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A B S T R A C T

This paper focuses on the design and implementation of an intelligent system for planning operations of an 
agricultural robot. The aim of this intelligent system is to choose automatically the appropriate resources to 
execute certain agricultural operations, based on the user’s preferences, as well as to define and schedule their 
sequence. The practical background is discussed, with descriptions of the solution space of agricultural appli
cations and the way they can be restrained, through certain assumptions and decisions for minimizing the 
computing effort. The effectiveness of the intelligent system is demonstrated by comparing specific KPIs that 
have been calculated in the solution which would probably have been selected by a farmer and the solution 
proposed by the system, in different scenarios.

1. Introduction

In recent years, automation has been introduced into arable farming, 
altering traditional practice [1,2]. It is worth considering the environ
mental and socioeconomic aspects of this domain in order to realize the 
crucial role of a smart system, capable of optimizing the orchestration of 
the farming activities. According to a study by the Food and Agriculture 
Organization (FAO), the direct emissions, linked to agricultural activ
ities, are approximately 10 % of the total greenhouse gas emissions [3], 
which tend to increase, by considering the coupling of farming with the 
food supply and the population growth. Additionally, the labour costs 
and shortage endanger the profitability of farming and even its survival. 
Similarly, the nature of agricultural activities is seasonal, which could be 
affected by labour scarcity, unexpected environmental and global events 
(COVID 19), as well as inappropriate planning, leading to food waste 
and insecurity, while causing financial losses [4]. It is also worth 
mentioning the challenges arising from the fertilizer prices and the 
financial pressure from inflation driving automation and the benefits 
accrued from it [4]. The technological evolution, mainly on the infor
mation and computer technology (ICT) domain, has triggered the 
development of smart farming systems, such as advanced or autono
mous tractors and smart implements [5,6], making their scheduling and 

orchestration more flexible; nevertheless, even more complex. Another 
consideration is the rising demand for agricultural products, which ne
cessitates more utilized fields, tractors and implements. These resources 
should work with both temporal and spatial efficiency such as a fleet of 
tractors, operating concurrently or sequentially, conducting tasks such 
as spraying and weeding, in diverse environmental conditions, i.e. wind 
or rain. Consequently, composing alternative scenarios for planning 
orchestration becomes increasingly complex and multidimensional. As 
an illustration of the above, an agricultural robotic system that uses 
dynamic route planning in four specific real-world farming scenarios has 
been described in [7].

All the aforementioned, indicate the need for a scheduling process in 
the framework of agricultural activities. Regarding the path planning, 
the traditional approach of the farmers, who prefer going lane by lane, 
or every other lane in case there are turning constraints, should be taken 
into consideration. In Fig. 1, there is such an example shown.

Nevertheless, the automation of the above method is not trivial task; 
it is an NP-Hard problem and in most of the cases, it is not feasible to 
seek the optimal solution [8]. A study by Santos et al. [9] analyses 
different path planning methods, in various agricultural applications 
and is defined by optimization criteria, system constraints and limita
tions as well as a dynamic behaviour, meaning that the plan is calculated 
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offline or online. This analysis focuses on the micro-scheduling of the 
activities, namely on the way that the robot or tractor should traverse 
the field. Additional approaches are reported [8,10], through the prism 
of the already analysed NP-Hard problem, known as the Traveling 
salesman problem (TSP); nonetheless, without expanding the number of 
optimization criteria. A more macroscopic approach, regarding the work 
schedule optimization for agricultural robots is reported by Hizatate and 
Noguchi [11], where a genetic algorithm is used for the generation of the 
field path, for multiple robots, within the given constraints.

Nevertheless, despite the complexity of automating the path plan
ning problem, efforts were made to approach this problem from 
different perspectives, based on a set of assumptions. An example is the 
comparison between two different approaches that has been conducted 
by Martin Filip et al. [12] as shown in Fig. 2. On the one side, they 
analysed the approach proposed by Bochtis and Vougioukas who used to 
solving the route planning problem based on simulated annealing [13] 
and on the other side they analysed the Conesa-Munoz approach, which 
combines the best known route optimization operators combined to 
form a new operator called mix-opt. The comparison between them is 
based on the headland distance and consequently on the total travel 
distance.

