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A B S T R A C T

The assessment of greenhouse gases (GHG) and nitrogen (N) emissions is essential for climate change mitigation. 
The Intergovernmental Panel on Climate Change (IPCC) provides guidelines for GHG quantification at both 
national and global levels. However, the IPCC Tier 1 (T1) and Tier 2 (T2) estimates, mostly used in national 
inventories, rely on generic emission factors (EFs) and empirical equations that are not suitable for case-specific 
assessments on individual farms. Thus, a more advanced Tier 3 (T3) methodology is needed to reflect the impact 
of key factors on emissions and reveal the effect of emission mitigation measures. Here we compare the IPCC T1 
and T2 estimates to results from a cascade of process-based (PB) models referred to as T3 approach, for farm-level 
emissions. The results showed that the estimates from PB models differ significantly from those of the IPCC T1 
and T2 estimates and allow more capability to predict variation. Moreover, PB models account for temporal 
changes and the underlying mechanisms responsible for GHG and N emissions. These models can be adopted for 
case-specific GHG assessment and project future mitigation strategies under different climate scenarios, regional 
contexts and on-farm management. Additional to the known applicability of PB models to estimate enteric 
methane (CH4)and soil emissions, the present study demonstrates for the first time in Germany and Europe the 
effectiveness of Manure-DNDC model in simulating ammonia (NH3) and CH4 barn emissions, highlighting the 
potential for using PB models in case-specific GHG and N assessments for the whole manure management chain. 
Overall, this study presents options for a methodology in case-specific GHG assessment that can capture the effect 
of climate change and mitigation measures.

1. Introduction

Climate change induced by greenhouse gas (GHG) emissions is one of 

the most urgent challenges of our time (IPCC, 2023). The dairy cattle 
industry is a significant contributor to GHG and nitrogen (N) emissions, 
accounting for approximately 4% of total anthropogenic GHG emissions, 
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and about 20% of emissions within the agricultural sector (FAO, 2019). 
Enteric fermentation and manure management are the primary sources 
(Chang et al., 2021). To implement efficient mitigation strategies, ac
curate quantification of these emissions is essential.

Direct measurement of emissions according to appropriate protocols 
is expensive and sometimes technically difficult to implement. The 
emissions are often too variable to capture with this type of measure
ment, with a reasonable amount of measurement time. Following a 
modelling approach may be a better and more feasible path to follow. 
The choice of model and mathematical approach to follow depends on 
the objectives of the modelling exercise, the complexity to capture, and 
the scale at which it is to be applied (farm, regional or national level). 
Furthermore, the value of modelling individual emission sources is 
restricted until these models are combined to assess complete produc
tion systems. Interactions between these sources introduce complexities, 
emphasizing that the entire system is more than its parts. Indeed, 
feeding and management practices impact various processes differently, 
underscoring the need for a comprehensive assessment to accurately 
quantify total farm emissions (Rotz, 2018). Various models have been 
used to assess GHG and N emissions at different levels of the manure 
management chain (Ouatahar et al., 2021). Generally, less complex 
models are used in national inventories with generic or even constant 
emission factors (EFs), referred to as T1 1 and T2 2 approaches. They are 
generally adopted with activity data or farm data as key variables (e.g., 
animal population, fertilizer amount, manure storage type, pasture/crop 
type). Whole farm models or product-based life cycle assessment (LCA), 
which still need a broader level of standardization (Baldini et al., 2017), 
also typically use static approaches, such as EFs or empirical equations, 
which allow quantifying the emissions associated with an activity, but 
not for capturing the underlying biotic and abiotic processes.

Such modelling approaches are not meant to capture temporal and 
spatial variation in production systems, or to differentiate between the 
various conditions at which these processes occur. Therefore, these EFs 
fail to capture the impact of, for example, the level of feed intake, feed 
composition and feed digestibility, the characteristics and quantity of 
animal waste during storage and handling, or the impact of soil type and 
conditions, as well as environmental factors affecting the production of 
gaseous emissions from farm facilities (Li et al., 2012). Also, addressing 
the variation in efficacy of various mitigation measures warrant 
improved accuracy and representation of the order of mitigation ach
ieved (irrespective of variability encountered) and its potential 
trade-offs and synergies. Hence, adopting more advanced T3 method
ologies when assessing emissions should provide more accurate esti
mates of GHG and N emissions, including their changes at the farm and 
national scale. Tier 3 methods involve the use of country-specific stra
tegies, including detailed inventory measurements and process models 
(IPCC, 2006). In literature, the T3 method encompasses a range of 
models, from empirical to static mechanistic models, to dynamic 
mechanistic models, also referred to as ‘process-based’ (PB) models 
(Ouatahar et al., 2021).

Process-based simulation models that simulate emissions from 
different farm components or emitting processes, such as digestion, 
animal metabolism and production (Rotz et al., 2021) animal housing, 
manure storage and application to soil (Amon et al., 2021), including 
their biotic and abiotic drivers, would fall within the T3 category of IPCC 
system of inventory methodology (IPCC, 2019a). Process-based models 
capture the dynamics of carbon (C) and N fluxes, crucial for assessing 
mitigation strategies and projecting emissions. This enables a 

comprehensive whole-farm budget of GHG and N emissions within 
specific systems (Veltman et al., 2017). Ensemble modelling, where 
multiple PB frameworks are linked (Beukes et al., 2011), provides an 
integrated assessment of how dietary changes or manure storage affect 
emissions downstream the manure management chain, though this 
approach remains underutilized (Ouatahar et al., 2021).

The development and adoption of these approaches is particularly 
relevant, where ‘carbon farming’ or domestic offsetting schemes require 
accurate farm or field level quantification of emissions and proposed 
mitigation measures’ reduction potential, requiring effective Measure
ment, Reporting, and Verification (MRV) strategies (UNFCCC, 2014). 
This also maximizes the efficacy of agricultural marginal abatement cost 
curve efforts (Eory et al., 2018).

The aim of this study is to compare a comprehensive PB modelling 
approach, referred to as the T3 methodology, with the simpler IPCC T1 
and T2 methods across various stages of the manure management chain. 
This includes animal production, housing, manure management, and 
soil application (e.g., manure application and fertilization). Further
more, the study evaluates the effectiveness of the Manure-DNDC model 
in simulating barn GHG and ammonia (NH₃) emissions, focusing on the 
housing component. The results provide a better understanding of the 
potential and need for T3 methodology (PB models) to generate dy
namic, case-specific EFs, which capture the variability in GHG and N 
emissions across different production systems. This contributes to 
addressing the challenges of properly accounting for mitigation effects 
and making integral assessments of GHG and N emissions at the farm 
scale, thus improving the alignment between national inventories and 
farm-level estimates.

