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• Canopy openness rather than tree spe
cies determines atmospheric deposition 
into forests.

• Acidifying sulphur and nitrogen depo
sition are ca. 50 % higher in forests than 
in open sites.

• Base cation deposition into forests is ca. 
100 % higher than in open sites.

• Net acid inputs can be modified by for
est management.

• Seasonal variation in total deposition is 
hardly affected by the leaf phenology of 
the species.
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A B S T R A C T

Atmospheric nutrient deposition plays a crucial role in supplying nutrients to forests on poor soils, making it a 
key factor in maintaining nutrient stocks and forest productivity. We compared total atmospheric deposition in 
production forests of European beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii), and Scots pine (Pinus 
sylvestris) by measuring bulk deposition and throughfall while accounting for canopy exchange. We assessed the 
differences in total deposition resulting from forest management practices such as high-thinning, shelterwood 
and clearcutting, on forest structure for both macronutrients and micronutrients in areas exposed to high nutrient 
deposition.

We demonstrate that total nutrient deposition is highest in Douglas fir stands and lowest in Scots pine stands, 
primarily due to differences in dry deposition. The total deposition in forest exceeds national estimates because 
nutrient deposition in forests was higher than expected compared to more open areas. Canopy openness strongly 
influences the total deposition of all nutrients except phosphorus (P). Total deposition increases by a factor of 2.2 
when moving from clearcuts to closed forests, with the extent of the increase varying among tree species and 
nutrients. Additionally, total deposition fluctuates between seasons, revealing clear seasonal patterns in both 
throughfall and canopy exchange.

Our results suggest that the effective capture of potentially growth-limiting nutrients (such as K, Ca, Mg and 
Mn) in closed and thinned production forests significantly contributes to the resilience of forests on nutrient- 
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poor, acidified soils. Our results underscore the importance of considering the effects of harvest intensity on 
canopy openness and forest structure and, to a lesser extent, tree species when calculating nutrient inputs from 
atmospheric deposition.

1. Introduction

Forest productivity depends on nutrient availability in the soil, 
which is mainly determined by nutrient inputs from deposition, 
weathering, and nutrient retention capacity. In European forests, at
mospheric deposition represents a significant source of nutrient input 
into the ecosystem (Van Langenhove et al., 2020), but varies among 
forests depending on geographic region, tree species and stand proper
ties such as tree height and canopy openness (Kowalska et al., 2016; 
Zhang et al., 2022). Nevertheless, the impact of stand properties on 
deposition is neglected in many forest nutrient budget studies 
(Akselsson et al., 2007; Aherne et al., 2012; Phillips and Watmough, 
2012; Iwald et al., 2013), potentially leading to over- or un
derestimations of nutrient input via atmospheric deposition of up to 50 
% (Draaijers et al., 1997b). To reduce uncertainties in forest nutrient 
balance and forest growth, better understanding of the possible influ
ence of tree species and stand properties on nutrient input via atmo
spheric deposition is essential.

Nutrient input via atmospheric deposition consists of nutrients in 
precipitation (wet deposition) and gases and airborne particles depos
ited within tree crowns (dry deposition) (Lovett and Reiners, 1986; 
Balestrini et al., 2007). In forests, atmospheric deposition is often 
measured as throughfall deposition, which includes wet deposition that 
passes through the canopy (Draaijers et al., 1996a; Thimonier, 1998). 
Within the canopy, nutrient concentrations in rainfall change due to 
uptake by or leaching from the canopy (i.e. canopy exchange) and wash- 
off of airborne particles and gasses deposited on tree crowns (i.e. dry 
deposition) (Lovett and Lindberg, 1984; Lovett and Lindberg, 1992; 
Staelens et al., 2008b; Adriaenssens et al., 2012). Additionally, part of 
the intercepted precipitation reaches the forest floor via stemflow, 
which varies significantly among tree species (Silva and Rodríguez, 
2001; Su et al., 2019; Houcai et al., 2021). Total deposition on the forest 
floor thus comprises throughfall and stemflow, corrected for canopy 
exchange. In open areas, it consists only of bulk deposition as stem and 
canopy effects are excluded.

Throughfall deposition in forests is influenced by geographic loca
tion, tree species and forest structure. The geographic location de
termines the dry deposition load, as the dry deposition flux relates to 
distance from the sea - especially for potassium (K), calcium (Ca) and 
magnesium (Mg) (Draaijers et al., 1997b; Balestrini et al., 2007)- and to 
anthropogenic pollution sources, particularly for ammonium (NH4), 
nitrate (NO3) and sulphate (SO4) (Nordén, 1991; Draaijers et al., 1997b). 
Furthermore, dry deposition and, therefore, throughfall deposition are 
influenced by canopy structure and roughness, including tree height, 
canopy architecture, and openness, which relate to basal area and stand 
age (Lovett and Lindberg, 1984; Nordén, 1991; Aboal et al., 2000; 
Erisman and Draaijers, 2003; Herrmann et al., 2006; Klopatek et al., 
2006; De Schrijver et al., 2008; Griffith et al., 2015; Zhang et al., 2022). 
Tree harvest modifies such forest structural properties by creating a 
more open canopy and modifying air flow, and generally results in 
significant reductions in throughfall deposition: for example, harvesting 
15 % of stem volume led to 20 % reduction in throughfall deposition in 
Norway spruce stands in southern Germany (Göttlein et al., 2023), while 
harvesting 40 % and 100 % of stem volume resulted in 45 % to 60 % 
reductions, respectively (Bäumler and Zech, 1997; Göttlein et al., 2023). 
Canopy exchange is often considered to be related to canopy cover and 
nutrient content of foliage, which varies among tree species (Herrmann 
et al., 2006; André et al., 2008; Talkner et al., 2010), but it can also differ 
within species growing on different soil types (Nordén, 1991). These 
complex interactions affecting throughfall should be accounted for in 

order to reduce the current uncertainly in nutrient input estimates in 
forests in local sites and at regional scale.

Nutrient inputs from total deposition fluctuate strongly over the 
growing season (Herrmann et al., 2006; Klopatek et al., 2006; Su et al., 
2019), and even within the period of leaf fall (Garten Jr et al., 1988; 
Adriaenssens et al., 2012b). For deciduous species, nutrient input 
through deposition is greatly reduced in winter compared to the growing 
season. In contrast, for evergreen (coniferous) species, absolute dry 
deposition can increase during winter (André et al., 2008; Adriaenssens 
et al., 2012b). The extent to which seasonality affects total annual 
deposition flux, particularly in relation to canopy openness, remains 
unclear. Increased canopy openness due to different harvest intensities 
may alter seasonal fluctuations in total deposition and therefore modify 
species differences, but such impacts are poorly studied.

