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A B S T R A C T

Laying hen egg production shows high day-to-day intra-flock and inter-flock variability due to environmental 
stressors and suboptimal welfare, which negatively impact egg production. While laying hen flocks maintain 
efficient egg production until 100 weeks of age, the detection of health and welfare issues becomes increasingly 
important to prevent long-term effects on production and consequently on farmer economics. The intrinsic non- 
stationarity of continuously streaming production data imposes challenges on anomaly detection, rendering the 
current solutions for anomaly detection unsuitable for flock- and farm-specific, adaptive, high-confidence 
anomaly detection. In this paper, we propose an adaptive expert-in-the-loop algorithm for early anomaly 
detection in daily laying hen egg production. The key point was to dynamically model flock-specific egg pro
duction curves, using incremental one-class support vector machines (OCSVM), and compare daily acquired 
production data to an expert-defined adaptive reference trajectory, while allowing incorporation of variables 
related to hen performance or environmental variables. Detected anomalies receive an anomaly score based on a 
predefined normalized score threshold. Expert feedback is asked in instances of low-confidence anomalies, to 
iteratively improve accuracy of the anomaly detection algorithm. The proposed model was trained and tested, 
using real flock and synthetic datasets. Incremental learning improved anomaly detection precision from 0.70 to 
0.81 compared to the initial OCSVM model. Expert feedback further refined the balance between sensitivity and 
precision, with an F1-score of 0.93 with 13% of expert feedback, thereby lowering false alarm ratios, while 
improving anomaly detection capabilities. Although this algorithm focusses on egg production, it can be adapted 
to detect anomalies in other production features, such as egg weight.

1. Introduction

The global laying hen sector is moving from cage housing systems 
towards alternative cage-free systems (Gautron et al., 2021). While 
alternative housing systems provide hens with significant opportunities 
to express natural behaviours, they bring implications for both farm 
management and layer health and welfare. Relevant health and welfare 
consequences of cage-free systems, in comparison to cage housing, 
include decreased air quality (Rodenburg et al., 2005), and increased 
risk on bacterial, viral and parasitic infections (Bonnefous et al., 2022). 
Monitoring layer health and welfare is more difficult and labour- 
intensive in multi-tier aviary and free-range systems, which are char
acterized by large flocks and free movement of layers throughout the 
three-dimensional space (Rodenburg et al., 2005).

Egg production is one of the primary indicators that allows contin
uous monitoring of layer flock health, welfare and performance. Egg 
production numbers are typically registered daily on all commercial 
layer farms and are frequently evaluated by the farm manager (van Veen 
et al., 2023). Egg production curves not only serve as flock performance 
indicators, but also enable prediction of future egg records, thereby 
allowing production planning and economic decision making regarding 
the optimal flock lifespan (Long and Wilcox, 2011). Flocks are replaced 
due to declining production and increased variability in egg quality 
(Dunn et al., 2005). Laying hen farmers are expected to move towards an 
extended flock duration of 90 to 100 weeks as response to societal de
mands for a reduced environmental footprint (Traore and Doyon, 2023). 
Breeding companies are selecting for increased laying persistency, while 
remaining stable egg quality and a healthy layer throughout flock 
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production (Arulnathan et al., 2024). Lengthening the flock duration 
emphasizes the need to detect health and welfare problems early to 
adapt management or feeding and to prevent long-term effects on egg 
production, thereby retaining profitable revenues (Traore and Doyon, 
2023).

Because of the intensive nature of poultry production and relatively 
low profit margins, automatic monitoring and data-driven management 
are needed. A popular real-time monitoring and management concept in 
agriculture is Precision Livestock Farming (PLF), where algorithms and 
interfaces produce and visualize relevant information based on contin
uous, automated and real-time sensor data (Berckmans, 2017). PLF 
technologies in poultry production provide continuous daily data on 
feed intake and water intake, house temperature and relative humidity, 
egg numbers, weight and other external egg characteristics, and animal 
weight. On commercial farms, this data is mostly accessible in writing, 
but increasingly available as streaming data to the farm manager and 
archived on several hardware platforms.

Although streaming data is becoming available electronically, it is 
only used for reactive management by the farmer as opposed to pre
dictive maintenance of performance, using algorithms and interfaces. 
The human expert, i.e. the laying hen farmer or veterinarian, is required 
to continuously interpret data allowing daily or weekly management 
decision-making, and failure to analyse the data efficiently renders them 
meaningless (Ribeiro et al., 2019). Challenges related to interpretation 
of streaming data for proactive maintenance include the absence of 
labelled malfunctions or health-related anomalies and the non- 
stationarity of the data. The cause of variation in egg production is 
multifactorial and characterized by an intrinsic non-stationarity or 
concept drifting (Kloska et al., 2023). The flock-specific shape of the 
production curve reflects natural variability, including breed differences 
and flock-dependent resilience against stress (Bedere et al., 2022), sea
sonal and daily variability due to for example environmental tempera
ture (Li et al., 2020), (subclinical) diseases (Roberts et al., 2011), and 
welfare-related problems (Yamak and Sarica, 2012). Other sources of 
variability include changes in management and technical faults. With 
several potential explaining factors involved, expert knowledge of each 
individual laying hen flock is essential for interpreting the causes of 
production changes and for implementing appropriate measures to 
mitigate production losses.

