Data Science for Next Level Dairying

HDRF Next Generation Dairying Conference

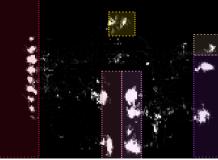
November 19th, **Claudia Kamphuis** – senior researcher WLR, coordinator Expertise Team Data Science Wageningen University and Research

Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

- Large scale real-time data collection
- Digital twins
- Artificial Intelligence for behaviour analysis

Take-home message

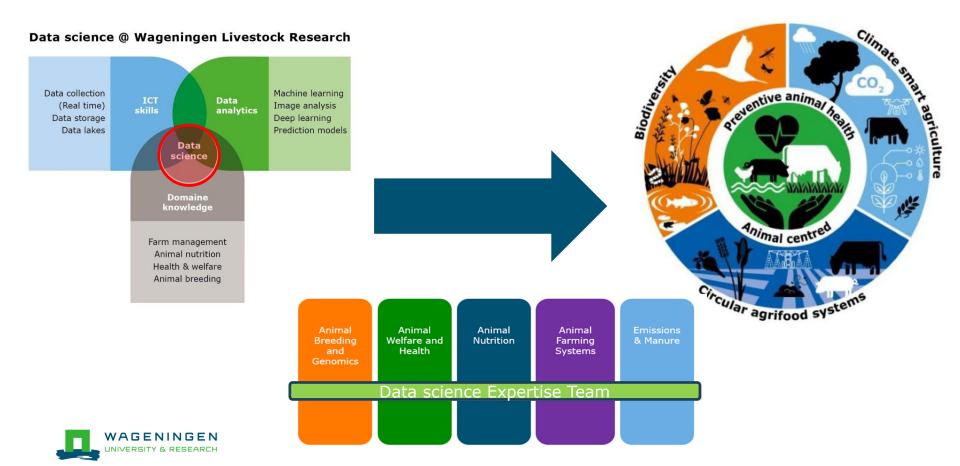


Data in the Dairy Domain

ACTGAGTTCCCTGGAACGGGACGG TACTGAGTTCCCTGGAACGGGACGG TTCCGAGTTCCCTGGAACGGGACGG CTTCCGAGTTCCCTGGAACGGGACGG TTCCGAGTTCCCTGGAACGGGACGG GGATAACCGTGGTAATTCTAG ACCCCATAGAGGGTGAGAGCCC CGGGACGCCATAGAGGGTGAGAGGG CGGGACGCCATAGAGGGTGAGGGC CGTCTGGTAGGACACCCAGCCC

y coordinate

Data in the dairy domain


Due to increasingly tech-saffy livestock domain

Volume Variety Veracity

Bringing <u>challenges</u> before we can create value Data Science can help

Data Science in the Dairy Domain

Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

- Large scale real-time data collection

- Digital twins
- Artificial Intelligence for behaviour analysis

Take-home message

Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

- Large scale real-time data collection
- Digital twins
- Artificial Intelligence for behaviour analysis

Take-home message

Acknowledgements to financers KB Data Driven and High Tech Next Level Animal Sciences SSN – Dairy Campus Innovation Fund Ministry of LVVN Noldus Technology

And many MANY people doing all the work

Ina Hulsegge, Marjaneh Taghavi, Wijbrand Ouweltjes, Rodania Bekhit, Yvette de Haas, Roel Veerkamp, Bert Klandermans, Gerrit Seiger, Anouk van Breukelen, Frits van Evert

Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

- Large scale real-time data collection
- Digital twins
- Artificial Intelligence for behaviour analysis

Take-home message

Why?

NL has committed itself to the climate agenda: reduce methane emissions by 49% in 2030

Livestock sector committed to this reduction too

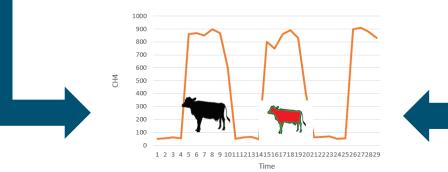
Necessary for strategies to reduce methane emissions in livestock sector, e.g., through breeding

For breeding: lots of cow-individual data required, how to do this?