Aside from the limited research on how forest canopy openness and 
harvest intensity affect seasonal and annual atmospheric nutrient 
deposition, most studies have focused solely on macronutrients, over
looking micronutrients or trace elements like manganese (Mn), copper 
(Cu), iron (Fe), and zinc (Zn). Although some studies have addressed 
deposition of micronutrients for temperate Asian and North America 
forests (Hou et al., 2005; Landre et al., 2010; Zhang et al., 2021; 
Richardson et al., 2024), such data for European temperate forests 
remain scarce (Ukonmaanaho et al., 2001). Micronutrients are essential 
for tree growth, enzymatic functions, and metabolic processes such as 
photosynthesis and respiration (Broadley et al., 2012). They also influ
ence forest health and productivity, enhancing resilience against dis
eases, pests, and environmental stressors (Weinmann et al., 2023; Lim- 
Hing et al., 2024). Deficiencies in both macro- and micronutrients or 
imbalances can lead to poor growth, reduced vitality (Vogel and Jokela, 
2011; Ivanov et al., 2022), and disruptions in nutrient cycling and 
ecosystem function. Given their role in tree vitality and wood quality, 
assessing the total deposition of both macro- and micronutrients is 
required for understanding the implication of nutrient dynamics for 
forest.

To address these knowledge gaps, we quantified the effects of 
harvest-induced changes in forest canopy openness on seasonal and 
annual atmospheric nutrient deposition, and examined how these effects 
vary by tree species. We focused on three major tree species in the 
Netherlands: one deciduous (European beech, Fagus sylvatica) and two 
evergreen conifers (Douglas fir, Pseudotsuga menziesii and Scots pine, 
Pinus sylvestris). In this region, nutrient deposition mainly originates 
from agriculture (NH3), industry (SO2, NOx), traffic (NOx), and sea salt 
aerosols (Ca, Mg and K) (Vet et al., 2014). We hypothesized that nutrient 
deposition increases after high-thinning due to greater canopy rough
ness, which enhances dry deposition, but decreases at higher harvest 
intensities because of reduced canopy roughness and lower dry depo
sition. We further hypothesized that deposition shows stronger seasonal 
effects in deciduous trees (beech) compared to evergreen conifers. The 
results are discussed in the context of their implications for forest 
nutrient budgets, productivity, and resilience. We measured deposition 
in five experimental forest plots per tree species, each with four subplots 
varying in harvest intensity, over a full year. Total deposition was esti
mated by adjusting for canopy exchange (using Na as a proxy). Nutrients 
analyzed included macronutrients (N, S, Ca, K, Mg, P) and micro
nutrients (Mn, Cu, Fe, Zn), while the harvesting intensities included 
high-thinning, shelterwood, clearcut and a non-harvested control.
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2. Methods

2.1. Study sites and measurements

2.1.1. Study sites and field placement of deposition samplers
Atmospheric deposition was measured in monoculture stands of 

European beech (Fagus sylvatica), Douglas fir (Pseudotsuga menziesii) and 
Scots pine (Pinus sylvestris) across five regions in the Netherlands 
(Fig. S1). All 15 stands are located in a temperate maritime climate, with 
a 20-year mean annual temperature of 10.5 ◦C (range 10.3–10.8 ◦C) and 
mean annual rainfall of 790 mm (range 700–870 mm) (KNMI, 2021). 
Monthly temperature and precipitation data for the regions are provided 
in Table S1. The forest consisted of relatively homogeneous, even-aged, 
single-tree species stands, planted between 50 and 120 years ago. The 
dominant species in each stand accounted for over 80 % of the total 
crown cover and basal area. All plots had been managed according to 
typical silvicultural practices in the Netherlands. Initial thinning fol
lowed a low-thinning regime (removal of suppressed trees), while high- 
thinning (removal of trees competing with future crop trees) was applied 
over the past three decades. The selected stands are located on acidic 
sandy soils, classified as Albic or Entic Podzols, or Dystric Cambisols, 
within texture classes ranging from fine sand to loamy medium sand. 
The soils were characterized by high nitrogen stocks and very low base 
saturation (de Jong et al., 2023; Vos et al., 2023a; Vos et al., 2023b).

In each of the 15 stands, four 0.25 ha subplots were established and 
randomly assigned one of four harvest intensity treatments: high- 
thinning (~20 % of the basal area removed), shelterwood (80 % 
removed), clearcut (100 % removed), or unharvested control (0 % 
removed), resulting in 60 subplots in total. In March 2020, seven 
deposition samplers were installed in each subplot (28 samplers per 
forest stand) using a new method recently tested by Vos et al. (2024). 
The combined collection area of the samplers per plot totaled 2016 cm2, 
exceeding the 2000 cm2 threshold for reliable measurements (Bleeker 
et al., 2003). The samplers consisted of a polyethylene funnel mounted 
to a resin column, connected by a PVC hose to a polypropylene water 
reservoir. The funnel had a surface of 288 cm2 (including half the rim). 
Both the funnel and resin column were chemically resistant and not 
vulnerable to UV-light or low temperature damage. A wire coupling with 
a 0.51 mm mesh was used to connect the resin column to the funnel and 
the hose-tail. Before field installation, the funnel, resin column, and wire 
couplings were cleaned by submerging them into a 0.2 M HCl solution 
for 3 h, followed by a 15-hour immersion in demineralized water, which 
was continuously refreshed. The compartments were then dried in a 
clean room and stored in clean plastic bags.

Sampler placement in the high-thinning, shelterwood and unhar
vested control plots was based on canopy cover, assessed using drone 
photographs and a digital surface model. A stratified random point 
procedure was used to randomly place samplers, dividing each plot into 
seven equal grids, with one sampler assigned to each grid. Samplers 
were positioned either under the canopy or in exposed areas, according 
to the canopy cover of each treatment plot (Table S2). In both the control 
and high-thinning plots, all samplers were treated as throughfall col
lectors. Samplers in the shelterwood plots that were not under the 
canopy, as well as those in the clearcut, were assumed to collect only 
forest gap bulk deposition.

2.1.2. Preparation of resin columns
Throughfall and forest gap bulk deposition were measured using the 

ion exchange resin (IER) method, where funnels are connected to resin 
columns that capture cations and anions from the solution passing 
through them. This method was thoroughly tested and published in Vos 
et al. (2024). A total of 430 resin columns were prepared in the week 
before installing the deposition samplers. Every three months, new 
columns were prepared one week before field replacement, which 
occurred in June, September and December 2020, with columns 
remaining operational to March 2021.

The resin columns, made of chemically resistant HDPE, had a volume 
of 15.7 mL, an inner diameter of 12.4 mm, and a length of 130 mm. After 
drying, the columns were washed three times with demineralized water 
before being filled with IER (Amberlite IRN 150, H+ and OH– forms). 
The IER was pre-washed with 8 L of demineralized water to remove 
particles and odor, and liquids were drained using a vacuum pump. Each 
resin column was filled with 10 g of resin resulting in a total exchange 
capacity of 0.011 and 0.009 mol l− 1 for the cation and anion bed 
respectively. Tests of the IER’s adsorption capacity and recovery effi
ciency (Amberlite IRN 150 H+ and OH– form), as described in Vos et al. 
(2024), showed 100 % adsorption for Ca, Cu, Fe, K, Mg, Mn, P, S, Zn and 
NO3 and >96 % for P and Na. Elemental recovery was nearly 100 % for 
NH4 and NO3 using KCl, and high (83–93 %) recovery rates for Ca, Cu, 
Fe, K, Mg, Mn and S were obtained using HCl as an extractant.