2. Materials and methods

2.1. Case study farms

Data from two dairy farms are used as case studies, one in Germany 
(farm 1) and the other in New Zealand (farm 2). Farm 1 is a naturally 
ventilated confinement system located in Groβ Kreutz, Germany, with 
an area of 905 ha and a herd of 235 Holstein cows. The soil is loamy 
sand, and mineral and manure fertilization are applied to the field. An 
anaerobic mesophilic biogas system and slurry tanks are used for 
manure management. Farm 2 is a pasture-based farm system located in 
Waikato, New Zealand, with 18 ha and a herd of 42 Holstein cows and 
19 heifers. This farm system was one of four New Zealand regional farm 
systems designed to develop system-level solutions for profitably 
increasing production while reducing N leaching (Beukes et al., 2017). 
The soil at this Waikato farm trial is silt-loam with applied mineral 
fertilization. The case studies differ significantly in terms of farming 
intensity, fertilization intensity (kg of N ha− 1 year− 1), and feeding in
tensity (DM intake and milk yield, kg cow− 1 year− 1).

2.2. Tier 3 methodology: the cascade of process-based models

2.2.1. Modelling approach
The methodology employed in this study consists of a multi-step 

process that integrates a cascade of PB models to assess the impact of 
diet and manure management on GHG and N emissions from two case 
study dairy cattle systems. The modelling approach consists of three key 
components: the animal model, the housing and manure storage model, 
and the soil model. Each component captures distinct stages of emissions 
and nutrient flows throughout the farm system.

The simulation period for the confinement system (Farm 1) was 
2018–2019 (one-year simulation). The herd was divided into categories 
with distinct DMI and milk characteristics, live weights, % crude protein 
(CP), DM fraction, and days in milk (DIM). This approach accounts for 
the variation between different animals in the herd, specifically cate
gorizing them into high and mid-lactating cows, late-lactating cows, and 
dry cows. For the pasture-based system at Farm 2 in New Zealand, a 

1 T1 is considered the simplest method that could be standardized across 
countries for a subcategory called T1a that is more suitable for countries that 
have their production systems split up into low and high productivity systems 
for example, but detailed aspects of farming are lacking.

2 T2 are EFs using variables that represent aspects of farming systems specific 
to each country (e.g., enteric CH4 emission as a function of gross energy intake).
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four-year simulation (2012–2015) was conducted for dairy cows, with 
an additional one-year simulation for heifers. This longer simulation 
period was chosen to capture the interannual variation inherent in a 
pasture-based system. By selecting these distinct monitoring periods and 
farming conditions, the aim was to demonstrate how PB models can 
effectively capture and differentiate the variability in GHG and N 
emissions across diverse agricultural practices.

The interdependence of dietary effects on GHG emission sources and 
the various components of the farm was investigated through the ex
change of inputs and outputs between PB models. These steps allow for a 
comprehensive assessment of the downstream impacts of diet and 
manure management on GHG and N emissions, providing dynamic, 
case-specific EFs that reflect the temporal and spatial variations within 
the farm system. Fig. 1 provides a detailed visualization of the overall 
process, highlighting the inputs, outputs, and connectivity of each step 
in the modelling cascade.

The models were parameterized and calibrated using the site-specific 
data for animal, feed, housing, manure management, climate, soil, and 
crop/grass production. Crop parameters for crops and grass were 
adjusted to reflect the measured maximum yields and the length of 
Germany’s and New Zealand’s growing season. Due to the lack of 
detailed information on C pools, a 20-year spin-up run was conducted 
based on the known long-term land use history to achieve balanced C 
pools (Zimmermann et al., 2018). Standard preset values were used for 
unknown soil and crop parameters.

The main input data comprising feed information, housing, manure 
storage, climate (indoor and outdoor), land management and soil 
characteristics is presented in appendix A, and further assumptions of 
the modelling process are presented in appendix B (Table B2).

2.2.2. Steps of the modelling process

2.2.2.1. Modelling enteric methane emissions. In the first step, the animal 
model (The Dutch Tier 3 model) was used, which is currently applied as 

a T3 approach (Bannink et al., 2011). This model simulates the impact of 
feed intake, chemical fractions in feed and rumen degradation charac
teristics of these chemical fractions on microbial activity in the rumen. 
Mills et al. (2001) incorporated additional equations describing the 
digestive processes in both the small and large intestine, and the process 
of enteric methanogenesis was included. Recently, the model was 
updated to improve the prediction of apparent fecal N and organic 
matter (OM) digestibility (Bannink et al., 2018) and excreta composition 
(Dijkstra et al., 2018). The model outputs include enteric CH₄ emissions, 
methane conversion factor (MCF), and N and C content in urine and 
feces, which serve as inputs for the next stage.

2.2.2.2. Modelling manure management emissions. In the second step, the 
housing and manure storage model (ManureDNDC) (Li et al., 2012) 
simulates GHG and N emissions from manure handling and storage. The 
model receives inputs from the animal model (i.e., N and C content in 
manure) and data on housing structures, and milk/diet chemical 
composition, along with the daily variations in surrounding abiotic 
housing and storage conditions, such as housing microclimate and 
manure removal frequency. The outputs of this stage include emissions 
of nitrous oxide (N2O), CH₄, NH₃, nitrate (NO3

− ) and the volume of 
manure excreta.

Tier 3 VS (kg animal− 1 year− 1) were estimated according to the 
empirical equations incorporated into the Manure-DNDC model 
(Appuhamy et al., 2018). The predictor variables were organic matter 
(OM) (kg d− 1), neutral detergent fiber (NDF) and CP contents (% of dry 
matter intake (DMI)): 

VS= [ − 1.201+0.402×OM+0.036×NDF − 0.024×CP] × 365
Equation 1 

Ultimately, the manure excreta arising from storage is spread on soil 
and thus enter the soils module of DNDC.

2.2.2.3. Modelling soil emissions and removals. The third step involves 

The Dutch Tier 3 model

Fig. 1. Summary of the modelling steps, inputs data, outputs data, and the connectivity of each step of the modelling process using the cascade of process-based 
models (Tier 3). C: Carbon, N: Nitrogen, GHG: greenhouse gas, MCF: methane conversion factor, OM: organic matter, VS: volatile solids.

