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Abstract 

Modern agriculture faces the challenge of supplying a growing world population with high-quality prod- 
ucts while minimizing negative environmental and social impacts of its production and ensuring eco- 
nomic viability. Innovation is often considered key to achieving these goals, but its effectiveness remains 
an empirical question. Our study investigates how the adoption of new technologies affects farm sus- 
t ainabilit y with respect to its economic and environmental and one indicator of the social dimension. 
We use a comprehensive dataset on Dutch dairy and arable farms comprising financial and environ- 
ment al dat a along with dat a on innovation activity that allows for a differentiated view on the effects 
of various innovations. First-difference estimations reveal that simultaneous positive effects across all 
three sust ainabilit y dimensions are not guaranteed. For example, new buildings show a positive associ- 
ation with economic indicators of dairy farms, but the associations between other innovation activities 
and other economic, environmental, and the social indicator remain inconclusive. 
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. Introduction 

griculture not only faces the challenge of providing high-quality food, feed, and fiber but
lso has to meet increasingly ambitious requirements regarding the environmental impact of 
ts production. This is most relevant considering that the agricultural sector and especially
he livestock sector are major contributors to environmental problems such as global warm-
ng (Leip et al. 2010 ; Gerber et al. 2013 ; Grossi et al. 2019 ). The public discussion focuses
ot only on agricultural pollutants and resource efficiency, that is, the environmental pillar
f sustainability, but also on the social pillar of sustainability of agricultural production.
oremost, concerns over animal welfare and possible ways towards more animal-friendly 
roduction are voiced (Lusk 2011 ). 
Finally, the third pillar of sustainability, the economic viability of farms must be taken

nto account. Farmers traditionally act as price takers and face competition not only from
ithin country borders but also by foreign competitors due to increasing international trade
f agricultural goods. Therefore, solely focusing on the farm’s environmental performance 
The Author(s) 2024. Published by Oxford University in association with European Agricultural and Applied
conomics Publications Foundation. This is an Open Access article distributed under the terms of the Creative
ommons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
istribution, and reproduction in any medium, provided the original work is properly cited. 
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eems not sufficient considering that a farm is not able to contribute to environmentally 
riendly production if it is not economically viable in the medium to long run (Läpple and 
horne 2019 ). That is, the focus must be on all three pillars of sustainability—social, envi- 
onmental, and economic (Pretty et al. 2010 ; Llonch et al. 2017 ; Arvidsson Segerkvist et al.
020 ). 
To some extent, synergies between different sustainability dimensions can be assumed.

or example, input savings per unit of output can imply greater profitability for farmers 
nd also savings in pollutants per unit of output (Gerber et al. 2011 ; Zehetmeier et al.
014 ; Salois 2015 ; Zehetmeier et al. 2020 ). Also, the health status of an animal herd can be 
xpected to be positively related to its productivity (Henningsen et al. 2018 ). In other cases,
rade-off situations might be created, for example, cage systems for laying hens score low 

n animal welfare but emit less particulate matter (Shepherd et al. 2015 ), by the existence 
f competing animal breeding goals (Balaine et al. 2020 ), or when balancing productivity 
nd animal welfare in intensive farming systems (Llonch et al. 2017 ). 
Therefore, improving farm production with respect to all the three dimensions appears 

s a core challenge for modern farming. The development and successful adoption of in- 
ovations that allow farmers to create ‘win–win–win’ situations with respect to all three 
ustainability pillars (Leip et al. 2010 ; Balafoutis et al. 2017 ; Llonch et al. 2017 ; Tullo,
inzi, and Guarino 2019 ; Balaine et al. 2020 ; Herrero et al. 2020 ; Simitzis et al. 2022 ) is of
ajor interest to farmers, policymakers and society. For example, it is acknowledged that 
ew digital technologies have the potential to increase efficiency of farming operations by 
ore precise input use, entailing also economic benefits for farmers (Finger 2023 ). In the 
ommon Agricultural Policy strategic plans for the upcoming years, the European Commis- 
ion (2023) highlights the central role of adopting innovative practices and technologies in 
mproving productivity and tackling environmental and animal welfare challenges. To this 
nd, farmers are supported financially when investing in improved capital goods. However,
o what extent the adoption of innovations finally contributes to all sustainability dimen- 
ions is foremost an empirical question. 
As Balaine et al. (2020) remark, there is a general lack of empirical literature that aims at 

dentifying technologies that are able to create win–win or even triple-win situations. In our 
tudy, we examine which and to what extent farm-level innovations affect the sustainabil- 
ty performance of farms with respect to the economic, the environmental, as well as one 
ndicator of the social pillar. The study employs a rich and unique panel dataset on Dutch 
airy and arable farms that contains comprehensive information on the innovation activity 
f individual farms as well as information on core indicators for environmental and social 
ustainability of farming operations. The data allow us to draw conclusions with respect 
o several environmental impact categories as well as the effects of multiple categories of 
nnovation. Because financial information is included, the data additionally enable us to 
onstruct precise measures of economic farm performance. By employing suitable control 
ariables, we adequately address potential bias in parameter estimates due to confounding 
arm characteristics. 
Several recent antecedents of our study exist in the literature. Sauer and Vrolijk (2019) 

nalyze the effect of innovation activity on productivity for Dutch dairy and arable farms.
hey partly find positive effects for product, process, and organizational innovations with 
espect to labor, cow, and land productivity. Following a similar research question, Läpple 
nd Thorne (2019) study the impact of innovation on the economic sustainability of Irish 
airy farms and to a certain extent identify positive effects on land productivity, profitabil- 
ty, and market orientation. In contrast to these studies, Balaine et al. (2020) also take into 
ccount the environmental and social dimension of sustainability. They examine the impact 
f adoption of milk recording by Irish dairy farms on a variety of economic, environmen- 
al, and animal welfare indicators. They find that adoption of the innovation improved the 
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conomic and social dimensions (animal welfare) but left the environmental dimension un- 
ffected. 
Other studies focus on the link between economic and environmental performance of 

arms. Zehetmeier et al. (2020) aim at identifying performance measures that link green- 
ouse gas emissions and profitability of dairy farms in Germany. For example, they identify
eed use efficiency as an important indicator of both greenhouse gas emissions and farm
rofitability, implying that technologies or changes in farm management targeting this vari- 
ble could generate synergies between environmental and economic goals. Dolman, Vrolijk,
nd Boer (2012) show for fattening pig farms that there is a high variation in economic,
nvironmental, and societal performance among farms and that farm characteristics related 
o scale positively affect economic and environmental performance. With a similar dataset 
s ours, Ang, Kerstens, and Sadeghi (2023) examine the relationship between greenhouse 
as intensity and energy productivity for Dutch dairy farms. Counterintuitively, they find a
ositive relationship between the two. 
The next section explores the link between environmental and economic performance 

rom a theoretical perspective. In the subsequent section, the data and the econometric strat-
gy are discussed. The last two sections separately discuss the results for the dairy and arable
arms and conclude with policy and management implications. 

. Conceptual framework and empirical model 

.1 Productivity and ‘environmental productivity’ 
n the following we want to show that prominent indicators of economic and environmen-
al farm performance are related but not identical. One widely accepted measure for the
conomic performance of decision-making units is productivity, and a classical definition of 
otal factor productivity starts out from a production function (van Beveren 2012 ), 

Qit = Ait Kα
it L

β

it E
γ

it M
δ
it (1) 

nd, hence, 

Ait = Qit 

Kα
it L

β

it E
γ

it M
δ
it 

(2) 

ith Q as the production output, K, L, E, and M as production inputs (capital including
and, labor, energy, and intermediates, respectively) of farm i at time t, and α, β, γ , and δ as
he corresponding output elasticities. A accounts for differences in technical efficiency be- 
ween farms and can be seen as identical to total factor productivity in the absence of tech-
ical change and variable returns to scale (van Beveren 2012 ). This definition illustrates that
roductivity, Ait , depends not only on the amounts of inputs consumed in production but
lso on their relative importance for production (and the substitutional relations between 
hem) because aggregate input is formed by a geometric mean with the corresponding out-
ut elasticities as weights (which sum to one with constant returns to scale). As remarked by
n anonymous reviewer, productivity differences can also arise because of differing quality 
n inputs. Depending on whether input quality is included in measurement of input quantity,
his might or might not be reflected in the productivity measure outlined in Equation ( 2 ).
ecause input quality is not measured in our data, we will assume that inputs of similar
uality are used. Consequently, a proportional reduction in capital use, for example, will
esult in a smaller increase in total factor productivity than the same proportional reduction
n labor, if α < β. 
A common measure for the environmental impacts of production expresses undesirable 

y-products as a proportion of the amount of desirable output produced. For example, we
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an define greenhouse gas emission intensity (GI) as 