2.1.3. Deposition measurements
Atmospheric nutrient inputs from forest gap bulk deposition (in a 

small forest clearing, not under a canopy) and throughfall were calcu
lated by multiplying the water fluxes outside and below the canopy with 
the corresponding nutrient concentrations. Water fluxes and nutrient 
concentrations in throughfall were measured in high-thinning, shelter
wood and the control, while forest gap bulk deposition was measured in 
the clearcut and shelterwood treatments. Deposition measurements 
cover the period from March 21, 2020, to March 21, 2021.

Rainfall volume (mL) per funnel was recorded monthly, and 
contamination (e.g., bird feces, vandalism) was noted. Funnels were 
positioned horizontally to prevent capture capacity reduction, and 
contaminated funnels were detached, rinsed with demineralized water, 
and reattached to resin columns. Contaminated columns were excluded 
from analysis. Resin columns were replaced every three months to 
capture the seasonal deposition. Additionally, blank resin columns were 
installed in sun-exposed and shaded locations (under the canopy) to 
correct for internal release of nutrients, with these blanks set up at one 
forest site. Upon collection, all resin columns that had been in the field 
for three months were sealed and stored in dark boxes at 4 ◦C until 
further extraction.

Extraction of the resin followed the procedure in Vos et al. (2024). 
Resin columns contaminated with bird feces were excluded. Resin from 
field columns and lab blanks (for lab contamination correction), was 
dried to a constant weight at 28 ◦C, and the weight (in g) per column was 
recorded. Subsamples were taken, their weight (in g) recorded, and used 
for 2 M KCl extraction and analyzed for NH4, NO3 and NO2, total N and 
PO4 concentrations using a Segmented Flow Analyzer (SFA type 4000, 
Skalar Analytical B.V., the Netherlands). Additionally, 3.5 M HCl ex
tractions were analyzed for S, Ca, K, Mg, P, Mn, Cu, Fe and Zn con
centration using ICP-AES (Thermo-Scientific iCAP 6500 DUO, USA).

2.1.4. Corrections for sample contamination
Nutrient input for each field column was calculated by multiplying 

the extracted concentrations (mg L− 1) of the KCl and HCl extraction 
from each resin subsample by the total resin weight in the corresponding 
column. Background contamination was corrected by subtracting con
centrations from field and lab blanks. For samplers in forest gaps, the 
sunlight-exposed field blank was used, for those under the canopy, the 
shaded blank was applied. Corrected concentrations per funnel were 
scaled to kg ha− 1 based on the funnel surface area. Each sample was 
checked for contamination, and values outside the 95 % confidence 
interval were removed. To do so, the data were normalized, and confi
dence intervals were calculated as the mean ± 2 standard deviations for 
each nutrient per treatment. In total, 23 % of the dataset was excluded 
due to bird feces contamination, and an additional 6 % was removed 
based on the statistical check. This left 1200 valid observations over the 
full year of sampling. Missing values were imputed using the R package 
MICE (multiple interpolations) based on Monte-Carlo simulations 
(Buuren and Groothuis-Oudshoorn, 2011).
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2.2. Calculation of total nutrient deposition

2.2.1. Total deposition calculation
To calculate total deposition (kg ha− 1), corrections were applied to 

account for canopy exchange for samplers beneath the forest canopy. 
The total deposition of nutrients (Xtd, kg ha− 1) – including NH4, NO3, Ca, 
K, Mg, Mn, Cu, Fe and Zn - was calculated as the sum of measured 
throughfall (Xtf, kg ha− 1) and calculated canopy exchange (Xce, kg ha− 1), 
according to: 

Xtd = Xtf ±Xce (1) 

2.2.2. Canopy exchange of base cations and micronutrients
Canopy exchange fluxes were calculated for nitrogen (NH4, NO3), 

base cations (Ca, K, Mg), and micronutrients (Mn, Cu, Fe, Zn). Canopy 
exchange for SO4

2− and PO4
2− was assumed to be negligible, meaning 

total deposition was estimated as the throughfall. The estimation of 
canopy exchange for base cations and micronutrients relied on two key 
assumptions: (i) Na does not interact with the forest canopy (inert 
tracer) and (ii) the ratio of total deposition to bulk deposition is similar 
for Ca, K, Mg, Mn, Cu, Fe, Zn and Na. However, this second assumption 
is not always valid in coastal areas (Baloutes. Greece, pers. comm.). 
Canopy exchange of base cations and micronutrients was calculated by 
multiplying their bulk deposition by the ratio of Na input from 
throughfall, to Na input in forest gap bulk deposition, following Ulrich 
(1983): 

Xce = Xtf −

(
Natf

Nabd
*Xbd

)

(2) 

where Xce is the canopy exchange of base cations (Ca, K, Mg) and 
micronutrients (Mn, Fe, Zn, Cu) in kg ha− 1 season− 1 and Xtf, and Xbd 
represent throughfall deposition and forest gap bulk deposition, 
respectively, in kg ha− 1 season− 1. This approach slightly extends the 
canopy budget model developed by Ulrich (1983) and further refined by 
multiple studies (Bredemeier, 1988; Draaijers and Erisman, 1995; De 
Vries et al., 1999; De Vries et al., 2001) to include canopy exchange of 
Mn, Cu, Fe and Zn (Rea et al., 2001; Gandois et al., 2010).

2.2.3. Canopy exchange of NH4 and NO3
Canopy exchange of NH4 was calculated as a fraction of the base 

cation canopy exchange, based on NH4 and H+ interacting with the 
forest canopy through exchange with base cations (Roelofs et al., 1985; 
Draaijers et al., 1997a). We assumed the total canopy uptake of H+ (Hce) 
and NH4

+ (NH4ce) equals the total canopy leaching of base cations (BCce), 
adjusted for weak acid leaching (WAce) (Van der Maas et al., 1991; 
Draaijers and Erisman, 1995): 

NH4ce = BCce − WAce − Hce (3) 

There are three methods to estimate weak acid (WA) concentration: 
(i) summing HCO3 (from pH and assumed atmospheric CO2 pressure) 
and RCOO− (from DOC), (ii) using measured alkalinity adjusted for pH, 
or (iii) calculating the difference between the concentrations of cations 
(H+ and NH4

+, Ca2+, K+, Mg2+ and Na+) and strong acid anions (SO4
2− , 

NO3
− and Cl− ) (De Vries et al., 1999; De Vries et al., 2001). However, 

since pH, DOC and alkalinity could not be measured using IER and Cl−

was excluded from the analysis, we assumed that NH4 exchange is 1/3 of 
base cation leaching. This assumption is based on De Vries et al. (1999)
and De Vries et al. (2001) who reported that H+ uptake, NH4

+ uptake, 
and WA leaching are all roughly 1/3 of base cation canopy leaching. 
Finally, NO3 canopy exchange was calculated as total N canopy ex
change minus NH4 uptake (NH4ce). The total N canopy exchange was 
calculated by accounting for the contribution of NH4 and NO3 to total N 
input by throughfall, according to (De Vries et al., 2001; Adriaenssens 
et al., 2011): 

NO3ce =

(

NH4ce*
(

NH4tf *xNH4 + NO3tf

NH4tf *xNH4

))

− NH4ce (4) 

In which xNH4 is a correction factor, assumed to be 5, indicating that 
canopy uptake of NH4 is much higher than that of NO3.

