
Global	decoupling	of	functional	and	phylogenetic	diversity	in	plant
communities
Nature	Ecology	and	Evolution
Hähn,	Georg	J.A.;	Damasceno,	Gabriella;	Alvarez-Davila,	Esteban;	Aubin,	Isabelle;
Bauters,	Marijn	et	al
https://doi.org/10.1038/s41559-024-02589-0

This	publication	is	made	publicly	available	in	the	institutional	repository	of	Wageningen	University
and	Research,	under	the	terms	of	article	25fa	of	the	Dutch	Copyright	Act,	also	known	as	the
Amendment	Taverne.

Article	25fa	states	that	the	author	of	a	short	scientific	work	funded	either	wholly	or	partially	by
Dutch	public	funds	is	entitled	to	make	that	work	publicly	available	for	no	consideration	following	a
reasonable	period	of	time	after	the	work	was	first	published,	provided	that	clear	reference	is	made	to
the	source	of	the	first	publication	of	the	work.

This	publication	is	distributed	using	the	principles	as	determined	in	the	Association	of	Universities	in
the	Netherlands	(VSNU)	'Article	25fa	implementation'	project.	According	to	these	principles	research
outputs	of	researchers	employed	by	Dutch	Universities	that	comply	with	the	legal	requirements	of
Article	25fa	of	the	Dutch	Copyright	Act	are	distributed	online	and	free	of	cost	or	other	barriers	in
institutional	repositories.	Research	outputs	are	distributed	six	months	after	their	first	online
publication	in	the	original	published	version	and	with	proper	attribution	to	the	source	of	the	original
publication.

You	are	permitted	to	download	and	use	the	publication	for	personal	purposes.	All	rights	remain	with
the	author(s)	and	/	or	copyright	owner(s)	of	this	work.	Any	use	of	the	publication	or	parts	of	it	other
than	authorised	under	article	25fa	of	the	Dutch	Copyright	act	is	prohibited.	Wageningen	University	&
Research	and	the	author(s)	of	this	publication	shall	not	be	held	responsible	or	liable	for	any	damages
resulting	from	your	(re)use	of	this	publication.

For	questions	regarding	the	public	availability	of	this	publication	please	contact
openaccess.library@wur.nl

https://doi.org/10.1038/s41559-024-02589-0
mailto:openaccess.library@wur.nl


Nature Ecology & Evolution

nature ecology & evolution

https://doi.org/10.1038/s41559-024-02589-0Article

Global decoupling of functional and 
phylogenetic diversity in plant communities

Plant communities are composed of species that differ both in functional 
traits and evolutionary histories. As species’ functional traits partly result 
from their individual evolutionary history, we expect the functional 
diversity of communities to increase with increasing phylogenetic diversity. 
This expectation has only been tested at local scales and generally for 
specific growth forms or specific habitat types, for example, grasslands. 
Here we compare standardized effect sizes for functional and phylogenetic 
diversity among 1,781,836 vegetation plots using the global sPlot database. 
In contrast to expectations, we find functional diversity and phylogenetic 
diversity to be only weakly and negatively correlated, implying a decoupling 
between these two facets of diversity. While phylogenetic diversity is higher 
in forests and reflects recent climatic conditions (1981 to 2010), functional 
diversity tends to reflect recent and past climatic conditions (21,000 years 
ago). The independent nature of functional and phylogenetic diversity 
makes it crucial to consider both aspects of diversity when analysing 
ecosystem functioning and prioritizing conservation efforts.

Climate change and biodiversity loss are pressing environmental 
issues, with rising temperatures and shifting precipitation patterns 
increasingly driving plant species extinctions1. These changes have 
substantial implications for ecosystems and human societies alike, 
with impacts ranging from altered agricultural yields to increased risk 
of natural disasters2–4. To understand and mitigate the effects of climate 
change and biodiversity loss, it is crucial to determine how plant spe-
cies assemble into communities and how these communities respond 
to changing environmental and climatic conditions5,6. To do this, we 
need to understand the underlying mechanisms of plant community 
assembly and how environmental conditions, species’ functional traits 
and evolutionary histories interact to mediate these mechanisms7.

Community assembly reflects several processes that can reinforce 
or oppose each other8. On the one hand, environmental filters tend 
to favour similar phenotypic traits generating clustering within a 
community9,10. On the other hand, biotic interactions such as competi-
tive exclusion often limit how similar phenotypes can be as species 
with different traits coexist more readily, fostering trait divergence11,12. 
Attributing convergence or divergence to specific mechanisms is 
difficult; however, competitive exclusion can also generate conver-
gence when other traits are associated with low competitive abilities8. 

Likewise, divergence can stem from habitat filtering when traits 
become correlated with distinct sets of environmental controls13 or 
when interacting environmental factors select for resident species14. 
Whatever the underlying mechanism, the functional traits of species 
play an important role in community assembly while also reflecting 
how species evolved within specific environments. In other words, 
functional traits reflect past selection and are often conserved within 
phylogenetic lineages. Species closely related on the evolutionary tree 
are thus more likely to share similar traits compared to less closely 
related species. Depending on the pace of evolution, specific traits 
can be more or less conserved on the phylogenetic tree15,16. Indices 
based on Brownian motion models of trait evolution such as Blomb-
erg’s K and Pagel’s λ (refs. 17,18) allow us to test whether traits are 
phylogenetically conserved. These indices are based on correlations 
between species’ distances in trait values and distances along their 
shared phylogeny7,19,20.

