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Plant communities are composed of species that differ both in functional
traits and evolutionary histories. As species’ functional traits partly result
from their individual evolutionary history, we expect the functional
diversity of communities to increase with increasing phylogenetic diversity.

This expectation has only been tested at local scales and generally for
specific growth forms or specific habitat types, for example, grasslands.
Here we compare standardized effect sizes for functional and phylogenetic
diversity among 1,781,836 vegetation plots using the global sPlot database.
In contrast to expectations, we find functional diversity and phylogenetic
diversity to be only weakly and negatively correlated, implying a decoupling
between these two facets of diversity. While phylogenetic diversity is higher
inforests and reflects recent climatic conditions (1981 to 2010), functional
diversity tends to reflect recent and past climatic conditions (21,000 years
ago). Theindependent nature of functional and phylogenetic diversity
makes it crucial to consider both aspects of diversity when analysing
ecosystem functioning and prioritizing conservation efforts.

Climate change and biodiversity loss are pressing environmental
issues, with rising temperatures and shifting precipitation patterns
increasingly driving plant species extinctions'. These changes have
substantial implications for ecosystems and human societies alike,
withimpactsranging fromaltered agricultural yields to increased risk
of natural disasters**. To understand and mitigate the effects of climate
change and biodiversity loss, it is crucial to determine how plant spe-
ciesassemble intocommunities and how these communities respond
to changing environmental and climatic conditions*®. To do this, we
need to understand the underlying mechanisms of plant community
assembly and how environmental conditions, species’ functional traits
and evolutionary histories interact to mediate these mechanisms’.
Community assembly reflects several processes that can reinforce
or oppose each other®. On the one hand, environmental filters tend
to favour similar phenotypic traits generating clustering within a
community®. On the other hand, bioticinteractions such as competi-
tive exclusion often limit how similar phenotypes can be as species
with different traits coexist more readily, fostering trait divergence™".
Attributing convergence or divergence to specific mechanisms is
difficult; however, competitive exclusion can also generate conver-
gence when other traits are associated with low competitive abilities®.

Likewise, divergence can stem from habitat filtering when traits
become correlated with distinct sets of environmental controls® or
when interacting environmental factors select for resident species™.
Whatever the underlying mechanism, the functional traits of species
play an important role in community assembly while also reflecting
how species evolved within specific environments. In other words,
functional traits reflect past selection and are often conserved within
phylogeneticlineages. Species closely related on the evolutionary tree
are thus more likely to share similar traits compared to less closely
related species. Depending on the pace of evolution, specific traits
can be more or less conserved on the phylogenetic tree''*. Indices
based on Brownian motion models of trait evolution such as Blomb-
erg’s Kand Pagel’s A (refs. 17,18) allow us to test whether traits are
phylogenetically conserved. These indices are based on correlations
between species’ distances in trait values and distances along their
shared phylogeny”*%,

When species within acommunity share similar traits, the commu-
nity is said to show phenotypic clustering, reducing functional diversity
(FD). Phenotypic clustering can be associated with two patterns, either
a combination of phylogenetic clustering with trait conservatism
(Fig.1, bottom left) or acombination of phylogenetic dispersion with
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Fig.1| Conceptual figure of the relationship between functional and
phylogenetic diversity. The figure is conceived after refs. 20,21. IfFD is
proportional to community PD, we consider the community to be coupled
(diagonal). The extremes are the results of either phylogenetic clustering in
combination with trait convergence (bottom left) or phylogenetic overdispersion
incombination with trait divergence (top right). Decoupled communities can

be observed if acommunity shows phylogenetic overdispersion in combination
with trait convergence (bottom right) or if it shows phylogenetic clustering with
trait divergence (top left).

trait convergence (Fig. 1, bottom right)”>?. In the former case, there is
apositive covariation between phylogenetic and functional distances,
whichis why we call the resulting diversity metrics coupled. Inthe latter
case, the phylogenetic and functional distances are inversely related,
and thus, we call the resulting diversity metrics decoupled.

In contrast, if species in a community have dissimilar traits, the
community has a high phenotypic variation, which is equivalent to a
high FD. High FD can either happen in combination with high phylo-
genetic variation (Fig. 1, top right) or phylogenetic clustering (Fig. 1,
top left). Again, in the former case, phylogenetic diversity (PD) and FD
are coupled, while being inversely related, and therefore decoupled,
inthelatter case”*%. Many local studies found a prevalence of coupled
communities with positive covariation of FD and PD**%, but negative
covariations®*” and unclear patterns® have also been encountered.
However, it is not yet known under which conditions communities
express coupled or decoupled FD and PD.