Other algorithms are focused on optimizing the manoeuvre time 
[14], by utilizing the heuristic Clarke–Wright savings algorithm [15]. 

Utamima and Reiners [16] have proposed a Fast Hybrid Algorithm 
(FHA) for the problem of Agricultural Route Planning (ARP). The al
gorithm combines elements from different routing strategies and heu
ristic methods and aims to minimize the non-working distance, travelled 
by the vehicles. The proposed solution has focused on 5 fields that 
surround a central workstation from which multiple vehicles start. Each 
field is covered by one vehicle at the time, but it may also be split into 
smaller fields, each of which will be covered by a separate vehicle, and 
thus reduce the time required to cover the entire field.

All the above approaches address isolated aspects of a complete 
agricultural planning system, but none of them is capable of solving the 
entire orchestration of resource allocation and task scheduling, at both 
high and low levels, considering multiple optimization criteria and dy
namic performance in unexpected events. Additionally, it should be 
mentioned that in order to achieve high level of autonomy, a combi
nation of other hardware and software components are required as well, 
such as advanced perception systems, motion controllers and trackers 
[17]. Nevertheless, the scope of this paper is mainly focused on the path 
planning systems.

In the manufacturing domain, the growing complexity and increased 
demand for adaptability and efficiency, within modern systems, requires 
the implementation of a sophisticated management system, capable of 
effectively planning multiple resources across various cases. Over the 
last decades, notable advances have emerged in the field of 
manufacturing, focusing on the aforementioned aspects. Chryssolouris 
has identified that need; to move from mass production to mass cus
tomization in order to cope with multiple manufacturing variants [18]. 
Michalos et al. [19] have conducted a review of the existing technologies 
and their challenges, by highlighting the important role of flexibility and 
adaptability to the domain of the automotive assembly lines. Likewise, 
in various areas, such as the aerospace manufacturing, single robots 
would decrease the system’s efficiency and require a coordinated group 
of resources to ensure optimized efficiency of the executed operations 
and task parallelization [20].

In response to these challenges, intelligent systems have been 
developed in the manufacturing domain using AI-related methods. A 
dynamic scheduling on assembly systems has been implemented, by 
increasing the efficiency, while decreasing the assembly error and 
eliminating the need for human labour on planning tasks [21]. Likewise, 
Hu et al. have proposed a deep reinforcement learning method for real 
time Automated Guide Vehicles (AGV) scheduling on a flexible shop 
floor [22]. Liu et al. [23] have designed a solution to the Tree-Structured 
Task Allocation problem by using Group Multirole Assignment in order 
to satisfy some fixed relations among the tasks with very promising re
sults. In addition, Feo-Flushing et al. [24] have implemented a system 

Fig. 1. Traditional way of passing through a field. The work starts at point 1. 
Green indicates working lanes, where the robot performs work; blue indicates 
how the robot turns from one lane into the next; and red indicates how the 
robot returns to the starting point.

Fig. 2. Comparison of two plans as discussed by Martin Filip et al. [12] – On the left picture is the solution proposed by Bochtis and Vougioukas and on the right 
picture is the solution proposed by Conesa-Muñoz et al. The proposed solutions result on different calculations for the headland distance and therefore different total 
travel distance.
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that handles task allocation, scheduling and control by combining the 
solution from a generic mixed integer linear program (MILP) solver and 
a trained genetic algorithm. In the same vein, Wang and Gombolay [25] 
showcase a novel graph attention network-based scheduler that relies on 
machine learning that enables near-optimal multi-robot scheduling in 
various sizes and capability.

From the above is clear that Artificial intelligence (AI) developments 
as well as their capability to address efficiently and in a cost-effective 
manner issues of the manufacturing field is becoming more common, 
while the manufacturing applications of AI related to manufacturing 
processes, robots, automation and manufacturing systems design and 
control have been heavily researched [26]. These concepts and de
velopments have the potential to enhance the manufacturing domain, 
thus further research has been done so as to be applied to the agriculture 
domain as well.

The main objective of the work presented in this paper, is to adapt 
the intelligent approaches developed and applied in manufacturing 
domain, to address the specific challenges of the agricultural planning 
and scheduling.