When species within a community share similar traits, the commu-
nity is said to show phenotypic clustering, reducing functional diversity 
(FD). Phenotypic clustering can be associated with two patterns, either 
a combination of phylogenetic clustering with trait conservatism 
(Fig. 1, bottom left) or a combination of phylogenetic dispersion with 
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sizes (SES) and quantify how much PD and FD differed from random 
expectations before comparing them35.

Results
The relationship of functional and phylogenetic diversity
We modelled the relationship between functional and phylogenetic 
diversity indices expressed as SES of Rao’s quadratic entropy based 
on functional traits (standardized effect size of functional diversity 
(SES.FDQ)) and phylogenetic distances (standardized effect size of 
phylogenetic diversity (SES.PDQ)). We considered three functional 
traits representing the main dimensions of the global spectrum of 
plant form and function, namely the leaf economics spectrum (spe-
cific leaf area), the size-seed mass dimension (plant height) and the 
root collaboration gradient (specific root length)36,37. Both diversity 
indices were calculated as SES, on the basis of biome-specific null 
models that account for the varying species richness across plots 
and use the relative frequencies of species occurrences within each 
biome to weight species resampling probabilities. This was done 

trait convergence (Fig. 1, bottom right)7,15,21. In the former case, there is 
a positive covariation between phylogenetic and functional distances, 
which is why we call the resulting diversity metrics coupled. In the latter 
case, the phylogenetic and functional distances are inversely related, 
and thus, we call the resulting diversity metrics decoupled.

In contrast, if species in a community have dissimilar traits, the 
community has a high phenotypic variation, which is equivalent to a 
high FD. High FD can either happen in combination with high phylo-
genetic variation (Fig. 1, top right) or phylogenetic clustering (Fig. 1, 
top left). Again, in the former case, phylogenetic diversity (PD) and FD 
are coupled, while being inversely related, and therefore decoupled, 
in the latter case21,22. Many local studies found a prevalence of coupled 
communities with positive covariation of FD and PD23–25, but negative 
covariations26,27 and unclear patterns28 have also been encountered. 
However, it is not yet known under which conditions communities 
express coupled or decoupled FD and PD.

By calculating FD and PD for 1,781,836 vegetation plots from 
sPlot29, the global vegetation plot database, we tested whether patterns 
of coupling or decoupling (1) dominate at the global level, (2) show 
regional patterns, (3) differ between forest and non-forest ecosystems 
and (4) correlate with recent and past climatic gradients. We hypoth-
esized an overall coupled pattern of FD and PD, since PD has often been 
found to reflect functional trait diversity, especially for those phylo-
genetically conserved traits that are not easily measurable in plants, 
such as herbivore and pathogen resistance15,20,30. We expected higher 
PD in forests than in non-forest ecosystems due to the co-occurrence 
of woody and non-woody plant species, given that the herbaceous 
habit has evolved from the ancestral woody state multiple times and 
in different lineages31–34. Since PD and FD metrics are correlated with 
species richness, we used null models to calculate standardized effect 
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Fig. 1 | Conceptual figure of the relationship between functional and 
phylogenetic diversity. The figure is conceived after refs. 20,21. If FD is 
proportional to community PD, we consider the community to be coupled 
(diagonal). The extremes are the results of either phylogenetic clustering in 
combination with trait convergence (bottom left) or phylogenetic overdispersion 
in combination with trait divergence (top right). Decoupled communities can 
be observed if a community shows phylogenetic overdispersion in combination 
with trait convergence (bottom right) or if it shows phylogenetic clustering with 
trait divergence (top left).
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Fig. 2 | The relationship of SES.FDQ and SES.PDQ. SES.FDQ is based on three 
functional traits: specific leaf area, plant height and specific root length.  
a, SES.FDQ as a function of SES.PDQ with the linear regression slope (blue) after 
accounting for spatial autocorrelation within a GAM (7.8% explained deviance). 
Additionally, the line of coupling with the 1:1 relationship (black) and the 
confidence interval (grey; Methods), with 31.38% of the observations lying within 
the confidence interval and 53.03% and 15.6% show decoupling, with either 
FD > PD or FD < PD, respectively. b, Mean log ratio of SES.FDQ and SES.PDQ per 
raster cell (863.8 km2). Negative values indicate higher observed SES.PDQ than 
SES.FDQ and vice versa. The extracted values from the spatial smoothing spline 
from the GAM can be found in Supplementary Fig. 2d.
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because both FD and PD are tightly related to species richness. Out 
of 1,781,836 vegetation plots, 31.38% showed trait and phylogenetic 
coupling as SES.FDQ and SES.PDQ were simultaneously high or low; 
53.03% of the vegetation plots had higher SES.FDQ than SES.PDQ and 
15.6% had higher SES.PDQ than SES.FDQ, suggesting that decoupled 
plant communities are twice as common as coupled ones and that, 
on average, global communities are more functionally than phy-
logenetically diverse (Fig. 2a). These results did not change after 
removing non-significant standardized effect values, that is, values 
between −1.96 and 1.96 s.d. from the mean (6.9% coupled communi-
ties, 45.8% decoupled with high FD values and 17.3% decoupled with 
high PD values).