Malfunctions and suboptimal performance in laying hen farms can 
be indicated as anomalies in the production curve. Traditional 
production-based anomaly detection relies on comparing commercial 
egg production data with static mathematical models (Grossman et al., 
2000, Narinc et al., 2019). While these models provide a baseline for 
optimal production, they exhibit poor alignment with flock-specific and 
farm-specific production data. Additionally, they show limited robust
ness against dynamic influences by factors, such as age and environ
mental conditions. Few studies have yet addressed these limitations by 
exploring adaptive methods for real-time anomaly detection in egg 
production. Woudenberg et al. (2014) introduced an adaptive approach 
that effectively reduces the impact of natural variability by continuously 
adjusting detection parameters. However, such methods have primarily 
been validated on single flocks, raising concerns about their scalability 
and generalizability. Fuzzy logic has been applied to handle non-linear 
and imprecise egg production data (Omomule, Ajayi and Orogun, 
2020). Emerging approaches in egg production modelling and anomaly 
detection exploit machine learning models, including Random Forest 
Modelling (Gonzalez-Mora et al., 2022) and artificial neural networks 
(Ramírez-Morales et al., 2017), and support vector machines (Ramírez- 
Morales et al., 2016), with prediction accuracies of 0.99. Machine 
learning methods offer promising advancements over traditional 
models, demonstrating higher accuracy in anomaly detection (Bumanis 
et al., 2023).

One significant challenge of machine learning application in poultry 
production lies in the sensitivity of machine learning algorithms to 
initial parameter settings, which can hinder its performance and 

robustness (Schmidl et al., 2022). Furthermore, the lack of adaptability 
in adjusting detection thresholds over the course of a flock round poses a 
significant limitation. Unsupervised learning methods, while efficient, 
often lack expert validation, leading to decreased detection accuracy 
(Ramírez-Morales et al., 2017). Expert knowledge is crucial for dis
tinguishing between temporary anomalies and gradual changes in pro
duction patterns (Kloska et al., 2023). Supervised learning, on the other 
hand, is complicated by the low frequency of unexpected events in time 
series analysis (Schmidl et al., 2022), exacerbated by the variable timing 
of daily egg collection. Manual labelling of production defects based on 
egg production curves is impractical due to this variability. Therefore, 
recurrent expert input becomes essential for accurately identifying 
production anomalies amidst potential management irregularities.

This study aimed to introduce an algorithm for early detection of 
problems in laying hen egg production, which: 1) allows flock-specific 
comparison of actual egg data to an adaptive reference production 
curve; 2) detects anomalies in egg data, which is inherently subjected to 
fluctuations, with an unsupervised machines model that continuously 
learns from streaming data; 3) engages the expert, i.e. laying hen farmer 
and veterinarian, in several stages; and 4) allows for adding daily vari
ables, such as climate data and hen-specific data, as extra features to 
improve model performance.

2. Data sets

2.1. Real-flock dataset

Real-flock data sets of 8 flocks of laying hens were obtained between 
August 2020 and June 2023. Laying hens from different breeds were 
housed on 4 commercial laying hen farms situated in the Netherlands, 
with aviary systems from an age of 17 or 18 weeks onwards (Table 1).

Duration of data collection varied between flocks from 453 to 612 
days depending on data availability at start of the study. Variables of 
environmental conditions and hen performance were systematically 
obtained from an online farm management platform, which was con
nected to on-site farm computers. Variables were averaged per day to 
provide a comprehensive dataset for analysis. Environmental variables 
included the indoor poultry house temperature and indoor air pressure, 
and the outdoor temperature, which were expressed as daily averages 
based on a 15-minute interval measurement. These temperatures and 
pressure were measured by several thermometers and air pressure 
gauges, respectively. Temperatures were expressed as minimum, 
average and maximum indoor temperature and as minimum, average 
and maximum outdoor temperature. Air pressure was averaged.

Variables of hen performance included animal weight, measured by 
an automatic weighing scale that was present inside the laying hen 
house and determined daily average individual hen weight in grams 
based on voluntary weighing. Feed intake was expressed as total grams 
of feed per hen per day, based on summation of hourly feed weighing 
and division by the number of hens housed at start of the flock round. 
Water intake was expressed as total milliliters of water per hen, which 
was registered by a water meter inside the house. Daily egg production 
numbers were automatically counted by sensors each day in the after
noon. Egg production percentage was calculated by dividing the total 
number of eggs produced per day divided by the total number of hens 
that was housed in the facility at the start of flock production. Egg 
weight was determined based on the volume of eggs, measured by vision 
sensors (Meggsius Select, Vencomatic Group), multiplied by a density 
factor. Egg weight was determined for every egg on the egg belt and 
averaged per day.

The number of eggs with defects in or on the egg shell were measured 
with the vision sensors and expressed as number of defect eggs divided 
over the total number of counted eggs per day. Defects included blood 
stains, manure stains, yolk stains, bruises, breakages, and feathers. In
dividual eggs could receive more than 1 label.

Each of the 8 flocks was labelled as normal or abnormal based on 
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visual inspection of the egg production curve (Table 1). Normal egg 
production curves approximately followed the trajectory resulting from 
Grossman’s egg production persistency model (Grossman et al., 2000), 
ignoring infrequently occurring outliers that only last 1 day. Abnormal 
egg production curves had clear visual deviations from this model for 
longer periods than 1 day, or daily outliers occurring with a continu
ously high frequency throughout the flock production period.

2.2. Synthetic dataset

In our proposed algorithm, an one-class support vector machines 
(OCSVM) model was solely trained on data belonging to normal flocks to 
detect instances that exhibit significant deviations from the defined 
normal behaviour and natural concept drifting in the egg production 
data. In the context of the present study, the available real-flock dataset 
contained limited number of normal production curves, specifically just 
3 out of 8. Therefore, to support the training process of the initial 
OCSVM model, a synthetic dataset was generated based on the defined 
normal dataset using a Monte Carlo simulation (Ahmad, 2011). This 
simulation was conducted within the statistical characteristics of the 
original defined normal egg production time series, ensuring that the 
synthetic data closely mirrors the accepted normal behaviour. This 
augmentation is crucial to enhancing the model’s training and overall 
performance. In theory, by introducing more synthetic training data 
points the model could be trained on diverse range of ‘normal’ 

production curves that could occur on commercial farms. Thereby, the 
model will be able to learn comprehensively the normal behaviour of the 
egg production process including the potential nonstationary variations 
(concept drifts).