Sensor 'Sniffer'

Relatively cheap continues measurements CH4 and CO2

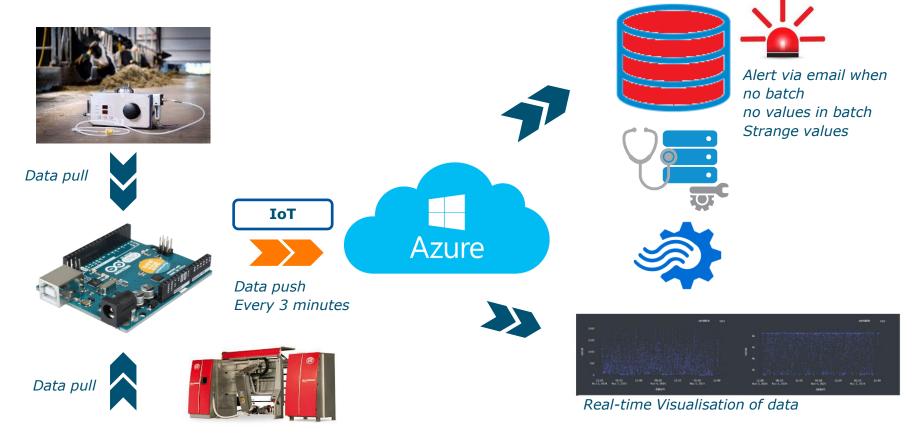
Not measured = from which cow?

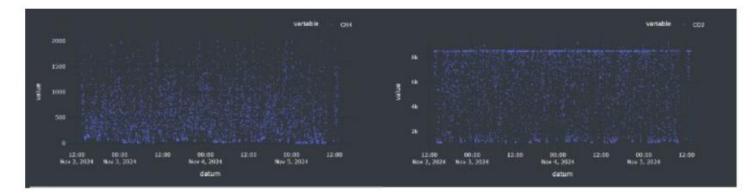


But

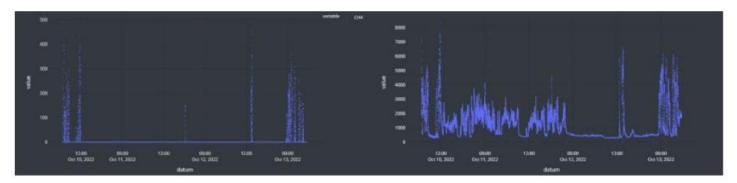
Difficult to combine sensors due to error-prone key identifiers

But


Difficult to combine sensors due to error-prone key identifiers


Difficult to upscale to more farms

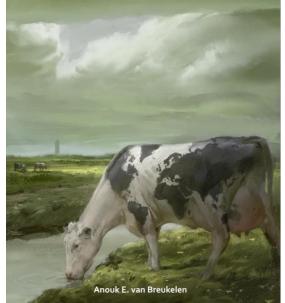
costs are relatively high, and depends on WIFI coverage


Data quality check done after data storage

risk of losing data if not done regularly

Desired data

Undesired data due to, e.g., blocked tube or filter



Large-scale phenotyping made possibleN farmsN cowsN recordsWeekly mean727,13974,569CH4CH4727,13974,569

Heritability weekly $CH_4 = 0.17 \pm 0.04$ Genetic correlation with GreenFeed = 0.76 ± 0.15 Low and non-significant correlations with other production and health traits

Breeding Climate Smart Dairy Cattle

From Phenotyping to Genetic Selection for Low Methane Emitting Cattle

Dutch breeding company will bring out a new breeding value for methane emission based on this work, early next year

