roll were almost identical
before and after these disturbances. Furthermore, the AD-
CPs correct for the pitch, heading, and roll of the respec-
tive device when producing the raw beam data. Removing
data points during disturbance did not change the outcome
of any of the analyses, statistical tests, or descriptive statis-
tics; therefore, data points were retained in the HSB lander
time series.

Chl-a concentration (in µg L−1) and turbidity (in neph-
elometric turbidity units, NTUs) were calculated from ping
counts as described in the manual of the manufacturer.

Spectral analyses of lander data based on a Fourier trans-
formation (Bloomfield, 2004) were performed to examine re-
curring patterns or periodicity in the time-series data (e.g.
Shumway et al., 2000; Bloomfield, 2004). Prior to these anal-
yses, time-series data were smoothed using modified low-
pass Daniell filters (Bloomfield, 2004), to remove periodici-
ties shorter than 3 h. The magnitude and direction of ADCP-
recorded tidal currents were analysed with least-squares har-
monic analysis.

2.4.3 Critical slope and comparing barotropic with
baroclinic tides

Internal tides are generated by the barotropic tide interact-
ing with sloping bottom topography and can have a pro-
found influence on the thermohaline structure and local mix-
ing processes. Internal tides are found at complex deep-
sea topographic features such as continental shelves, ridges,
seamounts, and canyons (e.g. Cacchione et al., 2002). In-
ternal tide–topography interactions can be classified by the
slope parameter α/c (St Laurent et al., 2003; Cacchione
et al., 2002). The internal wave slope c is calculated with
Eq. (1):

c =

√
ω2
− f 2

N2−ω2 (1)

with tidal frequency ω = 1.4053× 10−4 rad s−1 (represent-
ing the dominant M2 tidal component) and local inertial fre-
quency f (s−1). The Brunt–Väisälä frequency N2 (rad s−2)
was calculated as the mean value (1.4228× 10−5 rad s−2)
from all CTD stations and depths below the deep pycn-
ocline at 250 m or from bottom values at shallower pro-
files. The topographic slope α was calculated from the
maximum depth gradients in latitude and longitude based
on GEBCO_2023 data (GEBCO Bathymetric Compilation
Group, 2023). At critical or near-critical slopes (α ≈ c), the
internal tide is locally amplified and vertical mixing is inten-
sified. At sub-critical slopes (α < c), internal waves pass the
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Figure 3. Hydrographic conditions in the study area: (a) temperature, (b) salinity, and (c) temperature–salinity (TS) plots for the two transects.
LSB denotes the low-sponge-biomass transect, whereas HSB denotes the high-sponge-biomass transect. Depths of landers are indicated by
the horizontal grey lines in panels (a) and (b). The temperature and salinity profiles in panels (a) and (b) only show the top 600 m, whereas
TS plots in panel (c) include the entire water column. The thin grey lines in panel (c) resemble isopycnals.

topographic slope without being locally modified. At steeper
super-critical slopes (α > c), internal waves are reflected into
deeper waters. Bottom currents and direction were compared
to model-derived barotropic tidal currents, retrieved from
the Oregon State University (OSU) Tidal Inversion Software
(OTIS; Egbert and Erofeeva, 2002).

3 Results

3.1 Seawater properties over the northern Labrador
Shelf and upper slope

The CTD casts, performed in July 2018, revealed different
seawater properties between the two transects (Figs. 3, S4).
The surface water at the time of survey was relatively warm
(2–6 °C) and fresh (31.2 to 33.8 psu) with an offshore in-
crease in temperature and salinity. From the surface to a
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Figure 4. The (a) oxygen, (b) nitrate, and (c) silicate concentration profiles for the two transects and (d) fluorescence profiles for the two
CTD casts above the two lander locations. HSB denotes the high-sponge-biomass site, whereas LSB denotes the low-sponge-biomass site.
Black lines indicate lander depths, whereas dashed lines indicate the thermocline.

depth of 20–70 m, depending on the transect and location,
temperature decreased to sub-zero or near-zero at the shelf
locations and to 3 °C at the slope locations; it then increased
again to 2.8 °C at 250 m depth on the shelf and to 4.3 °C at
150 m on the slope. A cold intermediate layer was visible at
all profiles between 50 and 150 m depth. Salinity increased
nearly monotonically with depth up to the pycnocline across
all stations. The stations at LSB were more saline overall than
those at matching water depths on the HSB transect. Buoy-
ancy frequency showed peak values at the upper and lower
boundaries of the above-described cold intermediate layer at
both transects (Fig. S4f).

The oxygen concentration was highest in the surface wa-
ters (0–50 m) on the shelf and decreased with depth at all
CTD stations (Fig. 4a). Although oxygen concentrations
were still generally high, the bottom oxygen concentrations
at the lander stations were, for both transects, relatively de-
pleted compared with the deep-water CTD transects at simi-
lar depths. Concentrations of nitrate, phosphate, and silicate
were lowest above the thermocline and increased with depth,
while ammonium and nitrite were higher near the surface
than at depth (Figs. 4b and c, S5). The HSB station exhib-
ited relatively high nitrate, phosphate, and silicate concen-
trations at 10 and 100 m above bottom compared with sim-
ilar depths at shelf and deep stations (Figs. 4b and c, S5).
This increased nutrient concentration in the bottom waters
was also apparent for silicate at the LSB station (Fig. 4c), al-
though not for nitrate (Fig. 4b). Chl-a profiles showed a deep
chlorophyll maximum along both transects at 50 m (Fig. 4c)
as well as near-zero concentrations in the bottom waters

(Fig. S4d). Particulate organic carbon (POC) concentrations
were highest in the surface waters (8–38 µmol POC L−1)
and on the shelf (Fig. S6). POC concentrations decreased
with depth, and concentrations 10 m above bottom were
1.48 µmol POC L−1 at HSB and 5.95 µmol POC L−1 at LSB.