L. Ouatahar et al.                                                                                                                                                                                                                               Journal of Cleaner Production 486 (2025) 144479 

3 



the soil model (DNDC model, v9.5) (Li et al., 1992a, 1992b), which 
simulates the emissions and nutrient fluxes that occur after manure 
application to the soil. Inputs for this model include manure and fertil
izer application rates, meteorological data, and crop and soil charac
teristics. DNDC was originally developed to simulate soil C and N cycling 
(Li et al., 1992b). It gained popularity due to its detailed biochemical 
equations describing decomposition, nitrification and denitrification 
processes. It contains sub-models for simulating crop biomass, decom
position, nitrification, denitrification, fermentation and NH3 volatiliza
tion, with abiotic drivers including climate and soil physico-chemical 
properties. As the model simulates a very wide array of agricultural 
management and crop types, DNDC has been used extensively world
wide (Gilhespy et al., 2014) with continuous improvement and cali
bration (Deng et al., 2020). In terms of GHGs, the model simulates both 
direct and indirect N2O emissions (Giltrap et al., 2010), soil CH4 and soil 
organic carbon (SOC) changes.

Indirect N2O emissions were calculated for NH3 volatilization 
(N2O_indirect – N (NH3)) and N leaching (N2O_indirect – N (NO3

− )) in kg 
year− 1, assuming all lost N was locally redeposited, as follows: 

N2Oindirect − N (NH3)=NH3 − N × EF4 (Equation 2) 

N2Oindirect − N (NO3− ) =NO3− − N × EF5 (Equation 3) 

EF4 (0.01) and EF5 (0.011) are IPCC EFs for N₂O emissions from NH₃ 
volatilization and NO3

− leaching, respectively (IPCC, 2006a; 2019).

2.3. IPCC tier 1 and tier 2 methodology

DMI and chemical composition of the diets were collected from ac
tivity data and used as input for the PB models. For the T2 calculations 
related to the enteric CH4, DMI was estimated according to IPCC (IPCC, 
2019a):

For cows: DMI = 0.0185 × BW + 0.305 × FPCM (Equation (4)).
For heifers: DMI = 3.184 + 0.01536 × BW × 0.96 (Equation (5)).
Where BW is body live weight in kg animal− 1 and FPCM is fat protein 

corrected milk in kg day− 1.
Gross energy (GE, MJ day− 1) was estimated as follows according to 

the IPCC methodology for the T2 calculations (IPCC, 2019a): 

GE=

[(
NEm + NEa + NEl + NEp

REM

)

+

(
NEg

REG

)]/

DE (Equation 6) 

Where NEm is net energy required by the animal for maintenance, NEa is 
net energy for animal activity, Nel is net energy for lactation, NEp is net 
energy required for pregnancy, REM is the ratio of net energy available 
in a diet for maintenance to digestible energy, NEg = net energy needed 
for growth, REG = ratio of net energy available for growth in a diet to 
digestible energy consumed, DE = digestibility of feed expressed as a 
fraction of gross energy (digestible energy/gross energy).

Average N excretion (kg N animal− 1 year− 1) according to T1 meth
odology was calculated as follows (IPCC, 2019a): 

Nexcretion=

(

Nrate ×
TAM
1000

)

× 365 (Equation 7) 

Nrate is default N excretion rate, (kg N (1000 kg animal mass)− 1 

day− 1), and TAM is typical animal mass (kg animal− 1). A TAM of 600 
and 488 was assumed for the dairy cows in the confinement and pasture- 
based system respectively. For heifers, 389 was considered (IPCC, 
2019a).

Volatile solids (VS) (kg year− 1) according to T1 methodology were 
estimated as follows (IPCC, 2019a): 

VS=
(

VSrate ×
TAM
1000

)

× 365 Equation 8 

Where VSrate is the default VS excretion rate, and TAM is typical animal 
mass.

Table 1 gives an overview of the outcome for the main mass flow 
variables and associated EFs when following the IPCC T1 or T2 
methodology.

Given that this study does not compare T3 estimates with in
ventories, we did not calculate case-specific N excretion rates or VS for 
the two case studies using a T2 approach.

2.4. Evaluation of Manure-DNDC model

2.4.1. Model evaluation against measured data
Daily and cumulative modelled fluxes with Manure-DNDC were 

evaluated against measured CH4 and NH3 fluxes inside the barn of 
lactating dairy cows for the corresponding monitoring period in the 
confinement system. Such evaluations were essentially lacking for this 
PB model in previous studies in the European context for barn emissions 
(in contrast to the other PB models used). Hence, model applicability 
had to be studied before comparing PB model simulations on GHG and N 
emissions with T1 and T2 methodology. The measurements were con
ducted using the carbon dioxide (CO2) balance method for 36 consec
utive days (from January 24, 2018 to February 28, 2018), using a 
Fourier-Transform Infrared (FTIR) gas analyzer, and following the 
sampling procedure of the VERA protocol (VERA, 2018). Previous 
studies describe the sampling (Janke et al., 2020) and measurement 
protocol (Bobrowski et al., 2021) in detail. The coefficient of determi
nation (R2) and root mean square error (RMSE) were calculated to 
evaluate the model’s accuracy. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pi − Oi)2

n

√
√
√
√
√

(Equation 9) 

Where Pi is predicted values by the model, and Oi are observed values 
from on-site measurements in the barn, and n is the number of obser
vations. The relative RMSE is calculated by dividing the RMSE by means 
of the observed values.

For testing the statistical significance associated with observed cor
relations, we used the Pearson correlation test, and employed the 
quantile mapping approach (Volosciuk et al., 2017) for statistical bias 
correction (Piani et al., 2010), assuming a linear bias and thus imple
menting a linear regression model to obtain the transfer function for the 
bias correction expressed as: 

Eobs− sorted =A * Emod− sorted + B. (Equation 10) 

Here Eobs-sorted refers to datasets of observed CH4 and NH3 emission 
values from measurement campaigns. The values in each of the datasets 
have been sorted independently from lowest to highest value. Similarly, 
Emod-sorted refer to the data sets of modelled CH4 and NH3 emissions 
values, which have also been sorted in ascending order. A is the slope of 
the line, and B is the intercept. This approach facilitates the estimation 
of statistical bias in both the mean and variance of simulations relative 
to the measured values. The intercept of the transfer function reflects the 
mean bias (zero indicating no bias), while the slope indicates the vari
ance bias (one denotes no bias).