GIit = CO2 eqit 
Qit 

, (3) 

hat is, greenhouse gas emissions in CO2 equivalents per unit of output (Gerber et al. 2013 ).
reenhouse gas emissions and other environmental impacts are related to the amount of 

nput use—for example, a share of fertilizer leaked to groundwater or converted to nitrous 
xide, or dairy cows emitting a certain amount of methane dependent on the feed rations.
ccordingly, environmental impacts are often assessed by the use of emission factors as- 
igned to specific input categories (e.g. Zehetmeier et al. 2014 ). Emission intensity can then 
e estimated as 

GIit = θk Kit + θl Lit + θe Eit + θm 

Mit 

Qit 
, (4) 

ith θs as (aggregated) emission factors. By resembling the reciprocal of Equation ( 2 ), this 
efinition illustrates that GI is inversely related to (total factor) productivity. However, the 
ey difference between the two measures is the different weights used for input aggrega- 
ion as well as the functional form (i.e. potential substitutional changes along the produc- 
ion function assumed). Therefore, the two measures are not directly inversely related. This 
rinciple generalizes also to less restrictive functional forms than the Cobb-Douglas used 
or illustration here. For example, labor input might play a crucial role in production, but la- 
or is typically not associated with an emission burden. Consequently, productivity changes 
hat enable input savings only with respect to labor would, by definition, not translate into 
 reduced environmental impact of the farm products. This emphasizes that an economic 
ndicator solely based on total factor productivity as defined by Equation ( 2 ) is not a suf- 
cient indicator for the environmental performance of individual farms. Although the two 
resented measures are related, the degree to which both are impacted by innovations likely 
epends on farmers’ motivation for adopting them. While profitability-oriented innovations 
an have a positive side effect for the environmental performance as illustrated, it cannot 
e ruled out that some innovations are adopted with the primary goal of improved envi- 
onmental performance (e.g. as a response to stricter environmental regulations). 
The relationship between indicators of the social sustainability dimension and eco- 

omic indicators is less straightforward as compared to the case of total factor produc- 
ivity and greenhouse gas intensity showcased here. As already mentioned, the relation of 
hose variables among each other or their association with other sustainability dimensions 
ight be positive, negative, or non-monotonous (Shepherd et al. 2015 ; Llonch et al. 2017 ; 
enningsen et al. 2018 ; Balaine et al. 2020 ). For the indicator for animal welfare used in our 
tudy, we can expect a positive relationship between the animal welfare status and produc- 
ivity (Pérez-Méndez, Roibás, and Wall 2020 ). In this sense, animal welfare can be regarded 
s an important production factor included in A of Equation ( 1 ). 

.2 Stylized model of innovation effects and empirical implementation 

ontinuing from Equation ( 1 ), we assume that the farm’s level of total factor productivity 
it is influenced by its technology level, time-invariant farm-specific factors, and regional 
nd yearly influences, as well as random shocks. Assuming a linear function, this relationship 
an be expressed as 

Ait = β0 + β1 techit +
M ∑ 

m =1 

γm 

regio nim 

+
T ∑ 

s =1 

δs yearst +
K ∑ 

k =1 

θk zikt + ai + vit , (5) 

here yearst is an indicator variable equal to one if s = t, and zero otherwise. The variable 
ech is the technology status of the farm (i.e. the aggregate of the production techniques 
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urrently employed by the farm) (similar to the notion of a firm’s knowledge stock as de-
cribed in Griliches 1998 ). This variable is not directly observed in our dataset but can be
efined as 

t echit = t echit−1 + innoit , (6) 

hat is, last year’s technology status plus the introduction of a new production tech-
ique ( inno , which is observed in our data), which augments the technology status of the
arm. Equation ( 5 ) also contains a set of locational (i.e. regional) and time-related (i.e.
early) indicators, as well as their interactions. Time-invariant regional effects stem from 

ime-invariant differences in environmental conditions. Regional-invariant yearly effects 
hat are common to all farms in the sample might be generated by weather influences,
hereas time–region (variant) interactions absorb regional differences in these yearly ef- 
ects. ai contains unobserved time-invariant, farm-specific factors, such as the farmer’s av- 
rage level of management ability or natural conditions such as soil quality. zikt are time-
ariant and farm-specific factors that can be explained by changes in management quality.
inally, vit is an idiosyncratic error term. 
Estimation of Equation ( 5 ) by simple ordinary least squares would be invalidated by the

nobserved factors contained in ai . It must be considered that, for example, the average
armer’s management ability influences both the farm’s productivity and the decision on 
odernizing and maintaining the farm’s technology status. Several modelling options ex- 

st to account for this potential endogeneity. We chose the first-difference transformation 
o estimate Equation ( 5 ). Compared to the within transformation, this estimation strategy
ends to be more efficient when vit are serially correlated (Wooldridge 2002 ). For many of
he dependent variables in our models, we cannot rule out that the errors are serially cor-
elated due to path dependency in the dependent variable. Additionally, the first-difference 
ransform offers an intuitive model interpretation in terms of growth of the dependent vari-
ble. If both sides of Equation ( 5 ) are first differenced, we arrive at our empirical model
epresented by: 

·
A it = β1 inn o it + β2 inn o it −1 ,t −2 + γregio n i + δ

·
year st + θ

·
z it + ·

v it , (7) 

here a dot indicates a change in the respective variable relative to the previous year

e.g. 
·
A it = Ait − Ait−1 ). Because inno is defined as the change in the technology status 

Equation 6 ), only inno remains in differenced Equation ( 7 ). Deviating from the original
odel definitions in Equations ( 5 ) and ( 6 ), additional (binary) innovation indicators are in-
roduced in the vector innoit −1 ,t −2 , taking the value of one if an innovation was introduced
n t − 1 or t − 2. By this, Equation ( 6 ) is modified such that the contemporaneous adjust-
ent of the technology status is influenced by not only this year’s, but also past innovation
ctivity. The assumption behind this model formulation is that innovations might cause a
ip in the farm’s economic and/or environmental performance in the year of introduction 
ue to necessary adjustments in farm management as well as required time to learn the
fficient use of the new techniques. The innovation is then expected to induce sustained
rowth in performance over the following years. Hence, we assume lagged effects by inno-
ation of up to two periods based on the findings by Sauer and Vrolijk (2019) , who conclude
n significant two-period lagged effects by innovation on farms’ productivity for a similar
ataset as employed in our study. In addition, Diederen, van Meijl, and Wolters (2002) as
ell as Sauer and Latacz-Lohmann (2015) also report lagged effects by innovation and in-
estments. Graphically, this model can then be illustrated as shown in Fig. 1 . Furthermore,
egion dummy variables would drop out by first differencing. However, we keep them as
ontrol variables in Equation ( 7 ). 
To measure economic or environmental performance at farm level, we do not only em-

loy partial productivity, technical efficiency, and intensity (such as cows or hectares per
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Figure 1. Assumed innovation effects. 

w
i
m

f
u
t
i
d  

t
p  

s
i
c
e

t
i
v
a
m
u  

a
c

o
o
a  

w
s
o
f
f
o
e  

A
f
t

D
ow

nloaded from
 https://academ

ic.oup.com
/qopen/article/4/2/qoae032/7914179 by Bibliotheek der Landbouw

universiteit user on 15 January 2025
orker) measures but also sustainability indicators. For the sake of brevity, in the follow- 
ng explanations the model setup will be exemplary discussed using a (partial) productivity 
easure as the dependent variable in the regression models. 
In Equation ( 7 ), innoit represents a vector of dummy variables indicating whether the 

armer introduced an innovation (related to the various innovation categories as, e.g. prod- 
ct innovation) in period t. Accordingly, innoit −1 ,t −2 contains dummy indicating whether 
hese innovations were introduced in either of the two preceding periods. The data do not 
ndicate whether multiple innovations within a specific category were introduced by an in- 
ividual farm for a given year (inno should be a count variable > 1 in those cases). Given
he relatively low share of farms reporting the introduction of an innovation per year, it is 
lausible that this would be the case for only few observations, and we deem this not to be a
ource of relevant measurement error. To account for region-specific and yearly shocks, we 
nclude sets of region and year-related dummies in the vectors regioni and yeart . Additional 
ontrol variables are included in zit as discussed below, and finally vit represents a random 

rror term. 
Although endogeneity stemming from the time-invariant effect ai is controlled for, at- 

ention must be paid to unobserved time-variant factors that possibly affect the farmer’s 
nnovation decisions and dependent variables alike. Most prominently, these might be fa- 
orable production or market conditions that lead to higher productivity and profitability 
nd hence provide additional financial resources that can be invested in new farm equip- 
ent. However, for example, temporal variation in milk prices and weather conditions are 
sually highly correlated across farms, especially if the farms are located close to each other,
s it is the case for our dataset. Therefore, we can plausibly assume that these effects are 
ontrolled for by the year and region-related dummy variables considered in the model. 
Additional control variables contained in the vector 