By calculating FD and PD for 1,781,836 vegetation plots from
sPlot”, the global vegetation plot database, we tested whether patterns
of coupling or decoupling (1) dominate at the global level, (2) show
regional patterns, (3) differ between forest and non-forest ecosystems
and (4) correlate with recent and past climatic gradients. We hypoth-
esized an overall coupled pattern of FD and PD, since PD has oftenbeen
found to reflect functional trait diversity, especially for those phylo-
genetically conserved traits that are not easily measurable in plants,
such as herbivore and pathogen resistance'>***°, We expected higher
PDinforests thanin non-forest ecosystems due to the co-occurrence
of woody and non-woody plant species, given that the herbaceous
habit has evolved from the ancestral woody state multiple times and
in different lineages®**. Since PD and FD metrics are correlated with
speciesrichness, we used nullmodels to calculate standardized effect

sizes (SES) and quantify how much PD and FD differed from random
expectations before comparing them™.

Results

The relationship of functional and phylogenetic diversity

We modelled the relationship between functional and phylogenetic
diversity indices expressed as SES of Rao’s quadratic entropy based
on functional traits (standardized effect size of functional diversity
(SES.FD)) and phylogenetic distances (standardized effect size of
phylogenetic diversity (SES.PD,)). We considered three functional
traits representing the main dimensions of the global spectrum of
plant form and function, namely the leaf economics spectrum (spe-
cificleafarea), the size-seed mass dimension (plant height) and the
root collaboration gradient (specific root length)***. Both diversity
indices were calculated as SES, on the basis of biome-specific null
models that account for the varying species richness across plots
and use therelative frequencies of species occurrences within each
biome to weight species resampling probabilities. This was done
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Fig.2|Therelationship of SES.FD,and SES.PD,,. SES.FD, is based on three
functional traits: specific leafarea, plant height and specific root length.

a, SES.FD,as afunction of SES.PD, with the linear regression slope (blue) after
accounting for spatial autocorrelation within a GAM (7.8% explained deviance).
Additionally, the line of coupling with the 1:1relationship (black) and the
confidence interval (grey; Methods), with 31.38% of the observations lying within
the confidence interval and 53.03% and 15.6% show decoupling, with either
FD>PD or FD <PD, respectively. b, Mean log ratio of SES.FD,and SES.PD, per
raster cell (863.8 km?). Negative values indicate higher observed SES.PDythan
SES.FD,and vice versa. The extracted values from the spatial smoothing spline
from the GAM can be found in Supplementary Fig. 2d.
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Fig. 3 | Relative influence of environmental variables on functional and
phylogenetic diversity. a-c, Results of the BRT for functional diversity (SES.FDy)
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model whenits relative influence was >12.5%, indicated by the dashed line, which
is the expected influence of a variable if all eight predictors had the same relative
importance. The signs indicate the direction of the significant effects based on
the partial dependence models (Supplementary Figs. 3 and 4).

because both FD and PD are tightly related to species richness. Out
of1,781,836 vegetation plots, 31.38% showed trait and phylogenetic
coupling as SES.FDy and SES.PD,, were simultaneously high or low;
53.03% of the vegetation plots had higher SES.FD, than SES.PD,and
15.6% had higher SES.PDq than SES.FD, suggesting that decoupled
plant communities are twice as common as coupled ones and that,
on average, global communities are more functionally than phy-
logenetically diverse (Fig. 2a). These results did not change after
removing non-significant standardized effect values, thatis, values
between-1.96 and 1.96 s.d. from the mean (6.9% coupled communi-
ties, 45.8% decoupled with high FD values and 17.3% decoupled with
high PD values).

We did not find any clear geographical pattern at the global scale
(Fig. 2b). Decoupled communities with high SES.FD4and low SES.PD,
(see Methods for definition of high and low values of SES.FD,and SES.
PD,) occurred in the western United States and locally across Europe,
while communities with low SES.FD,and high SES.PD, were found close
tothe Arctic Circle in Scandinaviaand Siberiaand in New Zealand and
Japan. Coupled communities with high values of both diversity indices
were encountered in the eastern United States and Central Europe as
wellasin New Zealand and Japan.

Overall, we found a negative relationship between SES.FD, and
SES.PD,,. Accounting for the spatial structure of the data by adding a
smoothing spline, our general additive model (GAM) explained 7.8%
of the deviance in SES.FD,, (Fig. 2a). Modelling the raw values of FD,
against the raw values of PD, hence not accounting for the effect of
species richness, also returned a negative relationship with 18.5% of
deviance explained (Supplementary Fig. 1a). The explained deviance
increased to 36.2% when the distance matrix of phylogenetic distances
was square root-transformed, accounting for the nonlinearity of trait
evolution (Supplementary Fig. 1b).

