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Abstract

Young tropical secondary forests play an important role in the local and global
carbon cycles because of their large area and rapid biomass accumulation
rates. This study examines how environmental conditions and forest attributes
shape biomass compartments and the productivity of young tropical secondary
forests. We compared 36 young secondary forest stands that differed in the
time since agricultural land abandonment (2.3-3.6 years) from dry and wet
regions in Ghana. We quantified biomass stocks in living and dead stems,
roots, and soil, and aboveground biomass and litter productivity. We used
structural equation models to evaluate how macroclimate, soil nutrients
(N, P), and forest attributes (structure, diversity, and functional composition)
affect ecosystem functioning. After three years of succession, tropical wet forests
stored on average 115 t biomass ha™" (the sum of aboveground living and dead
biomass, belowground fine root biomass, and soil organic matter), and dry for-
ests stored 99 t ha™'. These values represent 31% (in the wet forest) and 39%
(in the dry forest) of the biomass compared with neighboring old-growth forests.
The majority of forest ecosystem biomass was stored in the soil (70%) and above-
ground living vegetation (25%). Macroclimate strongly shaped forest attributes,
which in turn determined biomass stocks and productivity. Soil phosphorus
strongly increased litter production and soil organic matter, confirming that it is
a limiting element in tropical ecosystems. Tree density and species diversity
increased forest biomass stocks, suggesting crown packing and complementary
resource use enhance forest functioning. A more conservative trait composition
(high wood density) increased biomass stocks but reduced productivity, indicat-
ing that quantity, identity, and quality of species affect ecosystem functioning.

KEYWORDS
biomass stocks and productivity, fine roots, forest structure, functional trait composition,
macroclimate, soil carbon and nutrients, species diversity, tropical secondary forest
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INTRODUCTION

Tropical forests store around 25% of the global terrestrial
carbon (Bonan, 2008) and account for 34% of terrestrial
gross primary productivity (Beer et al., 2010), which
makes them important for climate change mitigation.
Despite their importance, over half of the world’s tropical
old-growth forests have been deforested for human activi-
ties such as crop cultivation or -cattle ranching
(IPBES, 2019; Keenan et al., 2015). In these previously
deforested areas, secondary succession leads to a rapid
accumulation of biomass in the vegetation and soil
(Jones et al., 2019; Martin et al., 2013). These biomass
accumulation rates during succession vary strongly with
macroclimate and soil conditions (Poorter et al., 2016)
because they reflect initial environmental conditions
(e.g., resource availability) as they grow, and initial forest
attributes (e.g., forest structure and species composition).
These environmental conditions and forest attributes in
early succession, therefore, determine the large variations
in the speed and direction of successional pathways
(Meiners et al., 2015; van Breugel et al., 2019). Here, we
examine how environmental conditions and forest attri-
butes determine different compartments of biomass pools
and productivity in young tropical forests.

In old-growth tropical forests, approximately half of
the carbon is stored in the aboveground living compart-
ments, around 10% in the belowground root biomass, less
than 10% in the dead organic matter, and 30%-40% in the
soil (Malhi et al., 2009). In contrast, in young tropical sec-
ondary forests, less carbon is stored in the aboveground
vegetation and relatively more in the belowground roots
and soil because slash-and-burn agriculture has led to
aboveground biomass (AGB) removal, and the vegetation
is still developing (Jones et al., 2019). This highlights the
importance of studying not only AGB but also other
biomass pools to get a comprehensive picture of forest
carbon recovery during succession.

Structural, taxonomic, and functional attributes of the
forest determine forest biomass pools and productivity
through various mechanisms (Finegan et al., 2015;
Poorter et al., 2017). Structural attributes, for example,
high stand basal area or tree density, are associated with
a large photosynthetically active leaf area and thus high
carbon sequestration rates (Lehnebach et al., 2018; Pan
et al., 2021). Therefore, they store more carbon in above-
ground leaf, branch, and stem biomass, as well as in the
belowground root biomass (Kenzo et al., 2009; Poorter,
van der Sande, et al., 2015). The regular turnover of these
plant organs also leads to a high litter production and
build up of soil organic matter (SOM) (Feng et al., 2019).

Taxonomic attributes, for example, species richness
and evenness, may increase carbon accumulation and

stocks through a high resource capture and use (the
“niche complementarity effect,” Tilman, 1999), and
through an increasing chance to include a highly produc-
tive species (“the sampling effect,” Loreau, 1998).
Similarly, increased species richness and evenness can
increase belowground biomass through more efficient
root-filling of the soil (Brassard et al., 2013; Lei et al., 2012).
However, little is known whether these positive
biodiversity-ecosystem functioning relationships can also
be observed in young tropical secondary forests that are
dominated by few pioneer species that contribute most to
ecosystem functioning (Lohbeck et al., 2016).

Functional traits determine species’ performance in
terms of recruitment, growth, and survival (Matsuo,
Martinez-Ramos, et al., 2024; Violle et al., 2007). Therefore,
they also determine ecosystem functioning (Lohbeck
et al., 2015; Yuan et al., 2018). Because the dominant spe-
cies in the community often drive ecosystem functioning
(mass-ratio hypothesis, Grime, 1998), dominance-weighted
functional attributes (e.g., community-weighted mean
[CWM] traits) frequently influence carbon accumulation
and stocks (Teixeira et al., 2020; Yuan et al., 2019). Hence,
functional attributes, such as high CWM leaf nitrogen con-
centration (LNC) or low CWM wood density (WD),
increase carbon accumulation and stocks because of faster
biomass growth rates (e.g., Finegan et al., 2015). These spe-
cies with high LNC or low WD often have short leaf and
plant lifespans (Chazdon et al., 2007; Wright et al., 2004);
thus, increasing their dominance enhances the production
of deadwood and litterfall which, in turn, increases
carbon accumulation in the soil (Morrién et al., 2017,
Odum, 1969).