2.2.1. Defining normal egg production curve
Egg production begins when the hens reach approximately an age of 

18–22 weeks. A typical normal egg productivity curve of a high- 
productive flock (Fig. 1) is characterized by an initial phase of rapid 
increase in egg production, reaching its peak at around Ppeak = 95–97 % 
(t1). At the peak phase, the hens are laying eggs almost consistently at 
the maximum rate. The peak (plateau) lasts approximately 10 weeks, 
followed by a decline phase starting at approximately 38 weeks of age 
(t2). At the decline phase, the production gradually diminishes, settling 
at approximately 90 % at 45 weeks after the start of egg production 
(Fialho and Ledur, 1997, Ahmad, 2011, Ramírez-Morales et al., 2016). 
The shape (i.e. the timing and height of the defined phases) of a normal 
egg production curve can vary, within an acceptable range, depending 
on several factors, such as breed, feed, management, and environmental 
variations.

The average and standard variations of egg production from the 3 
normal egg production curves are depicted in Fig. 2. Weekly average egg 
production percentage was calculated for flock (2), flock (4) and flock 
(6), followed by taking the average and standard variation of egg pro
duction percentage across these flocks. The standard variations were 

Table 1 
Data overview of 8 laying hen flocks included in the study. Data points (n) are the number of days with production records available at the start of the study, including 
days (%) with a missing value for egg production.

Flock Location Breed Nb. of hens 
housed

Data points (n) in days / % missing 
values

Hen age at placement in 
weeks

Normal/abnormal 
flock*

1 Farm A Dekalb White 46,360 453 / 26% 17 Abnormal
2 Farm A Dekalb White 46,360 510 / 4% 17 Normal
3 Farm A Dekalb White 76,939 481 /26% 17 Abnormal
4 Farm A Dekalb White 76,939 512 / 4% 18 Normal
5 Farm B Lohmann LSL Lite 35,217 612 / 3% 18 Abnormal
6 Farm B Lohmann LSL Classic 35,218 612 / 4% 17 Normal
7 Farm C Lohmann Brown 

Classic
43,156 499 / 4% 17 Abnormal

8 Farm D Lohmann Brown 
Classic

39,490 491 / 35% 17 Abnormal

* Based on visual inspection of the egg production curve. Egg production curves of normal flocks approximated trajectories from Grossman et al. (2000). Abnormal 
egg production curves had clear visual deviations from this model for longer periods than 1 day or daily outliers occurring with a continuously high frequency 
throughout the flock production period.

Fig. 1. A typical average egg production curve characterized by the initial phase, peak phase, and decline phase.
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considered in this context as acceptable normal variations and used in 
the Monte Carlo simulation.

2.2.2. Time series augmentation
The objective here was to create variations in the original time series 

data with feature-specific noise to generate N time series that capture 
the ‘normal’ variation patterns of egg production across all selected 
features. Let {(xi, y) } be the original time series dataset, where xi rep
resents the i-th feature time series (e.g., egg production), and 
y ∈ { − 1, 1} is the binary label indicating normal (1) or anomaly (− 1).

Transformation-based data augmentation: we used a jittering (Iwana 
and Uchida, 2021) function J (xi, y) that introduces feature-specific 
noise (Bishop, 1995, Iwana and Uchida, 2021) to the original data (xi,

y) to generate N augmented time series data. The function J could be 
defined as follows: J (xi, y) =

(
xʹ

i, y
)
, i ∈ {1,⋯,m}, where xí is the 

augmented i-th feature with feature specific noise and m is the number of 
features. A feature-specific noise was introduced as follows:

xít = xit + ∊it, t ∈ {1,⋯, L}, where xít is the t-th time step of the i-th 
feature, L is the number of data points of the time series, and ∊it N

(
0,

σ2
i
)

is the Gaussian noise added at each time step t. The standard devi
ation σ is specific for each feature i.

Fig. 3 shows the synthetic time series data (N = 100) of the egg 
production feature showing acceptable normal variations within the egg 
production data.

3. Expert-in-the-loop incremental fault detection algorithm

The study introduces an innovative approach for fault detection in 
egg production systems by combining the strengths of machine learning 
and human expertise. Unlike other approaches (Grossman et al., 2000, 
Narinc et al., 2019), the proposed method, expert-in-the-loop incre
mental fault detection (EIFD) algorithm, employs an adaptive one-class 
support vector machines (OCSVM) model that dynamically adjusts to 
new data points, avoiding the reliance on a fixed model. The adaptive 
model operates incrementally, detecting anomalies in streaming data 
and ensuring accuracy through expert feedback. The expert-in-the-loop 
(EITL) approach is a form of an interactive machine learning (IML), in 
which there is a closer interaction between users (e.g., the laying hen 
farmer) and the learning systems, with experts interactively supplying 
information in a more frequent and incremental way compared to 
traditional machine learning (Amershi et al., 2022, Mosqueira-Rey et al., 
2022). In this study, the expert is defined as the managing laying hen 
farmer, possibly supported by the poultry veterinarian affiliated with 
the farm. The proposed approach stands resilient against independently 
detected concept drift, providing a promising solution for real-time fault 
detection in dynamic egg production environments. The overall algo
rithm architecture is depicted in Fig. 4. The next paragraphs describe the 
main components of the EIFD algorithm pipeline.

Fig. 2. Average egg production (eggs produced per hen housed at start) and standard deviations (normal variations) based on the 3 defined normal datasets.