The negative relationship between SES.FD, and SES.PD, was
robust to the use of alternative null models, diversity indices, selec-
tions of functional traits and subsets of vegetation plot data (Methods).
Using a null model based on a global species pool, SES.PD, together
with the spatial smoothing spline explained 5.8% of the deviance in SES.
FD,, which increased to 6.2% when the phylogenetic distances were
square root-transformed (Supplementary Fig. 1c,d). On the basis of a
biome-specific but unweighted species pool, the explained deviance
was 6.8% (Supplementary Fig. 1f). When null models were constrained
on the basis of a phytogeographic®® species pool, the explained devi-
ance was 7.8% (Supplementary Fig. 1g). The same negative relationship
was found when using alternative indices of FD and PD; that is, when
modelling SES of functional dispersion (FDis) against mean pairwise
distance (MPD). The explained deviance in this case was 7.1% (Sup-
plementary Fig. 1e). Considering each trait individually, or including

additional traits (eight; Methods) but only for an environmentally
balanced subset of vegetation plot data (sPlotOpen*’), also returned
anegative relationship between FD, and PD,, (Supplementary Fig. 7
and Supplementary Table1).

The environmental predictors

We used boosted regression trees (BRT) to select the environmental
variables that best explain either SES.FD, or SES.PD,. The BRTs sug-
gested climatic variables to be most relevant for shaping patterns of
SES.FD, (Fig. 3a). Temperature of the coldest quarter and coldest month
(bothreflected by PC2in a principal component analysis (PCA) based
on 19 bioclimatic variables) had the highest relative influence on SES.
FD,, followed by the climate variability after the last glacial maximum
(LGM) and precipitation seasonality (PC5). Partial dependence plots
suggested a predominantly positive relationship between SES.FD,and
climate variability after the LGM and a negative one with precipitation
seasonality (PC5; Supplementary Fig. 3). SES.FD first increased and
then decreased with increasing temperatures of the coldest quarter
and coldest month (PC2).

Regarding PD, SES.PD, was especially related to the vegetation
formation type (forest versus non-forest, classified on the basis of
the cover of the tree layer and species traits, such as growth form and
height; Methods), being higher in forest compared to non-forest eco-
systems and tended toincrease with annual precipitation (PC1; Fig. 3b
and Supplementary Fig. 4a).

Whenmodelling the log ratio of SES.FD, to SES.PD,, BRTs showed
that the classification of forest or non-forest and annual precipitation
(PC1) had the highest relative influence, resembling what we observed
for SES.PD, (Fig. 3c and Supplementary Fig. 4b).

Fromthe BRTs, we chose variables with arelative influence >12.5%
(the relative influence expected by chance given by 100% or eight
explanatory variables) to use in GAMs predicting SES.FD, or SES.PD,,
after accounting for spatial autocorrelation. The model for SES.FD,
explained 4.6% of the deviance and suggested that FD increases with
increased climate variability after the LGM and temperatures of the
coldest quarter or month (PC2; Fig. 4) and decreases with precipita-
tion seasonality (PC5).

In contrast, the model for PD showed higher explanatory power
(37.3% of the deviance) with annual precipitation (PC1), vegetation
typeand the spatial spline all affecting SES.PD,,. Forests and sites with
increased precipitation had higher SES.PD, (Fig. 5). Modelling the log
ratio between SES.FD,and SES.PD, confirmed that effects of SES.PD,,
dominate, accounting for 30.8% of the deviance (Fig. 6).

To explore effects of environmental predictors on overall patterns
of coupling and decoupling, we modelled the relationship between SES.
FDq and SES.PD, as an ordered categorical variable with three states.
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Fig. 4| Environmental predictors of SES.FD,. a-c, Residuals of SES.FD,as a
function of temperature of the coldest quarter and month (PC2) (a), precipitation
seasonality (PCS5) (b) and climate variability after the LGM (c). The GAM explained
4.6% of the deviance. The solid line shows the regression obtained from the GAM.
The density hexagons show the distribution of the residuals of the model without
the explanatory variable of interest. The smooth term of SES.FD, can be found in
Supplementary Fig. 6a.

Thisacknowledges that, while there is only one way for communities to
be coupled, decoupling can occur with either PD > FD or FD > PD. Doing
this resulted in amodel that explained 10.2% of the deviance (Supple-
mentary Fig. 5). Annual precipitation (PC1), precipitation seasonality
(PC5) and forest or non-forest had the most power to discriminate the
three categories.

Discussion

Plant communities differ in their functional and phylogenetic com-
position. Here we modelled relationships between FD and PD in plant
communities across the globe to infer which factors best predict these
separate facets of diversity. Values of FD and PD tend to be decoupled,
suggesting that global patterns of community assembly are primarily
drivenby either FD or PD rather than the two being integrated. Recent
climatic conditions and past climatic conditions tended to drive differ-
encesinFD. Aspredicted, we found higher PD in forest versus non-forest
communities. The log ratio of FD and PD varied with vegetation type
(forest versus non-forest) and recent climatic conditions, in line with
what we observed for PD.