We did not find any clear geographical pattern at the global scale 
(Fig. 2b). Decoupled communities with high SES.FDQ and low SES.PDQ 
(see Methods for definition of high and low values of SES.FDQ and SES.
PDQ) occurred in the western United States and locally across Europe, 
while communities with low SES.FDQ and high SES.PDQ were found close 
to the Arctic Circle in Scandinavia and Siberia and in New Zealand and 
Japan. Coupled communities with high values of both diversity indices 
were encountered in the eastern United States and Central Europe as 
well as in New Zealand and Japan.

Overall, we found a negative relationship between SES.FDQ and 
SES.PDQ. Accounting for the spatial structure of the data by adding a 
smoothing spline, our general additive model (GAM) explained 7.8% 
of the deviance in SES.FDQ (Fig. 2a). Modelling the raw values of FDQ 
against the raw values of PDQ, hence not accounting for the effect of 
species richness, also returned a negative relationship with 18.5% of 
deviance explained (Supplementary Fig. 1a). The explained deviance 
increased to 36.2% when the distance matrix of phylogenetic distances 
was square root-transformed, accounting for the nonlinearity of trait 
evolution (Supplementary Fig. 1b).

The negative relationship between SES.FDQ and SES.PDQ was 
robust to the use of alternative null models, diversity indices, selec-
tions of functional traits and subsets of vegetation plot data (Methods). 
Using a null model based on a global species pool, SES.PDQ together 
with the spatial smoothing spline explained 5.8% of the deviance in SES.
FDQ, which increased to 6.2% when the phylogenetic distances were 
square root-transformed (Supplementary Fig. 1c,d). On the basis of a 
biome-specific but unweighted species pool, the explained deviance 
was 6.8% (Supplementary Fig. 1f). When null models were constrained 
on the basis of a phytogeographic38 species pool, the explained devi-
ance was 7.8% (Supplementary Fig. 1g). The same negative relationship 
was found when using alternative indices of FD and PD; that is, when 
modelling SES of functional dispersion (FDis) against mean pairwise 
distance (MPD). The explained deviance in this case was 7.1% (Sup-
plementary Fig. 1e). Considering each trait individually, or including 

additional traits (eight; Methods) but only for an environmentally 
balanced subset of vegetation plot data (sPlotOpen39), also returned 
a negative relationship between FDQ and PDQ (Supplementary Fig. 7 
and Supplementary Table 1).

The environmental predictors
We used boosted regression trees (BRT) to select the environmental 
variables that best explain either SES.FDQ or SES.PDQ. The BRTs sug-
gested climatic variables to be most relevant for shaping patterns of 
SES.FDQ (Fig. 3a). Temperature of the coldest quarter and coldest month 
(both reflected by PC2 in a principal component analysis (PCA) based 
on 19 bioclimatic variables) had the highest relative influence on SES.
FDQ, followed by the climate variability after the last glacial maximum 
(LGM) and precipitation seasonality (PC5). Partial dependence plots 
suggested a predominantly positive relationship between SES.FDQ and 
climate variability after the LGM and a negative one with precipitation 
seasonality (PC5; Supplementary Fig. 3). SES.FDQ first increased and 
then decreased with increasing temperatures of the coldest quarter 
and coldest month (PC2).

Regarding PD, SES.PDQ was especially related to the vegetation 
formation type (forest versus non-forest, classified on the basis of 
the cover of the tree layer and species traits, such as growth form and 
height; Methods), being higher in forest compared to non-forest eco-
systems and tended to increase with annual precipitation (PC1; Fig. 3b 
and Supplementary Fig. 4a).

When modelling the log ratio of SES.FDQ to SES.PDQ, BRTs showed 
that the classification of forest or non-forest and annual precipitation 
(PC1) had the highest relative influence, resembling what we observed 
for SES.PDQ (Fig. 3c and Supplementary Fig. 4b).

From the BRTs, we chose variables with a relative influence >12.5% 
(the relative influence expected by chance given by 100% or eight 
explanatory variables) to use in GAMs predicting SES.FDQ or SES.PDQ 
after accounting for spatial autocorrelation. The model for SES.FDQ 
explained 4.6% of the deviance and suggested that FD increases with 
increased climate variability after the LGM and temperatures of the 
coldest quarter or month (PC2; Fig. 4) and decreases with precipita-
tion seasonality (PC5).

In contrast, the model for PD showed higher explanatory power 
(37.3% of the deviance) with annual precipitation (PC1), vegetation 
type and the spatial spline all affecting SES.PDQ. Forests and sites with 
increased precipitation had higher SES.PDQ (Fig. 5). Modelling the log 
ratio between SES.FDQ and SES.PDQ confirmed that effects of SES.PDQ 
dominate, accounting for 30.8% of the deviance (Fig. 6).