Surface water above the benthic lander locations was
partly ice-covered from December to June, but both sites
were located at the sea-ice border in the study area and ice
cover was highly variable (Fig. S11). Only during January
was ice coverage above 70 % at both sites. Both locations
showed a short ice-free period in February and March. Dur-
ing the spring bloom, between the end of March and early
May, sea-ice coverage tended to be higher at HSB than at
LSB (Fig. S11d).

3.2 Regional oceanography and seasonal temperature
patterns

Surface buoy drifter data showed that the HSB lander was
located in an area where three (surface) currents converge
(Fig. 5a). Strong surface currents (> 0.24 m s−1 on average)
carry water from the Hudson Strait towards the Labrador
shelf break, where this current meets two others that flowed
toward the HSB site from the north and northeast, respec-
tively. On convergence, the currents followed the bathymetry
of the Labrador shelf break or upper slope in a southward
direction.

The seawater in the region of HSB was warmer and less
saline than around LSB for both depth ranges within which
the landers were deployed (Figs. 5b and c, S7). Bottom-water
temperature shows a steeper decrease in February at LSB
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compared with HSB (Fig. 5c). Temperature and salinity show
higher scatter at HSB than LSB throughout the season, but
variability in temperature is highest at HSB in February and
March (Figs. 5b and c, S7).

3.3 Year-long near-bottom measurements

3.3.1 Near-bottom current velocities

In general, bottom current speeds were higher at the HSB
compared with the LSB station (Table 1; Fig. 7). Gen-
eral current direction was southeasterly at HSB and south-
southwesterly at LSB (Fig. 6). Vertical velocity (w) was on
average upward and comparable between HSB and LSB, but
the range in vertical velocity was higher at HSB (−0.35
to 0.32 m s−1) compared with LSB (−0.11 to 0.21 m s−1;
Fig. 7c). Bottom horizontal currents were twice as high at
HSB compared with LSB (Table 1), and peak bottom hori-
zontal current speeds were 0.75 m s−1 (HSB) and 0.65 m s−1

(LSB), with the third quantile at 0.33 m s−1 (HSB) and
0.18 m s−1 (LSB).

3.3.2 Near-bottom environmental conditions

Bottom temperature was slightly warmer at HSB compared
with LSB and increased at both sites (0.2–0.3 °C) during De-
cember and January (Fig. 9). The benthic lander temperature
aligned well with the seasonal temperature pattern retrieved
by Argo float profiles (Fig. 5b, c). Turbidity measured by
ABS was similar for the two stations (Table 1; Fig. 9b) and
showed higher values in winter months. Chl-a remained low
from October to February–March, after which time values
started to increase for both landers (Fig. 9c). Bottom Chl-
a concentrations started to increase after short ice-free peri-
ods in mid-February and mid-March (Figs. 9c, S11d). The
HSB station showed highest Chl-a concentrations from mid-
March to the end of May, while increased concentrations
were observed at the LSB station from mid-March to early
May.

Turbidity measured by OBS was elevated at HSB from
February to April and at LSB from December to January.
The higher variability in Chl-a and turbidity at the LSB site
over the year (Table 1) was caused by several peaks in Chl-
a and turbidity that were an order of magnitude higher than
average values (Fig. S8).

During several periods in the year-long time series, tur-
bidity measured by the ABS increased at the turning of the
tide and at high southeasterly current velocities at HSB (see
e.g. Fig. 10b and g). Strong along-slope (southerly) bottom
currents increased ABS turbidity at LSB (Fig. 10a and g).
Across- and along-slope water transport influenced bottom
temperature. At the HSB lander, for example, in the first
week of September, temperature decreased when the current
was directed northwest and increased when the current was
directed southeast (Figs. 10a and f, S9).

Table 1. Benthic lander values over the year-long deployment pe-
riod. Values are given as the mean ± standard deviation. HSB
denotes the high-sponge-biomass lander, LSB denotes the low-
sponge-biomass lander, ABS represents the acoustic backscatter
signal, and OBS represents the optical backscatter signal.

Variable HSB LSB

u (eastward velocity; m s−1) 0.05± 0.22 −0.01± 0.09
v (northward velocity; m s−1) −0.07± 0.16 −0.09± 0.11
w (vertical velocity; m s−1) 0.03± 0.05 0.02± 0.03
Bottom current speed (m s−1) 0.26± 0.14 0.14± 0.08
Temperature (°C) 3.70± 0.17 3.58± 0.17
Daily temperature variability 0.25± 0.16 0.17± 0.1
(1 °C d−1)
Turbidity by ABS (counts) 98.1± 9.8 96.6± 11.0
Chl-a concentration (µg L−1) 0.11± 0.03 0.08± 0.10
Turbidity by OBS (NTU) 0.20± 0.10 0.21± 0.27
Across-slope velocity (m s−1) 0.01± 0.13 −0.01± 0.01
Along-slope velocity (m s−1) −0.08± 0.23 −0.09± 0.11