Carbon accumulation rates and stocks also vary
with environmental conditions (van der Sande, Arets,
et al., 2017; van der Sande, Pefa-Claros, et al., 2017). For
instance, in wetter, warmer, and more fertile soil condi-
tions, soil microbes are more abundant and active,
resulting in faster litter decomposition rates and thus
higher soil organic carbon concentrations (Camenzind
et al., 2018). In drier and more infertile soil conditions,
species allocate more biomass to their (fine) roots to
increase water and nutrient uptake (Freschet et al., 2021;
van der Sande, Arets, et al., 2017). Besides these direct
effects, macroclimate and soil fertility also indirectly
affect forest biomass by shaping forest attributes, such as
stand basal area, tree density, and species richness,
through different species pools, and length and condi-
tions of the growing season (Poorter, van der Sande,
et al., 2015; Rozendaal et al., 2019).

Here, we examine how environmental conditions and
forest attributes determine different compartments of
forest biomass pools and productivity in young tropical
forests on abandoned agricultural fields in Ghana
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(Figure 1). We address two research questions and their
corresponding hypotheses:

1. How are forest (1) structural, (2) taxonomic,
and (3) functional attributes driven by macroclimate
and soil nutrients during early succession? We
hypothesize that: (1) stand basal area, maximum stem
diameter, and tree density are higher in wet forests
and on fertile soils because of more productive envi-
ronmental conditions, as well as in older forests due
to continuous tree recruitment and growth over time;
(2) species richness is higher in wet forests and on fer-
tile soils because of more suitable conditions for
plants, as well as in older forests because of continu-
ous arrival and recruitment of new species over time;
(3) species with acquisitive trait values are more domi-
nant in wet and younger forests and on fertile soils
because of more productive environmental conditions.

2. How do environmental conditions and forest attributes
determine forest biomass pools and productivity? We
hypothesize that forest biomass pools and productivity
increase with: (1) climatic wetness and soil fertility
because of increased recruitment and growth rates;
(2) structural attributes, such as stand basal area,
because of a larger photosynthetically active leaf area;
(3) species richness because of more efficient resource
use and sampling effects; and (4) dominance of more
acquisitive species as they grow faster.

Environmental conditions

Forest attributes (RQ1)

MATERIALS AND METHODS
Study site
Tropical dry region

Research was carried out close to the town of Abofour
in the Ashanti region of Ghana (7°11’ N, 1°73" W).
Mean annual precipitation is 1290 mm/year and dry
season precipitation (November/December-February) is
28 mm/month (Amissah et al., 2018). Mean monthly
maximum temperature is 30.6°C, and mean monthly
minimum temperature is 21.2°C (Amissah et al., 2018).
The soil is sandy loam with patches of clay (Forestry
Division, 1963) and a pH of 5.6-7.8. The forest is classi-
fied as a tropical dry semideciduous forest (Hall &
Swaine, 1981).

Tropical wet region

Research was carried out close to the town of Pataho
in the Western region of Ghana (5°10' N, 2°02" W).
Mean annual precipitation is 1808 mm/year and dry
season precipitation (November/December-February) is
82.6 mm/month (Amissah et al., 2018). Mean monthly
maximum temperature is 32.0°C and mean monthly
minimum temperature is 22.8°C (Amissah et al., 2018).

Carbon (RQ2)
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FIGURE 1 Conceptual model showing how environmental conditions affect forest attributes (Research Question 1), and how

environmental conditions and forest attributes together affect forest biomass stocks and productivity (aboveground living biomass,

aboveground dead biomass, fine root biomass, soil organic matter, aboveground biomass productivity, and litter production, Research

Question 2). Clipart images from Flaticon.com.
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The area is characterized by undulating hills, ranging
between 71 and 148 m above sea level. The soil consists
of sandy loam with patches of clay (Forestry
Division, 1963) and is acidic (pH 4.1-5.6). The forest is
classified as a tropical wet/moist evergreen forest
(Hall & Swaine, 1981).

In 2021, we established 20 secondary forest plots
(25 x 25 m) on recently abandoned maizefields (0 or
1 year since agricultural abandonment) in dry forests and
19 secondary forest plots on abandoned cassava fields in
wet forests (Matsuo et al., 2023). During the monitoring,
three plots in dry sites were burned and cleared, and thus
we excluded them from the analysis (i.e., N =17 in dry
forests). Fallow age was determined based on interviews
with the landowners and field observations. In 2021,
2022, and 2023, all woody individuals thicker than 1 cm
stem dbh were identified to species level, and their dbh
and height were measured. Height was measured with a
telescoping rod. However, the height data were not used
in this study. For multistemmed individuals, we counted
the number of stems and measured the dbh of the largest
and average stems. We calculated the tree’s basal area as
n X (dbh/2)>. For individuals with multiple stems, we
multiplied the number of other stems with their average
basal area and added the basal area of the largest stem.

AGB and productivity

AGB of shrub and tree species was estimated with an
allometric formula developed for the young secondary
forests in Ghana using dbh and WD (Equation 1;
Appendix S1). AGB of liana species was estimated
with the existing allometric equation for liana species in
tropical secondary forests in Ghana (Equation 2;
Addo-Fordjour & Rahmad, 2013). When the WD data for
some species were not available, we used local WD data
at the highest taxonomic resolution available (genus-level
or family-level), or the average WD for each site.