Fig. 3. 100 synthetic time series data of the egg production feature.
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3.1. Adaptive reference trajectory algorithm

For the best performance of the EIFD, a reference egg production 
curve is needed to provide a baseline or standard to which the actual egg 
production data can be compared. Initially, the baseline needs to be 
defined by the expert in such a way that it represent the expected tra
jectory of normal egg production under optimal conditions for a specific 
laying hen flock. However, due to the dynamic and drifting nature of the 
egg production process, the reference trajectory needs to be adapted 
continuously to fit the received streaming egg production data, other
wise any deviation from the initial trajectory will be considered an 
anomaly. Therefore, the mode parameters of the reference trajectory 
should be updated continuously. In this work, we introduce an adaptive 
reference trajectory (ART) algorithm to ensure the continual refinement 
of the trajectory model. The ART algorithm consists of the following:

3.1.1. Optimal trajectory model
From the available normal egg production curves, it was found that a 

piecewise logistic-quadratic model is the best fitting model to describe 
the data with an average goodness of fit (R2 = 0.99). The piecewise 
logistic-quadratic (PLQ) model was mathematically expressed as a 
combination of logistic and quadratic functions. The reference trajectory 
curve is denoted by R (t), where t represent bird age. The PLQ model can 
be defined as follows: 

R (t) =
{

Logistic(t), if ​ t < t2
Quadractic(t), if ​ t ≥ t2

(1) 

where t2 is the starting time of the decline phase (Fig. 1).
The logistic function (L ) was represented as: 

L (t) =
Ppeak

1 + e− κ(t− t1)
(2) 

where Ppeak is the peak (maximum) egg production, κ is the growth rate 
defining the slope of the egg production increases, and t1 is the time at 
which the production reaches its peak value.

The quadratic function (Q ) was defined as follow: 

Q (t) = a(t − t2)2
+ b(t − t2)+ c (3) 

where a, b, and c are the model parameters to be estimated from the 
observation data.

3.1.2. Initializing and updating the adaptive reference trajectory model
Firstly, the reference trajectory algorithm (RTA) need to be initial

ized by the expert. The expert, i.e. the laying hen farmer or veterinarian, 
should set the initial model parameters, namely, Ppeak and t1, for each 
flock separately. When no value is provided for Ppeak, the setting is based 
on the stored reference production curves. These 2 parameters are 
enough to simulate the logistic part, L (t), of the reference trajectory 
model. By receiving more egg production data, the RT model needs to be 
updated, by fitting the PLQ equations (1) to the new data points. To 
ensure that there are enough data points to update the model parame
ters, a waiting period (in days), W t ≤ t1, is to be set. A waiting period of 
10 days, equivalent to 10 samples, is found to be the minimum required 
to ensure that the adapted model parameters accurately reflect the dy
namics of the received data. In this work, the model parameters of the 
PLQ equations (2) and (3) ere estimated, using the trust-region method 
(Coleman and Li, 1996) based on the nonlinear least-squares algorithm 
provided by the Matlab routine (LSQCURVEFIT). The proposed algo
rithm was summarized in the pseudo-code routine depicted in Algorithm 
1.

Algorithm 1: updated reference trajectory

Initialization: 
Set initial model parameters: Ppeak and t1 [to initiate L (t)] 
Set the waiting time period: W t ≤ t1 [default is 10 days] 

Calculate the slope of the initial phase:κ =
Ppeak

t1 
Simulate the reference egg production, Pref , using logistic part of the PLQ: 

Pref = L
(
t;Ppeak, κ, t1

)
for 0 ≤ t ≤ t1 

Update the reference trajectory model 
t←0 repeat 
a. Wait until t > t + W t 

b. Get the received egg production data {P(t) : 0→t + W t}

c. Exclude detected anomalies 
d. Fit PLQ equations (2) and (3) to the received P(t) data 
e. Update model parameters; Ppeak, t1, t2, a, b, and c based on the fitted PLQ 

equations (2) and (3)
f. Calculate κ (step 3) 

Simulate the reference egg production Pref 

{Pref : 0→t+ W t} =

{
L(t), if ​ t < t2
Q(t), if ​ t ≥ t2

t←t + 1 until end of the 

input data stream

3.2. Incremental OCSVM (iOCSVM) algorithm

One of the essential characteristics of real-world dynamic time series, 
such as those related to egg production, is that the definition of 
abnormal or normal patterns tends to change over time (Ding et al., 
2023), due to the changes in the statistical properties of the data. The 
phenomenon of such switching from pattern (i.e., concept) to another is 
known as concept drift. The concept at time t drift, according to number 

Fig. 4. Flow diagram illustrating the expert-in-the-loop incremental fault detection (EIFD) algorithm, depicting the incorporation of expert inputs to establish the 
reference (trajectory) egg production curve ([Algorithm 1]) and the feedback loop for labeling low-confidence detected anomalies (part of [Algorithm 2]), enhancing 
the incremental one-class support vector machines’ anomaly detection capabilities.
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of publications, such as (Gama et al., 2014, Lu et al., 2018), is denoted as 
∃t : Pt(x, y) ∕= Pt+1(x, y), or the change of joint probability P(⋅) of x and y 
at time t.

Concept drift poses challenges to offline and batch-based anomaly 
detection algorithms. The dynamic nature of concept drift introduces 
complexities that can compromise the effectiveness of these algorithms 
to recognize and adapt to emerging patterns and changes in data dis
tribution. Therefore, this paper proposes an incremental anomaly 
detection algorithm designed to effectively tackle the challenges posed 
by concept drift.

The incremental OCSVM algorithm (Schölkopf et al., 2001, Statni
kov, 2011, Yokkampon et al., 2021), employed in our approach, is a 
form of online learning. Its practical advantage lies in its ability to 
incorporate additional training data as it becomes available, all without 
the need for complete re-training from scratch (Krawczyk and Woźniak, 
2014). The main framework of the proposed iOCSVM algorithm is the 
pseudo-code routine (Algorithm 2) and the flowchart depicted in Fig. 5.