2.4.2. Model sensitivity
To investigate the behaviors of the housing component of Manure- 

DNDC, sensitivity tests were conducted by varying key input parame
ters. For animal/diet parameters, adjustments were made to the feed 
rate, %CP in the diet, and DIM. For housing and manure management, 
variations included barn temperature, barn surface area, and manure 
removal frequency. The baseline scenario was based on actual condi
tions, while alternative scenarios were created by varying one input 
parameter at a time, keeping others constant (Saltelli and Annoni, 
2010). The sensitivity of modelled barn floor NH3 and CH4 emissions to 
the input parameters was expressed with the sensitivity index (SI) 
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(Werner et al., 2007): 

SI=
(
(O2 − O1)

/
Oavg

) / (
(I2 − I1)

/
Iavg

)
(Equation 11) 

Where, I1 and I2 represent the minimum and maximum input values for a 
specific parameter, while Iavg is their average. Similarly, O1 and O2 are 
the model output values corresponding to I1 and I2, with Oavg being the 
average of O1 and O2. The higher the absolute value of the index, the 
greater the impact of the input parameter on the output.

3. Results

3.1. Comparison of process-based models and IPCC tier 1 and tier 2 
outputs

The main objective was to demonstrate the comparison between PB 
model outcomes (T3) and IPCC T1 and T2 calculations, using a case 
study for a confined dairy system (in Germany) and a pasture-based 
system (in New Zealand) dairy system. The comparison did not 
include an assessment or comparison of the two countries’ current in
ventories, but the focus was on using two distinct farm case studies. The 
dairy cattle industry is pivotal in both Germany (dairy global, 2023) and 
New Zealand (Aziz et al., 2019). Therefore, accurate quantification and 
mitigation of GHG emissions are essential for both countries to meet 
their climate goals.

3.1.1. Methane emissions from enteric fermentation
In the confinement system, T3/PB enteric CH4 values were 14%–19% 

lower for lactating cows compared to T2 predictions. Interestingly, T3 
EFs were similar to T1 estimates. However, for dry cows, T3 estimates 
were 48% lower than T1 and 9% higher than T2. For the pasture-based 
system, T3 estimates ranged from 109.2 to 124.0 kg CH4 head− 1 year− 1 

for cows and 82.4 kg CH4 head− 1 year− 1 for heifers, consistently higher 
(17%–36% for cows and 26%–31% for heifers) than Tiers 1 or 2 (Fig. 2).

The T3 results in g CH4 kg− 1 DMI or kg milk differed by − 10% to 
− 15% from the default IPCC T1 CH4 yield (20.0 kg CH4 kg DMI− 1) in the 
confinement system, while only slightly higher (1–2%) than the default 
IPCC T1 (21.4 kg CH4 kg DMI− 1) for the pasture-based system. The T3 
model predicted that 5.00–5.56% of gross energy intake was emitted as 
CH4 for confinement systems, which were 7%–17% lower compared to 
the estimates with the default MCF used in the T2 approach. The 

variation in MCF rates in the pasture-based system was 1%–3% higher 
for cows. The same trend goes for heifers, only 1% higher MCF was 
estimated using the T3 approach.

3.1.2. Annual average nitrogen excretion rates
Fig. 3 compares N excretion estimates for cows and heifers using T3 

and T1 methodologies. T3 predicts higher N excretion in the pasture- 
based system, ranging from 15% to 36% for cows and 111% for 
heifers compared to T1. In the confinement system, differences in total N 
excretion were lower with T3, notably − 19% for dry cows. Results 
suggest N excretion varies by lactation stage and DMI, with early 
lactating cows excreting the most N (HL), followed by late lactating 
cows (LL) and dry cows (DC) excreting the least.

3.1.3. Methane emissions from manure management
In the pasture-based system, there was no manure management, as it 

lacks housing and manure storage (animals were on pasture 24 h day− 1). 
Therefore, manure management emissions (CH4 and N2O) were esti
mated only for the confinement system.

Substantial differences were obtained for gCH4 kg− 1 VS from manure 
management under the three model Tiers (Fig. 4). While the T1 
approach used default values for all categories of cows, the T2 method 
used default animal waste management systems for manure manage
ment systems, while VS excretion rates were based on T2 calculations. 
The T3 estimates range from +37% for high lactating cows to +71% for 
dry cows compared to T1, and between +48% and +84% compared to 
the T2 approach.

3.1.4. Direct and indirect nitrous oxide emissions from manure storage
Fig. 5 compares direct N2O EFs (kg N2O-N kg− 1 N excreted) gener

ated using the various model Tiers. Indirect N2O emissions, resulting 
from N volatilization (indirect N2O volatilization) and N leaching (in
direct N2O leaching) from manure management for the confinement 
system, were also simulated. The T3 model generated intermediate 
emission estimates compared to the high emissions using T1 and the low 
emissions using the T2 approach. Furthermore, volatilization was pre
dicted to be a more significant contributor to indirect N2O emissions 
than leaching with the T3, which is not distinguished from the T1 and 2 
approaches.

Table 1 
Mass flow variables and emission factors following IPCC Tier 1 (T1) or Tier 2 (T2) methodology in assessment of GHG and N emissions in a confinement system (farm 1) 
and a pasture-based system (farm 2).

Farm component animal 
category/Tier

Type of direct/indirect GHG Emission factor unit farm 1 farm 2 reference

Animal Dairy cows T1 enteric CH4 CH4 production kg head− 1 126.0 93.0 (IPCC, 2019a), table 10.11
​ Heifers T1 enteric CH4 CH4 production kg head− 1 ​ 63.0 (IPCC, 2019a), table 10.11
​ dairy cows T1 enteric CH4 CH4 yield g/kg DM 20.0 21.4 (IPCC, 2019a), table 10.12
​ Heifers T1 enteric CH4 CH4 yield g/kg DM ​ 23.3 (IPCC, 2019a), table 10.12
​ Dairy cows T2 enteric CH4 MCF %GEI 6.0 6.5 (IPCC, 2019a), table 10.12
​ Heifers T2 enteric CH4 MCF %GEI ​ 7.0 (IPCC, 2019a), table 10.12
Housing Dairy cows T1 CH4 EFTSP kg CH4 kg Vs− 1 22.5 ​ (IPCC, 2019a), table 10.14
and manure Dairy cows T2 CH4 B0 m3 CH4 kg− 1 VS 0.24 ​ (IPCC, 2019a), table 10.16
management Dairy cows T1 N excretion rate N excretion rate kg N (1000 kg animal mass)− 1 day-1 0.50 ​ (IPCC, 2019a), table 10.19
​ ​ N2O EF3 kg N2O-N/kg N 0.005 ​ (IPCC, 2019a), table 10.21
​ ​ N2O FracGasMS kg N2O-N/kg N 0.48 ​ (IPCC, 2019a), table 10.22
​ ​ NH3 EF4 kg N2O-N/kg N 0.01 ​ (IPCC, 2019a), table 11.3
Soil T1 N2O EF1 kg N2O-N/kg N 0.01 0.01 (IPCC, 2019b), table 11.1
​ T1 N2O EF3PRP kg N2O-N/kg N 0.004 0.004 (IPCC, 2019b), table 11.1
​ T1 NH3 EF4 kgN2O-N/kg N 0.01 0.01 (IPCC, 2019b), table 11.3
​ T1 NO3