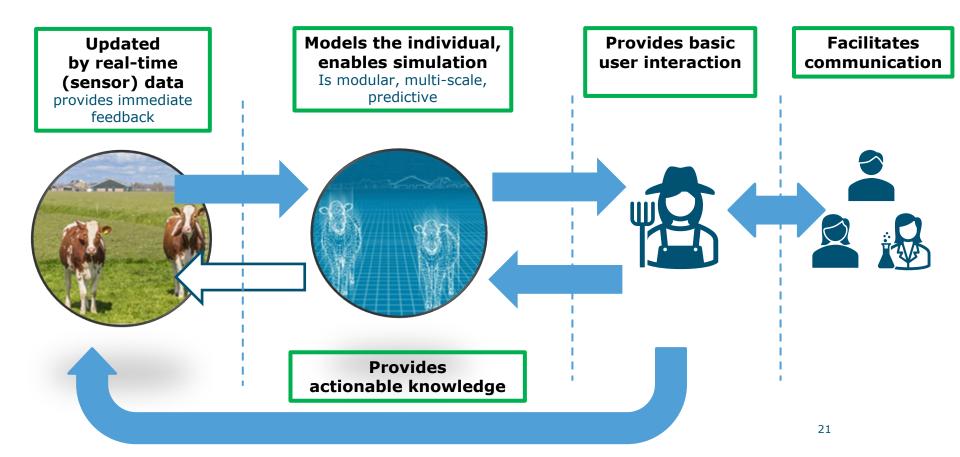
Which was not possible without this new way of data collection

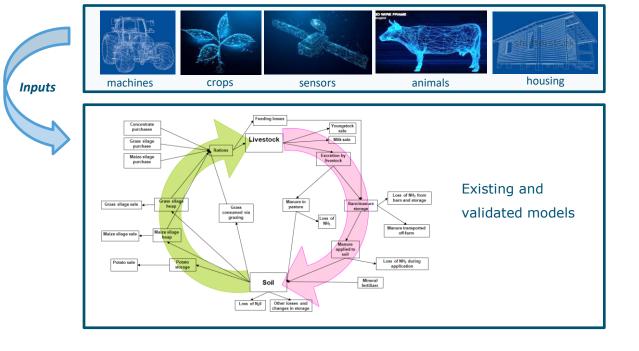
Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

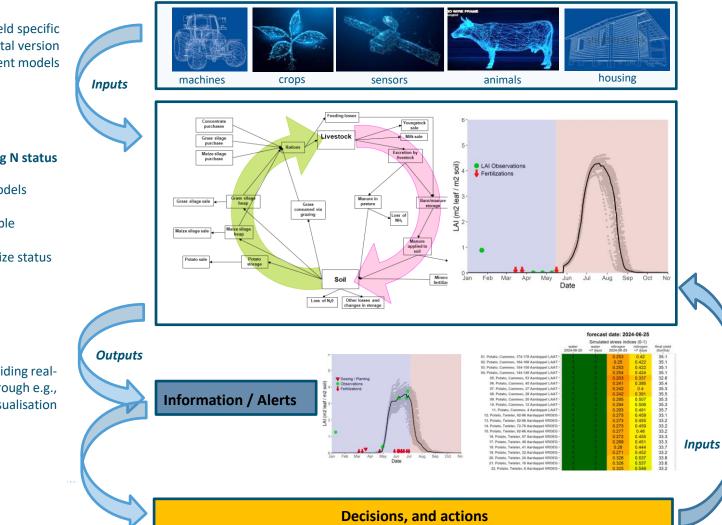
- Large scale real-time data collection

- Digital twins
- Artificial Intelligence for behaviour analysis


Take-home message



Digital Twin of a dairy farm – key aspects of a twin



(near) Real-time farm and field specific data that feed the digital version containing different models