AGB_tree_shrub = exp.[—1.65 +2.14 X In(dbh)

+0.45% In(WD)] (r*=0.94). (1)
AGB_liana= —0.36+1.9xdbh (r*=0.99).  (2)

Aboveground living biomass per plot (AGBiying, in
tons per hectare) for each year was calculated by sum-
ming the biomass of all live trees in 2022 or 2023 and
then multiplying by 16 to express it per hectare. AGB pro-
ductivity (in tons per hectare per year) was calculated as
the difference in AGBjjying OVer a one-year interval. For
one plot in the wet forests, we could not calculate

biomass productivity because the census was not
conducted in 2022.

Aboveground dead biomass

Deadwood lying on the ground (>5cm diameter) was
inventoried along two parallel 25-m-long transects within
each plot that were spaced 15m apart, using the
line-intercept method. The diameter of all deadwoods
bisecting a transect was recorded, along with its diameter
at midpoint and length. All standing deadwood with
dbh > 1cm was inventoried throughout each plot,
with diameter and height recorded. To estimate their bio-
mass, their volume was calculated using an equation for
lying deadwood (Equation 3; Aghimien et al., 2020) or an
equation for standing deadwood (Equation 4) with the
default shape coefficient (f= 0.5, Puletti et al., 2019).
Then their volume was converted to biomass by multiply-
ing the average WD of each plot and the average decay
factor (F=0.8, Hossain et al, 2019) (Equation 5;
Neumann et al., 2023).

Lying deadwood volume = (tDmiqaie”/4) XL,  (3)
Standing deadwood volume = f X (rdbh*/4) XL,  (4)

AGBgeaq = F X Deadwood volume X WD, (5)

where Djgae 1S the diameter at the midpoint
(in centimeters), L is the total length (in meters), and
WD is the average WD of each plot (in grams per cubic
centimeter) weighted by their basal area. Aboveground
lying dead biomass per plot was calculated as the sum of all
lying deadwood biomass within the 50 m* (= 25 m? x 2)
transect and then multiplied by 200 to express it per hect-
are. Similarly, aboveground standing dead biomass per
plot was calculated as the sum of all standing dead bio-
mass and then multiplied by 16 to express it per hectare.
Lastly, total aboveground dead biomass per plot (AGBgcad,
in tons per hectare) was calculated as the sum of above-
ground lying and standingdead biomass.

Litter production rate

The plots were subdivided into four quadrants
(12.5 x 12.5 m), and one litter trap (50 X 50 cm, at a
height of 1.0 m) was placed at the center of each quad-
rant (i.e., four traps per plot). To estimate the annual lit-
ter production (in tons per hectare per year), litter was
collected every month for 7 months (February-August in
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2023), which covers two months of a dry season and five
months of a wet season, which is considered as a suffi-
cient sampling effort to estimate the annual litter produc-
tion. Each month, litter samples were collected and
separated into leaf materials (leaves and petioles),
branches, reproductive parts (flowers, fruits, and seeds),
and animal feces (from lizards, bats, and birds that defe-
cated in the traps). Afterward, these components were
oven-dried at 65°C for 48 h and weighed for their dry
mass. Because we were only interested in the forest litter
production rate, we only used the sum of leaf materials,
branches, and reproductive parts for the litter production
rate. The weight of litter was summed for each plot and
multiplied by 10,000 to express it as tons per hectare.

Soil nutrients, SOM, and fine root biomass

In 2021, five soil samples (0-15 cm depth) were collected
using an auger with a 23 cm diameter and 21 cm length,
and they were pooled per plot and analyzed at CSIR-Soil
Research Institute of Ghana for the following: texture
(sand, clay, and silt, in percentage); soil pH with a 1:2.5
mixture (soil:water ratio) using a glass electrode (Bante
930) pH meter; total nitrogen including all forms of organic
and inorganic nitrogen (N, in milligrams per gram) based
on the Kjeldahl digestion and distillation procedure
(Bremner & Keeney, 1965); plant-available phosphorus
(P, in micrograms per gram) determined colorimetrically
with HCLNH4F mixture (Bray’s No. 1 extract) by ascorbic
reduction (Bray & Kurtz, 1945; Olsen & Sommers, 1982);
and potassium (K, in centimoles per kilogram) determined
with 1.0 M ammonium acetate (NH,OAc) by flame pho-
tometry. To obtain soil bulk density (BD, in grams per
cubic centimeter), additional soil samples (0-15 cm depth)
were taken at the same locations using a 5-cm-diameter
soil ring. These samples were oven-dried at 105°C for up to
120 h and weighed. BD was calculated as the dry soil mass
divided by the volume inside the ring (295 cm?®). The mean
BD per plot was then calculated by averaging the value
per plot.

In 2023, soil cores were taken with the same soil ring
to collect fine roots and estimate the SOM (in percentage)
to a depth of 15 cm. Because in many places rocks were
present beyond 15 cm soil depth, sampling was limited to
this depth. Additionally, this is the depth at which SOM
is most strongly affected by litter production (Feng
et al., 2019) and thus changes most rapidly during succes-
sion (van der Sande et al., 2022). To account for spatial
heterogeneity, for each plot, eight samples were taken for
fine root biomass and four samples for SOM. SOM was
determined by the modified dichromate oxidation
method of Walkley-Black (Nelson & Sommers, 1983).

Root samples were processed following the standard
protocol (Freschet et al., 2021). Root samples were prop-
erly washed after soaking them in water for up to 24 h,
then sieved with a 0.25-mm mesh sieve, and oven-dried
at 65°C for 48 h. Samples were then separated into fine
(<2 mm diameter) and coarse (>2 mm) roots, which
were weighed separately. We only used the data of fine
roots for the analysis. Both fine root biomass and SOM
were scaled to tons per hectare in the 15 cm topsoil to
compare values with AGBjjying and AGBgeaq (also in tons
per hectare) and to estimate the total biomass stocks.
More details about the collection and analysis of SOM
and fine root biomass can be found in Appendix S2.