Contrary to our hypothesis, we found a negative but weak rela-
tionship between FD and PD at the global scale (Fig. 2a). As PD is often
considered to be a proxy for capturing unmeasured patterns of spe-
cies functional traits, we expected a positive relationship between
FD and PD*’, as postulated also by theoretical studies®. The negative
correlation observed at the global scale shows that FD and PD are more
often decoupled than coupled in plant communities, with communi-
ties either having high PD or FD, which is in line with recent results in
grassland communities®. Additionally, distribution of traits across
phylogenies canvary at small spatial scales, leading to both trait cluster-
ingand overdispersion™*°, Thisindicates that, contrary to the expected
coupling of FD and PD, closely related species often exhibit consider-
able differencesintrait values, while phylogenetically distant species
can often share similar trait values. It is possible that co-occurring
species with similar traits differ in other, not easily measurable traits;
for example, herbivory resistance, which are captured by phylogeny
butlessso by other functional traits. Functional clustering could reflect
equalizing competitive dynamics in neutrally assembled communities*
or broader-scale environmentalfilters. Additionally, when considering
the biogeographic histories of lineages, phylogenetic clustering could
arise due to recent stochastic extinctions or limited dispersal following
allopatric speciation®.

The observed negative covariation between PD and FD might
also be explained by the different impacts of biotic interactions and
environmental filtering across communities*****.In phylogenetically
clustered communities, competitive exclusion may act as a primary
mechanism, favouring the co-existence of species with dissimilar
phenotypes and thus higher FD. In contrast, environmental filtering
seems to be the driving process in communities with low FD and high
PD. Here only species with specific phenotypes are admitted to the
community®, but if these come from different clades, the community
will exhibit functional convergence but phylogenetic variation. This
pattern also suggests that species can differ in features not captured
by the traits we use to calculate FD*°. Since most communities show
decoupling with high FD (53%), competition may drive global plant
community assembly processes most strongly. However, we must
consider thattrait divergence canalso arise fromenvironmental factors
thatare spatially nested and interact with each other infiltering species
within a community. That is, trait divergence is generated within the
studied community units when the filtering effects of fine-scale envi-
ronmental factors, suchas thoserelated to soil and herbivory, interact
with and are nested within coarse-scale factors, such as climate™. In
communities with intermediate values of PD, environmental filtering
and competitive exclusion appear to be equally important, resulting
in coupled communities. However, the relative importance of these
mechanisms is difficult to test as we do not know whether species are
excluded from any given community as a result of the environmental
conditions, biotic interactions, dispersal limitation or interactions
among multiple factors'*". FD and PD could then be decoupled in
communities where geographical and local drivers differentially com-
bine with bioticinteractions to affect the functional and phylogenetic
relationships of species.

We observed no clear spatial patterns relating FD to PD. Plots
with coupled and decoupled FD and PD often occurred in geographi-
cal proximity, suggesting that local factors can dominate community
assembly within regions (Fig. 2b). Previous studies reported geographi-
cal patterns of FD based on climatic conditions, such as precipitation
gradients*®. Similarly, PD tends to decrease polewards*°. Studies on
the global distribution of PD showed striking differences across ecore-
gions or biomes®*%, Such regional diversity patterns rarely translate
into global patterns as broad-scale environmental conditions rarely
correspond to local ecological conditions. Nevertheless, treating
relationships between FD and PD as a three-level categorical variable
(decoupling with higher PD, coupling and decoupling with higher FD)
allowed us to demonstrate that coarse-scale environmental factors do
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The density hexagons show the distribution of the residuals of the model without
the explanatory variable of interest. The smooth term of log(SES.FD/SES.PD,,)
canbe found in Supplementary Fig. 6c.

play arole (Supplementary Fig. 5). This suggests that even though we
could not explain the full range of possible combinations of FD and PD,
broader biogeographical patterns emerge.

Although SES.FD,, and environmental conditions sometimes
covary, we failed to show that SES.FD,, is strongly driven by those
conditions at the global scale (Fig. 4). In particular, FD was not well
explained by recent climatic conditions and climate variability after
the LGM. Thisisin line with studies suggesting that the functional com-
position of local communities depends mostly on local factors, such
as land-use history, soil properties and microclimatic conditions®**.
However, afine classification of biomes as functional units or vegeta-
tiontypes, aswas doneinarecent Europe-wide analysis on climate-trait
relationship®*, mightincrease the explanatory power of our model.