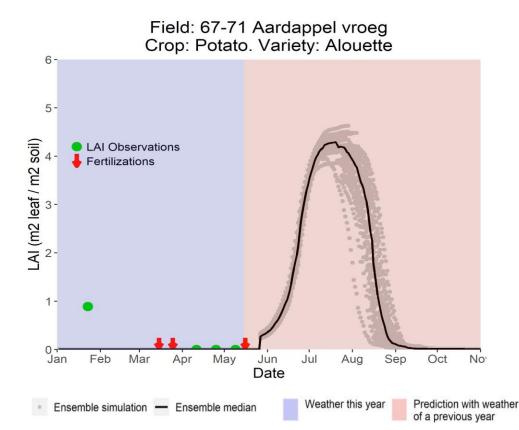
Core of Digital Twin: Twinning N status

Framework to let different models communicate Models are modular and flexible Simulating Nitrogen situation Data assimilation to synchronize status of digital version with reality (near) Real-time farm and field specific data that feed the digital version containing different models

Core of Digital Twin: Twinning N status

Framework to let different models communicate Models are modular and flexible Simulating Nitrogen situation Data assimilation to synchronize status of digital version with reality

Output of those models providing realtime feedback through e.g., visualisation


The DFF in use on Boerderij van de Toekomst and Van den Borne

BvdT Lelystad

The DFF in use on Boerderij van de Toekomst and Van den Borne

BvdT Lelystad

forecast date: 2024-06-25

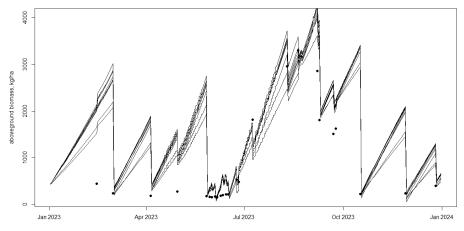
forecast date: 2024-06-26

	Simulated stress indices (0-1)				Simulated growth conditions (1=very good)					
	water 2024-06-25	water +7 days	nitrogen 2024-06-25	nitrogen +7 days	final yield (ton/ha)	water 2024-06-26	water +7 days	nitrogen 2024-06-26	nitrogen +7 days	final yield (ton/ha)
01. Potato, Cammeo, 174-178 Aardappel LAAT -	1	1	0.253	0.42	35.1	1	1	1	1	64.1
02. Potato, Cammeo, 164-168 Aardappel LAAT -	1	1	0.25	0.422	35.1	1	1	1	1	63.7
03. Potato, Cammeo, 154-158 Aardappel LAAT -	1	1	0.253	0.422	35.1	1	1	1	1	63.8
04. Potato, Cammeo, 144-148 Aardappel LAAT -	11	1	0.254	0.424	35.1	1	1	1	1	63.8
05. Potato, Cammeo, 53 Aardappel LAAT -	1	1	0.203	0.337	32.6	1	1	1	1	63.5
06. Potato, Cammeo, 45 Aardappel LAAT -	1	1	0.241	0.395	35.4	1	1	1	1	63.6
07. Potato, Cammeo, 37 Aardappel LAAT -	1	1	0.242	0.4	35.3	1	1	1	1	63.7
08. Potato, Cammeo, 28 Aardappel LAAT -	1	1	0.242	0.391	35.5	1	1	1	1	63.5
09. Potato, Cammeo, 20 Aardappel LAAT -	1	1	0.295	0.507	35.3	1	1	1	1	57.6
10. Potato, Cammeo, 12 Aardappel LAAT -	1	1	0.294	0.506	35.3	1	1	1	1	57.6
11. Potato, Cammeo, 4 Aardappel LAAT -	1	1	0.293	0.491	35.7	1	1	1	0.928	42.1
12. Potato, Twister, 92-96 Aardappel VROEG -	1	1	0.275	0.459	33.1	1	1	1	1	56.8
13. Potato, Twister, 82-86 Aardappel VROEG -	11	1	0.273	0.455	33.2	1	1	1	1	56.9
14. Potato, Twister, 72-76 Aardappel VROEG -	1	1	0.275	0.459	33.2	1	1	1	1	56.5
15. Potato, Twister, 62-66 Aardappel VROEG -	1	1	0.277	0.46	33.2	1	1	1	1	56.8
16. Potato, Twister, 57 Aardappel VROEG -	1	1	0.272	0.455	33.3	1	1	1	1	56.9
17. Potato, Twister, 49 Aardappel VROEG -	1	1	0.269	0.451	33.3	1	1	1	1	56.5
18. Potato, Twister, 41 Aardappel VROEG -	1	1	0.28	0.444	33.7	1	1	1	0.944	42.7
19. Potato, Twister, 32 Aardappel VROEG -	1	1	0.271	0.452	33.2	1	1	1	1	56.8
20. Potato, Twister, 24 Aardappel VROEG -	1	1	0.326	0.537	33.6	1	1	1	1	48.7
21. Potato, Twister, 16 Aardappel VROEG -	11	1	0.326	0.537	33.6	1	1	1	1	49.3
22. Potato, Twister, 8 Aardappel VROEG -	1	1	0.325	0.549	33.2	1	1	1	1	49.2