·
z it proxy remaining potential sources 

f endogeneity. The (change in the) standard output of the farm is included as a proxy 
f farm size because this might change over time, for example, when farmers rent or buy 
dditional land, or expand their dairy herd by investing in new animal housing. Further,
e include the change in the binary variable indicating organic production to account for 
witches between production systems. A switch from organic to conventional production 
r vice versa might imply the introduction of new production techniques and likely af- 
ects farm productivity and environmental performance. This variable is only used for dairy 
arms because switches did not occur for arable farms. The degree of specialization (share 
f milk or crop revenue in total revenue for dairy or crop farms, respectively) is consid- 
red to account for assumed differences in productivity growth for highly specialized farms.
dditional control variables are included in the regression models to proxy differences in 
arm management characteristics across farms and time: We consider the expenditures for 
raining per year and farm, as well as the age of the farmer (not difference-transformed) in a 
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inear and non-linear (i.e. squared) form to capture a possible U-shaped or inverse U-shaped
roductivity pattern with respect to the farm manager’s age. Based on the farm manager’s
ecorded age, we further build a dummy variable assuming the value one if a new farm
anager has taken over farm operations in the respective year (equal to one if the birth
ear of the manager is different from the preceding year). An additional binary variable
‘no successor’) takes the value of one if the farm manager’s age is above 60 and there is no
ndication for the presence of a younger farm manager. This variable is meant to capture
arms without a farm successor that might soon exit the market and are potentially char-
cterized by lower productivity growth rates and lower probability of introducing costly 
nnovations or investments in general due to a shorter time perspective of farm investments.
Our identification strategy essentially constitutes a two-way fixed effects approach, as- 

uming that important sources of endogeneity are controlled for by considering both time
nd farm fixed effects. Additionally, with the described additional covariates controlling for 
ther potentially important, time-variant sources of endogeneity, we are confident that criti- 
al sources of endogeneity are taken into account and potential bias is effectively reduced. If
esidual endogeneity due to time-varying unobservables would still be of concern, the likely
irection of the bias would be upwards. For example, some external shock could induce the
armer to attain higher economic or environmental performance, and at the same higher
rofits can be used to update farm machinery, without there being a direct meaningful rela-
ionship between innovation activity and farm performance. However, as can be seen later,
uch an upwards bias is not a general concern for our results. 
An alternative to our strategy is an instrumental variable approach, which we ruled out

ecause of the lack of a suitable instrument in our data. This includes using lags as instru-
ents as in a generalized methods of moments estimation (Blundell and Bond 2000 ), whose
obustness has been questioned when temporal dynamics in the unobservables cannot be 
uled out (Bellemare, Masaki, and Pepinsky 2017 ). 

. Data and indicators 

he data for this empirical study were obtained from the Dutch farm accountancy data net-
ork (FADN) from Wageningen Economic Research. The Dutch FADN contains a much 
roader set of sustainability indicators compared to EU FADN (Vrolijk, Poppe, and Keszthe-
yi 2016 ). The dataset combines financial accounts data, farm-specific sustainability indica- 
ors, and data from specialized surveys on innovation behavior. We focus on specialized
airy and arable farms, which we analyze using separate estimations. The farm classifica-
ion follows the official Dutch classification system (‘NSO’), which considers farms with at
east 67 per cent of standard output being generated by one activity to be specialized in that
ctivity. The unbalanced panel spans the period 2008–17 with a total of more than 2,500
bservations for dairy farms and 1,000 observations for arable farms (see Tables 1 and 2 ).
ewer observations had to be used in the estimations due to missing values and data gaps,
s indicated in the estimation output tables presented below. 

.1 Innovation data 

ata on farms’ innovation activity stem from the annual ‘innovation survey’ focusing 
n factors and characteristics of farms’ innovation behavior ( https://www.narcis.nl/
esearch/RecordID/OND1344048; https://www.agrofoodportal.com/ThemaResultaat.
spx?subpubID=2232&themaID=2277). Farms are asked about the number of newly 
ntroduced products, processes, or new forms of business organization, along with infor- 
ation on innovation spending (only for process innovation) or innovation cooperation.
ollowing the ‘Oslo Manual’ (OECD and Eurostat 2005 ), the farmers were asked about
nnovation activity in three categories, namely product, process, and organizational or 

https://www.narcis.nl/research/RecordID/OND1344048
https://www.agrofoodportal.com/ThemaResultaat.aspx?subpubID=2232{&}themaID=2277
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arketing innovations. Regarding the required degree of novelty to be classified as an 
innovation’, the definition of the OECD and Eurostat (2005) is adopted. That is, process 
r product must be ‘new or significantly improved’ (for the farm, not at the market 
evel) to count as an innovation. Because these are self-reported measures, some degree of 
ubjectiveness must be expected, which cannot be avoided, however. Organizational and 
arketing innovations were further subclassified in five categories (see Table 1 ). For process 

nnovation, no subclassification was provided. However, for each innovation, farmers were 
sked to provide a short description of the innovation introduced. Because process inno- 
ations can be related to a wide variety of business activities, we used these descriptions 
o manually form subcategories (see Table 1 ). Out of these, only the subcategories with a 
easonable number of observations with a value of the innovation indicator of one were 
onsidered in the analysis. These are (1) machinery and equipment, (2) buildings, (3) herd 
r farm management and new techniques, and (4) GPS systems (only for arable farms).
he installation of solar panels was not included in the analysis as generated solar power 
s typically fed into the grid and therefore the installation does not directly influence the 
roduction process itself. 
For marketing and organizational innovations, we used the subcategories provided by 

he original questionnaire but aggregated them into two subcategories, ‘business organi- 
ation and management’ and ‘other’ because of limited observations in the latter category 
see Table 1 ). 
As summarized in Tables 1 and 2 , most innovation activities for both dairy and arable 

arms are related to new processes implemented in the production process. Fewer innova- 
ions are categorized as organizational or marketing innovations and, as expected, only few 

arms introduce product innovations. Within process innovations, most innovations are re- 
ated to investments in new machinery and equipment. For dairy farms, the second most 
elevant process innovation category is investments in new buildings. Arable farms, on the 
ther hand, are more likely to invest in the adoption of GPS-aided systems. 
Most of the investments in buildings were related to new animal housing and only few 

ere related to storage capacities for products or machinery. Only a few dairy or arable 
arms in the sample invested in new herd and farm management techniques. Innovations 
ontained in this category are predominantly concerned with new methods of collecting 
nimal or plant-related data, for example, with the help of sensors. For crop production,
hese new techniques included methods such as soil analysis, yield recording, or alternative 
ractices of plant nutrition or tillage. 
The innovation category ‘business organization and management’ is a relatively general 

erm recording any changes in the farm’s business organization. However, the specific de- 
criptions provided by the respondents revealed that the vast majority of these innovations 
elated to changes in the farm’s legal form due to partners entering or leaving the farm 

usiness. As can be seen in Tables 1 and 2 , the newly introduced category ‘Other organi- 
ational and marketing’ contains new techniques related to the marketing of products or 
he improvement of product quality. New business partnerships also fall under this cate- 
ory and in contrast to the changes in partnerships subsumed in the first organizational and 
arketing innovation category, these partnerships relate to new external relationships, for 
xample, with producer organizations or educational institutions. 