2. Approach

As described in the previous section, the design of an intelligent 
system, capable of orchestrating scheduling and planning operations, for 
multiple fields and resources, is rather a complex activity. It requires to 
take into consideration a high level of data structuring and preparation, 
to consider the different parameters that are to be evaluated and affect 
the final outcome. Those parameters can be inserted and monitored by 
the user through a web-based interface and can split in two categories: 

• Field characteristics 
○ Waypoints
○ Working Lanes
○ Non-Working Areas
○ Transportation lanes
○ Special zones

○ Entry/Exit points of the field
• Resource characteristics 

○ Tractor info: width, weight, model, position, max working/trans
portation speed, fuel tank capacity/consumption/level, mechani
cal interface, real time speed/position

○ Implement info: width, weight, model, position, real time speed/ 
position, mechanical interface, consumable level

The above information is considered being the minimum require
ment for any planning of farming activities, proided by the user through 
a custom UI. More details could be provided from the user for a specific 
field, such as areas which impose limitations on the vehicle (size, 
weight) or its movement (maximum speed, driving direction). The 
intelligent system doesn’t know whether these limitations may derive 
from soil conditions (e.g. wetness) or terrain characteristics (e.g. slope), 
but it only takes into account how the above parameters are afecting the 
decision criteria, such as time to complete the field, shortest distance, 
fuel economy etc. when choosing the best plan.

In order for the intelligent system to provide a planning solution, an 
inteligent search algorithm based on heuristics is used, developed for 
applications in the manufacturing domain and described in the work of 
Michalos et al. [27]. This search algorithm is using a set of decision 
parameters that enable searching the solution space quickly and with 
good quality of solutions for different sizes of problems. The scope of this 
paper is not to get into the details of this algorithm rather to present how 
such algorithms can be used in agriculture domain as well, apart from 
the manufacturing.

In Fig. 3, a grid-based model of the field is shown, demostrating some 
of the aforementioned parameters for the field. The grid-based approach 
as well as the size of each box that is suggested here enables the 
demonstration of the different parameters. More specifically, each box 
represents the same distance in the field but smaller box means that 
there is a type of “struggle” for the resource leading to a smaller speed 
and higher fuel consumption. Also, each box is highlighted with a 
different colour, representing a different part of the whole field. The 
connection between the field areas and the colours is elaborated below: 

Fig. 3. Grid-based field representation where the different colours represent the different areas.
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• Waypoints – Blue small boxes: Start and end points of a working lane.
• Working Lanes – Blue big boxes between the waypoints: AB lines 

composed from a sequence of big blue boxes, where the tractor 
should perform a farming operation.

• Non-Working Areas – Green boxes: the headland area in the field 
around the working lanes.

• Transportation lanes – Grey boxes: areas-lanes outside a specific 
field, used by the tractor to be transported from one field to another 
or from one field to the warehouse.

• Entry/Exit points of the field – Yellow small boxes: this is the area 
from which the tractor can enter and exit the field respectively.

• Plants – Beige boxes: areas where the actual plants exist and the 
tractor should not pass through.

The solution space in this case is defined by a set of points that should 
be placed in a specific order so as for the farming resources, such as 
tractors, to perform the farming operations in an efficient way, maxi
mizing a set of Key Performance Indicators (KPIs), based on the user’s 
requirements. These points could belong to the beginning or end of a 
work lane (waypoints), they could be the entry/exit of a field, or they 
could be supporting points within a non-operational (headland) or 
transport area. Thus, it is clear that the solution space is large and un
structured and consequently a deterministic search is not feasible and 
therefore, we use the heuristic search algorithm.

Additionally, in order to simplify the calculations, an assumption has 
been made, which is that once a waypoint of a lane has been selected, 
then the system should select the other one belonging to the same lane as 
well, ensuring that the tractor does not just pass by a waypoint, but 
actually chooses and passes through the specific lane. Neither passing-by 
from one waypoint without completing its lane or driving backwards is 
allowed.