The DFF in use on De Marke

Data from different sources into a DFF data base

Weather at field level, sentinel, Dacom, national soils, Eurofins, cow data


Models in the CORE of the DFF

grass growth model, cow production model, ration model, water balance model

<section-header><text><text><text>

Simulating grass growth, with data assimilation for e.g., harvest events using high growth rate uncertainties (bigger perturbations, e.g., drought)

Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

- Large scale real-time data collection

- Digital twins

- Artificial Intelligence for behaviour analysis

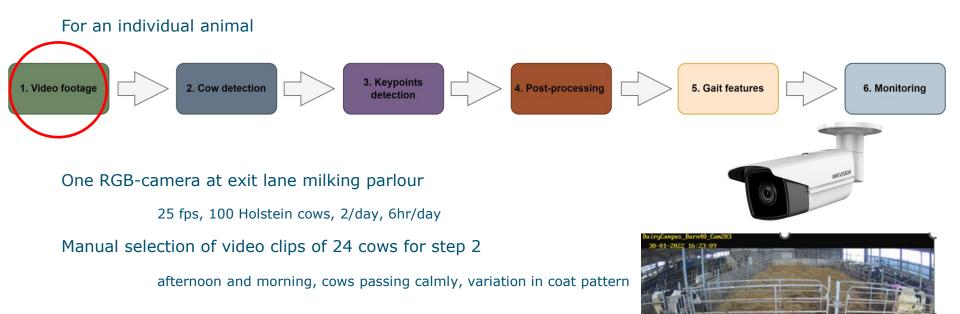
Take-home message

Dot on the horizon:

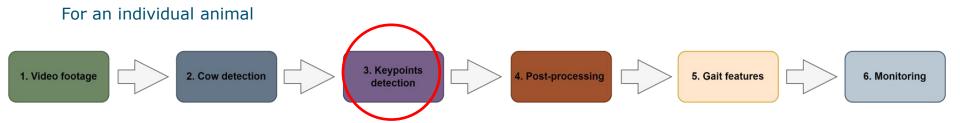
Longitudinal continuous non-invasive measurements of health and welfare of a large group of animals

Use Case:

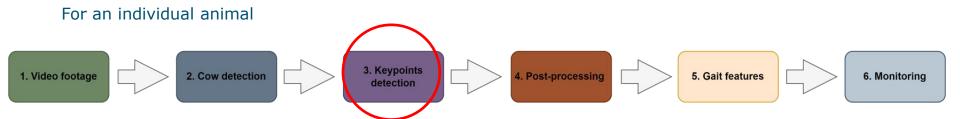
Behaviour related to **Locomotion** using computer vision in a 'real' environment



Individual animal – locomotion scoring One camera


Individual animal in a group – behavior related to locomotion. Multiple cameras

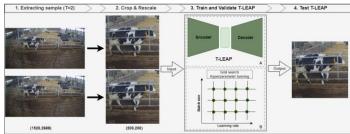
WLR - Dairy Campus


Key point detection using T-leap model (Russello et al., 2022)