SES.PD,was consistently higher in forests compared to non-forest
ecosystems, suggesting that different layers within forest communities
supportdiverse evolutionary histories (Fig.5). Most tree species belong
to predominantly woody families, many of which are phylogenetically
distant from other plant families, augmenting the PD found in forest
ecosystems® >, Thisis particularly true for conifers which representa
clade of woody species that separated from the angiosperms of today
as early as 300 million years ago (ref. 19). Many forest understories
alsosupportcryptogams (including vascular ferns and lycopods) with
distinct evolutionary histories relative to trees, further increasing PD
in forests™~°. These taxa also occur as epiphytes in tropical forests,

contributing to their increased PD. Stable microclimatic conditions
under aclosed canopy could also create conditions favouring species
from distinct families”*, Although stratification appeared to increase
PD, itdid notincrease FD.

Overall, our findings suggest that, while forest ecosystems dis-
play high PD, the FD of plant species in forests may be limited by con-
vergence in functional traits across different layers. These analyses
represent an attempt to understand global relationships between
FD and PD but come with limitations. Although sPlot represents a
global harmonized database of vegetation plots, its coverage is uneven
across biomes and vegetation types, potentially biasing our results. We
attempted to correct for thisby down-sampled datafrom the temperate
zonein favour of data from the tropics to anenvironmentally balanced
subset. However, we observed an even stronger negative relationship
between FD and PD. This suggests that tropical plant communities
contribute disproportionately to this pattern. Inaddition, datainsPlot
were collected using various sampling protocols and approaches,
sometimes including only woody species and using plots of different
shapes and sizes. We sought to partially overcome this problem by
including predictors related to plot record characteristics (Methods)
and by calculating standardized effect sizes. Still, we do not know how
these biases may have affected correlations between FD and PD. We
also lacked information on the successional state of the vegetation
plots, potentially influencing our results if early successional stages
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arelower in FD and PD compared to later successional communities.
Because species abundance data are not well standardized in sPlot, it
was more robust to use presence-absence data, but this might limit
comparisons with other studies. It is also possible that the functional
traits we selected might affect the relationships between FD and PD that
we observed, especially given that we used only three traits to calcu-
late FD. We note, however, that our results were robust to which traits
wereselected, individually or jointly, for calculating FD, with these not
affecting the relationship between FD and PD (Supplementary Fig. 7
and Supplementary Table1).

Polytomies included in constructing the phylogeny might have
led us to underestimate PD*’, which is why we used SES for PD. Addi-
tionally, we found the same negative pattern when we considered
FDis and MPD (Supplementary Fig. 1e) as proxy for FD and PD, where
the latter is known to show different dispersion patterns than PD
(ref. 60). However, when including PD as an explanatory variable in
future studies, it is important to consider the relationship between
traits and phylogeny and the potential nonlinearity of trait evolution.
Additionally, our analysis revealed that none of the potential traits
exhibited a strong phylogenetic signal in all families considered in
this study (Supplementary Fig. 7b). Moreover, it appeared that certain
families tend to possess more conserved traits compared to others.
This is in line with other findings that evolutionary conservation can
be associated with specific traits and lineages'®, but this is not a com-
mon pattern. Consequently, depending on the sampled community
and plant species, different patterns may emerge in the relationship
between FD and PD. While both plant characteristics and evolutionary
history play crucial rolesin community assembly processes, just which
interacting mechanisms operate on which underlying biotic and abiotic
factors remains unclear.

Our findings on the relationship of SES.FD, and SES.PD,imply that
ecological communities can exhibit many combinations of FD and PD.
The decoupling of FD and PD found here plus the overall slightly nega-
tive correlationimply that competitive exclusion may commonly occur
in plant communities. Our results also highlight the need to conserve
both FD and PD if we are to safeguard biodiversity. Both FD and PD
play key roles in community assembly and probably affect how species
and their interactions within communities will respond to changing
climates and other drivers of global change. Future research may reveal
whichregional conditions contribute to hotspots of FD and PD and why.
Understandingthe diverse and context-dependent nature of FD and PD
will shed light on the complex dynamics of ecological communities and
help usto design schemesto better protect the diversity they support.

Methods
Species community data
The vegetation plot database sPlot*’ (www.idiv.de/splot) is a harmo-
nized collection of national- and regional-scale vegetation plot data-
sets. sPlot provides georeferenced information on the presence and
abundance of all vascular plants co-occurring in asampling area, that
is, vegetation plot. The database sPlot v.3.0 holds a total number of
1,977,637 vegetation plot records from160 datasets collected between
1873 and 2019, across six continents and most biomes, including 76,912
vascular plant species (forv.2.1; ref. 29). The size of a plot varies accord-
ing to the type of vegetation being sampled, from 1 m? in grasslands
t0250,000 m?in forest ecosystems. The vegetation type of a plot was
classified as forest and non-forest on the basis of tree layer cover and
the growth form of dominant species®. Vegetation plot records were
included in the study if the cumulative coverage of species for which
both trait and phylogenetic information was available accounted for
atleast 50% of the relative vegetation cover in that plot (see below).
Inaddition, we used sPlotOpen®, whichis an environmentally bal-
anced, open-access subset of sPlot, asabenchmark of our results, both
when testing for the effect of trait selection when calculating FD and for
the effect of uneven coverage of sPlot data across the Earth’s biomes.