− EF5 kgN2O-N/kg N 0.011 0.011 (IPCC, 2019b), table 11.3

N: nitrogen, GHG: greenhouse gas; VS: volatile solids, N2O: nitrous oxide, CH4: methane, NH3: ammonia, NO3
− : nitrate leaching, MCF: methane conversion factor, GEI: 

gross energy intake, EF1: emission factor for direct N2O emissions from N inputs to cultivated soils, EFTSP: emission factor for direct CH4 emissions from manure 
management, B0: maximum CH4 producing capacity for manure, EF3: emission factor for direct N2O emissions from the manure management system, EF3PRP: emission 
factor for N2O emissions from urine and dung N deposited on pasture, range and paddock by grazing animals, EF4: emission factor for N2O emissions from atmospheric 
deposition of N on soils, EF5: emission factor for N2O emissions from N leaching and runoff, FracGasMS: the amount of managed manure N for a livestock category that 
is lost by volatilization in the manure management system.
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A) Enteric CH4 (kg. head-1. year-1)

B) MCF (% of gross energy intake)

C) Enteric CH4 yield (g.CH4.Kg DM-1)

D) Enteric CH4 intensity (g.CH4.Kg FPCM-1)
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Fig. 2. Simulated enteric methane (CH4) per cow. year− 1 (kg), per DM intake (CH4 yield), or per kg FPCM (CH4 intensity), and CH4 conversion factor (MCF) for both 
confinement system (farm1, Germany, one year simulation for different cows; HL-cows: high lactating cows, LL-cows: late lactating cows and dry cows) and for 
pasture-based system (farm 2, New Zealand, 4-year simulation for cows and one year for heifers; y1: year 1, y2: year 2, y3: year 3, y4: year 4).
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3.1.5. Direct and indirect nitrous oxide emissions from land application
Direct N2O emission rates estimated using the T1 method were 

substantially lower compared with emission rates generated using the 
T3 approach. In particular, direct N2O emissions, using the PB approach, 
are two times higher than the generic T1 EF (i.e,. 1%) estimates for the 
confinement system. However, T1 estimates were 1.3 to 1.5 higher than 
T3 for the pasture-based system (Fig. 6).

Indirect soil emissions resulting from NO3
− in the confinement system 

are also higher with the T3 model. All differences between the T1 and T3 
calculations are largely driven by variations in soil physico-chemical 
properties (particularly soil texture), vegetation type and daily climate 
data, which were considered using the T3 approach, but were not 
captured by the static T1 EF approach. The T1 approach indicated that 
indirect N2O emissions resulting from N volatilization and leaching 
dominated the confinement system and were higher compared to indi
rect emissions from the pasture-based system. Using the T3 approach, 
direct soil N2O emissions comprised 62% of total N2O emissions for the 
confinement system, and over 65–76% of N2O emissions from the 
pasture-based system

3.2. Evaluation and error analysis of the housing component of 
Manure–DNDC model

The evaluation of Manure-DNDC’s model in simulating CH4 and NH3 
emissions inside the barn against measurement data metrics is summa
rized in Table 2. The comparison of simulated and measured daily and 
cumulative CH4 and NH3 emissions is shown in Fig. 7. Additionally, the 
scatter plots depicting the relationship between modelled and measured 
values for both daily and cumulative CH4 and NH3 emissions are pro
vided in Fig. 8.

The models’ performance was assessed using RMSE values, which 
indicate their proximity to observed data. For daily CH4 fluxes, the 
RMSE value was 0.135 kg CH4 head− 1 day− 1, while for cumulative CH4 
fluxes, it was 1.153 kg CH4 head− 1. Relative RMSE values, which 
highlight percentage-wise deviation, were 24.9% for daily CH4 fluxes 
and 12.3% for cumulative CH4 fluxes, indicating higher accuracy in the 
latter. Correlation analyses showed strong performance in cumulative 
CH4 fluxes (R2 = 0.998, Pearson correlation = 0.999), but weaker per
formance in daily CH4 fluxes (R2 = 0.071, Pearson correlation =

Fig. 3. Comparison of total nitrogen (N) excretion (kg N. head− 1. year − 1) estimated using the process-based model (T3) and Tier 1 (T1) methodology for both 
confinement system (farm1, Germany, one year simulation for different cows; HL-cows: high lactating cows, LL-cows: late lactating cows and dry cows) and for 
pasture-based system (farm 2, New Zealand, 4 year simulation for cows and one year for heifers; y1: year 1, y2: year 2, y3: year 3, y4: year 4).

Fig. 4. Comparison of methane (CH4) emissions per volatile solids excretion (VS), from manure, management for confinement system (farm1, Germany, one-year 
simulation for different cows; HL-cows: high lactating cows, LL-cows: late lactating cows and dry cows), T1: Tier 1, T2: Tier 2, T3: Tier 3.
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− 0.266). Similar assessments for NH3 emissions revealed an RMSE of 
0.007 kg NH3 head− 1 day− 1 for daily NH3 fluxes and 0.043 for cumu
lative NH3 fluxes. Relative RMSE values were 64.8% for daily NH3 fluxes 
and 17.4% for cumulative NH3 fluxes. Correlation analyses showed 
robust performance in cumulative NH3 fluxes (R2 = 0.998, Pearson 
correlation = 0.995), but weaker performance in daily NH3 fluxes (R2 =

0.107, Pearson correlation = 0.327).

The sensitivity analysis of Manure-DNDC model (Table B4; Appendix 
B), revealed that barn floor NH3 and CH4 emissions were highly 
responsive to changes in feed rate. CP content significantly impacted 
NH3 emissions for dry cows. Additionally, barn temperature and manure 
removal frequency moderately affected CH4 emissions within the test 
range, whilst DIM showed some sensitivity, primarily affecting NH3 
emissions. Barn surface area was negatively correlated with emissions, 

Fig. 5. Comparison of direct and indirect nitrous oxide (N2O) per kg N excreted resulting from N volatilization (indirect N2O volatilization) and N leaching (indirect 
N2O leaching) from manure management for the confinement system (farm 1, Germany, one-year simulation for different cows; HL-cows: high lactating cows, LL- 
cows: late lactating cows and dry cows), T1: Tier 1, T2: Tier 2, T3: Tier 3.