Leaf and stem traits

To describe dominance-weighted community func-
tional properties, we followed standardized protocols
(Pérez-Harguindeguy et al., 2013). We measured four leaf
traits (LNC [in milligrams per gram], leaf phosphorus
concentration [LPC, in milligrams per gram]|, leaf mass
per area [LMA, in grams per square centimeter], and leaf
dry matter content [LDMC, in grams per gram]) and one
stem trait (WD, in grams per cubic centimeter). LNC and
LPC are important for plant metabolism (Ellsworth &
Reich, 1996; Evans, 1989). LMA and LDMC are important
for leaf defense against biophysical hazards and therefore
increase leaf lifespan (Kitajima & Poorter, 2010). WD is
important for vertical growth and wood defense (Poorter
et al., 2010).

For leaf traits, we measured 65 species in dry forests
and 104 species in wet forests that covered on average
95.0% of the basal area in each plot in dry forests (range
81.9%-99.2%) and 98.5% (91.7%-99.9%) in wet forest. For
each species, leaf traits were measured for two sunlit
leaves of four or five individuals with a height between
1 and 8 m and a diameter at 30 cm height between 1 and
10 cm (Matsuo, van der Sande, et al., 2024), which is a
typical size range in early succession. As leaf traits can
be highly plastic in response to irradiance (Poorter
et al., 2019), we selected all trees under similar “optimal”
high-light growing conditions.

For WD, we collected the data for 77 species in dry
forests and 75 species in wet forests, covering on average
97.6% (range 93.7%-99.9%) in dry forests and 97.9%
(range 91.2%-99.9%) in wet forests. For each species, WD
was measured from three individuals. WD was based on
wood cores (4.3 mm diameter), using an increment borer
(Haglof Sweden, Langsele, Sweden), or stem slices for
species with small stems. For stem slices, the fresh vol-
ume, including the bark, was determined with the water
displacement method. WD was calculated as oven-dried
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mass (at 80°C for 48 h) divided by the fresh volume. This
measurement was taken in the study area for 61 species
studied; data on WD for the remaining species were
taken from the WD database in Ghana (Djagbletey
et al., 2020). More details about trait measurements can
be found in Appendix S3.

Forest attributes

We assessed three types of forest attributes: structural,
taxonomic, and functional attributes of the forest. As
structural attributes, we calculated tree density (N, in
numbers per hectare) indicating how densely packed
trees are in a given forest stand; maximum tree size
(dbhy,.y, in centimeters) expressed as 5th percentile larg-
est dbh of tree individuals since larger trees store and
accumulate more above- and belowground biomass than
smaller individuals (Kenzo et al., 2009; Stephenson
et al., 2014); and stand basal area (BA, in square meters
per hectare), which is closely related to the total leaf area
(Lehnebach et al., 2018; Shinozaki et al., 1964).

We calculated three taxonomic attributes: species
richness per plot, rarefied species richness per 150 indi-
viduals, and species evenness. Species richness per plot
is the absolute number of species and is thus indepen-
dent of species abundance. Rarefied species richness is
the number of species observed when a certain number
of trees are randomly drawn from a plot (Chao &
Chiu, 2016). Such rarefaction removes the confounding
effect of tree density on species richness. Hence, rare-
fied species richness increases both with absolute spe-
cies richness and with species evenness per plot
(Appendix S4: Table S1), and thus serves as the mea-
sure of diversity. For rarefied richness, we used
150 individuals, as this is the minimum number of
individuals found in all plots in 2022 and 2023. Species
evenness is a measure of how evenly tree species are
abundant (Help et al., 1998). We calculated species
evenness based on Hill numbers because they have
been developed as a mathematically coherent family of
indices that only differ by the sensitivity to species’ rel-
ative abundances (Chao et al., 2014). Hence, species
evenness was calculated as the non-transformed
Shannon diversity divided by the absolute species rich-
ness per plot.

As functional attributes, we calculated the CWM for
each trait (i.e., representing the trait value of an
average-sized tree species in the community), by multi-
plying each species’ trait value by its relative dominance
in the plot (in terms of basal area) and then summing all
species occurring in the plot (Equation 6; Lohbeck
et al., 2015).

N
CWM= > w;Xx; (6)
i=1

L

where w; is the relative basal area of species i based on
the total basal area of species with trait data, x; is the trait
value of species i, and S is the total number of species
with trait data.