Functional diversity

Plant functional traits were available from the gap-filled TRY v.5.0
database® **. We calculated FD as Rao’s quadratic entropy (FD) as
well as FDis for all vegetation plotsin sPlot 3.0. The calculation of Rao’s
quadratic entropy® is based on a Gower distance matrix calculated for
the species present in each vegetation plot. FDis was computed from
the uncorrected species—species distance matrix with the function
dbFD from the R package FD***". We based this calculation on three
functional traits selected to cover most of the variation within plant
traits and torepresent different axes in the planteconomic spectrum,
that is, belowground and resource strategy of acquisition or conser-
vation (specific root length and specific leaf area) and reproduction
strategy of quality or quantity (plant height)* %, To evaluate the influ-
ence of trait selection on the relationship of FD and PD, we calculated
FD, on eight functional traits (specific leaf area, specific root length,
seed mass, plant height, leaf phosphorus and nitrogen content, leaf
dry matter content, and chromosome number), both taken individu-
ally andjointly. We did this additional analysis based on the sPlotOpen
subset only, since calculating SES (see below) of FD calculated on
eight traits in all plots was computationally unfeasible, even using a
high-performance cluster. Additionally, considering all eight traits for
the complete dataset would have led to aloss of ~2,000 species (-10%
of species considered in this study, see below) due to missing data in
the TRY database.

Functional traits can be conserved in the phylogeny. This was
tested with two evolutionary models (Blomberg’s K and Pagel’s 1),
where the latter is known to be more robust against incomplete
resolved phylogenies or suboptimal branch lengths*%. K and A were
calculated using the function phylosig from the R package picante®.
Incontrast to other tests for phylogenetic signals, both models canbe
used to compare phylogenetic signals across different phylogenies",
which needstobe done as aglobal plant phylogeny is simply toolarge
for an appropriate calculation of phylogenetic signals. Therefore,
the phylogenetic signal for each trait was calculated within each fam-
ily. All eight functional traits showed either no or low phylogenetic
signals for A and K (Supplementary Fig. 7b,c). Therefore, we assume
that thereis also no phylogenetic signal across vascular plants for the
considered traits.

Phylogenetic diversity

For all species present in sPlot, a phylogenetic tree was built using
the function phylo.maker from the R package V.PhyloMaker™. The
phylogenetic backbone of the package is the combination of GenBank
taxa with abackbone provided by the Open Tree of Life v.9.1, for seed
plants” and the clade of pteridophytes’. Missing generawere inserted
to the half point of the family tree. This approach was evaluated by
ref.73, who showed that phylogeneticindices based on the calculated
tree were highly correlated with indices based on the ‘PhytoPhylo
megaphylogeny’ (updated phylogenetic tree from ref. 72). Species
that could notbe inserted by the phylo.maker were bound to the half of
theterminallevel of asister speciesif only one species was availablein
this genus or to the most recent ancestor (MRCA) if the genus included
more than one species. This additional binding was done with the bind.
node function from the R package phytools™.

The computed phylogenetic tree for sPlot contained 160 fami-
lies with 68,052 of 76,912 species (88%) present within the database.
Additional 3,802 species were included, with 3,348 being bound
to the node of the MRCA of already-present sister species and 454
species to the half of the terminal level on the family node. The final
phylogenetic tree contained 71,854 species on 32,395 nodes. A total
of 31,727 speciesin the phylogeny also had traitsin the TRY database.
Ofthissubset, 322 species (-1%) were bound to the half of the terminal
level on the family node and 2,766 (-9%) to the MRCA. Vegetation plot
records were only included in the analysis if both trait and phyloge-
netic information was available for at least 50% of the total relative
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cover of the species in that plot. In total, 1,781,836 out 0of 1,977,637
plotrecords remained.

PD was calculated asRao’s quadratic entropy (PD,) which amounts
to the mean nearest taxon distance for presence-absence data. We
used the function raoD from the R package picante®, which is based
onthe cophenetic distance of all nspeciesin the phylogeny, pruned to
containonly the speciesinthat plot. Toaccount for the nonlinearity of
evolutionary histories, wealso calculated PD, on the basis of the square
root-transformed cophenetic distance”. Additionally we calculated
MPD, to be compared with FDis, as MPD could show opposite disper-
sion patterns compared with PD (ref. 60). Only species with both trait
information and known phylogeny were used to calculate FD and PD.