Having the above in mind, the intelligent heuristics-based method 
has been used for searching among the best solutions, suggesting a 
“good-enough” solution among the best solutions based on a predefined 
criterion selected by the user. As described in the work of Michalos et al. 
[27] such intelligent algorithms can minimize the computational re
sources and time required to obtain the result. The proposed system of 
this paper is called Intelligent FArming System (IFAS) and its 

architecture is visualized in Fig. 4. In its core, is the backend system that 
is based on heuristics, and contains a database, where all the data and 
system states have been stored into. The user is able to upload infor
mation to the system through a user-friendly UI, as well as to visualize 
the result of the intelligent planner. Once the user has a plan, its 
implementation unit is responsible for sending it to the resources for 
execution. Last but not least, sensor data are visualized and stored 
during the execution phase, depending on the hardware installed on the 
machine, enabling the farmer to have a clear view of the agricultural 
operations. Examples of such data are real time GPS data and resources’ 
speed, live view of the field through an onboard camera which provides 
raw data, fuel or spray level, data coming from the implement such as 
the weeding quality or spraying quantity etc.

3. Application scenarios

For the scope of this paper, in a python script three adjacent fields 
have been created based on the modelled described in the previous 
section and will be utilized for the application scenarios (Fig. 5). As 
described above, in each field, the working lanes are visualized with 
blue lines, while the headland area is represented by the green boxes 
around them. Furthermore, the entry and exit points of the field are 
represented by the yellow box, which acts as the starting and end point 
of all paths. The size of each box is connected with the ground inclina
tion, defining special zones within the field where the tractor cannot use 
its default speed.

Following the definition of the fields, specific KPIs, namely distance, 
time and fuel consumption, are calculated for travelling from one point 
to another in any field. The selection of a “good” alternative is related on 
these calculations since the aim is to have minimized values for the KPIs. 
In this paper, 4 cases are evaluated via a comparison of the KPIs, be
tween a path intuitively chosen by the farmer and the optimal path that 
has been generated by IFAS. The cases that will be discussed are the 
following: 

• A path followed by a single tractor in one field.
• A path followed by a single tractor in two fields.
• A path followed by two tractors in two fields.

Fig. 4. Intelligent Farming System (IFAS) architecture.
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• A path followed by two tractors in three fields.

For the first case, where the first field has been assigned to Tractor 1, 
the lane sequence that the farmer would typically follow is shown in 
Fig. 6, with the numbers in the cells to represent the steps the farmer 
would follow in the field, while each box represents a 100m-segment of 
the field.

For the same case, the path generated by IFAS is shown in Fig. 7.
For the second case, where both fields have been assigned to Tractor 

1, the lane sequence that the farmer would follow is shown in Fig. 8.
For the same case, the path generated by IFAS is shown in Fig. 9.
For the third case, where each field has been assigned to Tractor 1 

and Tractor 2 respectively, the lane sequence that the farmer would 

follow is shown in Figs. 10 and 11.
For the same case, the path generated by IFAS is shown in Figs. 12 

and 13.
For the last case, where three fields should be assigned to Tractor 1 

and Tractor 2, the lane sequence that the farmer would follow is shown 
in Figs. 14 and 15

For the same case, the path generated by IFAS is shown in Figs. 16 
and 17.

4. Results & discussion

IFAS enables the farmer to configure the specifications of the agri
cultural scenario, namely define the number of fields or lanes the 

Fig. 5. Three adjacent fields to generate alternative application scenarios where the size of each box represents the speed the tractor can have.

Fig. 6. First case – Path inside the field, intuitively followed by a farmer, the numbers in the cells represent the steps the farmer would follow in the field.
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tractors should work on, what type of a process needs to be performed 
and the optimization criterion based on which the solution will be 
provided, i.e. quickest path based on time or shortest path based on 
distance. Then, the result provided by IFAS is the automatic assignment 
of each lane or field to the appropriate resources and the automatic 
scheduling of the lanes, namely the order in which they should be 
processed, so as for a “good” result to be achieved, according to the 
aforementioned criterion selected by the farmer.

Focusing on the planning dimension of the proposed system, the 
farmers take different approaches, both in literature and in practice. 
More specifically, the farmers prefer to follow the sequential approach, 
in order to avoid losing any lane unprocessed, without taking into 

consideration the benefits that could be accrued in terms of KPIs had 
they followed a more sophisticated path, as shown in Fig. 1.

Multiple methods or even combinations of those are used in the 
literature, that prioritize different aspects for optimization, such as 
finding the smaller headland and total travel distance or finding the 
shortest manoeuvring time or use algorithms like the Fast Hybrid Al
gorithm (FHA) which tries to minimize the non-working distance trav
elled by the tractors. The system proposed in this paper has a more 
holistic approach compared to the other systems from the literature, 
with the advantage of having the possibility to address multiple sched
uling criteria, instead of focusing only on one, by giving different 
weights on them. The aforementioned algorithms are rather close to the 

Fig. 7. First case – Path inside the field, generated by the IFAS, the numbers in the cells to represent the steps the farmer would follow in the field.