Used the temporal information to detect the key-points,

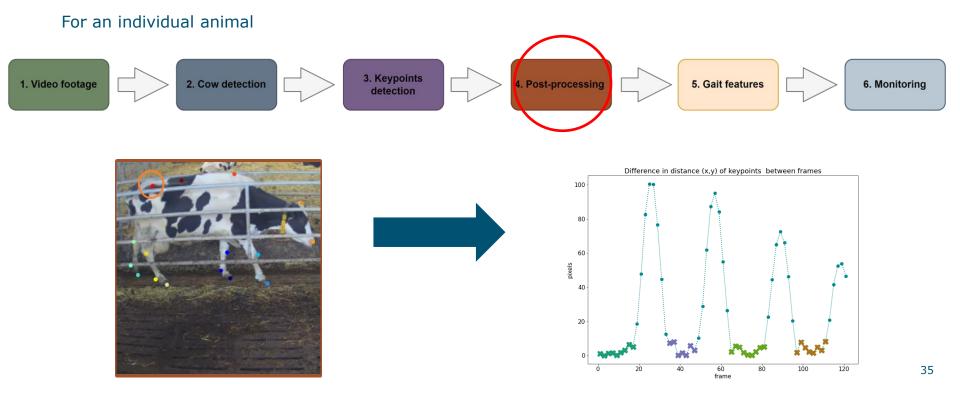
- Validated on artificially occluded data
- Retrained for indoor situation

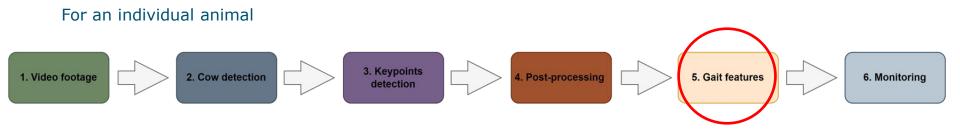
Russello et al. 2022

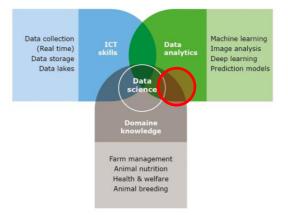


Key point detection using T-leap model (Russello et al., 2022)

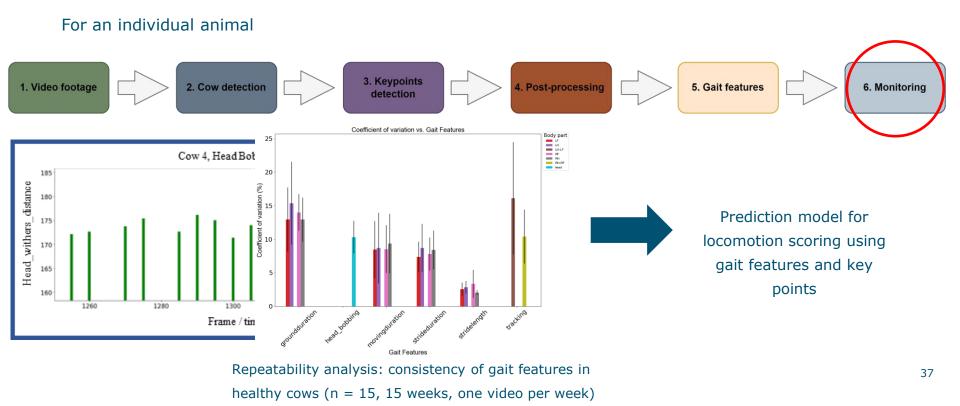
Used the temporal information to detect the key-points