3.3.3 Tidal analysis of bottom currents and
environmental conditions

Bottom current speeds showed semidiurnal and spring–neap
tidal patterns, with a peak every fortnight for both sites
(Figs. 7, 8b, 10). The major axes of the semidiurnal tidal el-
lipses were orientated in a northwest–southeast direction at
HSB and a north–south direction at LSB (Fig. 8a, b). The
tidal analysis presented in Table 2 and Fig. 8 shows notable
differences in tidal characteristics between the LSB and HSB
lander locations. While semidiurnal tidal harmonics predom-
inate at both locations, the semi-major axis at the HSB site is
approximately 4 times larger than the corresponding value at
the LSB site. Moreover, there is a significant discrepancy be-
tween the modelled and observed main semidiurnal tidal har-
monics (M2) at the HSB site, particularly in terms of mag-
nitude and tidal ellipse eccentricity. This indicates that the
dominant barotropic semidiurnal tide (M2) is altered at the
HSB site, leading to strongly rectified near-bottom baroclinic
tidal currents. There are no substantial differences between
the modelled (barotropic) and observed S2 tidal currents, ex-
cept for the tidal ellipse eccentricity at the LSB site, likely
due to the depth difference between the model and observa-
tions at this location. Furthermore, spectral density for the
HSB bottom current components also peaked at shorter fre-
quencies (3–6 h) and at the 14 d spring–neap tide (Fig. 8c).
In addition, a superimposed seasonal pattern can be seen
at both sites, where the bottom current speed gradually in-
creased from July 2018 to March 2019 and decreased again
from March to July 2019 (Fig. 7d).

Temperature, Chl-a, and turbidity measured by ABS and
OBS all showed a reoccurring tidal peak, with higher peaks
in spectral density for the semidiurnal periodicity at HSB
than at LSB (Fig. 8d). Daily temperature fluctuations were
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Figure 5. (a) The general surface circulation pattern in the Labrador Sea based on drifter buoy data spanning from 1995 to 2020. Arrows
indicate the mean direction; the colours and lengths of arrows present the strength of the mean flow, and the yellow arrows present the
standard error of the flow over the 1995–2020 period. The lander locations are indicated by the coloured dots. (b, c) Seasonal temperature,
from Argo float profiles, of the water layer in which the HSB or LSB lander was located. Dots represent individual water-layer-binned
temperature measurements vs. day of the year. The lines are a smoothed fit that show the seasonal pattern.

higher at HSB than at LSB. During the spring bloom, the
bottom Chl-a concentration increased during strong south-
easterly current velocities at HSB (Fig. S10) and showed a
periodic reoccurring peak (Fig. S11a).

3.4 Mass deposition and organic carbon fluxes

The average mass fluxes were higher at HSB (2.46±
1.76 g m−2 d−1) than at LSB (1.43± 0.93 g m−2 d−1),

with highest fluxes in winter (October–April) at both
sites, which corresponds well with the superimposed
seasonal patterns seen in ABS turbidity and bottom
current speed. Average POC fluxes were higher at
HSB (3.07± 1.91 mmol C m−2 d−1) than at LSB (1.91±
0.71 mmol C m−2 d−1). Organic carbon content at HSB was
highest in autumn and summer months (∼ 2%) and highest
at LSB in autumn (2 %–4 %; data not shown). Average C : N
ratios were lower at HSB (8.6±3.2) than at LSB (10.8±2.7)
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Table 2. Tidal analysis of velocity time series from the HSB and LSB lander sites based on ADCP measurements and OTIS tidal model
analysis. The terms amaj and amin represent the respective semi-major and semi-minor axes of the tidal ellipse and ε is the eccentricity
(amin/amaj). OTIS model data represent the barotropic tidal signal, whereas ADCP data show the near-bottom tidal characteristics.

LSB lander data amaj (cm s−1) amin (cm s−1) ε (amin/amaj) Water depth (m)

M2 5.73 2.17 0.38 558
S2 1.74 0.51 0.30
K1 0.65 0.05 0.08
O1 0.10 0.03 0.25

HSB lander data

M2 27.77 7.26 0.26 410
S2 9.61 2.88 0.30
K1 0.88 0.44 0.51
O1 0.36 0.21 0.58

LSB OTIS tidal model

M2 6.08 1.48 0.24 629
S2 1.58 0.57 0.36
K1 0.49 0.06 0.11
O1 0.18 0.01 0.04

HSB OTIS tidal model

M2 40.67 19.23 0.47 425
S2 10.45 4.47 0.43
K1 1.35 0.53 0.39
O1 0.80 0.38 0.48

Figure 6. Horizontal current velocities at the (a) LSB lander and
(b) HSB lander.

and were higher in winter and also in May 2018 (Fig. 11c).
The δ13C ratios of trapped material were higher in winter
at HSB compared with LSB and were higher in summer at
LSB than at HSB (Fig. 11d). The δ15N of trapped material
was comparable between sites, although slightly higher at
LSB. Winter δ15N values were highest compared with the
rest of the year for both landers (Fig. 11e). The lipid flux
was slightly higher at LSB, with low values in winter and
peak values during the spring bloom (Fig. 11f). Unsaturated
alcohols comprised the largest fraction of lipids at LSB, es-

pecially in autumn and winter (Fig. S12b). Peak lipid flux
in April consisted of 25 % polyunsaturated fatty acids (PU-
FAs) at HSB (Fig. S12c). Sterols made up the largest frac-
tion of total lipids at HSB and LSB in May (Fig. S12d). The
sterol fraction was lower in spring at both sites. Swimmers
were found in the sediment trap bottles, especially in the au-
tumn months at LSB. These consisted mostly of copepods
(e.g. Calanus sp.), mysids (e.g. Boreomysis sp.), amphipods
(e.g. Eusiridae), and chaetognaths (i.e. arrow worms). Num-
bers of trapped swimmers were lowest during winter at both
sites. In addition, several large sponge spicules were found
in the bottles at HSB but not at LSB.