To explore effects of environmental predictors on overall patterns 
of coupling and decoupling, we modelled the relationship between SES.
FDQ and SES.PDQ as an ordered categorical variable with three states. 
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Fig. 3 | Relative influence of environmental variables on functional and 
phylogenetic diversity. a–c, Results of the BRT for functional diversity (SES.FDQ) 
(a), phylogenetic diversity (SES.PDQ) (b) and the logarithm of the ratio between 
SES.FDQ and SES.PDQ (c). An explanatory variable was considered relevant in the 

model when its relative influence was >12.5%, indicated by the dashed line, which 
is the expected influence of a variable if all eight predictors had the same relative 
importance. The signs indicate the direction of the significant effects based on 
the partial dependence models (Supplementary Figs. 3 and 4).
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This acknowledges that, while there is only one way for communities to 
be coupled, decoupling can occur with either PD > FD or FD > PD. Doing 
this resulted in a model that explained 10.2% of the deviance (Supple-
mentary Fig. 5). Annual precipitation (PC1), precipitation seasonality 
(PC5) and forest or non-forest had the most power to discriminate the 
three categories.

Discussion
Plant communities differ in their functional and phylogenetic com-
position. Here we modelled relationships between FD and PD in plant 
communities across the globe to infer which factors best predict these 
separate facets of diversity. Values of FD and PD tend to be decoupled, 
suggesting that global patterns of community assembly are primarily 
driven by either FD or PD rather than the two being integrated. Recent 
climatic conditions and past climatic conditions tended to drive differ-
ences in FD. As predicted, we found higher PD in forest versus non-forest 
communities. The log ratio of FD and PD varied with vegetation type 
(forest versus non-forest) and recent climatic conditions, in line with 
what we observed for PD.

Contrary to our hypothesis, we found a negative but weak rela-
tionship between FD and PD at the global scale (Fig. 2a). As PD is often 
considered to be a proxy for capturing unmeasured patterns of spe-
cies functional traits, we expected a positive relationship between 
FD and PD40, as postulated also by theoretical studies25. The negative 
correlation observed at the global scale shows that FD and PD are more 
often decoupled than coupled in plant communities, with communi-
ties either having high PD or FD, which is in line with recent results in 
grassland communities26. Additionally, distribution of traits across 
phylogenies can vary at small spatial scales, leading to both trait cluster-
ing and overdispersion15,20. This indicates that, contrary to the expected 
coupling of FD and PD, closely related species often exhibit consider-
able differences in trait values, while phylogenetically distant species 
can often share similar trait values. It is possible that co-occurring 
species with similar traits differ in other, not easily measurable traits; 
for example, herbivory resistance, which are captured by phylogeny 
but less so by other functional traits. Functional clustering could reflect 
equalizing competitive dynamics in neutrally assembled communities41 
or broader-scale environmental filters. Additionally, when considering 
the biogeographic histories of lineages, phylogenetic clustering could 
arise due to recent stochastic extinctions or limited dispersal following 
allopatric speciation42.

The observed negative covariation between PD and FD might 
also be explained by the different impacts of biotic interactions and 
environmental filtering across communities41,43,44. In phylogenetically 
clustered communities, competitive exclusion may act as a primary 
mechanism, favouring the co-existence of species with dissimilar 
phenotypes and thus higher FD. In contrast, environmental filtering 
seems to be the driving process in communities with low FD and high 
PD. Here only species with specific phenotypes are admitted to the 
community45, but if these come from different clades, the community 
will exhibit functional convergence but phylogenetic variation. This 
pattern also suggests that species can differ in features not captured 
by the traits we use to calculate FD46. Since most communities show 
decoupling with high FD (53%), competition may drive global plant 
community assembly processes most strongly. However, we must 
consider that trait divergence can also arise from environmental factors 
that are spatially nested and interact with each other in filtering species 
within a community. That is, trait divergence is generated within the 
studied community units when the filtering effects of fine-scale envi-
ronmental factors, such as those related to soil and herbivory, interact 
with and are nested within coarse-scale factors, such as climate14. In 
communities with intermediate values of PD, environmental filtering 
and competitive exclusion appear to be equally important, resulting 
in coupled communities. However, the relative importance of these 
mechanisms is difficult to test as we do not know whether species are 
excluded from any given community as a result of the environmental 
conditions, biotic interactions, dispersal limitation or interactions 
among multiple factors14,47. FD and PD could then be decoupled in 
communities where geographical and local drivers differentially com-
bine with biotic interactions to affect the functional and phylogenetic 
relationships of species.

We observed no clear spatial patterns relating FD to PD. Plots 
with coupled and decoupled FD and PD often occurred in geographi-
cal proximity, suggesting that local factors can dominate community 
assembly within regions (Fig. 2b). Previous studies reported geographi-
cal patterns of FD based on climatic conditions, such as precipitation 
gradients48. Similarly, PD tends to decrease polewards49,50. Studies on 
the global distribution of PD showed striking differences across ecore-
gions or biomes51,52. Such regional diversity patterns rarely translate 
into global patterns as broad-scale environmental conditions rarely 
correspond to local ecological conditions. Nevertheless, treating 
relationships between FD and PD as a three-level categorical variable 
(decoupling with higher PD, coupling and decoupling with higher FD) 
allowed us to demonstrate that coarse-scale environmental factors do 
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play a role (Supplementary Fig. 5). This suggests that even though we 
could not explain the full range of possible combinations of FD and PD, 
broader biogeographical patterns emerge.