2.2.4. Bulk deposition
The forest gap bulk deposition measured in this study under

estimated true bulk deposition due to lower precipitation in the forest 
clearings compared to open fields (Table S3). To estimate true bulk 
deposition at each site, we adjusted the forest gap bulk deposition using 
rainfall data from nearby weather stations, assuming nutrient concen
trations in both were equal.

2.3. Statistical analysis

All statistical analysis were performed in R version 4.1.0. Two-way 
ANOVA tests were used to compare total seasonal deposition and net 
acid input across harvest intensities and species. These analyses used 
linear mixed-effect models from the R package nlme, with regions as a 
random structure (Pinheiro et al., 2017). Seasonality was assessed using 
one-way ANOVAs for each element, treatment, and species. Skewed data 
were log-transformed to meet normality and homogeneity assumptions. 
When necessary, VarComb and VarIdent variance structures were 
applied to account for different variances between factor levels (Zuur 
et al., 2009). Tukey’s post-hoc (HSD) test was used, based on the linear 
mixed-effects models via the emmeans package, to test for differences 
among seasons, harvest intensities and species (Lenth et al., 2019).

To assess whether harvest intensity and tree species significantly 
explained variations in seasonal and total deposition, throughfall, and 
canopy exchange of different nutrients, we performed a partial Redun
dancy Analysis (p-RDA). This analysis quantified the variance explained 
by harvest intensity, seasons, and species. A fourth p-RDA was used to 
identify the main factors driving total annual deposition. Prior to p-RDA, 
all data were log-transformed to meet linearity assumptions, and the 
analysis was conducted using the vegan package (Oksanen et al., 2022).

3. Results

3.1. Annual water fluxes and stand deposition

Average gap bulk precipitation from April 2020 to March 2021 in 
clearcut and shelterwood treatments for beech, Douglas fir, and Scots 
pine was 580 mm (±29 s.e.), 580 mm (±40 s.e.) and 610 mm (±36 s.e.) 
respectively. Precipitation data from 21 nearby weather stations aver
aged 736 mm (±17 s.e.) for the same period (Fig. S1, Table S3), which 
was ≥100 mm higher than the gap bulk precipitation indicating edge 
effects. Annual interception in unharvested stands, calculated as the 
difference between throughfall and precipitation from nearby weather 
stations, was highest in Douglas fir stands (310 mm ± 17 s.e.) followed 
by Scots pine (260 mm ± 14 s.e.) and beech (270 mm ± 20 s.e.). 
Throughfall and interception estimates varied across stands, season and 
harvest treatments (Table S3).

The nutrient content of throughfall deposition was highest in 
Douglas fir (except for P), intermediate in Scots pine, and lowest in 
beech (Table 1). Annual canopy exchange – defined as nutrient uptake 
or release by foliage - was negative for NH4, NO3, Ca, Cu, Fe, and Zn, 
indicating net uptake of these nutrients (Table 1). In contrast, K, Mg 
(except in Scots pine), and Mn leached from the canopy. Canopy 
leaching of K accounted for approximately 65 % of total deposition in 
both beech and Scots pine and around 50 % in Douglas fir. For Mn, 
canopy leaching comprised 71 % of throughfall in beech, and 48 % and 
68 % for Douglas fir and Scots pine, respectively (Table 1). Total 
deposition of N compounds ranged from ca 23 kg ha− 1 yr− 1 in beech to 
about 27 kg ha− 1 yr− 1 in Scots pine and 36 kg ha− 1 yr− 1 in Douglas fir, 
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representing 1.3 to 2.5 times higher values compared to bulk deposition 
(Table 1). The highest ratios of total deposition to bulk deposition were 
found for base cations, S and Mn: base cations exhibited deposition 
levels 2 to 3 times greater than bulk deposition, with a threefold increase 
observed for K in Douglas fir.

3.2. Impacts of tree species and harvest intensity on total annual 
deposition

Total annual deposition ranged from 0.02 kg ha− 1 yr− 1 (Cu) to 36 kg 
ha− 1 yr− 1 (N) across nutrients (Fig. 1). Deposition levels were higher in 

Table 1 
The means and standard errors of the annual throughfall, canopy exchange, total deposition and bulk deposition (clearcut bulk deposition corrected for the open field 
rainfall) (all in kg ha− 1 yr− 1) and the ratio total deposition/bulk deposition of macro (NH4, NO3, S, Ca, K, Mg and P) and micronutrients (Zn, Mn, Fe and Cu) in control 
stands (no harvest) of beech (BE), Douglas fir (DG) and Scots pine (SP). In addition, data are shown for the tracer Na. Canopy exchange of S and P is assumed to be 
negligible (Section 2.2.3). Data of the high-thinning and shelterwood are given in Tables S4 and S5.