Statistical analyses

To understand how environmental conditions and forest
attributes determine forest biomass pools and productiv-
ity, structural equation modeling (SEM, as implemented
in the R package Lavaan, Rosseel, 2012) was used to
relate, causally and hierarchically, environmental condi-
tions, forest attributes, and forest biomass pools or pro-
ductivity. Our a priori conceptual model (see Figure 1)
was based on existing knowledge of this study system
and previous studies in tropical old-growth forests
(e.g., Finegan et al., 2015; Poorter et al., 2017). Although
the variation in stand age is relatively small among plots
(less than 1.5 years), we included stand age as an envi-
ronmental condition because it captures several envi-
ronmental conditions (e.g., understory irradiance),
which might change with vegetation development dur-
ing succession (Matsuo et al., 2021, 2022). To reduce the
number of potential models, we selected two soil vari-
ables (soil N and P) based on the standardized effect size
and collinearity in a series of linear models. In the
models, each forest attribute served as a response vari-
able, with macroclimate, stand age, and six soil variables
(sand, pH, soil N, P, K, and BD) as predictor variables.
For functional attributes, we used a subset of traits
based on their relevance. For AGBiiying, AGBgeaq, and
productivity, we used LMA, LNC, LPC, and WD because
they determine tree biomass growth rates. Low LMA
indicates an efficient biomass investment per unit leaf
area to capture light, whereas LNC and LPC increase
photosynthetic capacity (Finegan et al.,, 2015). Low
WD increases stem hydraulic conductivity, photosyn-
thetic carbon gain, and volumetric growth capacity, and
decreases stem mass (Poorter et al., 2010; Reich, 2014).
For litter production, we used LNC, LPC, LMA, and
LDMC. LNC and LPC increase leaf turnover rate
(Reich, 2014; Wright et al., 2004) and therefore increase
litter production rates, while LMA and LDMC increase
leaf longevity (Onoda et al., 2017) and therefore reduce
leaf abscission and litter production rates. For fine root
biomass, we used LNC, LPC, LMA, and LDMC. High
LNC and LPC indicate high root nitrogen concentration,
which may increase root turnover rate and reduce
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fine root biomass (Terzaghi et al., 2013; Westoby &
Wright, 2006). In contrast, high LMA and LDMC indi-
cate high root tissue density and thus root longevity,
which could increase the residual time of fine roots and
thus fine root biomass (Kramer-Walter et al.,, 2016;
Sierra Cornejo et al., 2020). For SOM, we used LNC,
LPC, LDMC, and WD. High LNC and LPC can supply
nutrients to microbial decomposers and thus facilitate
their activities, which could increase decomposition
rates and facilitate carbon transfer from living organs
and litter to the soil (Enriquez et al., 1993). Meanwhile,
high LDMC and WD exhibit strong resistance to decom-
poser organisms and thus decrease the rates of decom-
position and carbon transfer (Freschet et al., 2012).

We made a series of SEMs for each of our six response
variables (AGBiiying, AGBgeaq, fine root biomass, SOM,
aboveground productivity, and litter production), as they
can be driven by different environmental conditions and
forest attributes. This produced 72 alternative models for
each response variable (2 soil properties X 3 structural
attributes X 3 taxonomic attributes X 4 functional attri-
butes). We additionally made a series of SEMs for total
biomass stocks (the sum of AGBjjying, AGBgcaq, fine root
biomass, and SOM, in tons per hectare), and for total
AGB productivity (the sum of AGB productivity and litter
production, in tons per hectare per year) to identify the
general drivers of biomass stocks and productivity. For
model selection, we initially rejected all models with a
significantly poor fit (p < 0.05 from the chi-squared test).
Subsequently, we selected the best-fitting models based
on the absolute R? of the response because we aimed to
understand the drivers of forest biomass pools and pro-
ductivity. All data analyses were conducted using the sta-
tistical package R (version 3.4.0; R Foundation for
Statistical Computing, Vienna, Austria).

RESULTS

After three years of succession, on average, the wet forest
exhibited significantly higher values than the dry forest for
AGBiiying (31 vs. 21 t ha™), AGBgeaq (0.4 vs. 0.06 t ha™),
aboveground productivity (11.0 vs. 6.5 t ha™'year™),
and litter production (7.3 vs. 6.1 t ha~' year ). In con-
trast, fine root biomass (3.7 vs. 5.1 t ha™') and SOM
(80.3 vs. 73.2 t ha™') were not significantly different
between wet and dry forests (Appendix S4: Table S2,
Figure S1). On average, 70% of total biomass was stored in
the upper 15 cm of the soil (wet forest [WF] = 68, dry
forest [DF] = 74%), followed by 25% in aboveground living
biomass (WF = 29, DF = 21%), 4.3% in fine root biomass
(WF = 3.5, DF = 5.2%), and less than 0.5% in above-
ground dead biomass (Table 1).

TABLE 1 The average percentage of aboveground living
biomass, aboveground dead biomass, fine root biomass, and soil
organic matter relative to total biomass (i.e., the sum of these
components), along with their SE, in all forest types, dry forests,
and wet forests.

Forest type and response variable Average SE
All forests
Aboveground living biomass 25.2 1.5
Aboveground dead biomass 0.2 0.07
Fine root biomass 4.3 0.4
Soil organic matter 70.3 1.5
Wet forests
Aboveground living biomass 28.7 2.2
Aboveground dead biomass 0.3 0.1
Fine root biomass 3.5 0.5
Soil organic matter 67.5 2.5
Dry forests
Aboveground living biomass 21.3 1.4
Aboveground dead biomass 0.06 0.01
Fine root biomass 5.2 0.5
Soil organic matter 73.5 1.3

To evaluate our conceptual model (Figure 1), we
developed one SEM for total biomass stock (Figure 2a),
one for total AGB productivity (Figure 2b), and one for
each of the six compartments of biomass pools and pro-
ductivity (Figure 3).

The best models explained, on average, 57% of the
variation in response variables, ranging from 34% for
fine root biomass to 99% for AGBjying (Appendix S4:
Table S3). Wet forests (i.e., “climatic wetness” effect)
exhibited significantly higher values than the dry for-
est for stand basal area and tree density but lower
values for rarefied species richness, CWM WD, and
CWM LNC (Figure 3). Stand basal area was higher in
older forest stands, while other structural, taxonomic,
and functional attributes did not vary significantly
with the small range of stand age (2.3-3.6 years)
considered in this study. Both species richness and
rarefied species richness increased with soil N, but
none of the forest attributes was significantly affected
by soil P.