Fig. 6. Comparison of soil N2O-N emissions per kg nitrogen (N) inputs for the total of direct and indirect N2O emissions (N volatilization + N leaching) using Tier 1 
(T1) emissions factors and Tier 3 (T3) modelling with DNDC model, for both the confinement system (farm 1, Germany, one year simulation for cows) and for the 
pasture-based system (farm 2, New Zealand, 4 year simulation for cows and one year for heifers areas; y1: year 1, y2: year 2, y3: year 3, y4: year 4). For Tier 3, 
indirect N2O emissions were calculated using Tier 1 EF4 and EF5).
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indicating that increasing space per animal reduced both NH3 and CH4 
emissions.

4. Discussion

4.1. Comparison of IPCC emission factors and process-based models

At the farm level, the outputs generated using the T3/PB models 
clearly differed, compared to the T1 and T2 approaches, which are 
generally adopted in national inventories and many GHG assessment 
tools. These lower Tiers use static EFs, while the T3/PB model approach 

encompasses variations in biotic and abiotic drivers, such as feed qual
ity, lactation stage, climate, manure storage length and soil type. Tier 3 
approaches therefore capture the considerable variation in the dynamics 
in emissions that can occur on a more localized scale, such as variations 
between different seasons, years, soils, animal categories and farming 
systems. The findings align with those of Bannink et al. (2014), who 
assessed the impact of mitigation options across European farms using 
various PB models. Their comparison of T1, T2, and T3 approaches 
revealed significant differences in estimated enteric CH4 and soil N2O 
emissions. However, unlike the current study, they did not account for 
housing emissions. Furthermore, Ouatahar et al. (2024) assessed GHG 
and N emissions from dairy systems using PB models, with a focus on 
evaluating the impact of diet and manure management on whole farm 
emissions. However, the study did not evaluate the performance of the 
different IPCC-recommended methods for assessing farm-scale emis
sions. Building on this foundation, the present study advances the 
methodology by generating dynamic, case-specific T3 EFs and directly 
comparing them to the generic IPCC T1 and T2 approaches. This study 
provides a detailed comparison of T3 EFs with IPCC T1 and T2 methods 
and, by linking a cascade of process-based models, demonstrates the 
downstream effects of diet and manure management practices on GHG 
and N emissions. This whole-system approach offers a more compre
hensive perspective than focusing on isolated stages of the manure 
management chain.

A study by Yan et al. (2010) found that the default factors of T1 for 
both enteric fermentation and manure management overestimated CH4 
emissions in dairy cows when compared to the EFs of T2 and T3 (the 
latter not including PB models as in the present study). Recently, Eugène 
et al. (2019) proposed a T3 methodology based on empirical equations 
to estimate CH4 emissions inventory in France for ruminants concerning 
dietary information. Using this approach, estimates of enteric CH4 were 
observed to be between 88% and 114% of the values for enteric CH4 
emissions provided by the IPCC methodology, with variation depending 

Table 2 
Summary of metrics for the error and bias test analysis for modelled CH4 (kgCH4 
head− 1 day − 1) and NH3 barn emissions (kgNH3 head− 1 day − 1) using the 
Manure–DNDC model compared to measurement data.

Metric Daily fluxes Cumulative fluxes

Daily 
CH4

Daily 
NH3

Cumulative 
CH4

Cumulative 
NH3

Error analysis
RMSE 0.135 0.007 1.153 0.043
Relative RMSE 0.249 0.648 0.123 0.174
Correlation analysis
R2 0.071 0.107 0.998 0.998
Pearson correlation − 0.266 0.327 0.999 0.995
correlation test – p- 

value
0.117 0.05187 <2.2e-16 <2.2e-16

bias test analysis - regression model
p-value <2.2e- 

16
4.78e-15 <2.2e-16 <2.2e-16

R2 0.880 0.839 0.998 0.991
Intercept − 0.491 − 0.002 − 0.899 0.045
Slope 2.229 0.981 1.184 0.747

RMSE: root mean square error, CH4: methane, NH3: ammonia, R2: coefficient of 
determination.

Daily fluxes

Cumulative fluxes

Daily fluxes

Cumulative fluxes

Fig. 7. Comparison between measured and modelled daily and cumulative emissions inside the barn in the confinement system A) total CH4 (enteric + floor) using 
Manure-DNDC and B) NH3 fluxes using Manure-DNDC. Modelled Enteric CH4 was compared for both Manure-DNDC and the Dutch Tier 3 model in A). CH4: methane, 
NH3: ammonia.
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on the animal category. The use of the rather static values with the lower 
Tiers for all categories of cows do not capture the differences due to DMI, 
production level of cows, chemical composition and digestibility of the 
diets. Accurate estimates of enteric CH4 emissions in dairy cows require 
addressing rumen function’s chemical and physical aspects through 
more complex models such as PB models. This aligns with the findings of 
Niu et al. (2018) who reported that the greater the complexity of the 
model, the better its ability to predict enteric CH4 production. The 
models that best predicted CH4 production were those that used DMI, 
NDF, crude fat, milk fat, and body weight in their complexity. Tier 3 
approaches, especially those incorporating PB models, further enhance 
accuracy by addressing key biological processes, such as microbial ac
tivity, that simpler empirical models fail to capture.

The PB Dutch T3 model used in the present study as T3 approach has 
been used in the inventory of enteric CH4 (Bannink et al., 2011) and NH3 
in the Netherlands (Dijkstra et al., 2018) and also requires such details as 
inputs, providing a CH4 EF (kg CH4 cow− 1year− 1) and the percentage of 
gross energy intake emitted as CH4 as a predicted model outcome (in 
contrast to being an input or assumption as with the lower Tiers). It may 
also help develop and evaluate strategies for reducing GHG emissions 
from the dairy industry.

Predicted manure management emissions also depended on the 
chosen modelling approach. Manure-DNDC, as a PB model/T3 
approach, predicts VS in relation to OMI, NDF and CP (Appuhamy et al., 
2018), while T1 or T2 approaches use default values, which result in 
different predictions of B0, the manure CH4 production potential. In 
addition, the PB model generated housing/storage CH4 and NH3 emis
sions that were driven by climatic factors, such as temperature and wind 
speed (which governs the barn ventilation rates and surface evaporation 
rates), as well as manure characteristics such as dry matter, redox po
tential, manure pH, exposed manure surface area and manure storage 
type. These characteristics drive rates of NH3 volatilization and meth
anogenesis. In terms of N2O emissions, T1/2 estimates are driven by N 
excretion rates, and are calculated by static equations and EF values, 

which are based on manure management system type (liquid system, 
solid manure, compost etc.). Conversely, the T3 animal model estimates 
dairy cow urine and feces as a function of feed composition based on an 
extant, dynamic, mechanistic model of rumen functioning (Dijkstra 
et al., 2018). This resulted in T3 N excretion estimates that, as per
centage of T1 methodology, ranged from 81 to 98% for the confinement 
system, depending on the category of cows, to 115–136% for the 
pasture-based system, depending on each year. The estimates for heifers, 
in particular, were double those calculated using the T1 approach 
(211%).