.2 Measures of economic farm performance 

he analysis of innovation-related impacts on economic performance is based on partial 
roductivity and intensity measures, as well as a technical efficiency measure estimated by 
 stochastic frontier analysis. 
For the frontier analysis, separate frontiers were estimated for the two farm types and 

otal output was calculated as the sum of revenues from milk (only for dairy farms), crop,
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nd other farm output, where deflated values have been used based on national price in-
ices. For dairy farms, five production inputs were distinguished: land, labor, dairy cows,
ntermediates, and capital. Land is the total utilized agricultural area in hectares, labor is the
verage number of total working units employed on the farm, dairy cows is measured by
he average number of dairy cows on the farm, intermediates are measured by the deflated
alue of the costs of various materials (concentrates, veterinary costs, fertilizers, seeds, pes-
icides, fuels, electricity, contract work, and other costs), and capital is the deflated book
alue for buildings and machinery. For arable farms, the same inputs apart from dairy cows
ere used. The frontier estimations were performed using a translog functional form incor-
orating time dummies to allow for flexible patterns of technical change and other external
early shocks. A half-normal distribution for the inefficiency term was assumed and esti-
ations were done using Stata’s build-in ‘frontier’ command, which represents the ‘basic’ 
rontier model following Aigner, Lovell, and Schmidt (1977) and treats the data effectively 
s a repeated cross-sections, allowing the farm-level inefficiency term to have temporal vari-
bility. Further details on the frontier estimations and detailed estimation results ( Tables S1
nd S2) can be found in the supplementary file. 
A model recently introduced to calculate technical efficiency scores when individuals self- 

elect themselves into different production regimes is the endogenous switching frontier 
odel (Greene 2010 ). This model seems not adequate in our estimation of technical effi-
iency for two reasons. First, the selection-corrected stochastic frontier analysis (SFA) model 
elies on exogenous variables in the selection equation that are not relevant in the frontier
quation, which are unavailable in our data (similar as for the instrumental variable ap-
roach already discussed). Second, studies in the stream of selection-corrected SFA focus 
n long-term management decisions such as adoption of irrigation technology (Vrachioli,
tefanou, and Tzouvelekas 2021 ) or government programs (Bravo-Ureta, Greene, and Solís 
012 ). In contrast to this, innovation activity as considered in our case consists of rather
hort-term decisions, with farms typically changing from being innovators in single years 
o being non-innovators in the next. This short-term pattern of innovation activity can
lso be seen in our dataset, with only a few farms innovating in consecutive years (178
f 2,888 for dairy and 88 of 1,334 observations for arable farms). Therefore, adopting
 selection-corrected frontier estimation in our context would assume that farms operate 
ith innovative production technology in one year, and revert to the non-innovative pro-
uction technology in the next. The production–innovation relationship that we assume in 
ur study is that innovation activity adds positively to the technology status of the farm,
hich makes the technology status a monotonically increasing variable. Therefore, mod- 
lling innovation activity as a 1/0 variable in the frontier equation as would be the case
n a selection-corrected frontier seems counter-intuitive. Instead, our approach relies on re- 
oving unobserved heterogeneity using a panel data estimator and incorporating relevant 
ontrols in the second-stage regression. 
To gain more detailed evidence on the effects of innovation on the effectiveness and ef-

ciency of specific inputs, we included various partial productivity and intensity measures.
ow productivity was calculated for dairy farms as the natural log of the total production
f milk in kilogram per dairy cow. A positive relationship between innovation activity and
ow productivity can be expected as a consequence of improved herd management, feed
uality, or animal health. As a similar measure, land productivity was calculated for arable
arms as the ratio of total output per hectare. Similar to dairy farms, higher land produc-
ivity by innovation could be expected, for example, by more precise pesticide or fertilizer
pplication through precision farming technology. 
Total farm output per worker was calculated for both dairy and arable farms as total de-

ated revenues divided by the number of total working units (paid and unpaid workers). We
xpect innovations to have a positive effect on labor productivity as either new techniques

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae032#supplementary-data
https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae032#supplementary-data
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llow for a more efficient use of non-labor inputs or innovations are specifically aimed at 
ntroducing labor-saving techniques. 
Cows per worker were calculated for dairy farms as the number of dairy cows divided 

y the farm’s number of working units. A similar measure was calculated for arable farms 
s total utilized agricultural area per working unit. A positive relationship with innovation 
ctivity could indicate that farmers use innovations to increase herd size or farmland with 
he help of labor-saving technologies (see also Gallardo and Sauer 2018 ). 

.3 Measures of environmental and social farm performance 

he selection of variables to assess the environmental performance of farms follows re- 
ated environmental impact assessment studies on dairy and arable farms (e.g. Djekic et al.
014 ). Greenhouse gas emissions were given in the dataset as measures calculated using in- 
ormation on the farm’s inputs and appropriate emission factors. The total greenhouse gas 
missions in CO2 equivalents were then related to the output of the farm (CO2 eq per kg of 
ilk for dairy farms). Greenhouse gas emissions were only available for dairy farms. 
Similarly, the energy consumption of the farm (expressed in joules) was given in the 

ataset as a calculated measure summing up the amount of energy consumed on farm,
hat is, the consumption of fuels, diesel, and electricity for the operation of farm machinery,
quipment, and buildings. Like greenhouse gas emissions, energy use was set in relation to 
he main output of the farm (the physical amount of milk for dairy farms and output in 
onetary terms for arable farms). As remarked by an anonymous reviewer, calculating ‘en- 
rgy intensity’ relative to monetary terms is not a natural way of expressing this measure.
owever, arable farms typically produce multiple crops and using total revenue circumvents 
roblems with allocating energy use to individual crops. Instead, an aggregate measure is 
alculated by using market prices (which reflect the relative value of crops) as weights to 
ggregate outputs from different crops. 
Eutrophication potential is included in the analysis by separately considering the average 

itrogen and phosphorus balances per hectare of the farm as reported in the dataset. By 
elating this environmental impact to a land unit, we follow suggestions of other researchers 
o relate globally relevant emissions (e.g. greenhouse gas emissions) to the farm product, and 
ollutants that accumulate locally and therefore lead to regionally confined environmental 
roblems (e.g. nutrient surpluses) to farm hectares (Haas, Wetterich, and Geier 2000 ; Boer 
003 ; Halberg et al. 2005 ). 
As another impact category, ammonia emissions were included in the analysis. Ammo- 

ia emissions significantly contribute to acidification of soils as well as to eutrophication 
González-García et al. 2013 ). Additionally, ammonia emissions pose a human health risk 
ue to their contribution to formation of fine particulate matter (Hristov 2011 ). Total farm 

mmonia emissions were given in the dataset and have been calculated as the sum of emis- 
ions resulting from animal grazing, animal housing, and manure application. Like nutrient 
urpluses, ammonia emissions were expressed in relation to the utilized agricultural area of 
he farm (kg NH3 /ha) to reflect the local relevance of their environmental impact. 
The pesticide-related emissions at farm level were reported in the original dataset as en- 

ironmental impact on groundwater, surface water, and soil. These environmental loads 
ere measured on a point scale quantifying the impact of active substances on ground- 
ater, surface water, and soil, based on the amount and kind of pesticides applied by the 
armer. Because we are interested in the overall pesticide impact and because the scores are 
n an equivalent scale, we aggregated the three measures into one by summing up the three 
cores. Like nutrient emissions, pesticide use was set in relation to the total utilized area of 
he farm. 
Following previous studies, we adopt somatic cell count as an indicator for the social 

imension of sustainability (Arvidsson Segerkvist et al. 2020 ; Balaine et al. 2020 ). Somatic 
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Table 3. Descriptive statistics. 