3.5 The δ13C and δ15N isotopic ratios of benthic fauna
and trapped material

The massive sponge Geodia spp. sampled at HSB showed a
distinct isotopic signature compared with the other benthic
organisms, with a relatively enriched δ13C value (−18.55±
0.17‰) and a low δ15N value (8.24± 0.16‰; Fig. 12). The
gorgonian coral Primnoa resedaeformis had a δ13C value of
−21.19±0.59 ‰ and a δ15N value of 10.54±0.33‰. Com-
pared with P. resedaeformis, Decapoda sp. showed slightly
enriched δ13C (−20.48±0.31 ‰) and δ15N (11.97±0.43 ‰)
values. The glass sponge Asconema sp., sampled at HSB,
also had relatively enriched isotopic values (δ13C: −20.27±
0.36 ‰; δ15N: 12.57± 0.31 ‰), while the sponge Mycale
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Figure 7. Time series of the flow velocities with eastward u velocity (a), northward v velocity (b), and vertical w velocity (c) and of the
bottom current speed (d). Plots show the hourly averaged data as transparent lines and the 7 d rolling means as solid lines.

sp., sampled at LSB, had a high δ15N isotopic ratio (13.05±
0.41‰) and a δ13C ratio of−19.47±0.06 ‰. Sediment trap
samples had the lowest δ15N and δ13C isotopic ratios, with
only small differences between HSB and LSB (Figs. 11d and
e, 12).

4 Discussion

Hydrodynamic and environmental conditions were compared
at two contrasting high- and low-sponge-biomass sites along
the northern Labrador shelf break. The aim was to com-
pare differences between the two sites in terms of (i) seawa-
ter properties and regional hydrography (Sect. 4.1 and 4.2);
(ii) bottom currents and environmental conditions, including
seasonal variations over the course of a year (Sect. 4.3 and
4.4); and (iii) benthic–pelagic coupling, organic matter sup-
ply, and isotopic signatures of benthic macrofauna (Sect. 4.6,
4.6, and 4.7).

4.1 Regional oceanography on the northern Labrador
Shelf and Labrador Slope

The northern Labrador Shelf and Labrador Slope are known
to be subject to strong tidal forcing which causes vertical
mixing, high bottom current speeds (Drinkwater and Jones,
1987; Griffiths et al., 1981), and reduced stratification com-
pared with the more northerly Baffin Island shelf (Lazier,
1982; Sutcliffe et al., 1983; Drinkwater and Harding, 2001).
The results of our drifter analysis confirm that three currents
converge around the HSB area: the Hudson Strait outflow
water, the Baffin Intermediate Current, and the West Green-
land Current (Fig. 5a; Ricketts et al., 1931; Yashayaev, 2007;
Straneo and Saucier, 2008; Curry et al., 2011, 2014). These
three respective currents transport Hudson Strait outflow wa-
ter, Arctic Water and/or Baffin Bay (intermediate) Water, and
Irminger Water towards the northern Labrador Shelf and up-
per slope. Our CTD transects show that the characteristics
of these water masses and are similar to earlier observations
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Figure 8. (a, b) Tidal current ellipses at the HSB and LSB lander sites for the two dominant semidiurnal tidal harmonics M2 (black lines)
and S2 (blue lines) derived from the unfiltered ADCP velocities (solid lines) and the OTIS inverse tidal model (dashed lines), respectively.
Variance-preserving spectra for (c) bottom current speed, (d) temperature, turbidity by acoustic backscatter signal (ABS), and Chl-a.

(Drinkwater and Harding, 2001; Fissel and Lemon, 1991;
Petrie et al., 1988). The warmer and saltier water at HSB
(temperature ∼ 4.5 °C and salinity ∼ 34.9) compared with
LSB is likely caused by Irminger Water (Fig. 5b, c), which
follows the Labrador Slope in a cyclonic direction beneath
the cold water of the West Greenland Current and above the
upper slope (Lazier et al., 2002). Our findings concur with
previous work which showed that Irminger Water is gradu-
ally cooled while moving southward by mixing with the Baf-
fin Island Current (Cuny et al., 2002). However, the Argo
float temperature profiles indicate that the area around HSB
might play an important role in transforming Irminger Wa-

ter. For example, the 350–450 m depth layer in the HSB area
regularly showed the presence of Irminger Water (> 4.5 °C),
while it was only sporadically measured at LSB (Fig. 5b).
Irminger Water might, therefore, be cooled and freshened in
the area around HSB due to convergence and, consequently,
mixing occurs with the Hudson Outflow and Baffin Island
Current. Our results support earlier findings that identified a
connection between the Hudson Strait outflow strength and
the southern Labrador Shelf water based on salinity measure-
ments (Myers et al., 1990; Sutcliffe et al., 1983).
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Figure 9. Time series for (a) temperature (in °C), (b) turbidity by acoustic backscatter (ABS; in counts), (c) Chl-a concentration (in µg L−1),
and (d) turbidity by optical backscatter (OBS; in NTU). For clarity, panels (c) and (d) are limited to 1.25 µg L−1 and 2.5 NTU on the y axis,
respectively. Chl-a and turbidity from OBS data without the y-axis cut-offs are plotted in Fig. S10.