Total biomass was positively affected by all forest
attributes (tree density, rarefied richness, CWM LNC)
and two environmental conditions (climatic wetness and
soil P) (Figure 2a,c). Total biomass productivity was
mostly driven by forest attributes and increased with
stand basal area and decreased with species richness and
CWM WD (Figure 2b,d).
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FIGURE 2 Structural equation models (SEM) for (a) total biomass stock (the sum of aboveground living biomass, aboveground dead
biomass, fine root biomass, and soil organic matter, in tons per hectare); (b) total aboveground biomass productivity (the sum of

aboveground biomass productivity and annual litter production, in tons per hectare per year); and bar graphs showing beta coefficients of

each factor on (c) total biomass stock and (d) total aboveground biomass productivity based on (a) and (b). Direct and indirect effects of

environmental conditions (climatic wetness, stand age, and soil nutrients) and direct effects of structural attributes (i.e., tree density or stand

basal area), taxonomic attributes (i.e., species richness per plot or rarefied species richness per 150 stems), and functional attributes (i.e., a

community-weighted mean [CWM] leaf nitrogen concentration [LNC] or wood density [WD]) were evaluated. In (a) and (b), for all

significant relations (continuous black arrows), the beta coefficient and significance level are given (*p < 0.05, **p < 0.01, ***p < 0.001), and

for all nonsignificant relations (gray, dashed arrows), no statistics are shown. R? values show the explained variance of the response

variables. In (c) and (d), the filled bars show the direct effects of environmental conditions and forest attributes, and the hatched bars show

the indirect effects of environmental conditions. For more statistics on the structural equation models, see Appendix S4: Table S3.

AGBjjving Was positively affected mainly by forest
attributes (stand basal area, rarefied richness, CWM
WD) and stand age. AGBg4eaq increased with climatic
wetness and CWM WD (Figure 3a,b). Litter production
and SOM both increased with soil P and forest structure
(tree density). In addition, litter production increased
with climatic wetness, while SOM increased with rare-
fied richness but decreased with stand age (Figure 3d,f).
Fine root biomass increased with diversity (rarefied
richness) and soil P, whereas aboveground productivity
was only driven by forest attributes, increased with
structure (stand basal area), and decreased with species
richness and CWM WD (Figure 3c,e). Beta coefficients
of direct and indirect effects of environmental condi-
tions and forest attributes based on the best models of
SEMs are summarized in Figure 4, and bivariate
scatterplots for all relationships used in the SEMs are
shown in Figure 5.

DISCUSSION

We evaluated how environmental conditions and forest
attributes determine productivity and biomass pools in
different above- and belowground compartments at the
onset of succession in dry and wet forests. The main find-
ings are that: (1) the majority of ecosystem forest biomass
was stored in the soil (70%) and to a lesser extent in the
aboveground vegetation (25%); (2) environmental condi-
tions and forest attributes similarly contributed to total
biomass stocks, as total biomass stocks increased with cli-
matic wetness, soil fertility (phosphorus), structural attri-
butes (tree density), species diversity (rarefied richness),
and functional trait composition (CWM LNC); and (3) cli-
matic wetness and structural attributes (stand basal area)
strongly increased total AGB productivity. Below, we dis-
cuss the underlying mechanisms and implications for
tropical forest restoration and climate change mitigation.
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Structural equation models for (a) aboveground living biomass (AGBijying, in tons per hectare), (b) aboveground dead

biomass (AGBgeag, in tons per hectare), (c) fine root biomass in the top 15 cm of the soil (fine root, in tons per hectare), (d) soil organic

matter in the top 15 cm of the soil (SOM, in tons per hectare), (e) aboveground biomass productivity (productivity, in tons per hectare per

year), and (f) litter production (in tons per hectare per year). Direct and indirect effects of environmental conditions (climatic wetness, stand

age, and soil nutrients) and direct effects of structural attributes (i.e., tree density or stand basal area), taxonomic attributes (i.e., species

richness per plot or rarefied species richness per 150 stems), and functional attributes (i.e., a community-weighted mean [CWM] leaf

nitrogen concentration [LNC], leaf mass per area [LMA], or wood density [WD]) were evaluated. For all significant relations (continuous

black arrows), the beta coefficient and significance level are given (*p < 0.05, **p < 0.01, ***p < 0.001), and for all nonsignificant relations

(gray, dashed arrows), no statistics are shown. R? values show the explained variance of the response variables. For more statistics on the

structural equation models, see Appendix S4: Table S3.

Forest attributes are most strongly affected
by macroclimate

Overall, climatic wetness was most often significant and
the strongest driver of all forest attributes. Stand age
increased only stand basal area and soil N increased only
species richness (Figure 3).

Structural attributes

As hypothesized, we found that stand basal area and tree
density were higher in wet forests (Figure 3) because of
more productive environmental conditions (cf. Rozendaal
et al., 2017). Although the variation in stand age among
plots is small (less than 1.5 years), stand basal area still
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FIGURE 4 Beta coefficients of environmental conditions (climatic wetness, stand age and soil nutrients) and forest attributes

(structural, taxonomic and functional attributes) on six compartments of biomass pools and productivity: (a) Aboveground living biomass

(in tons per hectare), (b) aboveground dead biomass (in tons per hectare), (c) fine root biomass in the top 15 cm of the soil (in tons per

hectare), (d) soil organic matter in the top 15 cm of the soil (in tons per hectare), (¢) aboveground biomass productivity (in tons per hectare

per year), and (f) litter production (in tons per hectare per year) based on the best models in structural equation models (Figure 3). The filled

bars show the direct effects of environmental conditions and forest attributes, and the hatched bars show the indirect effects of

environmental conditions.

increased with stand age (Figure 3a,b,e), reflecting the fast
pace of tree growth and forest stand development in early
successional tropical forests.

Taxonomic attributes

We hypothesized that species richness was larger in the
wet than in the dry forest because of a larger regional
species pool, but found that richness per plot did not dif-
fer significantly between the forest types, and rarefied
species richness was even lower in wet forests than in
dry forests (Figure 3). Rarefied richness generally
increases with species evenness, because even abun-
dances increase the chance of randomly selecting more
species (Appendix S4: Table S1). Because wet forests had
lower evenness (Appendix S4: Figure S1) due to the
strong dominance of fast-growing species and a longer
tail of rare species (Rozendaal et al., 2019; van der Sande
et al., 2024), this may lead to a lower rarefied richness in
wet forests. Soil nutrients had surprisingly little effect
on forest structural and functional attributes (Figure 3).