Dairy farms Arable farms 

Variable Mean SD Mean SD 

Output ( €) 294,148 207,916 338,670 353,416 
Land (ha) 61.5 38.6 100.8 78.7 
Labor (working units) 1.9 1.2 2.1 1.6 
Dairy cows (heads) 108.3 73.9 
Intermediates ( €) 146,618 107,578 141,007 124,031 
Capital ( €) 388,333 326,471 517,703 658,293 
Output ( €) per worker 152,383 71,389 154,196 78,755 
Cows per worker 56.9 26.8 
Hectares per worker 53.9 28.0 
Milk (kg) per cow 7,993 1,348 
Output ( €) per hectare 3,151 1,521 
Technical efficiency (%) 0.89 0.05 0.71 0.15 
CO2 eq (kg) per kg milk 1.56 0.30 
Energy (MJ) per unit of output 0.64 0.29 3.57 4.11 
Nitrogen surplus (kg N) per hectare 143.7 89.3 92.8 54.3 
Phosphorus surplus (kg P2 O5 ) per hectare 5.2 24.4 13.6 27.3 
Ammonia emissions (kg NH3 ) per hectare 44.3 23.7 14.4 10.0 
Pesticide load (thousand points) 7.2 36.8 82.1 98.6 
Somatic cell count (thousand cells per ml) 200.3 65.8 

Note: The numbers are unweighted averages across the whole sample period (2008–2017). ‘Unit of output’ is 
kilograms of milk for dairy farms and euros for arable farms. Monetary values are in real values (2000 = 100). 
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ell count is an indicator for udder health and therefore for animal welfare (Sharma, Singh,
nd Bhadwal 2011 ). Udder infections are painful for the animal and can be prevented by
ygiene measures to reduce transmission between dairy cows (Huijps et al. 2010 ; Krömker
nd Leimbach 2017 ). The variable was included in the dataset as results from periodic tests
onducted on dairy farms and is measured in thousand cells per milliliter. 
Prior to estimation, the dependent variables (the economic as well as the environmental

nd social indicators) were transformed to their natural logarithm for ease of interpretation 
f the regression results. The variables were then first differenced to arrive at change mea-
ures, as described by Equation ( 7 ). This illustrates that the estimated regression parameters
an be interpreted in terms of log percentage point changes in physical milk output per cow,
onetary output per worker, the number of cows per worker, technical efficiency, CO2 eq
er output, energy equivalents per output, and somatic cell count. The exception are nutri-
nt surpluses, ammonia emissions, and pesticide load because a major share of observations
howed non-positive (nutrient surpluses and ammonia emissions) or zero values (in cases 
here farms did not apply pesticides) and the variables were not converted to their natural

og to keep these observations in the analysis. Therefore, the regression results with respect
o nutrient surpluses, ammonia emissions, and pesticide loads are to be interpreted in their
hysical units (kg of nutrients, NH3 , and point scores, respectively). 
Descriptive statistics of the economic variables and environmental indicators are pre- 

ented in Table 3 . Dairy and arable farms are similar in size in terms of monetary output
nd number of employed working units. The dairy farms in the sample have on average
08 dairy cows, with an average cow productivity of almost 8,000 kg. Dairy farms show a
igher average level and a lower dispersion of technical efficiency compared to arable farms,
hich possibly might be due to a higher dependence on natural conditions and/or a greater
iversity of arable products in the case of arable farms. CO2 emissions per kilogram of milk
ppear to be at a higher level compared to those reported by other studies (Guerci et al.
013 ; Özkan Gülzari, Vosough Ahmadi, and Stott 2018 ; Zehetmeier et al. 2020 ). It has to
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e kept in mind, though, that greenhouse gas emissions per dairy farm were not calculated 
eparately for the dairy operation of the farm but as the total greenhouse gas emissions of 
he farm. 

. Results and discussion 

.1 Dairy farms 
he models outlined before are estimated separately for each farm type. The estimation 
esults for economic effects of innovation activity for dairy farms are reported in Table 4 .
Overall, the models estimated show a relatively modest fit in terms of the adjusted R ²
easure, which can likely be traced back to reduced variation in regressors and the depen- 
ent variable due to first-differencing. We are cautious when interpreting parameters that 
re only weakly statistically significant as the probability of one of these parameters being 
ot different from zero is high given the number of estimated models. Nevertheless, some 
ighly significant parameters offer valuable empirical insights. 
Our expectation of differing effects by contemporaneous and past innovation activity on 

he economic performance of dairy farms is partly confirmed. This is the case for innovations 
n several categories. With respect to all economic indicators in the year of the innovation 
ntroduction, investments in new machinery or equipment show a negative influence at least 
t the 10 percent significance level. This negative effect is also not compensated by positive 
rowth in the following 2 years. Hence, our findings suggest that investments in new ma- 
hinery or equipment appear not to significantly increase dairy farm productivity in the first 
ears and apparently also no labor-saving induced productivity effect can be identified in 
he first years after investments. 
Investments in new farm buildings show the opposite effect on farms’ economic perfor- 
ance. No significant changes in the economic indicators can be found for contemporane- 
us investments in farm buildings. Considerable and statistically significant positive effects 
re estimated for cow and labor productivity, as well as for the number of cows managed 
er worker. That is, new buildings enable farmers to operate a larger dairy herd, which 
esults in greater output per worker. In addition, cow productivity profits from new farm 

uildings, possibly due to improved feed management, new milking technology simultane- 
usly installed with new buildings, or a higher well-being of the dairy herd. The descriptions 
iven along the innovations were rather short, mostly without giving details on the type of 
ew barns being built or equipment installed. Therefore, they do not allow more precise 
nalysis of possible reasons for this relationship. However, only little and weakly significant 
ositive effects can be observed for farms’ technical efficiency. One reason might be that 
arge investments in the capital stock of the farm partly outweigh the output increase by the 
nvestment. 
Innovative herd or farm management techniques also show significant influence on some 

conomic indicators. Remarkable are the significantly negative lagged effects for cow and 
abor productivity as well as technical efficiency. This seems surprising considering that,
or example, new technologies such as animal sensors should allow the farmer to make 
ore precise judgments on the animals’ health status and enable more timely and precise 
anagement responses (Tullo, Finzi, and Guarino 2019 ). However, these investments might 
lso imply an increase in labor and time efforts required to effectively use these techniques 
n the first years after investment. 
Organizational and marketing (OM) innovations show less significant impacts overall.
ecalling that innovations in the category ‘business organization and management’ are pri- 
arily related to internal farm management partnerships, it can be anticipated that these in- 
ovations do not directly impact the production practices of the farm. Unexpected are, how- 
ver, rather strong negative effects by (other) organizational and management innovation 
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Table 4. Economic effects by innovation for dairy farms. 

Milk per cow 

Output per 
worker 

Cows per 
worker 

Technical 
efficiency 

Process innovation 
Machinery and equipment in t −0 .011** −0 .019* −0 .017** −0 .006** 

(0 .005) (0 .011) (0 .008) (0 .003) 
in t − 1 or t − 2 0 .001 −0 .010 −0 .002 −0 .002 

(0 .003) (0 .008) (0 .006) (0 .002) 
Buildings in t 0 .001 −0 .013 −0 .006 −0 .008 

(0 .007) (0 .017) (0 .014) (0 .005) 
in t − 1 or t − 2 0 .017*** 0 .045*** 0 .025*** 0 .007** 

(0 .004) (0 .010) (0 .008) (0 .003) 
Herd and farm management or new 

techniques in t 
−0 .003 −0 .019 −0 .010 −0 .004 
(0 .011) (0 .033) (0 .016) (0 .008) 

in t − 1 or t − 2 −0 .012** −0 .050*** −0 .022 −0 .010* 
(0 .006) (0 .017) (0 .014) (0 .005) 

Organizational and marketing innovation 
Business organization and 
management in t 

−0 .011* −0 .040** −0 .027 −0 .005 
(0 .007) (0 .017) (0 .017) (0 .004) 

in t − 1 or t − 2 −0 .003 0 .005 0 .002 0 .000 
(0 .004) (0 .011) (0 .009) (0 .002) 

Other OM innovation in t −0 .014 −0 .015 −0 .022 0 .006 
(0 .013) (0 .034) (0 .031) (0 .006) 

in t − 1 or t − 2 −0 .002 −0 .060*** −0 .025* −0 .014** 
(0 .007) (0 .021) (0 .013) (0 .006) 

Product innovation in t 0 .027 0 .025 0 .011 −0 .009 
(0 .016) (0 .038) (0 .027) (0 .018) 

in t − 1 or t − 2 −0 .005 0 .009 0 .003 −0 .001 
(0 .010) (0 .034) (0 .022) (0 .009) 

Farm size −0 .073*** 0 .349*** 0 .694*** −0 .032 
(0 .027) (0 .055) (0 .055) (0 .017) 

Degree of specialization 0 .036*** −0 .120** 0 .073** −0 .066*** 
(0 .013) (0 .049) (0 .029) (0 .015) 

Organic −0 .092** −0 .043 −0 .056 −0 .032 
(0 .041) (0 .075) (0 .061) (0 .035) 

Age of farmer 0 .000 0 .007*** −0 .002** 0 .002*** 
(0 .000) (0 .002) (0 .001) (0 .001) 

Age of farmer² 0 .000 0 .000*** 0 .000* −0 .000*** 
(0 .000) (0 .000) (0 .000) (0 .000) 

Training 0 .008 0 .029 −0 .023 0 .016 
(0 .015) (0 .023) (0 .018) (0 .020) 

New manager 0 .003 0 .030 −0 .009 0 .015*** 
(0 .007) (0 .025) (0 .023) (0 .005) 