3.2.1. Initial OCSVM model
In this section, the formulation of the OCSVM is provided. Consider 

the training set 
{(

xk, yk
) }n

k=1 with input data x = {x1,x2,⋯,xn} ∈ Rn, 
where n ∈ N is the number of training samples, and output data yk ∈ R 

with class labels yk ∈ { − 1,+1}. However, for the objective of the one- 
class SVM, the model is only trained on normal data with yk = + 1. 
The principle underlying OCSVM involves finding (learning) a hyper
plane in the specified feature space that achieve a maximum separation 
between the training samples (i.e., representation of the normal class) 
from the origin (i.e., the only representation of the anomaly class) by 
maximizing the margin to the origin (Fig. 6) (Schölkopf et al., 2001, 
Statnikov, 2011, Yokkampon et al., 2021).

The OCSVM formulation uses a transformation function ϕ(x), 
defined by a kernel function (Schölkopf et al., 2001, Suykens et al., 
2002, Statnikov, 2011), that maps the original feature space x into a 
higher dimensional feature space. The objective was to find a maximum 
margin to separate the training dataset from the origin by solving the 
following quadratic program (QP): 

min
w,ξ,ρ

(
‖w‖

2

2
+

1
υn
∑n

k=1
ξk − ρ

)

(4) 

subject to: wTϕ(x) ≥ ρ − ξk, ξk ≥ 0, where w is the weight vector, ρ is 
the offset term (or threshold), ξk is the slack variable for point k, n is the 
length of the training dataset, and υ ∈ (0,1] is the regularization 
parameter.

When w and ρ solve the problem, then the decision function 

f(x) = sgn[wTϕ(x) − ρ] (5) 

will return + 1 for most of data points x in the training dataset 
(normal data points) and − 1 otherwise (Schölkopf et al., 2001).

Schölkopf et al. (2001) solved the optimization problem in equation 
(4), using its dual problem formulation (for more information see 
Schölkopf et al. (2001). By driving the dual problem, the decision 
function, equation (2), can be transformed into a kernel expansion: 

f(x) = sgn

[
∑n

k

αkK(xl ,xk) − ρ
]

(6) 

Fig. 5. Flowchart of the incremental one-class support vector machines 
(iOCSVM) algorithm for anomaly detection in egg production.

Fig. 6. Two-dimensional (2 features x1 and x2) example of the decision 
boundary learned by an one-class support vector machines (OCSVM) model.
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where αk is the Lagrangian multiplier, training samples xk with corre
sponding nonzero αk are called support vectors (SV), and K(xl ,xk) =

ϕ(xl )
Tϕ(xk) is a kernel function, such as the radial bias function (RBF) 

kernel 

K(xl ,xk) = exp
(
− ‖xl − xk‖

2

γ

)

for l , k ∈ {1,⋯, n}, (7) 

where γ is a hyperparameter that sets the width or the spread of the 
kernel.

During the training process of the OCSVM model, the number of 
hyperparameters are to be optimized including the regularization vari
able v. By setting the v parameter, we can control simultaneously the 
upper-bound on the fraction of the anomalies (faults) and the lower- 
bound on the fraction of the SVs.

3.2.2. Expert in the loop
In this proposed algorithm, we are giving the chance to the domain 

expert (e.g., laying hen farmer) to help enhancing the learning perfor
mance of the algorithm by labelling the observations that are considered 
to be anomalous by the algorithm or those which the algorithm is not 
confident with. In the context of anomaly detection, using the iOCSVM 
algorithm, each new data point is assigned a score (SC) that indicate the 
degree of deviation from “normal” egg production dynamics. This score 
is derived based on the distance of each new data point to the decision 
boundary defined by the incrementally trained OCSVM model. These 
scores are used to rank data points in terms of their anomaly likelihood, 
allowing for threshold-based anomaly detection. While the threshold for 
anomaly detection is inherently defined within the iOCSVM algorithm, 
challenges arise in cases of concept drifting, where the predefined 
threshold may fail to effectively distinguish anomalies with sufficient 
confidence. In such scenarios, the expert can indirectly be involved in 
defining a new threshold by labelling instances of low-confidence 
anomalies based on a predefined normalized score threshold Sth ∈ [0,
1]. The magnitude of the Sth value indicates the extent to which expert 
input is required, with higher Sth value indicating a greater need for 
expert intervention in labelling anomalous instances. The expert inter
vention is measured by determining the percentage of the total test 
samples for which the expert was asked to provide labelling input.

3.2.3. Features and feature engineering
During the initial development phase of the algorithm, 4 input fea

tures were incorporated in the training process, which were the daily 
egg production, the daily feed intake, and the daily average bird weight. 
To enrich the model further and to find the optimal model, all available 
variables were iteratively added as extra features to study improvement 
of algorithm performance. As a result, 2 features, namely dynamic time- 
warping and feed-to-body weight ratio were crafted from the original 
inputs and included in the training process. 