Fig. 8. Second case – Path inside the field, intuitively followed by a farmer, the numbers in the cells represent the steps the farmer would follow in the field.
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one discussed in this paper, but they are not as flexible..
Regarding the scenarios presented in this paper, as discussed the KPIs 

calculated are time, distance and fuel consumption. Although there are 
multiple fields and resources, there is a single starting point for all the 
resources and the only criterion is minimize the non-working distance of 
these resources, without taking into consideration other KPIs, such as 
time or fuel consumption. The calculated KPIs for each scenario have 
been summarized in the table below, followed by an analysis for each 
case. The calculation for the distance was based on the number of boxes, 
where each box represents 100 m distance as already mentioned in 
Section 3, for the time is based on the speed in the different areas 

(working speed 2,52 m/s, non-working speed: 4 m/s and red zone speed 
limitation: 1,64 m/s) and for the fuel consumption is based on the type 
of area (working lanes 9 l/h, non-working lanes: 4 l/s and red zone speed 
limitation: 13 l/h).

As shown in Table 1, the overall IFAS provides a path with better 
KPIs, namely time, distance and fuel consumption, compared to the 
standard sequential approach usually followed by the farmers, even very 
complex scenarios such as case 4, where multiple fields and vehicles 
should be planned. More specifically, the execution time is always lower 
between the two executions, although in some cases this difference is 
rather small. On the other side, the distance difference is rather 

Fig. 9. Second case – Path inside the field, generated by IFAS, the numbers in the cells represent the steps the farmer would follow in the field.

Fig. 10. Third case: Tractor 1 – Path inside the field, intuitively followed by a farmer, the numbers in the cells represent the steps the farmer would follow in 
the field.
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significant, reaching in some cases the 800 m, which could have an 
important impact on certain parameters, such as the soil compaction. 
Similar to the time, it is worth mentioning that the fuel consumption has 
always been minimized, reaching in some cases a saving more than 1 
litre.

In the second case, there is an improvement in time and fuel con
sumption, but not in distance. Consequently, this gives flexibility to the 
farmer, depending on his needs, to choose a different alternative solu
tion, or the KPI he wants to prioritize – time over distance or otherwise. 
On a similar note, in the third and fourth cases, tractor 2 covers the same 
distance, but the time as well as the fuel consumption are improved in 

the solution proposed by IFAS. This is because the path could not be 
shortened any further, thus leading to the improvement of the other two 
KPIs.

From the above, the benefits of the intelligent planner are clear, with 
the most critical being the high level of flexibility it offers the farmer. 
The user can give input on the KPI that he wants to prioritize, letting the 
system suggest a solution, which meets his requirements. Farmers who 
do not implement any automation tools, follow the same route every 
time they need to perform an agricultural operation, regardless of the 
type of work they have to perform or without taking into consideration 
other parameters of the field’s condition, such as the soil, the weather 

Fig. 11. Third case: Tractor 2 – Path inside the field, intuitively followed by a farmer, the numbers in the cells represent the steps the farmer would follow in 
the field.

Fig. 12. Third case: Tractor 1 – Path inside the field, generated by IFAS, the numbers in the cells represent the steps the farmer would follow in the field.
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conditions, the number of fields or lanes etc. An intelligent system that 
can take such parameters into consideration, could provide a solution 
that better meets a farmer’s needs.

The intelligence of IFAS is depicted in the diagrams below (Figs. 18 
and 19), in which the fuel consumption and the speed are shown for each 
100 m-segment of the field. These diagrams stem from the first case and 
can be seen that the farmer crosses four times from special areas with 
deviations of speed, thus in time and in fuel consumption, while the IFAS 
suggests a route that crosses three times such areas leading to better 
results in terms of distance and time fuel consumption.

Another advantage of IFAS is that it addresses both the resource 

assignment and the task scheduling for agricultural activities; an aspect 
that has not been addressed in the literature. This offers a more holistic 
approach to the planning problem of agricultural operations, by 
removing the cognitive load from the farmer, who, in the case of other 
approaches, would have to do a post-processing of the result in order to 
be able to perform the agricultural operation.