No successor −0 .004 0 .015 0 .013 −0 .000 
(0 .008) (0 .013) (0 .013) (0 .005) 

Year (2009 = base level) 
2010 −0 .005 −0 .063*** −0 .034*** −0 .002 

(0 .007) (0 .016) (0 .012) (0 .005) 
2011 −0 .025*** −0 .065*** 0 .000 −0 .001 

(0 .006) (0 .014) (0 .010) (0 .004) 
2012 −0 .036*** −0 .081*** 0 .007 −0 .002 

(0 .007) (0 .014) (0 .011) (0 .004) 
2013 −0 .016** −0 .156*** −0 .117*** −0 .009* 

(0 .008) (0 .018) (0 .015) (0 .005) 
2014 −0 .007 −0 .058*** −0 .002 −0 .005 

(0 .006) (0 .014) (0 .012) (0 .004) 
2015 −0 .007 −0 .050*** 0 .000 −0 .002 

(0 .006) (0 .015) (0 .010) (0 .004) 

D
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Table 4. Continued 

Milk per cow 

Output per 
worker 

Cows per 
worker 

Technical 
efficiency 

2016 0.002 −0 .056*** −0 .091*** −0 .009* 
(0.008) (0 .017) (0 .014) (0 .005) 

2017 0.015** −0 .043*** −0 .020* 0 .009* 
(0.006) (0 .016) (0 .011) (0 .005) 

Region (1 = base level) 
2 −0.003 0 .004 0 .005 0 .001 

(0.002) (0 .006) (0 .005) (0 .001) 
3 −0.003 −0 .020** −0 .003 −0 .007*** 

(0.003) (0 .009) (0 .008) (0 .002) 
4 −0.001 −0 .002 0 .011** −0 .004** 

(0.003) (0 .006) (0 .005) (0 .002) 
Adjusted R ² 0.097 0 .095 0 .200 0 .034 
Number of observations 1,862 1,862 1,862 1,862 

Note: Levels of statistical significance are 10% (*), 5% (**), and 1% (***). 

o  
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n output per worker and technical efficiency. For business organization and management,
t can be seen from descriptions given by respondents that in many cases the innovation was 
elated to new partnerships or farm successors entering farm management. A negative effect 
n output per hectare could therefore be the result of a temporary worker surplus. Because 
other’ OM innovation is a wide collection of various innovations, the reason for the neg- 
tive result is hard to identify. However, the description provided by respondents indicated 
hat engagements in other gainful activities and other various profound changes in farm 

rganization were included in this category, making it credible that in those (few) cases, the 
arm manager’s focus shifted to other activities, leading to lower economic performance of 
he farming activities. 
Finally, the few dairy farms that introduced a product innovation do not show signif- 

cantly affected economic performance (although coefficients with positive sign are ob- 
erved). Considering that product innovation activity should not directly affect the technical 
elationships of the production process (if product innovations are not introduced jointly 
ith process innovations), this is not an unexpected result. On the other hand, because out- 
ut is measured in monetary units deflated by national price indices, a positive effect on 
utput per worker or technical efficiency could have been a likely scenario assuming that 
arms achieve higher value added with the introduction of new products (e.g. new cheese 
ariety or branded milk, as mentioned in the descriptions given by respondents). 
Next, we attend to the results for the environmental and animal welfare indicators, as 

eported in Table 5 . Compared to the economic indicators, innovations seem to have only 
inor impacts on these measures. On one hand, this appears plausible considering that 
he primary motivation for farmers to introduce innovations is the improvement of farm 

rofitability. On the other hand, as discussed in the conceptual framework, the farm’s en- 
ironmental impact should be inversely related to economic performance measures as, e.g.
roductivity or efficiency. Additionally, investment subsidies or tax redemptions, especially 
n the intensive livestock sector, have been granted conditionally on the farm accomplishing 
mprovements in animal welfare or emission reductions. 
Greenhouse gas emissions appear to be unaffected by most forms of innovation. A sig- 

ificant positive effect is identified for the contemporaneous impact of newly introduced 
echniques in herd and farm management. Also, farms with a product innovation experi- 
nce lower greenhouse gas emissions per kilogram of milk in the year of the innovation and 
ncreasing greenhouse gas emissions in the subsequent years. This result can possibly be 
raced back to the indirect effect of innovation on emissions per unit of output as discussed 
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n the conceptual framework (lower emissions per unit of milk were mirrored in higher cow
roductivity, if also the product innovation effects on cow productivity were statistically 
nsignificant). 
The energy use per kilogram of milk shows the strongest dependence on innovation ac-

ivities and mirrors the impacts explored earlier for the economic indicators. Investments in
achinery and equipment are accompanied by increased energy consumption in the year of

ntroduction, possibly due to lower technical efficiency or cow productivity as previously 
iscussed. Furthermore, the replacement of outdated machinery (such as tractors) by more 
owerful machines that are not necessarily energy saving might be relevant in this context.
 significant positive effect is estimated for contemporaneous investments in farm build- 
ngs and energy savings are estimated for the years after the actual investment. This could
lso be due to lower cow productivity in the year of investment and increased productivity
hereafter, as discussed for the economic effects. 
Nitrogen and phosphorus surpluses seem largely unaltered by farm-level innovation ac- 

ivity. Innovations in machinery and equipment show a negative influence on the average
hosphorus surplus of the farm, and a similar but insignificant relationship with nitro-
en surpluses. Ammonia emissions are likewise unaffected by innovation activity except 
or other organizational and marketing innovations, which show a significantly negative 
mpact. Again, possible reasons for this relationship are hard to identify because of the
anifold nature of this innovation category. 
Pesticide emissions as well as somatic cell count seem to be largely determined by other

actors than those considered in the regression analyses. The only statistically significant 
ssociation is found for the effect of organizational and marketing innovations on the
esticide load, suggesting that farms with new business organization show higher pesticide 
se in the following years. This might indicate that farm successors (as mentioned, this
nnovation category was frequently related to children entering the farm management) 
pply more intensive production methods with respect to pesticide use. For the other
nnovation variables, we find no significant effect. For the somatic cell count, this is in
ontrast to other findings, for example, by Balaine et al. (2020) . However, in their study,
alaine et al. investigated the effects of a specific innovative technique (milk recording),
here a positive effect on animal health might be more clear-cut compared to the rather
road innovation categories used in our study. 

.2 Arable farms 
stimation results for the economic effects by farm-level innovation activities for arable 
arms are summarized in Table 6 . Somewhat higher model fits are observed for these farms,
ikely because of a stronger dependence of farming operations on climate and other yearly
arying preconditions, which makes the yearly dummy variables better predictors. The gen- 
rally observed trend of negative performance effects in the year of innovation introduc- 
ion and positive effects in the following years can be confirmed for some model results.
owever, almost all estimated parameters for innovation-related variables are statistically 

nsignificant. One of the exceptions is a weakly significant parameter for past innovations in
ew farm management techniques with respect to their effect on the number of hectares cul-
ivated per worker. A straightforward explanation can be given because some respondents 
onsidered the lease of additional land as an innovation in this category. 
Many arable farmers in our dataset adopted GPS-based systems during the study period.
hese systems should enable farmers to apply fertilizers more precisely and facilitate more
fficient tillage routines (Balafoutis et al. 2017 ). The estimated coefficients are all positive;
owever, only the number of hectares per worker shows a significant positive association
ith the past introduction of GPS systems. 
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Table 6. Economic effects by innovation for arable farms. 