Standardized effect size

The species richness of the vegetation plot records ranged from1to
412 species (Supplementary Fig. 8). FD and PD indices are known to
depend on species richness™ %, Especially for FD, a higher number of
speciesinacommunity is morelikely to return higher FD values thanare
communities with fewer species’””. We controlled for species richness
by calculating the SES of each diversity index for every vegetation plot
record”, fixing the number of species of the plot record and drawing
species randomly, whichis equivalent to shuffling traits across species.
Asspecies do notequally occur across the globe, we calculated our null
expectations on the basis of biome-specific species pools accounting
for the frequency of speciesin the plot recordsin each biome. However,
to seeif the patterns also hold true for broader species pools we used
thefollowing hierarchical approach with four stages of defined species
pools. For the simplest species pool, we calculated our null expecta-
tions based on all species present in the whole sPlot database, so we
allowed each species tooccur everywherein the world. Foramore geo-
graphically constrained approach we calculated the null expectations
based on species pools within 16 phytogeographical units® (stage 2)
and 10 predefined biomes (stage 3) in response to global climate
variation®**°, namely: alpine, boreal zone, dry midlatitudes, dry trop-
ics and subtropics, polar and subpolar zone, subtropics with winter
rain, subtropics with year-round rain, temperate midlatitudes, tropics
withsummer rainand tropics with year-round rain. The fourth and most
complex nullmodel was based on the species pool within each biome,
additionally sampling the species weighted by their frequency in the
plot records within each biome. This means a species that occurred
more frequently within a biome was randomly drawn more often to
recalculate the null diversity index, compared to a species occurring
less often. For each of the four null models, we calculated the mean
and standard deviation of the distribution of null functional and phy-
logenetic indices across 499 draws. Vegetation plots only containing
one species, or for which trait and phylogenetic information was not
available, were excluded from functional or phylogenetic diversity
calculations. SES were obtained by subtracting the mean index of the
randomized data from the observed index and dividing the result by
the standard deviation of the index of the randomized data.

Definition of coupling and decoupling

To measure the percentage of coupled and decoupled communities, a
confidenceinterval was defined. We randomly drew one million values
froma uniformdistribution, defined between the minimum and maxi-
mum of observed standardized effect sizes of Rao’s quadratic entropy
based on functional traits (SES.FD) as explanatory variable. We cre-
ated a correlated response variable by adding an error from a normal
distribution, obtained from the mean and the standard deviation of the
observed SES.FD,,. Wefitted alinear model and extracted the intercept
and the confidence interval. Communities with an observed value of
SES.FD, were considered coupled if the standardized effect sizes of
Rao’s quadratic entropy based on phylogenetic distance (SES.PD) fell
within this interval. On the basis of this, we defined three categories
of community patterns; that is, decoupling with higher FD than PD,

coupling and decoupling with lower FD than PD. This variable was later
used as an ordered categorical response. Additionally, we calculated
the log ratio between SES.FD, and SES.PD, as log(SES.FD/SES.PD,,)
after scaling the values between 0.001 and 1. Positive and negative
values define the deviation with higher and lower SES.FD, than SES.
PD,, respectively, froma perfect coupled community.

Explanatory variables

Recent climatic conditions (1981-2010) were represented by the 19
bioclimatic variables from CHELSA v.2.1 (refs. 81,82). A PCA was per-
formed to reduce data dimensionality. In the following analyses, we
only used the first five PCA axes, collectively accounting for 92.3% of
the explained variation. We interpreted the axes on the basis of the
highest loadings of the corresponding climatic variable as follows:
annual precipitation for PC1; mean daily air temperature of the cold-
est quarter and mean daily minimum air temperature of the coldest
month for PC2; annual air temperature range for PC3; isothermality
for PC4; and precipitation seasonality for PC5 (Supplementary Table 2
and Supplementary Fig.9).

Mean air temperature variability after the LGM was derived from
the open-access StableClim v.1.1. dataset, containing estimates from
21,000 years ago at 2.5° spatial resolution®. Climatic variability rep-
resents rapid global warming during the last deglaciation during the
Belling-Allergd transition® on land and sea. The mean temperature
variability between 21,000 BP and AD 100 was used as index for the
climatic variability after the LGM.

Allclimatic variables were extracted for each plot with the extract
function from the R package raster®.

Not all vegetation plot records were complete in terms of the
sampled functional groups. Records from tropical forest plots often
contained either only tree dataor tree and shrub data. As the exclusion
of those plots would have substantially reduced the spatial coverage
of our model, we added the nominal predictor variable called ‘plants
recorded’ to our models to partially control for this source of bias.
The variable ‘plants recorded’ has four values: all vascular plants, only
dominant species, all woody plants and only trees. Additionally, we
used the vegetation type (forest versus non-forest) from the vegetation
plot database sPlot as predictor variable.