Furthermore, these results indicate that the quality of the feed for 
cattle impacts the nutrient content and quantity of excretion (Hilgert 
et al., 2023) in a way that is not captured by the IPCC T1 or 2 ap
proaches. The PB/T3 modelled outputs are considered a more realistic 
representation of the actual EFs from the farms, and for assessing GHG 
balances, because they more accurately reflect the impact of input fac
tors known to affect enteric CH4, N and OM (VS) excretion. In contrast, 
the T2 approach captures overall N and B0 and provides a more accurate 
reflection when conducting generalized comparisons, because it does 
not require explicit assumptions for each system’s important input 
values. The animal T3 model provides information on excreta N, 
capturing the effects of dietary changes on enteric CH4 and excreta 
composition and volumes. This allows to assess the effects of dietary 
changes and pasture quality on CH4 emissions from manure.

Some countries such as Germany and New Zealand have T2 country- 
specific EFs for many parameters used in calculations of N digestibility, 
N excretion and N2O soil emissions. However, for comparisons with 
IPCC guidelines and not current inventory methodology used by these 
countries, T1 approach only, is compared with T3 for soil emission 
category. In addition, T3 results indicated that the mineral soils in these 
two systems acted as a sink for soil CH4 which is not presently accounted 
for in IPCC EFs methodologies.

Direct soil N2O emissions simulated by the DNDC model were sub
stantially different from T1 estimates in the confinement system and to 

Daily fluxes

Cumulative fluxes 

Daily fluxes 

Cumulative fluxes 

Fig. 8. Representation of the relationship between measured and modelled daily and cumulative methane (CH4) and ammonia (NH3) emissions inside the barn in the 
confinement system using Manure-DNDC A) total CH4 (enteric + floor) and B) NH3 fluxes.
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some extent in the pasture-based systems. Nitrification and denitrifica
tion processes are extremely dynamic, both spatially and temporally. 
These processes are, in turn, intimately related to soil redox potential via 
water-filled pore space, the timing of field operations, such as grazing 
and fertilization, which are not included in more empirical/lower Tier 
approaches (Del Grosso et al., 2015).

4.2. Relevance of process-based models and their limitations

The T3 or PB models require substantially more activity data 
(climate, soils, fertilizer application time, grazing dates, etc), particu
larly for the soil emission models and to a lesser extent for the manure 
storage model. However, they can generate localized case-specific 
emissions and allow tailored mitigation actions to be more readily 
measured, reported and verified in specific farm systems. If sufficient 
activity data and other input data are available, such as specific details 
on feed type, housing, soils, manure, and climate, the PB models can be 
useful for comparing individual farm systems and certifying Carbon 
Farming schemes.

Nevertheless, when the variation in climate and soil conditions is 
smoothed across farming systems, the advantage of PB models may be 
lost, and assessment with a T2 approach may be just as suitable. On the 
other hand, a benefit of the PB models may be to better understand the 
interaction between a range of mitigation actions. While empirical 
models are accurate due to their empirical basis, they often lack a rep
resentation of underlying processes, for example the effects of feed di
gestibility and level of DMI on enteric CH4 emissions. Furthermore, 
while they may accurately represent emissions under the conditions 
they are based on, empirical approaches may not perform well when 
extrapolating beyond the range of conditions they were derived from. In 
addition, applying empirical equations beyond their range may lead to 
inaccurate or even unrealistic outcomes. Empirical models in lower Tiers 
often overlook the influence of digestibility and DMI on CH4 yield, 
leading to inadequate representations of variations. Process-based 
models, as a T3 approach, can account for these factors and provide a 
comprehensive overview of the variation in estimates of CH4 emission.

The output from detailed, complex digestion models may contain 
more detailed data than needed for modelling C and N transformations 
in manure. However, these models can deliver important characteristics 
that determine N emission processes after excretion (e.g. urine volume 
and concentration of ammoniacal N) and during manure storage (e.g. 
volume of excreta, acidity). The enteric CH4 outputs were estimated 
18–19% higher by the T3 model for the category of high lactating and 
late lactating, but they were 25% less than the Manure-DNDC model for 
dry cows. The urine and dung N content have the same tendency. This is 
because Manure-DNDC model uses empirical equations with feed vari
ables such as NDF and ADF.

Similar to the animal and manure T3/PB models, PB/T3 soil N 
emissions offer a distinct approach compared to T1 or T2 methods. 
While T1 and T2 methods rely on a proportion of applied N lost through 
various pathways (i.e., leaching, volatilization, or nitrification/denitri
fication), various factors influence PB N emissions such as weather, soil 
properties, plant N uptake rate, and details in farming management 
practices (Deng et al., 2015). These factors affect key N transformation 
processes such as urea hydrolysis, decomposition, nitrification, and 
denitrification, driving ecosystem N emissions.

PB models show promise in assessing GHG and N emissions at the 
farm level and predicting the impact of climate change on biogeo
chemical cycling. They cover diverse farming systems and environ
mental conditions, offering an advantage over other methods. However, 
their complexity requires specialized software and limits integration 
into broader survey tools. Despite limitations, PB models enhance un
derstanding of case-specific farms and monitoring methods, under
scoring the importance of transparent documentation for their 
application as T3 methods (IPCC, 2019a).

4.3. Model evaluation and error analysis

The enteric CH4 emission predictions from the Dutch T3 model 
(animal model) for a reference diet had an uncertainty value of 15% for 
CH4 EF and 13% for MCF (Bannink et al., 2011). The primary sources of 
uncertainty in the model’s enteric CH4 emission predictions are errors in 
feed intake estimation, representation of volatile fatty acid production 
stoichiometry from the fermented substrate, and rumen pH. Additional 
uncertainty arises from errors in estimating the dietary and chemical 
composition of the diets, as well as feed intake (Cf. Table B3; Appendix 
B). One constraint of utilizing the T3 method is the requirement for more 
information on the dietary chemical composition and rumen degrada
tion characteristics of feed substrates as inputs. The model was also 
evaluated well on the prediction of apparent fecal N digestion, which 
accurately distinguishes between fecal and urinary/ammoniacal N 
excretion (Bannink et al., 2018).