Output per 
ha 

Output per 
worker 

Ha per 
worker 

Technical 
efficiency 

Process innovation 
Machinery and equipment in t 0 .007 −0 .016 −0 .022 −0 .021 

(0 .022) (0 .028) (0 .018) (0 .015) 
in t − 1 or t − 2 0 .004 0 .005 0 .000 −0 .002 

(0 .020) (0 .022) (0 .013) (0 .011) 
Buildings in t −0 .007 −0 .053 −0 .046 −0 .031 

(0 .063) (0 .054) (0 .035) (0 .030) 
in t − 1 or t − 2 −0 .015 −0 .012 0 .004 −0 .001 

(0 .040) (0 .037) (0 .020) (0 .022) 
Farm management, new techniques in t −0 .030 0 .016 0 .046 −0 .034 

(0 .056) (0 .067) (0 .035) (0 .042) 
in t − 1 or t − 2 −0 .010 0 .036 0 .047** −0 .005 

(0 .052) (0 .055) (0 .020) (0 .030) 
GPS systems in t 0 .035 0 .053 0 .018 0 .019 

(0 .032) (0 .042) (0 .032) (0 .017) 
in t − 1 or t − 2 −0 .008 0 .038 0 .046** 0 .003 

(0 .029) (0 .030) (0 .019) (0 .016) 
Organizational and marketing innovation 

Business organization and 
management in t 

−0 .020 −0 .011 0 .009 −0 .006 
(0 .039) (0 .042) (0 .024) (0 .018) 

in t − 1 or t − 2 0 .021 0 .000 −0 .021 0 .000 
(0 .024) (0 .027) (0 .015) (0 .014) 

Other OM innovation in t 0 .024 0 .043 0 .019 0 .040 
(0 .076) (0 .066) (0 .026) (0 .047) 

in t − 1 or t − 2 −0 .009 −0 .024 −0 .015 0 .005 
(0 .040) (0 .049) (0 .030) (0 .031) 

Product innovation in t −0 .042 −0 .047 −0 .005 −0 .016 
(0 .051) (0 .048) (0 .035) (0 .019) 

in t − 1 or t − 2 0 .002 0 .052 0 .050* 0 .008 
(0 .043) (0 .048) (0 .027) (0 .021) 

Farm size 0 .224*** 0 .537*** 0 .313*** 0 .149*** 
(0 .085) (0 .078) (0 .082) (0 .041) 

Degree of specialization 0 .148** 0 .233*** 0 .085 0 .070** 
(0 .074) (0 .068) (0 .057) (0 .030) 

Age of farmer −0 .002 −0 .002 0 .000 −0 .003** 
(0 .003) (0 .003) (0 .003) (0 .001) 

Age of farmer² 0 .000 0 .000 0 .000 0 .000** 
(0 .000) (0 .000) (0 .000) (0 .000) 

Training −0 .027 0 .007 0 .034 −0 .012 
(0 .088) (0 .077) (0 .056) (0 .053) 

New manager −0 .049 −0 .082 −0 .033 −0 .028 
(0 .057) (0 .052) (0 .039) (0 .033) 

No successor −0 .010 0 .006 0 .016 −0 .004 
(0 .029) (0 .027) (0 .022) (0 .010) 

Year (2009 = base level) 
2010 0 .056 −0 .061 −0 .117*** −0 .007 

(0 .039) (0 .046) (0 .037) (0 .024) 
2011 −0 .335*** −0 .410*** −0 .075*** 0 .005 

(0 .043) (0 .046) (0 .026) (0 .024) 
2012 0 .296*** 0 .229*** −0 .067** 0 .048** 

(0 .036) (0 .040) (0 .026) (0 .021) 
2013 −0 .368*** −0 .478*** −0 .110*** −0 .037* 

(0 .038) (0 .042) (0 .031) (0 .022) 
2014 −0 .141*** −0 .213*** −0 .072** −0 .000 

(0 .031) (0 .037) (0 .032) (0 .018) 
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Table 6. Continued 

Output per 
ha 

Output per 
worker 

Ha per 
worker 

Technical 
efficiency 

2015 0 .012 −0 .106** −0 .118*** 0 .009 
(0 .037) (0 .045) (0 .028) (0 .023) 

2016 −0 .225*** −0 .341*** −0 .117*** −0 .048** 
(0 .049) (0 .050) (0 .031) (0 .024) 

2017 −0 .101** −0 .121*** −0 .020 0 .067** 
(0 .049) (0 .046) (0 .032) (0 .026) 

Region (1 = base level) 
2 −0 .005 −0 .014 −0 .009 −0 .009 

(0 .019) (0 .023) (0 .020) (0 .010) 
3 0 .004 0 .020 0 .015 0 .002 

(0 .023) (0 .025) (0 .018) (0 .012) 
4 −0 .004 0 .001 0 .005 −0 .008 

(0 .016) (0 .020) (0 .014) (0 .008) 
Adjusted R ² 0 .378 0 .426 0 .119 0 .045 
Number of observations 590 590 590 590 

Note: Levels of statistical significance are 10% (*), 5% (**), and 1% (***). 
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Organizational and marketing innovations are not a statistically significant predictor 
or any of the economic indicators. For past product innovations, a positive relationship is
stimated for the number of hectares per worker, which might well be due to the cultivation
f additional land to produce new products. However, the low statistical significance 
revents a definite conclusion. 
The effects on environmental performance of arable farms are summarized in Table 7 . As

xpected from the ambiguous results for the economic indicators previously reported, the 
esults lack statistical significance for almost all estimated innovation-related parameters.
ew machinery and equipment or the adoption of GPS-aided systems can be expected to al-

ow farmers more precise and more economical application of fertilizers and pesticides. Also,
ew farm management techniques such as soil analyses or plant disease monitoring could
upport the farmer in finding the appropriate amount of fertilizer and pesticide. However,
e could not robustly identify significant and desirable effects for the types of innovation
onsidered in this study. Instead, new farm management techniques imply slightly higher 
utrient surpluses in the following years. New farm buildings might lead to lower ammo-
ia emissions in the year of construction, which are, however, followed by higher emissions
n the subsequent years. To some degree, higher emissions are associated with the intro-
uction of GPS-aided systems, while past organizational and marketing innovations lead 
o slightly lower ammonia emissions. Product innovation seems to result in higher nutrient
urpluses to some extent. Perhaps, this is related to lower yields of new crops in the year
f introduction due to missing farmers’ experience in cultivation of the crop. For pesticide
se, no statistically significant effects are estimated for any of the innovation activities. The
nly clear desirable effects seem to be associated with other organizational and marketing
nnovations, which seem to some degree facilitate lower nutrient surpluses and ammonia 
missions in the years following their introduction. 

. Conclusions 

o meet the sustainability goals of agriculture in the future, high expectations are put on
he investment in new technologies. Undoubtedly, progress in agricultural productivity 
lso ensuring resource efficiency can only be made by implementing new production 
echniques. Accordingly, an important strategy of agricultural policy has been to foster 
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Table 7. Environmental effects by innovation for arable farms. 

Energy 
per output 

Nitrogen 
surplus 
per ha 

Phosphorus 
surplus 
per ha 

Ammonia 
emissions 
per ha 

Pesticide 
load 

Process innovation 
Machinery and equipment in t 0 .063 4 .4 5 .7 0 .7 −10 .8 

(0 .043) (6 .2) (4 .6) (0 .8) (57 .1) 
in t − 1 or t − 2 0 .024 −2 .4 −0 .6 0 .4 −39 .8 

(0 .034) (5 .3) (2 .8) (0 .9) (35 .8) 
Buildings in t 0 .139 −16 .7 2 .2 −2 .1** 34 .7 

(0 .148) (13 .6) (9 .5) (0 .9) (78 .8) 
in t − 1 or t − 2 −0 .029 10 .4 −1 .4 3 .9*** −38 .5 

(0 .069) (9 .5) (5 .7) (1 .3) (91 .5) 
Farm management, new 

techniques in t 
0 .080 11 .6 1 .3 0 .7 −57 .9 
(0 .104) (12 .7) (3 .5) (2 .2) (110 .9) 

in t − 1 or t − 2 −0 .036 19 .6* 9 .5*** 0 .0 667 .7 
(0 .084) (10 .1) (3 .4) (1 .2) (632 .6) 

GPS systems in t −0 .031 1 .7 −3 .7 1 .9* 44 .6 
(0 .061) (7 .4) (4 .9) (1 .1) (52 .9) 

in t − 1 or t − 2 −0 .050 −5 .7 −1 .1 0 .0 2 .5 
(0 .040) (4 .6) (2 .4) (0 .7) (47 .5) 

Organizational and marketing innovation 
Business organization and 
management in t 

−0 .007 −4 .9 −2 .4 −2 .1 38 .9 
(0 .060) (8 .8) (5 .0) (1 .8) (97 .9) 

in t − 1 or t − 2 −0 .012 2 .0 −2 .6 −0 .6 −61 .9 
(0 .037) (5 .7) (2 .9) (1 .4) (79 .8) 

Other OM innovation in t −0 .006 10 .1 16 .8 1 .3 −41 .0 
(0 .144) (17 .6) (10 .9) (2 .8) (118 .0) 

in t − 1 or t − 2 −0 .046 −26 .5* −15 .5*** −5 .7* 153 .6 
(0 .065) (13 .7) (4 .5) (3 .3) (154 .7) 