Although SES.FDQ and environmental conditions sometimes 
covary, we failed to show that SES.FDQ is strongly driven by those 
conditions at the global scale (Fig. 4). In particular, FD was not well 
explained by recent climatic conditions and climate variability after 
the LGM. This is in line with studies suggesting that the functional com-
position of local communities depends mostly on local factors, such 
as land-use history, soil properties and microclimatic conditions24,53. 
However, a fine classification of biomes as functional units or vegeta-
tion types, as was done in a recent Europe-wide analysis on climate–trait 
relationship54, might increase the explanatory power of our model.

SES.PDQ was consistently higher in forests compared to non-forest 
ecosystems, suggesting that different layers within forest communities 
support diverse evolutionary histories (Fig. 5). Most tree species belong 
to predominantly woody families, many of which are phylogenetically 
distant from other plant families, augmenting the PD found in forest 
ecosystems31–33. This is particularly true for conifers which represent a 
clade of woody species that separated from the angiosperms of today 
as early as 300 million years ago (ref. 19). Many forest understories 
also support cryptogams (including vascular ferns and lycopods) with 
distinct evolutionary histories relative to trees, further increasing PD 
in forests55,56. These taxa also occur as epiphytes in tropical forests, 

contributing to their increased PD. Stable microclimatic conditions 
under a closed canopy could also create conditions favouring species 
from distinct families57,58. Although stratification appeared to increase 
PD, it did not increase FD.

Overall, our findings suggest that, while forest ecosystems dis-
play high PD, the FD of plant species in forests may be limited by con-
vergence in functional traits across different layers. These analyses 
represent an attempt to understand global relationships between 
FD and PD but come with limitations. Although sPlot represents a 
global harmonized database of vegetation plots, its coverage is uneven 
across biomes and vegetation types, potentially biasing our results. We 
attempted to correct for this by down-sampled data from the temperate 
zone in favour of data from the tropics to an environmentally balanced 
subset. However, we observed an even stronger negative relationship 
between FD and PD. This suggests that tropical plant communities 
contribute disproportionately to this pattern. In addition, data in sPlot 
were collected using various sampling protocols and approaches, 
sometimes including only woody species and using plots of different 
shapes and sizes. We sought to partially overcome this problem by 
including predictors related to plot record characteristics (Methods) 
and by calculating standardized effect sizes. Still, we do not know how 
these biases may have affected correlations between FD and PD. We 
also lacked information on the successional state of the vegetation 
plots, potentially influencing our results if early successional stages 
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are lower in FD and PD compared to later successional communities. 
Because species abundance data are not well standardized in sPlot, it 
was more robust to use presence–absence data, but this might limit 
comparisons with other studies. It is also possible that the functional 
traits we selected might affect the relationships between FD and PD that 
we observed, especially given that we used only three traits to calcu-
late FD. We note, however, that our results were robust to which traits 
were selected, individually or jointly, for calculating FD, with these not 
affecting the relationship between FD and PD (Supplementary Fig. 7 
and Supplementary Table 1).

Polytomies included in constructing the phylogeny might have 
led us to underestimate PD59, which is why we used SES for PD. Addi-
tionally, we found the same negative pattern when we considered 
FDis and MPD (Supplementary Fig. 1e) as proxy for FD and PD, where 
the latter is known to show different dispersion patterns than PDQ  
(ref. 60). However, when including PD as an explanatory variable in 
future studies, it is important to consider the relationship between 
traits and phylogeny and the potential nonlinearity of trait evolution. 
Additionally, our analysis revealed that none of the potential traits 
exhibited a strong phylogenetic signal in all families considered in 
this study (Supplementary Fig. 7b). Moreover, it appeared that certain 
families tend to possess more conserved traits compared to others. 
This is in line with other findings that evolutionary conservation can 
be associated with specific traits and lineages16, but this is not a com-
mon pattern. Consequently, depending on the sampled community 
and plant species, different patterns may emerge in the relationship 
between FD and PD. While both plant characteristics and evolutionary 
history play crucial roles in community assembly processes, just which 
interacting mechanisms operate on which underlying biotic and abiotic 
factors remains unclear.

Our findings on the relationship of SES.FDQ and SES.PDQ imply that 
ecological communities can exhibit many combinations of FD and PD. 
The decoupling of FD and PD found here plus the overall slightly nega-
tive correlation imply that competitive exclusion may commonly occur 
in plant communities. Our results also highlight the need to conserve 
both FD and PD if we are to safeguard biodiversity. Both FD and PD 
play key roles in community assembly and probably affect how species 
and their interactions within communities will respond to changing 
climates and other drivers of global change. Future research may reveal 
which regional conditions contribute to hotspots of FD and PD and why. 
Understanding the diverse and context-dependent nature of FD and PD 
will shed light on the complex dynamics of ecological communities and 
help us to design schemes to better protect the diversity they support.