In total, we prepared eight explanatory variables, five related to
therecent climatic conditions, one to past climatic variability and two
to plotrecord characteristics.

Statistical modelling

A GAM was used to model the relationship between FD and PD, either
expressed as observed Rao’s quadratic entropy (for PD also after a
square root transformation of the distance matrix) or as standard-
ized effect size of Rao’s quadratic entropy, FDis and MPD. In a GAM,
the linear response can depend on unknown smooth functions of the
explanatory variables. To account for the spatial structure of the data,
the spatial coordinates were included as smooth spherical splines.
All GAMs included a basis penalty smoother spline on the sphere
(bs =“sos”), applied to the geographic coordinates of every plot, thus
taking spatial autocorrelationinto account. The explanatory variable
was included as linear predictors without any smooth function. The
model was performed using the function gam from the R package
mgev® !, defined as follows:

gam(SES.FD,~ SES.PD,, + s(Longitude, Latitude, bs = “sos”), family =
“gaussian”, method = “REML”)

SES.FD,is the standardized effect size of Rao’s quadratic entropy
based on the three selected functional plant traits and SES.PDy, is the
standardized effect size of Rao’s quadratic entropy based on the phy-
logenetic distances of species present in the community. This step
was done for the complete dataset and for the sPlotOpen subset, for
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which we considered the eight traits, both individually and jointly, for
calculating standardized effect size of FD.

To modelthe relationship between either FD or PD and the set of
the eight explanatory variables described above, we used a two-step
approach.Inthefirst step, we used BRTs to select relevant explanatory
variables and quantify their relative influence. In the second step,
we fitted GAMs using functional, PD or their log ratio as response
variables and the predictors selected in the first step as explanatory
variables. We did this because fitting a full GAM algorithm with all
predictorswould lead to convergence issues, due to the huge number
of data points.

BRTs are a machine learning technique used in regression and
classification having few prior assumptions and being robust against
overfitting and collinearity. They are known to uncover nonlinear
relationships as well as interactions among predictors. The parameters
ofthe BRT were set as follows: a tree complexity of 5and abag fraction
of 0.5. The learning rate was set to 0.01 with a maximum number of
20,000 trees. The BRTs were calculated using the gbm.step routine
from the dismo package®. An explanatory variable was considered
relevant in the model if its relative influence was >12.5%, which is the
expected influence of a variableif all the eight predictors had an equal
relativeimportance.

The variables that were considered asrelevant from the BRTs were
then used in a second set of GAMs, having as response variable SES.
FDy, SES.PD, or their log ratio; and as explanatory variables those that
turned out to be relevant in the corresponding BRT. Additionally, we
fitted a GAM with the ordered categorical response of coupling and
decoupling against the environmental predictors, which were selected
by the BRTs for FD and PD. As the three categories were not equally
represented, we sampled 10,000 communities for each category and
repeated the GAM 100 times, besides running the same model on the
complete (unbalanced) dataset. The spatial coordinates were included
assmoothspherical splinesin allmodels as explained above. As not all
vegetation plot entries in sPlot are classified as forest/non-forest the
number of observations for the environmental models was 1,497,238.
The prediction of each explanatory variable was performed using the
prediction function from the R package marginaleffects” by predicting
the explanatory variable based on the sequence between the minimum
and maximum of the variable in the original data and the GAM model.
The plotted regressions were obtained by extracting the residuals from
aGAM without the explanatory variable of interest.

For plotting, functional and phylogenetic variables were averaged
foreach grid cell with asize 0f 863.8 km? The spatial smoother within
the GAM was plotted at the same resolution based on the following
model (example based on SES.FDy):

gam(SES.FD, -~ 1+ s(Longitude, Latitude, bs = “sos”), family =
“gaussian”, method = “REML”).

Allanalyses were performed in Rv.4.1.3 (ref. 94).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All calculated biodiversity indices necessary to reproduce the results of
this paperare available at https://doi.org/10.25829/idiv.3574-mpmk21
(ref. 95). The vegetation plot raw data for sPlotOpen are available at
https://www.idiv.de/de/splot/splotopen.html. The vegetation plot
raw data contained in the sPlot database are available upon request
by submitting a project proposal to the sPlot Steering Committee.
The proposals should follow the Governance and Data Property Rules
of the sPlot Working Group available on the sPlot website (www.idiv.
de/splot). Source data are provided with this paper.

Code availability
AlIR scripts used for this study can be found in our GitHub repository
at https://github.com/georghaehn/Haehn-et-al-2024-FD-PD-coupling.
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