NH4 NO3 S Ca K Mg P Mn Cu Fe Zn Na

Throughfall BE 13 ±
1.0

4.2 ±
0.66

5.5 ±
0.36

8.4 ±
1.1

28 ±
1.4

2.6 ±
0.22

0.89 ±
0.083

0.24 ±
0.047

0.016 ±
0.0018

0.13 ±
0.0075

0.11 ±
0.024

16 ±
1.6

DG 24 ±
3.3

9.0 ± 1.4 12 ±
3.1

9.9 ±
1.6

29 ±
0.92

4.7 ±
0.54

0.57 ±
0.12

0.31 ±
0.048

0.021 ±
0.0035

0.17 ±
0.027

0.62 ±
0.47

31 ±
4.9

SP 18 ±
0.80

5.6 ±
0.15

6.1 ±
1.1

7.1 ±
0.7

19 ±
1.6

2.5 ±
0.13

0.49 ±
0.062

0.17 ±
0.018

0.014 ±
0.0021

0.13 ±
0.01

0.3 ± 0.18 19 ±
1.7

Canopy 
exchange

BE − 5.6 ±
0.29

− 0.40 ±
0.028

− 3.0 ±
1.1

20 ±
1.3

0.15 ±
0.088

0.12 ±
0.044

− 0.0074 ±
0.0017

− 0.10 ±
0.012

− 0.072 ±
0.025

DG − 3.2 ±
1.1

− 0.17 ±
0.10

− 4.0 ±
1.5

14 ±
2.2

0.015 ±
0.28

0.067 ±
0.027

− 0.015 ±
0.0042

− 0.18 ±
0.043

− 0.31 ±
0.25

SP − 3.0 ±
0.75

− 0.17 ±
0.038

− 3.7 ±
0.63

13 ±
1.8

− 0.29 ±
0.067

0.050 ±
0.013

− 0.0091 ±
0.0022

− 0.15 ±
0.035

− 0.19 ±
0.15

Total 
deposition

BE 18 ±
0.90

4.6 ±
0.66

5.5 ±
0.36

11 ±
1.2

8.8 ±
1.0

2.5 ±
0.21

0.89 ±
0.083

0.11 ±
0.0089

0.023 ±
0.0031

0.23 ±
0.015

0.18 ±
0.041

16 ±
1.6

DG 27 ±
2.8

9.2 ± 1.3 12 ±
3.1

14 ±
2.6

15 ±
2.8

4.7 ±
0.78

0.57 ±
0.12

0.24 ±
0.043

0.036 ±
0.0074

0.35 ±
0.068

0.92 ±
0.72

31 ±
4.9

SP 21 ±
1.5

5.8 ±
0.18

6.1 ±
1.1

11 ±
0.97

6.5 ±
0.27

2.8 ±
0.14

0.49 ±
0.062

0.12 ±
0.012

0.023 ±
0.0041

0.28 ±
0.041

0.49 ±
0.33

19 ±
1.7

Bulk 
deposition

BE 11 ±
1.7

3.2 ±
0.27

4.2 ±
0.27

7.8 ±
0.68

4.2 ±
0.38

1.8 ±
0.17

1.0 ±
0.18

0.070 ±
0.0067

0.016 ±
0.0016

0.16 ±
0.0091

0.099 ±
0.014

11 ±
1.1

DG 8.9 ±
0.37

3.2 ±
0.15

5.0 ±
0.53

6.1 ±
0.69

5.1 ±
0.94

2.0 ±
0.15

0.59 ±
0.061

0.094 ±
0.011

0.015 ±
0.0020

0.17 ±
0.026

0.39 ±
0.30

13 ±
1.4

SP 11 ±
0.92

3.6 ±
0.15

4.4 ±
0.44

6.5 ±
0.63

3.3 ±
0.34

1.7 ±
0.20

0.68 ±
0.12

0.061 ±
0.0036

0.015 ±
0.0018

0.18 ±
0.018

0.24 ±
0.17

12 ±
1.5

Ratio BE 1.6 1.4 1.3 1.4 2.1 1.4 0.89 1.6 1.4 1.4 1.8 1.5
DG 3.0 2.9 2.4 2.3 2.9 2.4 1.0 2.6 2.4 2.1 2.4 2.4
SP 1.9 1.6 1.4 1.7 2.0 1.6 0.72 2.0 1.5 1.6 2.0 1.6

Fig. 1. Total annual nutrient deposition (kg ha− 1 yr− 1) in the control (CO) and in the harvest intensities high-thinning (HT), shelterwood (SW) and clearcut (CC) for 
beech (BE), Douglas fir (DG) and Scots pine (SP). Different capital letters denote significant differences among species, asterisks indicate significant differences 
among different harvest intensities (nested-ANOVA, n = 5, P < 0.05). The tracer Na is given in Fig. S3. Differences among harvest intensities are given in Table S6.
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Douglas fir stands than in beech and Scots pine, with only marginal 
differences between the latter two (Fig. 1, Table S6). The higher total 
annual deposition in closed Douglas fir stands is attributed to tree 
height, while in closed beech stands, it relates to stand age and canopy 
cover, and in closed Scots pine stands, to LAI and stand density (partial- 
RDA, Var = 6.0, F = 3.3, p = 0.023, R2-adj = 0.64, Fig. S2).

Harvest intensity significantly influenced total annual deposition 
(Fig. 1, Table S6): for most nutrients (P being an exception), deposition 
decreased with harvest intensity and stand openness, from control forest 
to clearcut. Weak but consistent differences were present between 
control and high-thinning, while differences were more pronounced 
among high-thinning, shelterwood and clearcut (Table S6). Although 
the qualitative trends were similar across species, they differed signifi
cantly in treatment effect sizes for NH4, NO3, K, S, Mg, Mn, and Cu, but 
not for Ca, P, Zn and Fe. Notable differences between shelterwood and 
clearcut were observed in Douglas fir (particularly for NO3, K, S, Mg, Mn 
and Cu), while such differences were weaker for Scots pine and nearly 
absent for beech (Fig. 1, Table S6).

The species-specific capacity to intercept deposition led to varying 
inputs of acids (sum of NH4, NO3 and S) and base cations. Acid input 
ranged from 2.3 keq ha− 1 yr− 1 in Scots pine to 3.3 keq ha− 1 yr− 1 in 
Douglas fir, while base cation input varied from 0.93 keq ha− 1 yr− 1 in 
Scots pine to 1.5 keq ha− 1 yr− 1 in Douglas fir. Both acid and base cation 
inputs decreased from control to clearcut (Fig. 2). The net acid input, 
calculated as acid input minus base cations, significantly declined from 
control to shelterwood and stabilized or slightly increased toward the 
clearcut. The strongest decline in net acid input occurred in Douglas fir, 
while in Scots pine showed only a slight decline (Fig. 2, Table S7).

3.3. Impacts of tree species and harvest intensity on total seasonal 
deposition

Significant variations in total deposition, throughfall and canopy 
exchange were observed across seasons, with differences among nutri
ents, species and harvest intensities. The percentage of variation in total 
deposition explained by species, harvest intensity and season was 61 % 
(partial-RDA, Var = 6.6, F = 48, p = 0.001, R2-adj = 0.70, Fig. S4). 
Harvest intensity and season were the primary drivers (28 % and 25 %, 
respectively), while species contributed a smaller proportion (10 %). 
The variation in throughfall (control: shelterwood) explained by species, 
harvest intensity, season, precipitation and interception was 60 % 
(partial-RDA, Var = 6.2, F = 28, p = 0.001, R2-adj = 0.51, Fig. S6A). 
Season was the primary driver (28 %), followed by species (17 %) and 
harvest intensity (13 %) while precipitation and interception together 
explained only 2.2 %. Canopy exchange of N (NH4, NO3), base cations 
(Ca, Mg, K) and micronutrients (Mn, Cu, Fe, Zn) varied by season and 
was influenced by harvest intensity and tree species, with minimal 
impact from precipitation and interception (35 % of variation explained, 
p-RDA, Var = 3.0, F = 9.8, p = 0.001, R2-adj = 0.30, Fig. S6B). Harvest 

intensity (control: shelterwood) accounted for 16 % of the variation, 
season for 1 %, and tree species for 4.6 %, while the combined water 
fluxes (precipitation and interception) contributed only 1.5 %.

Seasonal variations in total deposition were primarily related to 
large differences in total deposition between spring and winter, and to a 
lesser extent, between summer and winter, with strong association with 
only a few nutrients: a positive association with P and negative associ
ations with S and Na. Total P deposition was higher in spring and 
summer compared to autumn and winter (Fig. S5), with no significant 
effect from harvest intensity and only a minor influence from tree spe
cies (Table S6). The total deposition of S and Na increased from spring to 
winter, with values decreasing from control to clearcut (Fig. S5, 
Table S6). Seasonal variations in atmospheric deposition among species 
were subtle, with slightly greater seasonal differences in total deposition 
observed in control and thinned Douglas fir stands compared to Scots 
pine (Table S8). Overall, the analysis shows that harvest intensity and 
season have relatively independent effects on deposition, while species 
effects are minor in comparison to these harvest intensity and seasonal 
influences.