4.2 Increased bottom nutrient concentrations

Both the LSB and HSB lander sites showed higher nutri-
ent concentrations in the bottom water compared with the
other shelf and deep CTD stations, and this difference was
more pronounced at the HSB lander location (Fig. 4). Here,
we discuss two possible explanations for this observation:
large-scale advection of nutrient-rich water from Baffin Bay
and sediment efflux of silicic acid. Firstly, nutrient-rich in-
termediate water flows from Baffin Bay via the Davis Strait
southward along the continental slope (Curry et al., 2014).
This water mass, referred to as Baffin Bay Water (BBW),
contains high nutrient concentrations (e.g. 41.6± 25.5 µM
Si(OH)4, 18.5± 2.6 µM NO−3 ; Sherwood et al., 2021) due
to in situ remineralization of organic matter to deep wa-
ter circulating in the Baffin Bay basin (Jones et al., 1984;
Lehmann et al., 2019; Tremblay et al., 2002). Furthermore,
BBW shows relatively high concentrations of silicate and

phosphate compared with nitrate, due to denitrification at
depth in Baffin Bay (Lehmann et al., 2019; Sherwood et al.,
2021). This water mass could have enhanced local bottom-
water nutrient concentrations at the HSB sponge ground.
Secondly, high efflux of silicic acid (nutrients) from the sed-
iment could enhance bottom-water silicate (nutrient) con-
centrations. Research on glass-sponge grounds on the Sco-
tian Shelf has shown that biogenic silica efflux from sedi-
ments leads to higher bottom silicate concentrations (Mal-
donado et al., 2020b). This would also be possible for our
study area. Given that the silicate concentration was elevated
by ∼ 2–3 µM up to 100 m above the bottom (Fig. 4), as-
suming that the length of the sponge ground was ∼ 120 km
(Fig. 1), and thereby estimating that the retention time of a
water parcel on the sponge grounds is about 33 d (the length
of sponge ground divided by residual current speed), this
would mean that, under the assumption that the bottom 100 m
is well mixed, a sediment efflux of 6–9 mmol Si m−2 d−1
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Figure 10. Expanded detail for the first week of September for the (a) current direction at LSB, (b) current direction at HSB, (c) eastward
velocity, (d) northward velocity v, (e) bottom current speed, (f) temperature, (g) turbidity by acoustic backscatter (ABS), (h) turbidity, and (i)
Chl-a concentration.

would be required. While this would be a substantial sed-
iment efflux, silicate effluxes of 2.4 mmol Si m−2 d−1 have
been measured on the Scotian Shelf (Andrews and Har-
grave, 1984; Maldonado et al., 2020b), and values of up to
14.1 mmol Si m−2 d−1 have been observed in the Laurentian
Channel (Eastern Canada; similar depth and temperature;
Miatta and Snelgrove, 2021). Nonetheless, the higher silicate
concentrations at the HSB lander compared with those at the
LSB lander imply that the source is located closer to HSB.
The fact that phosphate was also enhanced in bottom wa-
ters at HSB suggests that the advection of nutrient-rich water
from upstream is the more probable explanation. However,
further work on bottom silicate concentrations in relation to

sponge grounds in this area is needed to unravel the source of
this excess silicate and investigate if and how sponge grounds
benefit from this.

The elevated nutrient concentrations could be beneficial
for benthic organisms, specifically deep-sea sponges, which
require silicic acid for spicule formation and skeletal growth
(López-Acosta et al., 2016; Maldonado et al., 2011, 2020a;
Whitney et al., 2005). Published kinetic uptake curves, de-
scribing the silicic acid uptake rate vs. concentration, suggest
that the higher concentration at the HSB lander (13.6 µM)
compared with LSB shelf (9.3 µM) led to a higher silicic
acid uptake rate at the HSB site of 39 % for Axinella spp.
and 40 % for V. pourtalesii (Maldonado et al., 2011, 2020a).
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Figure 11. Sediment trap content from the two benthic landers. HSB denotes the high-sponge-biomass lander, whereas LSB denotes the
low-sponge-biomass lander. Panel (a) shows the mass flux (in g m−2d−1), panel (b) shows the organic carbon flux (in mmol C m−2 d−1),
panel (c) presents the molar C : N ratio of trapped material, panel (d) presents the δ13C of trapped material, panel (e) shows the δ15N of
trapped material, and panel (f) shows the total lipid flux (in µg m−2 d−1).

Furthermore, elevated silicic acid concentrations on a spatial
scale of kilometres are thought to allow the persistence of
sponge grounds and the build-up of (glass-) sponge biomass
over long timescales (Maldonado et al., 2020b; Whitney et
al., 2005).

4.3 Tidal dynamics and bottom current speed

This study is, to our knowledge, the first to report year-
long hydrodynamic and environmental conditions measured
simultaneously at a high- and low-sponge-biomass ground.
Our measurements show high bottom currents at both sites
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Figure 12. Carbon and nitrogen stable isotope plots of megafauna and sediment trap samples. HSB denotes high-sponge-biomass sites,
whereas LSB denotes low-sponge-biomass sites.

with distinct differences in tidal dynamics. While semidiur-
nal tidal harmonics predominate at both sites, tidally driven
horizontal current speeds were around 4 times higher at HSB
than at LSB. At the HSB site, barotropic and near-bottom
M2 tidal currents are oriented across the slope, but the near-
bottom M2 tidal ellipse is smaller in magnitude and strongly
indicates enhanced local near-bottom energy dissipation of
the barotropic tide through tide–topography interaction (Ta-
ble 2; Fig. 8). At the LSB site, near-bottom M2 and S2
tidal ellipses from the ADCP are oriented along the slope
with a small across-slope component. In contrast, modelled
barotropic semidiurnal tidal harmonics were of similar mag-
nitude but mainly oriented across the slope (Table 2; Fig. 8).
This discrepancy is likely due to local changes in bathymetry
(Fig. S1), which are not resolved in the OTIS tidal model.
The outcome of strongly enhanced current speeds at the HSB
site is contrary to White (2003), who measured high current
speeds in areas where no sponges were recorded, and vice
versa, in the Porcupine Seabight. Caution should be applied
comparing these areas, as the sponge fields in the Porcu-
pine Seabight mostly consist of glass sponges, whereas we
see a mixture of glass sponges and massive demosponges.
Bottom current speeds are higher at HSB than at LSB (Ta-
ble 1), but bottom currents at LSB are still comparable with
current speeds found at other sponge grounds on the Sco-
tian Shelf (mean: 0.12 m s−1; Hanz et al., 2021a) and on the