The DNDC soil model has been thoroughly evaluated against datasets 
in multiple regions including Germany (Nerger et al., 2020) and New 
Zealand systems (Giltrap et al., 2015). However, there are uncertainties 
around model parameters, and modelling assumptions (Giltrap and 
Ausseil, 2016). In addition, large uncertainties pertain to the measure
ment data for enteric/manure CH4 (18%–30%) (Hristov et al., 2018), 
NH3 (Bougouin et al., 2016) and soil emissions (Arango and Rice, 2021). 
Agreement between modelled and measured N2O emissions has been 
shown to vary considerably, with R2 ranging from 0.45 to 0.66 for 
grazed pastures (Zimmermann et al., 2018) and 0.21 (Macharia et al., 
2021) to 0.92 (Deng et al., 2018) for forage cropping systems. The 
variation in performance was due to uncertainties associated with N2O 
emissions and soil properties, particularly SOC, clay content and water 
filled pore space. In the case of very low R2 for some cropping systems, 
this was due to very low observed emissions in very sandy soils with very 
low nitrification potential. Among the most uncertain parameters in 
DNDC are those that significantly influence the model outputs such as 
initial SOC, timing of N application and grazing length. Furthermore, a 
significant fraction of nitrogen gas (N2) would be emitted through 
denitrification, and the N2 emissions are poorly understood and have not 
been thoroughly studied (Bracken et al., 2022). In addition, processes, 
such as the anerobic oxidation of ammonium (NH4

+) (Ammonox) 
(Rabbani et al., 2020) are currently not represented in the model, 
leading to additional uncertainty. However, it is worth noting that the 
uncertainty is lower in T3 PB modelling compared to T1 and 2 estimates 
(Deng et al., 2022), presuming that data to constrain the model are 
available or can be estimated reliably.

Unlike the soil component of DNDC, which has been extensively 
evaluated for multiple datasets, the housing and storage component of 
Manure-DNDC has seen limited applications and validation. In this 
study, the daily and cumulative fluxes of CH4 and NH3 in the barn, as 
estimated by the Manure DNDC model, were evaluated for the first time 
in the German and European context. This novel application of PB 
models offers new insights into comprehensive manure management 
assessments, addressing a significant gap in European-specific research 
on farm scale GHG and N emissions.

The cumulative observed and modelled values exhibit a higher cor
relation coefficient (R2 = 0.998 for CH4 and R2 = 0.984 for NH3) 
compared to daily values (R2 = 0.07 for CH4 and R2 = 0.11 for NH3). 
Similarly, the error analysis, as indicated by RMSE and relative RMSE, 
underlines the models’ overall accuracy in capturing cumulative emis
sions, while daily fluxes show slightly higher relative RMSE, suggesting 
a proportionally larger deviation in daily predictions. Multiple factors, 
such as climate and management conditions, affect daily values, leading 
to significant variability in daily data. Therefore, it can be challenging to 
establish a good agreement between modelled and observed data, even 
if the model is accurate. On the other hand, cumulative values integrate 
the effects of all these factors over a more extended period, thereby 
reducing the impact of short-term fluctuations and noise. Modelled and 
observed cumulative values tended to exhibit a higher correlation, 
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making the underlying trends and patterns more apparent.
The bias tests, employing linear regression models, reveal statisti

cally significant p-values for both CH4 and NH3 emissions, indicating 
that the observed and modelled values have a strong correlation. The 
high R2 values further support the adequacy of the linear models in 
explaining the observed-variance relationship.

Studies have reported uncertainty in estimated air exchange of 13% 
(Ogink et al., 2013) to 49% (Bougouin et al., 2016) due to uncertainties 
in assumed CO2 production when using the CO2 mass-balance approach. 
Additionally, time-dependent spatial variability of gas dilution within 
barns, influenced by changing weather conditions and animal activity 
during fixed sampling setups, introduces further uncertainties (Janke 
et al., 2020).

The deviation of about 25% between measured and simulated daily 
emission values in this study is within the range of measurement un
certainty. However, the relative error for NH3 is considerably higher 
than that for CH4. Nevertheless, the recorded daily 65% RMSE remains 
within reasonable bounds, and several factors contribute to this 
discrepancy such as the spatial separation of NH3 and the smaller ab
solute values of NH3 compared to CH4, leading to larger relative errors 
for NH3. Therefore, standardized methodologies and PB models could 
enhance emission estimates and contribute to effective mitigation stra
tegies in dairy systems. For example, optimizing diet formulations can 
effectively mitigate barn floor emissions, which are highly sensitive to 
feed rate and CP content (Rodrigues et al., 2022).

5. Conclusions

A novel T3 methodology linking a cascade of PB models across whole 
farm C and N cycles (animal emissions, housing, manure management, 
and soil), was compared to results from the IPCC T1 and T2 estimates. 
This comparison revealed significant differences between PB models and 
lower IPCC tiers highlighting the need for a more nuanced case-specific 
approach, where variations in soil type, climate or animal diet may have 
large impacts on emission estimates. The PB T3 approach captured the 
interannual variations and accounted for differences in categories of 
animals, manure management systems and land management. By 
incorporating localized variations in diet, farm management, soil and 
climate, it provides a robust framework for accounting and inventory 
purposes. Consequently, both inventories and C accounting systems can 
be informed by this PB modelling framework as a potential basis for 
adopting a more accurate assessment of GHG and N emissions across 
individual dairy production systems. However, incorporating such a 
framework into inventories requires addressing challenges related to 
data availability and quality. Future studies should focus on incorpo
rating comprehensive uncertainty quantification to refine and 
strengthen the T3 methodology, ultimately improving the accuracy and 
reliability of GHG inventories. Additionally, PB modelling approaches 
can also better identify possible trade-offs and synergies between 
various sources of GHG and N emissions, while capturing in
terrelationships between farm processes. These approaches are espe
cially pertinent in contexts like ‘Carbon Farming,’ or domestic offsetting 
schemes, offering more accurate and nuanced assessments required for 
subsidies, political regulation, or farm-level applications. Integrating 
these models into farm assessment tools and carbon foot-printing 
frameworks would further enhance their practical relevance. Effective 
strategies for MRV are essential for ensuring data reliability and the 
success of such initiatives. Finally, the manure-DNDC model effectively 
simulated cumulative NH3 and CH4 barn emissions in the confinement 
system, reinforcing the value of PB models for assessing GHG emissions. 
This highlights their potential to advance sustainability efforts within 
the agricultural sector.
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