4. Discussion

4.1. Annual total nutrient inputs in Dutch forests: implications for soil 
acidification

The total nutrient input in the investigated forest stands is assessed 
by a combination of measured throughfall and calculated canopy ex
change while assuming no nutrient input through stemflow. Rough 
stemflow estimates for our study sites, based on rainfall partitioning 
depending on rainfall intensity for beech (Staelens et al., 2008a) and 
fixed rainfall partitioning to stemflow, i.e. 1 % and 3 % of rainfall, for 
Douglas fir and Scots pine (Spittlehouse, 1998; Spencer and van Meer
veld, 2016) show a general pattern of a contribution of 11 % in unhar
vested beech and low contribution in Douglas fir and Scots pine stands 
(Tables 1, S9). This result is in line with literature, indicating that 
stemflow, however, can be a significant nutrient input in beech stands 
(Staelens et al., 2007) while it is negligible in Douglas fir and Scots pine 
stands (Ranger et al., 2002; Cayuela et al., 2018). Because of the high 
uncertainty of these stemflow estimates, we excluded them from our 
total deposition estimates. This may lead to some underestimation for 
total deposition in beech but did not affect our major findings for harvest 
intensity effects on deposition.

The total deposition, thus without stemflow, in closed stands fell 
within the range commonly observed in European forests (Van Ek and 
Draaijers, 1994; Herrmann et al., 2006; Kopáček et al., 2011; 
Adriaenssens et al., 2012a; Zhang et al., 2020) but differed considerably 
from the values used in current nutrient balance models for Dutch for
ests (de Vries et al., 2021). Comparing our results to national deposition 
maps (RIVM, 2020, 2021), which are largely based on short vegetation 

Fig. 2. The total acid input by atmospheric deposition (sum of NH4, NO3 and S), the base cation input (sum of Ca, K and Mg) and the total net acid input by at
mospheric deposition (sum of NH4, NO3 and S minus the sum of the base cations) in keq ha− 1 yr− 1 for the unharvested control (CO), high-thinning (HT), shelterwood 
(SW) and clearcut (CC) harvest intensity. Two-way Anova results of the net acid input are given in Table S7.
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measurements (Hoogerbrugge et al., 2022), showed that average NH4 
and S deposition in forests is 0–43 % and 22–38 % higher, respectively, 
than national estimates across species. Average NOy deposition was 23 
% to 40 % lower (Fig. 1, Table S10) (RIVM, 2020, 2021). Base cation and 
P inputs were also much higher than expected (Van Jaarsveld et al., 
2010; de Vries et al., 2021), with Ca deposition 100–160 % higher, K 
250–750 % higher, and Mg 50–190 % higher (Fig. 1, Table S10). This 
indicates that current deposition rates in forests are higher than 
assumed.

Elevated acid deposition (N + S) raises concerns, particularly 
regarding the potential decrease of base cations (Ca, K, and Mg) in 
forests on sandy soils, where N and historical S deposition induced soil 
acidification, intensifying leaching processes (Leeters et al., 2007; de 
Vries et al., 2021). The ratio of N and S to Ca, Mg, and K in total 
deposition is an indicator of the acidification potential (de Vries et al., 
2003). Our results show a total acid input of 2.3–3.3 keq ha− 1 yr− 1 and a 
base cation input of 0.93–1.5 keq ha− 1 yr− 1 (Fig. 2). Despite high base 
cation inputs, acid input remains more than double, suggesting potential 
cations loss through leaching especially in N-saturated systems or after 
shelterwood or clearcut harvesting (Vos, 2024). However, the net acidic 
input (N + S – base cations, Fig. 2) is lower than expected based on 
national data (Table S10), indicating that the potential for cations loss 
might be lower than initially thought (Van Jaarsveld et al., 2010; RIVM, 
2020, 2021).

The study’s total deposition values, which partly exceed the national 
average, may slightly underestimate actual values. First, stemflow was 
not measured but may contribute to approximately 11 % of the total 
deposition for beech but is considered negligible (1–2 %) for Douglas fir 
and Scots pine, as discussed above. Second, dissolved organic N, dis
solved organic P, and particulates were not measured because they are 
uncharged and thus not captured by the resin. This omission likely leads 
to an underestimation of N and P deposition across all treatments, by up 
to 20 % for N and 12 % for P (Ham and Tamiya, 2007; Mahowald et al., 
2008; Sleutel et al., 2009).

4.2. Harvest-related reduction of atmospheric deposition is driven by a 
reduction in dry deposition

Canopy openness, resulting from varying harvest intensities, has a 
larger impact on total nutrient deposition than tree species or season 
(Fig. S4). Total annual deposition decreased with increasing harvest 
intensity for all nutrients except P. Reductions were minor from control 
forest to high-thinning, larger from high-thinning to shelterwood, and 
intermediate from shelterwood to clearcut (Fig. 1, Table S6). These re
sults partially align with other studies (Bäumler and Zech, 1997; Aboal 
et al., 2000; Gielis et al., 2009; Göttlein et al., 2023). However, the ex
pected increase in dry deposition from a rougher canopy in high thin
ning was absent. Although thinning increased precipitation throughfall 
(Table S3), it reduced capture of dry deposition, lowering total deposi
tion compared to the control, as noted in other studies (Stogsdill Jr et al., 
1989; del Campo et al., 2022). This reduction is likely due to a smaller 
aboveground surface area, as dense canopies with high LAI capture more 
dry deposition (Aboal et al., 2000; Yazbeck et al., 2021). Thus, the tree 
canopy itself, rather than the irregularities in the forest canopy, de
termines the capture efficiency of dry deposition. Whether structurally 
complex stands, such as old-growth forests (Parker et al., 2004), could 
capture nutrients more effectively remains an open question, which is 
relevant to forest policies promoting closer-to-nature management and 
stricter protection of natural forests (Larsen et al., 2022).

A sharper decline in total deposition occurred after shelterwood 
harvesting and clearcutting, corresponding with greater canopy loss 
(Fig. 1). Few studies have examined shelterwood harvest effects on 
deposition. Clearcutting (100 % basal area reduction) mirrors the dif
ference between bulk deposition and deposition in closed forests (e.g., 
Weis et al. (2006)). However, our study’s clearcut data isn’t directly 
comparable to bulk deposition, as nearby weather stations recorded ca. 

20 % more precipitation, suggesting edge effects in the small clearcut 
(circa 50 × 50 m) in our study may have led to an underestimation (Neal 
et al., 1993; Dam, 2001; den Ouden and Mohren, 2020). These edge 
effects might have also increased throughfall deposition in adjacent 
plots (De Ridder et al., 2004; Wuyts et al., 2008; Wuyts et al., 2009). As 
modern forestry increasingly favors smaller clearings, data from small 
clearings should guide forest management, as total deposition in small 
clearcuts may consistently be lower than bulk deposition in large open 
areas.