Arctic Mid-Atlantic Ridge (mean: 0.14 m s−1; Hanz et al.,
2021b). The conversion of kinetic energy from barotropic
to baroclinic tides and to turbulence over rough topography
shapes the distribution of benthic filter-feeding communities
in many areas throughout the global ocean (van der Kaaden
et al., 2024). At the northern Labrador shelf break, larger
aggregations of sponges are mainly found on topographic
slopes, where near-critical and super-critical reflection of in-
ternal waves are predicted (Fig. 13).

4.4 How can strong bottom currents benefit the benthic
community?

Strong tidally induced bottom currents can benefit the ben-
thic community at the HSB site in various ways. First, pas-
sive suspension feeders (such as the gorgonian P. resedae-
formis) benefit from high horizontal currents via an increased
particulate organic matter (POM) flux (Shimeta and Jumars,
1991), while sponges (specifically glass sponges) could ben-
efit from an increased water flow rate through their body
plan (Leys et al., 2011; Vogel, 1977), thereby increasing food
availability. Second, resuspension caused by oscillating tidal
bottom currents enhance organic matter and inorganic nutri-
ent availability in the benthic boundary layer and enhance
food supply to the sponges (Roberts et al., 2018). In this
study, high along-slope bottom currents at both sites were
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Figure 13. The internal wave slope parameter indicates sub-critical
conditions across most of the Labrador Shelf and in the deep north-
western Atlantic. Near-critical and super-critical conditions are pri-
marily observed along the continental margin. This analysis sug-
gests that the HSB lander (northern point) was situated in near-
critical conditions for the M2 tide, while the LSB lander (southern
point) experienced super-critical bottom slopes for M2.

associated with increased turbidity (both ABS and OBS), in-
dicative of resuspension. However, the beneficial effect of re-
suspension for sponge biomass is not yet fully understood,
as reoccurring strong turbidity flows (at LSB) could also pre-
vent high sponge biomass from developing by smothering
young sponges when particles settle out (Klitgaard and Ten-
dal, 2004).

The substrate at HSB consisted mostly of pebbles, cob-
bles, and boulders (Dinn et al., 2020), whereas a qualitative
assessment of the sediment type at LSB suggested the dom-
inance of muddy, soft sediment (Cote, 2020; Johanne Vad,
personal communication, 2023). As higher bottom currents
would increase bed shear stress and, thus, enhance resus-
pension (Jones et al., 1998; Lesht, 1979), we argue that fine
material is resuspended at HSB before its accumulation on
the seafloor. This increases the availability of organic matter
to benthic suspension feeders in the benthic boundary layer
and prevents smothering from sedimentation. Resuspension
has also been linked to high sponge biomass (Davison et al.,
2019), as potential food sources such as organic matter and
bacteria can bind to suspended particles in the water column.
The interaction of high bottom currents with rough topogra-
phy causes turbulence and mixing of bottom waters (Witte et
al., 1997; Leys et al., 2011; Culwick et al., 2020). As the sub-
strate is likely rougher and bottom currents are higher at HSB
than at LSB, the bottom water probably experiences more in-
tense mixing and turbulence at HSB. Finally, the periodic
supply of fresh phytoplankton-derived material during the
spring bloom (Figs. S10, S11) increases food availability for
the passive suspension feeders living on the sponge grounds.
In short, the stronger tidal currents at HSB enhance bottom-
water mixing, replenishing oxygen, dissolved organic matter,

POM, and (inorganic) nutrients in the benthic boundary layer
and, thus, increasing the food supply for benthic fauna (Davi-
son et al., 2019; Hanz et al., 2021a, b).

4.5 Surface productivity and benthic–pelagic coupling

The Hudson Strait outflow water is known to increase nu-
trient concentrations in the surface waters on the northern
Labrador Shelf (Drinkwater and Harding, 2001; Kollmeyer
et al., 1967; Sutcliffe et al., 1983). The increased nutrient
supply supports high primary productivity in an area extend-
ing from the Hudson Strait to the southern Labrador Shelf,
bounded by the thermal front associated with the 1000 m
isobath (Cyr and Larouche, 2015; Frajka-Williams et al.,
2009; Frajka-Williams and Rhines, 2010). Previous studies
have shown that surface Chl-a concentrations are compara-
ble between the two sponge grounds (see Fig. 2a in Frajka-
Williams and Rhines, 2010), suggesting that differences in
surface productivity alone are insufficient to explain the dif-
ferences in sponge biomass between regions. Furthermore,
studies elsewhere in the Canadian Arctic have shown that
benthic biomass is explained not only by surface productiv-
ity but also by local hydrodynamics and benthic–pelagic cou-
pling (Grebmeier and Barry, 1991; Roy et al., 2014; Thom-
son, 1982).