Product innovation in t −0 .017 48 .6* 15 .4* 3 .7 −43 .0 
(0 .089) (27 .9) (8 .6) (2 .7) (126 .2) 

in t − 1 or t − 2 0 .005 −7 .8 0 .7 −3 .2 36 .2 
(0 .096) (9 .1) (3 .9) (2 .0) (58 .3) 

Farm size −0 .179 −22 .6* −8 .3 1 .4 −12 .5 
(0 .131) (13 .6) (8 .2) (2 .8) (144 .9) 

Degree of specialization −0 .104 19 .7 5 .4 2 .0 −190 .7 
(0 .084) (12 .2) (6 .4) (2 .3) (117 .5) 

Age of farmer 0 .000 −0 .6 −0 .4 −0 .1 −3 .5 
(0 .003) (0 .5) (0 .3) (0 .1) (4 .7) 

Age of farmer² 0 .000 0 .0 0 .0 0 .0 0 .0 
(0 .000) (0 .0) (0 .0) (0 .0) (0 .1) 

Training 0 .015 −12 .7 −19 .2 3 .5 −57 .2 
(0 .125) (17 .3) (16 .8) (5 .3) (147 .4) 

New manager 0 .063 −1 .6 −9 .0 1 .0 −114 .4 
(0 .077) (16 .2) (7 .8) (2 .4) (72 .7) 

No successor 0 .013 −2 .6 −3 .4 0 .0 −77 .0 
(0 .082) (4 .6) (3 .3) (0 .9) (75 .6) 

Year (2009 = base level) 
2010 0 .073 7 .9 16 .8** 1 .3 91 .0 

(0 .083) (15 .2) (7 .8) (1 .9) (146 .1) 
2011 0 .430*** 11 .6 7 .9 0 .1 662 .3*** 

(0 .058) (10 .5) (6 .1) (1 .5) (216 .3) 
2012 −0 .277*** −19 .2* −0 .7 0 .5 −36 .1 

(0 .063) (11 .0) (5 .6) (1 .5) (238 .7) 
2013 0 .336*** 32 .5*** 9 .7 6 .2*** 181 .8 

(0 .073) (10 .9) (6 .2) (1 .8) (144 .0) 
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Table 7. Continued 

Energy 
per output 

Nitrogen 
surplus 
per ha 

Phosphorus 
surplus 
per ha 

Ammonia 
emissions 
per ha 

Pesticide 
load 

2014 0 .261*** 2 .5 12 .3** 1 .7 292 .2** 
(0 .055) (11 .3) (5 .9) (1 .6) (116 .0) 

2015 0 .179*** 17 .1 8 .6 1 .2 172 .7 
(0 .065) (11 .3) (6 .3) (1 .5) (123 .6) 

2016 0 .156** 37 .8*** 17 .0*** −1 .6 250 .1* 
(0 .067) (11 .7) (5 .6) (1 .5) (128 .6) 

2017 0 .148 −10 .6 −0 .4 1 .7 238 .9** 
(0 .090) (10 .4) (5 .5) (1 .5) (111 .6) 

Region (1 = base level) 
2 0 .001 6 .7* 5 .5*** 0 .0 −26 .4 

(0 .024) (3 .7) (1 .9) (0 .8) (69 .0) 
3 0 .012 0 .6 0 .5 −0 .7 50 .8 

(0 .030) (3 .4) (2 .5) (0 .9) (62 .1) 
4 −0 .033 −0 .8 2 .9* 0 .5 7 .8 

(0 .025) (3 .4) (1 .6) (0 .5) (33 .9) 
Adjusted R ² 0 .187 0 .074 0 .048 0 .066 0 .015 
Number of observations 590 590 590 590 590 

Note: Levels of statistical significance are 10% (*), 5% (**), and 1% (***). 
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xploration, adoption, and diffusion of new sustainable production technologies. To this 
nd, farmers typically receive financial support to update capital goods and farm equipment 
o state-of-the-art technology. To what extent newly implemented technologies can live up 
o the expectations and contribute to more sustainable production is finally an empirical
uestion, taking into account specific production settings and environments. Our study 
ontributes to this empirical literature by employing a comprehensive dataset that allows 
s to robustly explore the impacts of a wide variety of innovations on farm-level indicators
ith respect to several pillars of sustainability. If also a positive effect on all sustainability
illars cannot be expected for every form of innovation, farmers’ primary aim is to increase
r stabilize profitability by introducing such innovations. That is, a positive effect on the
conomic pillar of sustainability can be expected. 
The results of our study suggest that farm-level innovations cannot be per se attributed

o a general positive effect on any of the sustainability dimensions. Nevertheless, some sta-
istically robust findings support the expectation of positive effects for some forms of in-
ovation. This evidence can help to identify most promising new technologies that most
ikely will contribute to more than one sustainability indicator and dimension. The most
ignificant positive effects on economic performance were found for investments in build- 
ngs by dairy farmers. However, simultaneous positive effects regarding the environmental 
nd social farm performance could not be unambiguously confirmed. 
For other forms of innovation and with respect to arable farms, the empirical results re-
ain inconclusive. Although positive links with economic performance were estimated for 
ome techniques (e.g. GPS-aided systems), these relationships appeared not statistically ro- 
ust. For some innovation categories, this might be due to the way the particular innovation
ategory has been defined. If innovations subsumed in the same category are heterogenous 
nd their effects potentially conflicting, ambiguous estimation results might arise. For other 
nnovations, unexpected negative relationships with respect to farm performance were es- 
imated (e.g. for herd and farm management techniques on dairy farms). These findings are
uzzling and need to be explored further based on more precise measures for innovation. 
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Compared to the results of Sauer and Vrolijk (2019) —which is based on a similar sample 
han the present study—we find fewer statistically significant results with respect to the eco- 
omic performance indicators. However, the results are not contradictory and differences 
n statistical significance can likely be explained by the different methodological approaches 
long with differing variable definitions applied by the studies. 
The starting hypothesis of our study was that innovations could offer a way to dissolve 

ompeting relationships between sustainability dimensions. Recently, results by Ang, Ker- 
tens, and Sadeghi (2023) for similar data as ours show that win–win situations might be 
ricky to achieve, even for related impact measures within the same sustainability dimen- 
ion. In part, this can be an explanation for our ambiguous results. If relationships between 
ifferent sustainability indicators are inherently competitive rather than complementary,
nnovation targeting one indicator cannot be expected to contribute to the other equally 
ell. 
As was expected before, in our study farm-level innovations are not found to be a panacea 
ith respect to the sustainability challenges lying ahead for agricultural production. Public 
upport for modernizing farm technology should therefore be considered wisely and should 
ocus on the most cost-effective strategies. Furthermore, the right incentives must be created 
or farmers to foster the adoption of technologies with promising environmental benefits.
o identify those technologies, studies based on observational data such as ours should at 
east complement results on potential input savings of new technologies, given that farmer 
ehavior plays an important role in realizing the technologies’ potential. For example, re- 
ound effects have been discussed in the context of energy-saving technologies (Pan et al.
021 ; Ang, Kerstens, and Sadeghi 2023 ). 
As discussed in the description of the empirical strategy, identification of causal innova- 

ion effects is impeded by the highly endogenous nature of innovation activity and time- 
ariant unobservables are of particular concern for the identification strategy. Future stud- 
es could test the robustness of our findings with alternative approaches, for example, with 
atasets including suitable instruments, if also these are hard to come by. 
Our study did not consider the risk aspect in innovation adoption. A key motivation for 

armers to adopt new technologies besides the improvement of mean farm performance is 
ikely the reduction in performance variability. For example,DeLay, Thompson, and Mintert 
2021) find that variance in technical efficiency is lowest for early adopters of precision farm- 
ng technologies in their sample of US corn farmers. If farm-level innovations are adopted 
olely for risk reduction purposes, there might be no positive effects on the mean environ- 
ental impact via input savings, as discussed in the conceptual framework. Nevertheless,
 positive effect on the distribution of economic performance measures (e.g. a reduction in 
ownside risk) might also imply positive effects on the distribution of environmental im- 
acts. Another aspect, which remains unexplored in our study, is possible cost implications 
f innovation activity, for example, via allocative efficiency. These aspects should also be 
ddressed in future studies. 

upplementary material 

upplementary data are available at Q Open online. 

ata availability 

he data underlying this article cannot be shared publicly due to privacy of farmers who par- 
icipated in the survey and personal information such as financial data and socio-economic 
ariables. 

https://academic.oup.com/qopen/article-lookup/doi/10.1093/qopen/qoae032#supplementary-data
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