Methods
Species community data
The vegetation plot database sPlot29 (www.idiv.de/splot) is a harmo-
nized collection of national- and regional-scale vegetation plot data-
sets. sPlot provides georeferenced information on the presence and 
abundance of all vascular plants co-occurring in a sampling area, that 
is, vegetation plot. The database sPlot v.3.0 holds a total number of 
1,977,637 vegetation plot records from 160 datasets collected between 
1873 and 2019, across six continents and most biomes, including 76,912 
vascular plant species (for v.2.1; ref. 29). The size of a plot varies accord-
ing to the type of vegetation being sampled, from 1 m2 in grasslands 
to 250,000 m2 in forest ecosystems. The vegetation type of a plot was 
classified as forest and non-forest on the basis of tree layer cover and 
the growth form of dominant species29. Vegetation plot records were 
included in the study if the cumulative coverage of species for which 
both trait and phylogenetic information was available accounted for 
at least 50% of the relative vegetation cover in that plot (see below).

In addition, we used sPlotOpen39, which is an environmentally bal-
anced, open-access subset of sPlot, as a benchmark of our results, both 
when testing for the effect of trait selection when calculating FD and for 
the effect of uneven coverage of sPlot data across the Earth’s biomes.

Functional diversity
Plant functional traits were available from the gap-filled TRY v.5.0 
database61–64. We calculated FD as Rao’s quadratic entropy (FDQ) as 
well as FDis for all vegetation plots in sPlot 3.0. The calculation of Rao’s 
quadratic entropy65 is based on a Gower distance matrix calculated for 
the species present in each vegetation plot. FDis was computed from 
the uncorrected species–species distance matrix with the function 
dbFD from the R package FD66,67. We based this calculation on three 
functional traits selected to cover most of the variation within plant 
traits and to represent different axes in the plant economic spectrum, 
that is, belowground and resource strategy of acquisition or conser-
vation (specific root length and specific leaf area) and reproduction 
strategy of quality or quantity (plant height)37,68. To evaluate the influ-
ence of trait selection on the relationship of FD and PD, we calculated 
FDQ on eight functional traits (specific leaf area, specific root length, 
seed mass, plant height, leaf phosphorus and nitrogen content, leaf 
dry matter content, and chromosome number), both taken individu-
ally and jointly. We did this additional analysis based on the sPlotOpen 
subset only, since calculating SES (see below) of FD calculated on 
eight traits in all plots was computationally unfeasible, even using a 
high-performance cluster. Additionally, considering all eight traits for 
the complete dataset would have led to a loss of ~2,000 species (~10% 
of species considered in this study, see below) due to missing data in 
the TRY database.

Functional traits can be conserved in the phylogeny. This was 
tested with two evolutionary models (Blomberg’s K and Pagel’s λ), 
where the latter is known to be more robust against incomplete 
resolved phylogenies or suboptimal branch lengths17,18. K and λ were 
calculated using the function phylosig from the R package picante69. 
In contrast to other tests for phylogenetic signals, both models can be 
used to compare phylogenetic signals across different phylogenies17, 
which needs to be done as a global plant phylogeny is simply too large 
for an appropriate calculation of phylogenetic signals. Therefore, 
the phylogenetic signal for each trait was calculated within each fam-
ily. All eight functional traits showed either no or low phylogenetic 
signals for λ and K (Supplementary Fig. 7b,c). Therefore, we assume 
that there is also no phylogenetic signal across vascular plants for the 
considered traits.

Phylogenetic diversity
For all species present in sPlot, a phylogenetic tree was built using 
the function phylo.maker from the R package V.PhyloMaker70. The 
phylogenetic backbone of the package is the combination of GenBank 
taxa with a backbone provided by the Open Tree of Life v.9.1, for seed 
plants71 and the clade of pteridophytes72. Missing genera were inserted 
to the half point of the family tree. This approach was evaluated by  
ref. 73, who showed that phylogenetic indices based on the calculated 
tree were highly correlated with indices based on the ‘PhytoPhylo 
megaphylogeny’ (updated phylogenetic tree from ref. 72). Species 
that could not be inserted by the phylo.maker were bound to the half of 
the terminal level of a sister species if only one species was available in 
this genus or to the most recent ancestor (MRCA) if the genus included 
more than one species. This additional binding was done with the bind.
node function from the R package phytools74.

The computed phylogenetic tree for sPlot contained 160 fami-
lies with 68,052 of 76,912 species (88%) present within the database. 
Additional 3,802 species were included, with 3,348 being bound 
to the node of the MRCA of already-present sister species and 454 
species to the half of the terminal level on the family node. The final 
phylogenetic tree contained 71,854 species on 32,395 nodes. A total 
of 31,727 species in the phylogeny also had traits in the TRY database. 
Of this subset, 322 species (~1%) were bound to the half of the terminal 
level on the family node and 2,766 (~9%) to the MRCA. Vegetation plot 
records were only included in the analysis if both trait and phyloge-
netic information was available for at least 50% of the total relative 
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cover of the species in that plot. In total, 1,781,836 out of 1,977,637 
plot records remained.