The reduction in total deposition following shelterwood and clear
cutting can be attributed to decreased dry deposition interception due to 
significant canopy cover loss (Yazbeck et al., 2021). This decrease is not 
proportional to canopy cover, as wet deposition generally remains un
affected, except at forest edges (Dam, 2001; Erisman and Draaijers, 
2003). The impact of harvest intensity on dry deposition varies 
regionally. For example, heavy thinning in Picea abies in southern Ger
many reduced total deposition by ±45 % (Bäumler and Zech, 1997), 
while clearcuts in eastern Austria reduced deposition by ±40 % (Berger 
et al., 2009). In our study, dry deposition played a key role, given the 
sharp decline in total deposition from closed forest to clearcut (Fig. 1). 
Similar reductions have been observed in regions, like the Netherlands, 
France and Canada (Draaijers et al., 1992; Marques and Ranger, 1997; 
Edgerton et al., 2020), while Austria and Germany showed smaller and 
larger reductions, respectively (Rothe et al., 2002; Herrmann et al., 
2006; Berger et al., 2009). These findings underscore the geographic 
variability in how harvest intensity affects deposition, highlighting the 
importance of considering local factors before generalizing results.

4.3. Harvest intensity effects differs among nutrients

Harvest intensity effects varied strongly across nutrients. The lowest 
impact was observed for P, NO3, and NH4, while larger reductions were 
found for K, Mn, and Zn (Table S6). Nutrients primarily deposited via 
dry deposition showed the greatest declines after tree harvest. Conse
quently, impacts of harvest are more pronounced for Na, Cl, Ca, K Mg, 
and S in coastal areas (Ten Harkel, 1997; Tørseth et al., 1999; Hellsten 
et al., 2007) and for N, P, S, Mn, Cu, and Zn in regions near pollution 
sources (Semb et al., 1995; Tørseth et al., 1999; Balestrini et al., 2007; 
Hellsten et al., 2007; Navrátil et al., 2007; Hsu et al., 2010; Mamun et al., 
2020), or other specific sources such as Sahara dust (rich in Ca and Fe) in 
southern Europe (Semb et al., 1995; Hellsten et al., 2007; Bergas-Massó 
et al., 2023). The high proportion of dry K deposition in this study may 
come from multiple sources, including marine (Hellsten et al., 2007; 
Morselli et al., 2008), agriculture, traffic and wind-blown dust (Draaijers 
et al., 1996b; Tørseth et al., 1999). The elevated Zn deposition could be 
linked to traffic (Gunawardena et al., 2013) and the presence of a former 
Zinc factory in the southern Netherlands, causing notable site differ
ences (Fig. 1).

The reductions in nutrient deposition in this study are consistent 
with the literature, except for the 50 % higher K throughfall and 50 % 
lower Mg throughfall beneath Scots pine and Douglas fir compared to 
similar stands in 1990 (Van Ek and Draaijers, 1994). These differences 
could be due to Mg uptake in Scots pine (Table 1, Tables S4–S5) and the 
low K content in Douglas fir needles (Vos et al., 2023b), which reduces 
canopy leaching (Nordén, 1991).

4.4. Species-driven variation in deposition decrease from closed to open 
forests

Total deposition varies slightly among species due to their capacity 
to intercept dry deposition. Douglas fir stands show higher deposition 
than beech and Scots pine (Fig. 1), consistent with other studies (Van Ek 
and Draaijers, 1994; Rothe et al., 2002; Zhang et al., 2022). This is likely 
because Douglas firs are generally taller (Fig. S2) (Lovett and Reiners, 
1986; Erisman and Draaijers, 2003). Surprisingly, factors driving the dry 
deposition such as canopy cover, LAI and tree height (Lovett and 
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Reiners, 1986; Beier and Gundersen, 1989; Aboal et al., 2000; Erisman 
and Draaijers, 2003; Staelens et al., 2006; Yazbeck et al., 2021) explain 
only 13 % of the total deposition variation in unharvested control stands 
(Fig. S2). This lack of a clear tree height effect may stem from using 
absolute tree height instead of relative height to surrounding stands.

In this study, species differences are primarily driven by stem density 
(explaining 43 % of the variation), with Scots pine having the highest 
and Douglas fir the lowest density (Fig. S2). However, negative effect of 
stand density on dry deposition appears to be indirect. Douglas fir 
stands, despite lower density, capture more dry deposition because they 
are taller and have a higher LAI than Scots pine, with beech falling in 
between. These species effects diminish with increasing harvest in
tensity, with Douglas fir showing greater reductions in dry deposition 
than beech or Scots pine as stands transition from closed to open (Fig. 1, 
Table S6). Similar patterns have been observed in other studies, such as 
greater throughfall reductions in harvested Picea abies compared to 
mixed oak stands (Bäumler and Zech, 1997; Wheeler et al., 2000). As 
harvest intensity increases, species differences in dry deposition lessen.

4.5. Harvest intensity and tree species in relation to acidifying deposition

Harvest intensity could potentially be a management tool to ease the 
effects of acidifying deposition, as canopy openness (controlled by 
harvest) affects the deposition of acidifying nutrients (N and S) and base 
cations differently (Ca, Mg and K) (Fig. 2). Acidic inputs from atmo
spheric deposition are highest under closed conifer stands due to their 
enhanced ability to intercept dry deposition by capturing particles and 
water via their needles (De Schrijver et al., 2007; Pierret et al., 2019). 
However, we found no evidence of higher acidic inputs under conifers 
compared to broadleaved species, contrary to De Schrijver et al. (2007)
and Rothe et al. (2002). Nevertheless, when corrected for base cations, 
conifers still receive higher net acidic inputs (Fig. 2), consistent with 
reports of beech having a higher neutralizing capacity and the tendency 
of conifers to acidify precipitation (Kowalska et al., 2016; Pierret et al., 
2019). These findings reaffirm the higher risk of soil acidification in 
coniferous versus broadleaved stands (De Schrijver et al., 2012). As 
forests transition from closed to more open stands, we found strong 
declines in net acidic input, especially toward shelterwood systems, with 
a slight decrease from shelterwood to clearcuts (Fig. 2). The decline was 
most pronounced in Douglas fir shelterwood, followed by high-thinning 
and shelterwood in beech, where net acidic input dropped by ±50 %. 
These results suggest that single-tree selective harvesting (comparable 
to our thinning treatment), particularly in beech and Douglas fir, could 
be an effective harvesting strategy to slow down soil acidification 
considering that the impacts of single-tree harvest by thinning on base 
cation removal and base cation leaching rates is limited (Vos, 2024). 
Unlike thinning, shelterwood and clearcut systems accelerate soil acid
ification due to the mobilization and leaching of stored nitrogen and 
base cations, thereby counteracting the lower net acid input (Vos, 2024). 
The effects of reduced net acid input following low-intensity harvesting 
are challenging to predict, as there may be a time lag between the 
decrease in acid inputs and the system’s response (Gilliam et al., 2019).

4.6. Seasonal variations in total deposition

We hypothesized that deposition would vary more seasonally for 
deciduous than for evergreen Scots pine and Douglas fir, but this was not 
confirmed. Although total deposition fluctuated significantly across 
seasons, especially for P, S and N, no notable differences among species 
were observed. Instead, seasonal deposition was primarily influenced by 
canopy structure, transitioning from closed forest to clearcuts (Fig. S4; 
Table S8).