Soil N only increased species richness and rarefied rich-
ness likely because low soil N indicates strong depletion
during intense previous land use. Consequently, such
severely degraded land may limit the number of species
that can regenerate (Jakovac et al., 2016).

Functional attributes

We hypothesized that the wet forest would have a higher
abundance of species with acquisitive trait values
(e.g., high LNC and low WD) than the dry forest because
of a more productive environment. Partly in line with
our hypothesis, we found that both community WD and
LNC were higher in dry forests (Figure 3), probably
reflecting species adaptations to drought. High WD is
associated with high cavitation resistance and therefore
allows continued stem water transport during drought
(Markesteijn et al.,, 2011; Pineda-Garcia et al., 2013).
High LNC increases Rubisco concentration, which draws
down CO, concentration inside the leaves. This allows
plants to increase photosynthetic water use efficiency by
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FIGURE 5 Bivariate relationships of stand age, one soil nutrient (i.e., soil nitrogen [N] or phosphorus [P]), one structural attribute

(i.e., stand basal area or tree density), one taxonomic attribute (i.e., species richness per plot or rarefied species richness per 150 stems), and
one functional attribute (community-weighted mean [CWM] leaf nitrogen concentration [LNC], leaf mass per area [LMA], or wood density
[WD]) compared with aboveground living biomass (ABGi;ying, in tons per hectare), aboveground dead biomass (ABGgeag, in tons per

hectare), fine root biomass in the top 15 cm of the soil (fine root, in tons per hectare), soil organic matter in the top 15 cm of the soil (SOM,

in tons per hectare), aboveground biomass productivity (productivity, in tons per hectare per year), and litter production (litter, in tons per

hectare per year) in tropical dry (orange) and wet (blue) forests. The chosen environmental variables and forest attributes were the ones that

were selected in the best model in the structural equation models (Figure 3). Note that these bivariate relationships are for illustration

purposes only and may not necessarily provide the same results as in the structural equation models.
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reducing their stomatal aperture while maintaining
similar assimilation rates (Onoda et al., 2017; Querejeta
et al., 2022).

Environmental conditions and forest
attributes determine biomass pools and
productivity

We hypothesized and found that all environmental con-
ditions and forest attributes affected biomass productivity
and pools in different compartments, but the direction
and strength of their effects varied among compartments
(Figures 3 and 4). For environmental conditions, climatic
wetness and soil phosphorus emerged as the most impor-
tant drivers. For forest attributes, stand basal area, tree
density, rarefied richness, and community WD emerged
as the most important drivers.

AGB and productivity

AGBjjying and productivity were mostly driven by forest
attributes, whereas AGBgc,q Was driven by both environ-
mental conditions and forest attributes (Figure 3a,b,e).
AGBijying increased with stand basal area because larger
trees store more biomass (Poorter, van der Sande,
et al., 2015), and also increased with community WD
because of increased biomass per unit stem volume
(Finegan et al., 2015). AGBying additionally increased
weakly with species richness (Figure 3a), which could
indicate that higher diversity leads to more efficient
resource use complementarity and a greater chance to
include a highly productive species (Loreau, 1998;
Tilman, 1999). This ultimately should lead to a larger
standing biomass. Yet, in our case, productivity declined
with species richness probably because young tropical
forests are dominated by a few fast-growing pioneer spe-
cies that contribute the most to productivity (Lohbeck
et al., 2016). Hence, more diverse plots may contain more
shade-tolerant species with a slower growth rate, leading
to lower plot-level productivity but higher plot-level bio-
mass residence time through insurance effects, and thus
biomass stocks (Loreau et al, 2021). AGByying also
increased weakly with stand age probably because of
accumulated height growth over time (Matsuo, Bongers,
et al., 2024).

AGB productivity increased with stand basal area
(Figure 3e) because larger trees accumulate biomass
faster than smaller trees (Stephenson et al., 2014).
Productivity declined with community WD probably
because dense-wooded species tend to have narrower ves-
sels and pit pores, and therefore a lower hydraulic

conductivity, leaf stomatal conductance, and associated
photosynthetic carbon gain (Santiago et al., 2004). Yet,
these dense-wooded species have higher survival rates
(Poorter et al., 2010) and thus may still positively contrib-
ute to AGBjjying (Figure 3a).

AGBgeaq Was higher in wet forests possibly because of
the increased risk of biophysical hazards such as falling
branches, herbivory, and pathogens, which increases tree
mortality (Coley & Barone, 1996; Spear et al., 2015).
AGBgeaq Was higher in forest stands with high commu-
nity WD, probably because dense wood is more resistant
to wood decay, resulting in a longer residence time of
dead stems, and thus an accumulation of standing and
lying deadwood in the forest (Chave et al., 2009; Yang
et al., 2022).

Fine root biomass

Fine root biomass decreased with soil P probably because
on fertile soils plants need to allocate less biomass to
fine roots to acquire soil nutrients for their growth
(Figure 3c) (Maycock & Congdon, 2000; Wurzburger &
Wright, 2015). Fine root biomass increased with rarefied
richness perhaps because of more efficient packing of the
soil volume by roots (Brassard et al., 2013), although it
should be noted that fine root sampling was only
conducted in the top layer (0-15 cm), and thus comple-
mentary root packing is limited. Alternatively, low spe-
cies richness is related to low soil N, which indicates the
intense previous land use (Hordijk et al., 2024). These
intense previous land-use practices may not only deplete
soil nitrogen but also alter other soil characteristics, such
as soil structure and compaction, as well as soil microbial
community, which ultimately reduces fine root biomass
(Correa et al., 2019). Although we found these significant
effects on fine root biomass, the explained variation of
fine root biomass was the lowest (R? = 0.34) among all
compartments (average R?=0.57). To improve our
understanding of factors driving fine root biomass stocks,
future studies could include as predictors community
root traits, such as fine root diameter, root tissue density,
and specific root length (Bardgett et al., 2014; Zeng
et al., 2020).