Our year-long recordings of bottom-water Chl-a concen-
trations provide evidence of strong benthic–pelagic coupling
during spring in this region. The benthic landers showed the
early arrival of fresh phytodetritus in early March, a peak in
Chl-a in mid-April, and a Chl-a concentration that was close
to background values again from early May at LSB and from
mid-May at HSB (Fig. 9c). Studies on the onset of the phy-
toplankton bloom on the Labrador Shelf show that blooms
usually initiate around mid-April and peak around mid-
June (Cyr et al., 2023; Frajka-Williams and Rhines, 2010;
Fuentes-Yaco et al., 2007). The study of Cyr et al. (2023)
estimates that the standard deviation in the timing of the ini-
tiation of the phytoplankton bloom is around 21 d. As en-
vironmental conditions of the northern Labrador Shelf were
close to average during 2019 (Cyr and Galbraith, 2021), we
think that it is acceptable to assume that the phytoplank-
ton bloom timing was similar to values found in the litera-
ture. Therefore, arrival of phytodetritus at our benthic lan-
ders was 3 months earlier than the normal phytoplankton
bloom timing. Earlier research has shown that Chl-a starts
to increase on the northern Labrador Shelf from early March
onwards (Harrison et al., 2013). During this time, the wa-
ter column is still relatively cold and poorly stratified, al-
lowing for relatively high export of phytoplankton to the
seafloor. Additionally, the short periods of low ice cover in
mid-February and mid-March (Fig. S11d) match the subse-
quent increase in the bottom Chl-a concentration seen for
both landers (Fig. 9c). The onset of the phytoplankton bloom
for the northern Labrador Shelf is around mid-April and is
related to the onset of stratification (Cyr et al., 2023) and
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sea-ice cover (Wu et al., 2007). The timing of peak bottom
Chl-a concentrations (mid-April) and consequential decline
compare well with the timing of phytoplankton bloom ini-
tiation proposed by Cyr et al. (2023). They show that there
is a south-to-north progression of the phytoplankton bloom
over the Labrador Shelf; this matches with our data which
show that Chl-a concentrations stay elevated around 3 weeks
longer at the more northern HSB lander. Furthermore, assum-
ing that surface Chl-a concentration peaks in June, we can in-
fer that there appears to be a decoupling between pelagic pro-
ductivity and bottom Chl-a concentration in summer, likely
due to enhanced stratification and intense zooplankton graz-
ing (Rivkin et al., 1996; Turner, 2015).

Our findings suggest that strong benthic–pelagic coupling
started weeks before the peak of the phytoplankton bloom,
supplying fresh fluorescent material to the seafloor in spring
for a period of weeks to months. As the timing of phyto-
plankton bloom for high-latitude seas is shifting to earlier
in the year due rising temperatures and earlier sea-ice re-
treat (Edwards and Richardson, 2004; Hunter-Cevera et al.,
2016; Wu et al., 2007) and because deep-sea sessile or-
ganisms, such as cold-water corals and deep-sea sponges,
demonstrate seasonality in their phenology (Leys and Lau-
zon, 1998; Maier et al., 2020b; Maldonado, 2011), the early
arrival of phytoplankton-derived material could have conse-
quences for their overall fitness and survival. Nevertheless,
the effect of a shift in the spring bloom timing for benthic
suspension feeders, including deep-sea sponges, remains un-
known.

Recent ABS measurements have revealed a layer of in-
creased 300 kHz backscatter along the northern Labrador
Shelf, indicative of a high abundance of micronekton and
macrozooplankton (Chawarski et al., 2022). Earlier studies
showed a high zooplankton biomass on the Newfoundland
Shelf from July onwards (Head et al., 2003, 2013). In our
traps, the highest flux of unsaturated alcohols, a biomarker
for zooplankton (specifically copepods; Dalsgaard et al.,
2003), and the highest numbers of swimmers were in sum-
mer and autumn. During the spring bloom, trapped mate-
rial at LSB had the highest relative amount of unsaturated
alcohols, while the level of PUFAs, markers for phytoplank-
ton derived-material, was highest at HSB (Dalsgaard et al.,
2003). Furthermore, our observations suggest that the num-
ber of trapped swimmers was higher at LSB than at HSB.
These results are consistent with the hypothesis that zoo-
plankton biomass is high over the northern Labrador Shelf
(Saglek Bank) and that zooplankton are transported by the
southerly current along the Labrador Shelf together with the
high phytoplankton biomass plume (Drinkwater and Hard-
ing, 2001; Sutcliffe et al., 1983). Overall, there was a larger
fraction of zooplankton marker lipids in trapped material at
LSB, which implies that zooplankton play a more important
role in benthic–pelagic coupling at LSB than at HSB.

4.6 Organic matter fluxes to the seafloor

Organic matter deposition was higher at the HSB lander than
at the LSB lander. Overall, deposition was highest during
the winter months and consisted of more degraded material
than during summer, indicated by high C : N ratios and high
δ15N values. This increased deposition in winter is likely re-
suspended material, as shown by peaks in ABS turbidity in
the bottom boundary layer, and is related to higher current
speeds. The C : N ratio of deposited matter was higher at
LSB (∼ 13) compared with HSB (∼ 8), indicating that the
material was more degraded at LSB. Hanz et al. (2021a,
b) also found higher mass and carbon fluxes during win-
ter months and low carbon fluxes when the spring phyto-
plankton bloom arrived. They attributed this to the pres-
ence of more degraded and resuspended material in win-
ter. Data concerning mass fluxes from sponge grounds re-
main scarce, but the fluxes measured here (HSB 2.46±
1.76 g m−2 d−1; LSB: 1.43± 0.93 g m−2 d−1) were compa-
rable to those of a Vazella pourtalesii sponge ground on the
Scotian Shelf (3.17± 3.42 g m−2 d−1; Hanz et al., 2021a)
but substantially higher than those of a sponge ground on
the Arctic Mid-Atlantic Ridge (0.03–0.30 g m−2 d−1; Hanz
et al., 2021b). Overall, our data suggest that organic mat-
ter deposition fluxes are higher at HSB compared with
LSB and that the organic matter is of higher quality. The
organic carbon fluxes (HSB: 3.07± 1.91 mmol C m−2 d−1;
LSB: 1.91±0.71 mmol C m−2 d−1) reported in our study are
considerably lower than those of a more shallow (150–250 m
depth) V. pourtalesii sponge ground on the Scotian Shelf
(8.3 mmol C m−2 d−1; Hanz et al., 2021a) but high compared
with an Arctic Mid-Atlantic Ridge sponge ground (peak of
1.6 mmol C m−2 d−1; Hanz et al., 2021b). The higher organic
matter deposition rate and relative fresher material at HSB
compared with LSB are likely related to its shallower posi-
tion on the shelf and the more dynamic water column.