P deposition was higher during the growing season, particularly in 
beech stands (Fig. S5). This contradicts expectations, as P is typically 
absorbed by the canopy in nutrient-poor systems (Helmisaari and 
Mälkönen, 1989; Gordon et al., 2000; Houcai et al., 2021). Canopy 

leaching of P is unlikely since it peaks in autumn (Sohrt et al., 2019) and 
correlates with foliar P content (Zhang et al., 2022), where signs of 
deficiency was noted in our study (Vos et al., 2023b). We attribute the 
increased P deposition during growing seasons to external sources like 
pollen or agricultural pollution (Van Ek and Draaijers, 1994; Allen et al., 
2010; Kopáček et al., 2011; Tipping et al., 2014). Since harvest intensity 
had no effect on P deposition, the dry deposition of P appears negligible, 
with pollen likely driving the seasonal pattern (Doskey and Ugoagwu, 
1989; Rösel et al., 2012). Pollen may also contribute to K and NH4 in
creases, but its influence on these nutrients is relatively minor compared 
to P (Verstraeten et al., 2023).

Na deposition showed significant seasonal variation, with higher 
deposition in autumn for closed and thinned stands, and in winter for 
shelterwood and clearcut areas (Fig. S4). Na deposition is particularly 
important due to its role in canopy exchange (eq. 2), which partially 
explains seasonal changes in base cation deposition (Fig. S6B). Higher 
throughfall of Na in autumn for closed and thinned stands may result 
from canopy leaching (Staelens et al., 2007; Thimonier et al., 2008; 
Adriaenssens et al., 2012a) or from more efficient capture of Na in 
autumn (Adriaenssens et al., 2012a) as increased winter deposition may 
be related to elevated atmospheric concentrations (Van Ek and Draaij
ers, 1994; Adriaenssens et al., 2012a). Contrary to previous suggestions 
(Staelens et al., 2007; Thimonier et al., 2008), we found no evidence of 
higher Na throughfall in spring (Fig. S6A), challenging the idea of 
canopy leaching during bud break. While the elevated Na content in 
autumn may indicate some degree of canopy leaching, this effect ap
pears minor. Given the seasonal variations of the Na deposition, using 
Na in canopy exchange calculations for Ca, K, and Mg may have intro
duced uncertainties, as it assumes these elements behave similarly to Na 
with respect to contributions from wet and dry deposition.

The main factors behind seasonal differences in canopy leaching, 
including increased K and Mn leaching in autumn and winter, have been 
observed in earlier studies (Van Ek and Draaijers, 1994; Talkner et al., 
2010). These are likely linked to (drought-induced) senescence, which 
makes leaves becoming more prone to ion leakage, resulting in sub
stantial losses of K and Mn (Schaefer and Reiners, 1990; Hagen-Thorn 
et al., 2006; Houle et al., 2016). Overall, this study finds no evidence 
against using Na as a tracer in canopy exchange.

4.7. Indications of canopy uptake of base cations

Our results show net canopy uptake of NH4, NO3, Ca, Mg (in Scots 
pine), Zn, Fe and Cu along with net release of K and Mn. The release of K 
and Mn was lower than generally reported (Petty and Lindberg, 1990; 
Herrmann et al., 2006; Gandois et al., 2010; Adriaenssens et al., 2012a) 
possibly due to the low foliar concentrations of these elements in our 
study trees (Talkner et al., 2010; Vos et al., 2023b). Canopy uptake of 
NH4 and NO3, reaching up to 90 % of throughfall deposition, is well- 
established (Wilson and Tiley, 1998; Klopatek et al., 2006; Adriaens
sens et al., 2011; Schwarz et al., 2014; Houle et al., 2015). While Ca and 
Mg leaching from canopies is well-documented (Draaijers et al., 1997a; 
Moreno et al., 2001; De Schrijver et al., 2007; Talkner et al., 2010; 
Adriaenssens et al., 2012a; Shen et al., 2013; Edgerton et al., 2020), 
canopy uptake of these elements is less known but has been observed 
across various species (De Schrijver et al., 2004; Małek and Astel, 2008; 
Tan et al., 2018; Van Langenhove et al., 2020). We hypothesize that the 
high atmospheric deposition, strongly acidified soils, and low soil Ca 
and Mg availability – resulting in low foliar Ca and Mg concentrations in 
the trees at our study sites – caused the canopy to shift from being a 
source to a sink for these nutrients (Vos et al., 2023b). This aligns with 
Talkner et al. (2010) and Nordén (1991), who suggested that canopy 
leaching of base cations increases with soil fertility. Various reports 
document the beneficial effects of foliar Ca sprays on Ca uptake and crop 
growth, particularly where soil Ca availability is limited; this also ap
plies to minor nutrients (e.g., Bons and Sharma, 2023). However, it is 
important to note that these findings are uncertain, as they assume that 
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Na behaves as a tracer and that the total deposition/bulk deposition 
ratio is similar for Na, Ca, K, and Mg. While Na leaching seems unlikely, 
it is possible that the total deposition/bulk deposition ratio is lower for 
Ca than for Mg, which would imply reduced Ca uptake. Our results 
suggest that in acidified, nutrient-poor forests, canopy adsorption of 
essential nutrients like Ca and Mg can exceed canopy leaching, high
lighting the need for caution when extrapolating deposition data, as 
these processes can vary even in similar forests (Edgerton et al., 2020).

5. Conclusions

Sustainable management of forests on poor soils faces challenges 
from base cation losses (Ca, K, Mg) due to N and S deposition-induced 
soil acidification. Our non-harvested control plots showed significantly 
higher N, S, Ca, K, and Mg inputs compared to open sites, which are 
usually monitored by national policy. The net input of NH4 and SO4 on 
closed or thinned forests were 26–140 % higher than open sites, and this 
was even higher (68 %–750 %) for base cations and some micro
nutrients. When harvest intensity increases, the reduction in net acid 
input exceeds the reduction in base cations. This highlights the potential 
of forest management practices that influence forest structure and can
opy openness to mitigate soil acidification in areas with high N depo
sition, provided leaching remains controlled.

We found that nutrient deposition in European beech, Douglas fir, 
and Scots pine stands consistently decreased with increased canopy 
openness via increased harvest intensity, except for P, likely due to 
pollen rather than atmospheric deposition. Harvest-induced canopy 
openness had varied effects on nutrients, with sharp declines for those 
deposited mainly through dry deposition (e.g., S, K). The highest 
nutrient and acid inputs occurred in taller Douglas fir stands, while 
shorter, dense Scots pine stands had the lowest inputs. As stands became 
more open, species differences diminished, making harvest intensity the 
dominant factor influencing deposition patterns.

Our results highlight the importance of considering harvest intensity 
effects on canopy openness, and to a lesser extent tree species, when 
estimating nutrient inputs from atmospheric deposition. While tree 
harvest can help reduce acid inputs, continued N deposition makes soil 
acidification and base cation loss inevitable. Since deposition is influ
ence by factors like air quality, proximity to the sea, and local pollution, 
the effects of harvesting on total deposition will vary by location. 
Importantly, the efficient capture of potentially growth-limiting mac
ronutrients (e.g., K, Ca, Mg) and micronutrients (such as Mn) in closed 
and thinned forests (canopy openness <20 %) contribute to the resil
ience on forests on nutrient-poor, acidified soils, and implies that 
intensive tree harvest (e.g. shelterwood or clearcut) are better avoided 
in those conditions.
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