Litter production and SOM

Litter production and SOM are driven by similar factors;
they increased with soil P and tree density (Figure 3d,f).
On fertile soils and in wetter climates, litter production
is greater likely because of (1) higher overall productivity
(Figure 5e) (van der Sande, Arets, et al., 2017), and thus
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leaf and branch production rates; and (2) stronger com-
petition for light than for nutrients, resulting in higher
biomass allocation to stem, branches, and leaves
(Chakravarty et al., 2019). Similarly, litter production
increased with tree density probably because of
(a) efficient spatial crown packing among different-sized
individuals (Hardiman et al., 2011), and (b) abundant
smaller individuals that allocate proportionally more
biomass to their leaves than large individuals (Poorter,
Jagodzinski, et al., 2015). Increased litter production
may, in turn, lead to higher SOM (Appendix S4:
Figure S2) (Feng et al, 2019; Giweta, 2020).
Furthermore, soils with high P concentration may
exhibit faster decomposition rates of deadwood and lit-
ter, accompanied by increased biopedturbation from soil
fauna, resulting in a faster carbon transfer to the soil
(Prescott & Vesterdal, 2021). It is important to note that
a fertility-driven increase in metabolic activity of decom-
poser communities may also increase carbon release
into the atmosphere through elevated respiration rates,
thus reducing SOM (Curiel Yuste et al.,, 2007). SOM
additionally increased with species richness perhaps
because a larger diversity of species increases the chance
of including a species with slowly decomposable litter.
This in turn increases the recalcitrant organic carbon
and favors more microorganisms, thereby facilitating
carbon transfer (Freschet et al., 2012; Garcia-Palacios
et al., 2016). Stand age had, independently from forest
attributes, a negative effect on SOM, perhaps because
previously cultivated cassava and corn have high pro-
ductivity and turnover of leaves and fine roots, facilitat-
ing the rapid carbon accumulation in the soil during the
active agricultural land use (Oldfield et al., 2019). After
land abandonment, these organic materials further
decompose and are released into the atmosphere
through respiration. This leads to a reduction in SOM,
though this is partly compensated for by the SOM
derived from superficial tree roots and litter fall from
regenerating forests.

The importance of environmental conditions
and forest attributes

While climatic wetness exhibits limited direct effects on
biomass pools and productivity, its overall contribution is
substantial through indirect effects by shaping various for-
est attributes (Figures 3 and 4). In contrast, soil nutrients,
especially soil P, have little effect on forest attributes but
exhibit the most significant direct effect on biomass pools
and productivity (Figures 3 and 4), highlighting the
importance of the independent role of soil nutrients on
ecosystem functioning. Besides commonly considered

structural attributes, such as maximum tree diameter and
stand basal area (Ali et al., 2019), we found that tree den-
sity plays a pivotal role, especially in litter production and
SOM. This emphasizes the importance of smaller individ-
uals and efficient crown packing for biomass turnover
and accumulation in the soil in early successional forests.
Rarefied species richness affected more response variables
than species richness per plot (Figure 3), indicating that
not only the number of species but also their
even distribution of abundance affects ecosystem func-
tioning (Hordijk et al., 2023). This is because species with
different traits can contribute more to ecosystem function-
ing when they have a similar abundance (Lohbeck
et al., 2016). Lastly, our stem trait (WD) affected more
response variables than leaf traits (Figure 3), reflecting
the fact that in forests the majority of AGB is stored in
stems rather than in leaves (Poorter, Jagodzinski,
et al., 2015).

Implications for forest restoration

Growing evidence underscores the potential of natural
regeneration as a low-cost strategy to achieve ecosystem-level
carbon accumulation and stocks for global strategies and
initiatives, such as ecosystem restoration (https://www.
decadeonrestoration.org), land restoration (https://www.
unccd.int/land-and-life/drought/toolbox/land-restoration),
climate change mitigation projects (https://www.bonn
challenge.org), and climate neutrality (https://climate.ec.
europa.eu/eu-action/climate-strategies-targets/2050-long-
term-strategy_en). Our study demonstrates that overall,
tropical secondary forests rapidly recover and accumulate
carbon in different compartments of the vegetation and
soil, yet recovery rates could vary due to coarse- and
fine-scale variations in climatic and edaphic conditions.
Based on the results of this study, implementing natural
regeneration is especially recommended in (1) wet forests
due to high AGB productivity through rapid structural
development, which results in high AGB stocks; and (2) on
fertile soils because high soil P can directly increase SOM
by enhancing litter production and decomposition.

CONCLUSIONS

Macroclimate strongly shapes forest attributes, which in
turn determine biomass pools and productivity. Soil
nutrients, especially soil P, strongly drive ecosystem func-
tioning (in three out of the six evaluated cases). This sup-
ports the notion that soil P is the most limiting soil
nutrient for tropical ecosystems growing on strongly
weathered soils (van der Sande, Arets, et al., 2017,
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Vitousek et al., 2010). Structural attributes, such as stand
basal area and tree density, strongly enhance different
compartments of biomass pools and productivity. Species
diversity and a more conservative trait composition
increase forest biomass pools, while they decrease pro-
ductivity, suggesting that both quantity and the identity
of species determine ecosystem functioning. Future
research can further explore these relationships to gain a
holistic understanding of how ecosystem functioning
recovers during forest succession along climatic and
edaphic gradients.
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