• Dynamic time-warping

To detect any deviation of the actual egg production (P) from the 
reference trajectory (R ) the Dynamic Time-Warping (DTW) similarity 
measure was used. DTW is commonly used to measure similarities be
tween 2 time series (Aach and Church, 2001, Keogh and Ratanamaha
tana, 2005). In this case these are the reference trajectory R =

{r1, r2,⋯, rw} and the actual egg production vector P = {p1,p2,⋯,pw}, 
w ∈ N. Firstly, a distance or similarity function D (ro, pm) that measures 
the similarity between elements ro and pm of the sequences R and P, 
respectively, was calculated. In this work, the Euclidean distance is used 
as a similarity function. Then an accumulated distance matrix (D M ) of 
size w× w, where D M (o,m) represents the cumulative cost of the 
alignment between elements ro and pm. Each element D M (o,m) is 
computed as follows: 

D M (o,m) = D (ro, pm)+min[D M (o − 1,m),D M (o,m − 1),D M (o

− 1,m − 1)]
(8) 

The optimal warping path Wp = {wp1,wp2,⋯,wpr} is defined as the 
path through the matrix D M with the lowest cumulative cost, where r ∈
N is the number of elements forming the optimal path. This is done by 
starting from element D M (0,0) and recursively moving to adjacent 
cells with the lowest cost until reaching D M (w,w). Finally, the DTW 
distance between the sequences R and P is the normalized sum of costs 
along the optimal warping path as follows: 

DTW =
∑r

i=1
Wp(i)/r (9) 

The DTW is implemented in a sliding window of size w as shown in 
Algorithm 2. 

• Feed-to-body weight ratio

The feed-to-body weight ratio (FBW) is calculated as the ration be
tween the daily feed intake (Fin) and the daily bird’s weight (WtBird). 

FBW =
Fin

WtBird
(10) 

Algorithm 2: incremental OCSVM algorithm

Inputs: 
Trained initial OCSVM model parameters [SVs, α, ρ]  

Reference trajectory R (Algorithm 1) 
New data points with window length w 

Outputs: 
Updated OCSVM model parameters [SVs, α, ρ] 
Labelled new data points yk ∈ { − 1,+1}

Initialization: 
Let λ be the forgetting factor. 
Set SVs be the set of the support vectors obtained from the initial training 
Set α to the corresponding α values obtained from the initial training 
Set the bias ρ to be the ρ obtained from the initial training 
Initial reference trajectory R of length W t (waiting period) 
Initial input data x = {x1, x2 ,⋯,xW t } of length W t 

Incremental learning: 
t←t + w, where w ≤ W t is the length of the sliding window 

Repeat: 
a. Get input data xj of length w 
b. Extract features according to equations (9) and (10)
c. Compute the kernel values K

(
xj, SVs

)
between the new data points and 

existing support vectors according to equation (7)
d. Apply the forgetting factor λ to the existing α values:α←λ× α 
e. Append the new data points xj to the SVs : SVs←[SVsxj]

f. Update the bias term ρ based on the new SVs 
Predict the label of the new data points according to equation (6) : 

yt ∈ { − 1,+1}
Get score of predicted labels SC 

If SC < Sth return to Expert (is this an Anomaly?) 
Get Expert answer yEx ∈ { − 1,+1}
yt←yEx Increment index t by 1: t←t+1 (sliding one time step) 
Until end of the input data stream

4. Performance evaluation

For evaluation purposes, data was gathered from 4 abnormal egg 
production flocks, where each flock includes a different combination of 
normal and problematic instances (anomalies). In total, 1246 and 463 
instances (i.e. days with digital egg production record) are labelled as 
normal and anomaly, respectively.

Evaluating the performance of anomaly detection algorithms differs 
from other classification algorithms primarily because the former is 
trained solely on 1 label (normal) dataset. Moreover, the testing dataset 
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typically exhibits strongly imbalanced classes, a common scenario in 
anomaly detection problems. Thus, in this study, we combine accuracy 
metrics with the F1-score to provide a more comprehensive evaluation. 
Moreover, 2 additional criteria are employed: the total number of true 
anomalies detected, and the total number of false anomalies detected. 
These metrics provide the renowned trade-off between precision and 
sensitivity (recall) balance, offering deeper insights into the algorithm’s 
performance.

4.1. Initial OCSVM model

The initial OCSVM model was trained, using the augmented dataset. 
The training dataset 

{(
xk, yk

) }n
k=1 comprised 100 augmented normal 

egg production data that included n = 61300 time instances, each 
labelled as normal (i.e., yk = + 1). Fig. 7 shows the distribution of 
resulting scores obtained during the training process. Approximately 90 
% of the training data points were located within a mere 0.12 score 
difference (margin) from the score threshold of − 0.88, as determined by 
the algorithm.

By testing the initial OCSVM model on the contaminated dataset, the 
resulting distribution of the scores, as depicted in Fig. 8, revealed the 
performance of the model. It is noticed that approximately 94% of the 
labeled anomalies are located on the right side of the score threshold. On 
the other hand, it is observed that about 80% of the labeled normal 
instances are situated on the left side of the score threshold, revealing a 
True Negative Ratio (TNR) of 80%. The performance evaluation results 
are summarized in Table 2. While the initial trained model exhibited a 
high sensitivity (recall) of approximately 0.94, the average precision 
value was approximately 0.70. This discrepancy underlines a significant 
trade-off: as the model demonstrates strong sensitivity in detecting 
anomalies, its precision suffers, leading to a non-negligible rate of false 
positives ratio (FPR) of approximately 14%. The occurrence of high 
sensitivity coupled with lower precision can be attributed to various 
factors, including inappropriate threshold selection, insufficient model 
tuning, and/or the presence of inherent concept drift within the data, as 
explained earlier. To address this issue, the proposed incremental al
gorithm (iOCSVM) incorporates an online learning technique that 
adaptively adjusts to changing (drifting) data patterns. Additionally, it 
employs a dynamic thresholding approach based on the score distribu
tion of the incoming data streams, enabling the model to dynamically 
adapt its decision boundaries in response to evolving data dynamics.

4.2. Evaluation of the incremental algorithm (iOCSVM)

In this section, we compare the performance of the incremental al
gorithm (iOCSVM) under 2 conditions: with the incorporation of expert 
feedback to verify the labels of anomaly instances with low confidence 

scores, and without expert feedback.