validated on artificially occluded data


Retrained for indoor situation, 17 key points

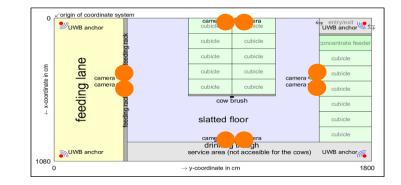


Taghavi et al. 2023



Data science @ Wageningen Livestock Research

Gait feature	Involved key points	Calculation x,y	t-dimension
Stride length	All hoofs	Leg positions	Stable leg position
			Distance between steps- pixels wise
Stride duration	All hoofs	Leg positions	Stable leg position
			Distance between steps- time wise
Ground duration	All hoofs	Leg positions	Stable leg position
Moving duration	All hoofs	Leg positions	Moving leg
Tracking up	Front hoofs, hind hoofs	Leg positions	Distance of the footprints of the same side (left/ right)
Head bobbing	Nose, forehead, withers	Distance head to withers (vertical)	• Amplitude

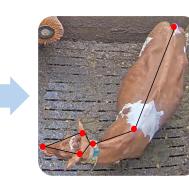


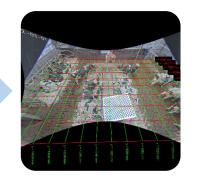
For an individual animal housed in a group

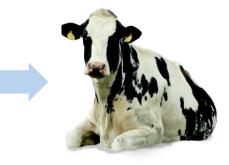
8 cameras (Noldus technology)

In stereo

Birds view


16 animals





For an individual animal housed in a group

<u>Step 1</u>

Object detection and tracker Yolov8

<u>Step 2</u>

Keypoint detection (MMPose, 4 key points)

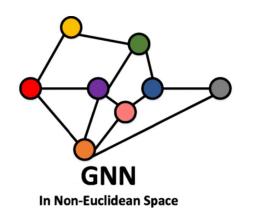
<u>Step 3</u>

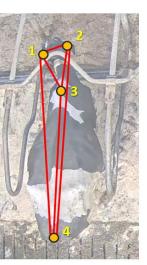
Integration of multiple views 2D to 3D key point tracker

Behavior recognition (patterns)

For an individual animal *housed in a group*

The time it takes for a cow to get up or lie down




<u>Step 4</u>

Behavior recognition (patterns)

Involves

Recognize and classify the actions using (2D / 3D) key points Assess the time it takes

For an individual animal *housed in a group*

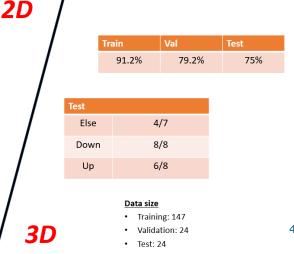
The time it takes for a cow to get up or lie down

Step 4

Behavior recognition (patterns)

Involves

Recognize and classify the actions using (2D / 3D) key points Assess the time it takes


Train	Val	Test
90.5%	80%	79.3%

Test	
Else	8/9
Down	7/10
Up	8/10

Data size

Training: 274

- Validation: 42
- Test: 29

For an individual animal *housed in a group*

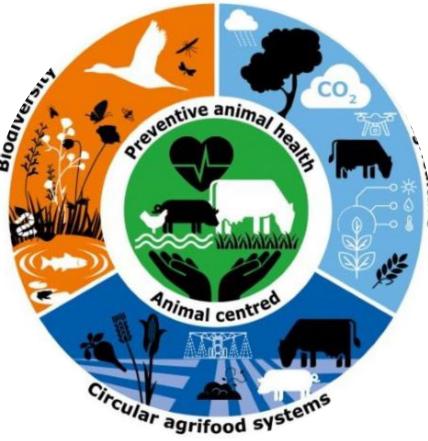
The time it takes for a cow to get up or lie down

Data (Science) in the Dairy Domain

Sweet spot examples (at WUR)

- Computer vision and Artificial Intelligence
- Large scale real-time data collection
- Digital twins

Take-home message


Take home message

Data Science is the sweet spot

Success lies in connecting technical solutions with our domain

Most important are people, communication, understanding, and patience

Claudia.Kamphuis@wur.nl