PD was calculated as Rao’s quadratic entropy (PDQ) which amounts 
to the mean nearest taxon distance for presence–absence data. We 
used the function raoD from the R package picante69, which is based 
on the cophenetic distance of all n species in the phylogeny, pruned to 
contain only the species in that plot. To account for the nonlinearity of 
evolutionary histories, we also calculated PDQ on the basis of the square 
root-transformed cophenetic distance75. Additionally we calculated 
MPD, to be compared with FDis, as MPD could show opposite disper-
sion patterns compared with PDQ (ref. 60). Only species with both trait 
information and known phylogeny were used to calculate FD and PD.

Standardized effect size
The species richness of the vegetation plot records ranged from 1 to 
412 species (Supplementary Fig. 8). FD and PD indices are known to 
depend on species richness76–78. Especially for FD, a higher number of 
species in a community is more likely to return higher FD values than are 
communities with fewer species77. We controlled for species richness 
by calculating the SES of each diversity index for every vegetation plot 
record79, fixing the number of species of the plot record and drawing 
species randomly, which is equivalent to shuffling traits across species. 
As species do not equally occur across the globe, we calculated our null 
expectations on the basis of biome-specific species pools accounting 
for the frequency of species in the plot records in each biome. However, 
to see if the patterns also hold true for broader species pools we used 
the following hierarchical approach with four stages of defined species 
pools. For the simplest species pool, we calculated our null expecta-
tions based on all species present in the whole sPlot database, so we 
allowed each species to occur everywhere in the world. For a more geo-
graphically constrained approach we calculated the null expectations 
based on species pools within 16 phytogeographical units38 (stage 2)  
and 10 predefined biomes (stage 3) in response to global climate 
variation29,80, namely: alpine, boreal zone, dry midlatitudes, dry trop-
ics and subtropics, polar and subpolar zone, subtropics with winter 
rain, subtropics with year-round rain, temperate midlatitudes, tropics 
with summer rain and tropics with year-round rain. The fourth and most 
complex null model was based on the species pool within each biome, 
additionally sampling the species weighted by their frequency in the 
plot records within each biome. This means a species that occurred 
more frequently within a biome was randomly drawn more often to 
recalculate the null diversity index, compared to a species occurring 
less often. For each of the four null models, we calculated the mean 
and standard deviation of the distribution of null functional and phy-
logenetic indices across 499 draws. Vegetation plots only containing 
one species, or for which trait and phylogenetic information was not 
available, were excluded from functional or phylogenetic diversity 
calculations. SES were obtained by subtracting the mean index of the 
randomized data from the observed index and dividing the result by 
the standard deviation of the index of the randomized data.

Definition of coupling and decoupling
To measure the percentage of coupled and decoupled communities, a 
confidence interval was defined. We randomly drew one million values 
from a uniform distribution, defined between the minimum and maxi-
mum of observed standardized effect sizes of Rao’s quadratic entropy 
based on functional traits (SES.FDQ) as explanatory variable. We cre-
ated a correlated response variable by adding an error from a normal 
distribution, obtained from the mean and the standard deviation of the 
observed SES.FDQ. We fitted a linear model and extracted the intercept 
and the confidence interval. Communities with an observed value of 
SES.FDQ were considered coupled if the standardized effect sizes of 
Rao’s quadratic entropy based on phylogenetic distance (SES.PDQ) fell 
within this interval. On the basis of this, we defined three categories 
of community patterns; that is, decoupling with higher FD than PD, 

coupling and decoupling with lower FD than PD. This variable was later 
used as an ordered categorical response. Additionally, we calculated 
the log ratio between SES.FDQ and SES.PDQ as log(SES.FDQ/SES.PDQ) 
after scaling the values between 0.001 and 1. Positive and negative 
values define the deviation with higher and lower SES.FDQ than SES.
PDQ, respectively, from a perfect coupled community.

Explanatory variables
Recent climatic conditions (1981–2010) were represented by the 19 
bioclimatic variables from CHELSA v.2.1 (refs. 81,82). A PCA was per-
formed to reduce data dimensionality. In the following analyses, we 
only used the first five PCA axes, collectively accounting for 92.3% of 
the explained variation. We interpreted the axes on the basis of the 
highest loadings of the corresponding climatic variable as follows: 
annual precipitation for PC1; mean daily air temperature of the cold-
est quarter and mean daily minimum air temperature of the coldest 
month for PC2; annual air temperature range for PC3; isothermality 
for PC4; and precipitation seasonality for PC5 (Supplementary Table 2 
and Supplementary Fig. 9).

Mean air temperature variability after the LGM was derived from 
the open-access StableClim v.1.1. dataset, containing estimates from 
21,000 years ago at 2.5° spatial resolution83. Climatic variability rep-
resents rapid global warming during the last deglaciation during the 
Bølling–Allerød transition84 on land and sea. The mean temperature 
variability between 21,000 bp and ad 100 was used as index for the 
climatic variability after the LGM.

All climatic variables were extracted for each plot with the extract 
function from the R package raster85.