Furthermore, regarding the task scheduling, the state-of-the-art 
frameworks emphasize on specific criteria, i.e. finding the shortest or 
fastest path, by providing limited options to the user and eliminating 
combinability, i.e. by finding the best option that combines the shortest 
path and the lowest fuel consumption. In this way, it is clear that the 

Fig. 13. Third case: Tractor 2 – Path inside the field, generated by IFAS, the numbers in the cells represent the steps the farmer would follow in the field.

Fig. 14. Fourth case: Tractor 1 – Path inside the field, intuitively followed by a farmer, the numbers in the cells represent the steps the farmer would follow in 
the field.
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level of flexibility, in terms of generating personalized results, is rather 
limited. With the proposed system, the user is able to add more aspects 
and prioritize or even combine the most important ones, by fine-tuning 
their impact.

Moreover, the intelligent system calculates and provides metrics to 
the farmer for the proposed solution. This can raise awareness about 
other aspects, namely fuel consumption, amount of spraying, the CO2 
emissions etc. helping to develop a more environmentally friendly and 
sustainable attitude. Other methods that make such calculations are not 
as mature or advanced to take up more complex parameters, such as 
those mentioned above; they focus more on time and the distance 

travelled.
Last but not least, the advantage of the proposed system is that it 

follows certain assumptions that do not compromise the outcome but 
greatly minimize the number of possible solutions. Moreover, although 
an exhaustive evaluation could provide the best solution, it would 
require large computational power and time. The use of heuristics helps 
the system reduce the computational power and the time required to 
provide a “good” solution among the best possible ones.

Fig. 15. Fourth case: Tractor 2 – Path inside the field, intuitively followed by a farmer, the numbers in the cells represent the steps the farmer would follow in 
the field.

Fig. 16. Fourth case:Tractor 1 – Path inside the field, generated by IFAS, the numbers in the cells represent the steps the farmer would follow in the field.
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5. Conclusion

An intelligent planner (IFAS) that can provide resource assignments 
and agricultural task scheduling, using as input multiple resources and 
fields, has been discussed. IFAS offers the user the flexibility to select the 
pool of fields and resources he/she wants to work on and find a solution 
among the best alternatives, according to the defined criteria. The high 
flexibility and the holistic approach are the main features of the method 
described, while for future work, the execution of the intelligent system, 
drawing information from a group of real fields and real resources, has 

been planned in order to better display its benefits.
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Fig. 17. Fourth case:Tractor 2 – Path inside the field, generated by IFAS, the numbers in the cells represent the steps the farmer would follow in the field.

Table 1 
KPIs for all the cases.

Scenario Farmer’s approach IFAS

Case 1: 1 field – 1 
Tractor

Time: 2947 s 
Distance: 9100 m 
Fuel consumption: 7 litres

Time: 2567 s 
Distance: 8300 m 
Fuel consumption: 5.8 
litres

Case 2: 2 fields – 1 
Tractor

Time: 5067 s 
Distance: 15,100 m 
Fuel consumption: 12.6 
litres

Time: 4938 s 
Distance: 15,300 m 
Fuel consumption: 11.7 
litres

Case 3: 2 fields – 2 
Tractors

Tractor 1 
Time: 2947 s 
Path length: 9100 m 
Fuel consumption: 7 litres 
Tractor 2 
Time: 2675 s 
Distance: 7700 m 
Fuel consumption: 7 litres

Tractor 1 
Time: 2567 s 
Path length: 8300 m 
Fuel consumption: 5.8 
litres 
Tractor 2 
Time: 2531 s 
Distance: 7700 m 
Fuel consumption: 6.3 
litres

Case 4: 3 fields – 2 
Tractors

Tractor 1 
Time: 5346 s 
Path length: 16,500 m 
Fuel consumption: 12.6 
litres 
Tractor 2 
Time: 2675 s 
Path length: 7700 m 
Fuel consumption: 7 litres

Tractor 1 
Time: 5038.027 s 
Path length: 15,700 m 
Fuel consumption: 11.8 
litres 
Tractor 2 
Time: 2531 s 
Path length: 7700 m 
Fuel consumption: 6.3 
litres
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