4.2.1. Algorithm performance without the expert feedback
The performance evaluation results are summarized in Table 2. It is 

evident that the overall performance has enhanced in comparison to the 
initial OCSVM performance, as indicated by accuracy and F1-score 
metrics, which stands at 0.89 and 0.88, respectively. While the sensi
tivity of the iOCSVM algorithm did not exhibit significant improvement, 
there is a notable increase in precision to 0.81 compared to that of the 
initial OCSVM model, which had a value of 0.70. This resulted in a 
decline in the FPR value to 10%, compared to the 19% observed with the 
initial OCSVM model.

Fig. 9 shows the detected problematic egg production instances 
(anomalies) in egg production curve of flock (1) (Fig. 9A) and flock (5) 
(Fig. 9B), using the iOCSVM algorithm. It is shown that a decrease in egg 
production is identified as an anomaly before it becomes visually 
apparent.

4.2.2. Algorithm performance with the (simulated) expert feedback
As explained earlier (section 3.2.2), the extent to which the expert 

intervention is needed is determined by the magnitude of the predefined 
score threshold Sth ∈ [0,1]. Thus, we have evaluated the performance of 
the iOCSVM algorithm at different values of Sth, indicating different 
levels of expert intervention as shown in Table 3.

In general, it is noticed that the overall performance of the algorithm 
is enhanced when expert feedback is introduced in the framework 
(Table 3) compared to a situation without expert feedback (Table 2). 
Anomaly detection accuracy improved with 4%-5% after incorporating 
the expert-in-the loop, while the F1-Score, which balances precision and 
sensitivity, improved with 8% at 5.2% of expert intervention compared 
to 0 % expert intervention. Referring to Table 3, the F1-Score shows an 
additional steady increase of 4 % as the score threshold rises from 5.2% 
to 13.0% The rising F1-Score indicates that the model achieves a better 
balance between correctly identifying anomalies and minimizing false 
positives as the threshold and level of expert intervention increase. This 
underscores the valuable role of expert feedback in improving precision 
and achieving a better balance between sensitivity and precision and 
consequently, refining the model’s anomaly detection capabilities.

5. Discussion

5.1. Advantages of the proposed method

Despite the abundance of systematically collected data on farms, its 
full potential for laying hen health and welfare assessment, production 
planning and economic decision making remains largely unfulfilled. The 
implementation of anomaly detection algorithms in the context of on- 
farm streaming data presents a promising approach for optimizing 

Fig. 7. The distribution of the resulting scores and the algorithm-determined score threshold during the training process.
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daily decision-making processes in poultry production. This study makes 
a first step towards adaptive, flock-specific anomaly detection based on 
real-time egg production records, using the strength of expert-enhanced 
one-class support vector machines.

Central to our approach is the integration of the expert opinion, 
facilitating the wish of farmers to not only be alerted to anomalies, but 
also to be involved in the data underlying the alerts (Lokhorst and 
Lamaker, 1996). Therefore, our system empowers laying hen farmers 
and other experts, such as veterinarians, to view the data driving 
anomaly cases, enabling informed decision-making and subsequent 
diagnosis. A number of farms affiliated with this project currently 
receive real-time sensor-based egg counts through a digital platform, 
facilitating continuous monitoring and visualization of production 
metrics. Experts from these farms, such as laying hen farmers, veteri
narians and feed advisors, could engage in the future in initial algorithm 
implementation and feed the incremental learning system via this 
platform.

Considering the evolving landscape of farming, younger farmers are 
likely to be willing to adopt and think with companies that aim to 
improve farming practices (Schukat and Heise, 2021). However, it’s 
important not to overlook the expertise of older farmers, who may not be 
as connected to data-driven solutions, but still possess invaluable 
knowledge derived from years of experience. We aim to bridge the gap 
between traditional farming and modern technology using domain 
knowledge from laying hen farmers, preferably with at least 5 years of 
field experience into developing the modern anomaly detection algo
rithms, ensuring a smoother transition towards more efficient and sus
tainable farming practices. Continuous algorithm-based anomaly 
detection will become particularly important, especially within larger 
farms and among those with personnel characterized by scarcity and 
diverse educational backgrounds.

We emphasize the necessity of retaining expert involvement even 
after deploying and re-current training of the algorithm on commercial 
farms. The incremental learning model is specifically engineered to 
adapt and improve over time, learning from instances where confidence 

in flagged anomalies is low. False alarm ratios are higher without the 
expert-in-the-loop than with the expert-in-the-loop as apparent from 
precision scores, even when normalized score threshold is low. False 
alarms can hinder adoption of technologies and negatively impact 
farmer work satisfaction and human-animal relations and thereby laying 
hen welfare (Tuyttens et al., 2022). Experts can adjust the normalized 
score thresholds to determine what constitutes normal behavior of egg 
production in their respective flock, and thereby influence false alarm 
ratios. While they provide opinions on flagged low-confidence abnor
malities, they also have the authority to remove normal flags when they 
deem them to be abnormal. With continuous streaming flock data, ex
perts are inclined to recalibrate thresholds with improved algorithm 
performance.

The current approach optimizes daily hen health and welfare 
assessment by comparing daily egg production data to an adaptive 
optimal reference production to identify abnormal egg production in
stances. The initial values for the reference trajectory, which are the 
timing and height of peak production, are derived from a combination of 
farmer experience with farm and flock-specific performance, rearing 
background, and standard values based on breed guidelines, allowing 
for a tailored approach to anomaly detection. The flock-specific nature 
of the model may enhance its external validity by increasing its rele
vance and accuracy in real-world settings, which is one of the main 
threats posed by precision livestock farming to animal welfare (Tuyttens 
et al., 2022).