Not all vegetation plot records were complete in terms of the 
sampled functional groups. Records from tropical forest plots often 
contained either only tree data or tree and shrub data. As the exclusion 
of those plots would have substantially reduced the spatial coverage 
of our model, we added the nominal predictor variable called ‘plants 
recorded’ to our models to partially control for this source of bias. 
The variable ‘plants recorded’ has four values: all vascular plants, only 
dominant species, all woody plants and only trees. Additionally, we 
used the vegetation type (forest versus non-forest) from the vegetation 
plot database sPlot as predictor variable.

In total, we prepared eight explanatory variables, five related to 
the recent climatic conditions, one to past climatic variability and two 
to plot record characteristics.

Statistical modelling
A GAM was used to model the relationship between FD and PD, either 
expressed as observed Rao’s quadratic entropy (for PD also after a 
square root transformation of the distance matrix) or as standard-
ized effect size of Rao’s quadratic entropy, FDis and MPD. In a GAM, 
the linear response can depend on unknown smooth functions of the 
explanatory variables. To account for the spatial structure of the data, 
the spatial coordinates were included as smooth spherical splines. 
All GAMs included a basis penalty smoother spline on the sphere 
(bs = “sos”), applied to the geographic coordinates of every plot, thus 
taking spatial autocorrelation into account. The explanatory variable 
was included as linear predictors without any smooth function. The 
model was performed using the function gam from the R package 
mgcv86–91, defined as follows:

gam(SES.FDQ ~ SES.PDQ + s(Longitude, Latitude, bs = “sos”), family =  
“gaussian”, method = “REML”)

SES.FDQ is the standardized effect size of Rao’s quadratic entropy 
based on the three selected functional plant traits and SES.PDQ is the 
standardized effect size of Rao’s quadratic entropy based on the phy-
logenetic distances of species present in the community. This step 
was done for the complete dataset and for the sPlotOpen subset, for 
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which we considered the eight traits, both individually and jointly, for 
calculating standardized effect size of FD.

To model the relationship between either FD or PD and the set of 
the eight explanatory variables described above, we used a two-step 
approach. In the first step, we used BRTs to select relevant explanatory 
variables and quantify their relative influence. In the second step, 
we fitted GAMs using functional, PD or their log ratio as response 
variables and the predictors selected in the first step as explanatory 
variables. We did this because fitting a full GAM algorithm with all 
predictors would lead to convergence issues, due to the huge number 
of data points.

BRTs are a machine learning technique used in regression and 
classification having few prior assumptions and being robust against 
overfitting and collinearity. They are known to uncover nonlinear 
relationships as well as interactions among predictors. The parameters 
of the BRT were set as follows: a tree complexity of 5 and a bag fraction 
of 0.5. The learning rate was set to 0.01 with a maximum number of 
20,000 trees. The BRTs were calculated using the gbm.step routine 
from the dismo package92. An explanatory variable was considered 
relevant in the model if its relative influence was >12.5%, which is the 
expected influence of a variable if all the eight predictors had an equal 
relative importance.

The variables that were considered as relevant from the BRTs were 
then used in a second set of GAMs, having as response variable SES.
FDQ, SES.PDQ or their log ratio; and as explanatory variables those that 
turned out to be relevant in the corresponding BRT. Additionally, we 
fitted a GAM with the ordered categorical response of coupling and 
decoupling against the environmental predictors, which were selected 
by the BRTs for FD and PD. As the three categories were not equally 
represented, we sampled 10,000 communities for each category and 
repeated the GAM 100 times, besides running the same model on the 
complete (unbalanced) dataset. The spatial coordinates were included 
as smooth spherical splines in all models as explained above. As not all 
vegetation plot entries in sPlot are classified as forest/non-forest the 
number of observations for the environmental models was 1,497,238. 
The prediction of each explanatory variable was performed using the 
prediction function from the R package marginaleffects93 by predicting 
the explanatory variable based on the sequence between the minimum 
and maximum of the variable in the original data and the GAM model. 
The plotted regressions were obtained by extracting the residuals from 
a GAM without the explanatory variable of interest.

For plotting, functional and phylogenetic variables were averaged 
for each grid cell with a size of 863.8 km2. The spatial smoother within 
the GAM was plotted at the same resolution based on the following 
model (example based on SES.FDQ):

gam(SES.FDQ ~ 1 + s(Longitude, Latitude, bs = “sos”), family =  
“gaussian”, method = “REML”).

All analyses were performed in R v.4.1.3 (ref. 94).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All calculated biodiversity indices necessary to reproduce the results of 
this paper are available at https://doi.org/10.25829/idiv.3574-mpmk21  
(ref. 95). The vegetation plot raw data for sPlotOpen are available at 
https://www.idiv.de/de/splot/splotopen.html. The vegetation plot 
raw data contained in the sPlot database are available upon request 
by submitting a project proposal to the sPlot Steering Committee. 
The proposals should follow the Governance and Data Property Rules 
of the sPlot Working Group available on the sPlot website (www.idiv. 
de/splot). Source data are provided with this paper.

Code availability
All R scripts used for this study can be found in our GitHub repository 
at https://github.com/georghaehn/Haehn-et-al-2024-FD-PD-coupling.
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