4.7 Isotopic signatures of benthic macrofauna at two
contrasting sponge grounds

Although the sample size was limited, the stable isotope data
revealed interesting patterns of organic matter utilization by
the benthic community. The gorgonian coral P. resedae-
formis is found one trophic level (Fry, 2006) above the sedi-
ment trap material and, therefore, likely feeds on sinking or-
ganic matter, confirming previous observations (Sherwood et
al., 2005, 2008). Sponges can generally be classified into two
groups based on their associated microbial fauna: those with
high microbial abundance (HMA) or those with low micro-
bial abundance (LMA; Vacelet and Donadey, 1977). Geodia
spp. can occur in high abundance and biomass on sponge
grounds (Kutti et al., 2013). These sponges are considered
HMA (Radax et al., 2012) and feed mostly on dissolved or-
ganic matter with additional particulate sources, such as bac-
terioplankton (Bart et al., 2021). Many hexactinellids that
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can form sponge grounds, for instance Vazella pourtalesii
and Aphrocallistes vastus, are considered LMA sponges and
feed mostly on bacterioplankton (Kahn et al., 2015). The
high δ15N isotopic ratios for the sponges Asconema spp.
(12.6± 0.3 ‰ δ15N) and Mycale spp. (13.1± 0.4 ‰ δ15N)
have been observed previously for LMA sponges (Iken et
al., 2001; Kahn et al., 2018; Polunin et al., 2001). Deep-sea
LMA sponges typically have elevated δ15N values in the ben-
thic food web (Kahn et al., 2018), a phenomenon that is still
poorly understood. Possible explanations could be selective
feeding on 15N-enriched bacteria (Wilkinson et al., 1984),
feeding on resuspended benthic bacteria (Kahn et al., 2018),
or nitrogen (re)cycling within the sponge holobiont (Hanz et
al., 2022; Rooks et al., 2020). Interestingly, the HMA mas-
sive sponge Geodia sp. has distinct δ13C and δ15N values,
as also observed in Hanz et al. (2022), indicating differ-
ent feeding or metabolic strategies. Recent research on Geo-
dia barretti has indeed demonstrated that these sponges rely
in large part on dissolved organic matter (DOM) for their
metabolic requirements (Bart et al., 2021; de Kluijver et al.,
2021). In this study, Geodia spp. (8.2±0.2 ‰ δ15N) was one
trophic level higher than oceanic DOM δ15N (∼ 5‰; Ben-
ner et al., 2005; Sigman et al., 2009) and δ15N-NO−3 (∼ 5‰;
Sigman et al., 2009; Sherwood et al., 2021), limiting our abil-
ity to distinguish between DOM and NO−3 (by i.e. denitrifi-
cation; Hoffmann et al., 2009) as potential nitrogen sources.
The δ13C value of Geodia spp. (−18.4± 0.17‰ δ13C) is
±3.5‰ higher than bottom-water δ13C-DOC values on the
Labrador Shelf (Barber et al., 2017), i.e. more than 4 times
higher than the expected 0.8‰ δ13C step per trophic level
(Vander Zanden and Rasmussen, 2001). Alternatively, Geo-
dia spp. could capitalize on dissolved inorganic carbon (DIC)
via their symbionts (de Kluijver et al., 2021), as recently ob-
served in Arctic Geodia spp. assemblages (Morganti et al.,
2022) and other deep-sea sponges (van Duyl et al., 2020).
Even limited chemoautotrophic assimilation of high-δ13C
DIC (∼ 0‰ δ13C) could explain the high δ13C values of
Geodia spp. These results indicate that passive suspension
feeders benefit from high tidal currents through an increased
particulate organic matter flux (Shimeta and Jumars, 1991),
whereas sponges likely benefit from replenishment of nutri-
ents, oxygen, and DOM (Schläppy et al., 2010).

5 Conclusions

The aim this research was to obtain a better understanding
of the environmental conditions under which sponge grounds
occur and investigate the conditions under which high sponge
biomass could develop. This study identified that the high-
biomass sponge ground on the northern Labrador Shelf
differs from the low-biomass sponge ground in the fol-
lowing ways: a more dynamic water column with strong
tidal bottom currents and near-bottom energy dissipation
by tide–topography interactions, increased bottom inorganic

nutrient concentrations, and higher organic matter flux to
the seafloor. Furthermore, both sponge grounds experienced
strong benthic–pelagic coupling during spring and a decou-
pling during summer months. The elevated bottom nutrient
concentrations at the high-sponge-biomass ground could be
related to large-scale circulation or sediment effluxes, and
future work is needed to assess this. Our findings suggest
a relation between slope criticality and sponge biomass on
the northern Labrador Shelf which could be interesting to in-
vestigate in future work. The deep-sea sponges and corals
benefit from the dynamic water column in the high-biomass
sponge ground via the increased availability of food sources
and nutrients.
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