5.2. Limitations and future working points

Incremental model performance can be improved by adding other 
egg production-related variables than daily feed-to-body weight ratio. 
The current proposed algorithm aimed to allow integration of diverse 
environmental and physiological variables, such as environmental 
temperature and hen weight. The integration creates adaptability to the 
intrinsic concept drift present in laying hen production, for example in 
case of chronic stress by poultry red mite infestation with prolonged 
effects on farm productivity (Sigognault Flochlay, Thomas and Spar
agano, 2017). It enhances functionality (Gumiran, 2024) and precision 
(Bumanis et al., 2023), while reducing the need to manually incorporate 
data features into the assessment. We foresee laying hen farmers having 
the autonomy to select the variables as features they deem relevant, 
thereby expanding the capacity for flock- and farm-specific anomaly 
detection. Multi-feature modeling not only saves time, but also enhances 
the objectivity of anomaly detection, improves the predictive power of 
egg production when features have a direct effect on egg output 
(Lokhorst and Lamaker, 1996, Yin et al., 2023) and ultimately improves 
hen health and welfare assessment.

Fig. 8. The distribution of the resulting scores during the testing process.

Table 2 
The performance evaluation results of the initial one-class support vector ma
chines (OCSVM) model and the incremental one-class support vector machines 
(iOCSVM) model without expert feedback.

Model FPR Accuracy Sensitivity Precision F1- 
Score

OCSVM 0.19 0.86 0.94 0.70 0.80
iOCSVM without expert 

feedback
0.10 0.91 0.96 0.81 0.88
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We studied the effect of incorporating various external egg charac
teristics, such as egg shell shape and integrity, and shell soiling, into the 
current model on model performance. These traits, although infre
quently recorded with on-farm sensors, may serve as indirect indicators 
of environmental conditions, nutritional status, or stress levels experi
enced by laying hens and possibly precede deviations in egg numbers, 
leading to even earlier detection of health problems in laying hens 
(Roberts et al., 2011, Yamak and Sarica, 2012). It is expected that in the 
near future, computer vision or other sensor techniques will increasingly 
facilitate monitoring of these characteristics in commercial farms. Ac
cording to Lokhorst and Lamaker (1996), the natural temporal fluctua
tions observed in the number of second-grade eggs and floor eggs may 
however pose challenges in their utility for monitoring daily production 
processes in aviary laying hen systems.

The available egg characteristics were not included in the proposed 
model, because they did not improve anomaly detection performance, 
due to several reasons. These reasons include varying thresholds of 
labelling egg characteristics between farms, incomplete data sets for 
certain flocks, and a lack of optimization in labeled variables. Data 
quality characteristics, such as uniformity and completeness affect 
forecasting effectiveness of egg production (Bumanis et al., 2023). 
Despite the limitations in the current dataset, it’s noteworthy that ad
vancements in both sensors and sensor-data handling are rapidly pro
gressing, continuously refining and enhancing data quality for more 
effective use in animal management practices (Carletto, 2021). This 
opens up promising opportunities for production forecasting. Deter
mining the right number and timing of lagged or leading features, along 
with the suitable forecast window size, is crucial. It affects prediction 
complexity, accuracy, and practicality in daily management decisions 
(Bumanis et al., 2023).

There are several opportunities for prospective advancement of the 
proposed conceptual framework. One such opportunity involves the 
adaptation of the model to detect anomalies in daily streaming egg 
weight data besides egg numbers, provided it is consistently collected on 
laying hen farms. This adaptation could facilitate defect detection uti
lizing uniformity in egg weight as key variable (Ji et al., 2025). Egg 
weight holds promise as a potential early indicator of hen health issues, 
as it remains unaffected by the variable timing of egg collection by 
farmers. Another opportunity extends beyond poultry farming, with 
potential applications in anomaly detection within the lactation curve 
for dairy cows. These future directions show the versatility and potential 

Fig. 9. The egg production curve of flock (1) (A) and flock (5) (B) combined with the anomalies detected (highlighted with red dots), using the incremental one-class 
support vector machines (iOCSVM) algorithm. Early detected drops in egg production by the algorithm are highlighted.

Table 3 
The performance evaluation results of the incremental one-class support vector 
machines (iOCSVM) algorithm with different level of expert intervention 
simulated by employing different score threshold.

Score 
threshold Sth

Accuracy Sensitivity Precision F1- 
Score

Expert 
intervention

0.35 0.95 0.94 0.85 0.89 5.2%
0.37 0.96 0.94 0.91 0.92 6.0%
0.39 0.96 0.94 0.92 0.93 7.6%
0.41 0.96 0.93 0.94 0.93 13.0%
0.43 0.96 0.93 0.94 0.93 13.4%
0.45 0.96 0.94 0.93 0.93 13.6%
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for broader agricultural applications.
Furthermore, the implementation of our anomaly detection model 

holds significant implications for scientific knowledge advancement in 
the poultry domain. By establishing relationships between various pa
rameters, such as age at initial egg production and persistency of lay, our 
model contributes to a deeper understanding of flock dynamics and 
performance trends (Gautron et al., 2021). Through the integration of 
flock-based metadata, our approach facilitates the comparison of flocks, 
even with variations in set-up times and individual laying hen 
characteristics.

6. Conclusions

Our approach on anomaly detection based on egg production data 
represents a significant step towards unlocking the full potential of on- 
farm data in optimizing flock management, health and welfare. By 
integrating expert insights with advanced, adaptive algorithms, we aim 
to detect and predict problems in poultry health and welfare objectively. 
The incremental one-class support vector machines model showed an 
anomaly detection accuracy of 0.96 after incorporation of expert inter
vention, an improvement of 10% compared to the initial OCSVM model 
and 5% compared to the incremental OCSVM model without expert 
intervention. The F1-Score reached 0.93 at 13% of expert intervention, 
as opposed to 0.81 at 0% of expert intervention. The proposed algorithm 
supports daily decision-making in poultry farming and improves domain 
knowledge on predictive flock-level indicators of laying hen health and 
welfare, thereby enhancing flock health, productivity, and overall farm 
profitability.
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