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Cell walls can confer amazing properties to plant cells, particularly if they have complex
patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell
shapes, whereas in the secondary cell wall they lead to advanced material properties that
prepare cells for mechanically demanding tasks. Not surprisingly, many of these struc-
tures are found in water transporting tissues. In this review, I compare the mechanisms
controlling primary and secondary cell wall patterns, with emphasis on water transporting
tissues and insights derived from modeling studies. Much of what we know about this is
based on complex cell shapes and primary xylem patterns, leading to an emphasis on
the Rho-of-plants — cortical microtubule — cellulose microfibril system for secondary
cell wall patterning. There is a striking diversity of secondary cell wall patterns with
important functional benefits, however, about which we know much less and that may
develop in substantially different ways.

Introduction
If plants were man-made machines, their cell walls would be said to consist of fancy metamaterials:
materials in which not only the chemical properties of the constituents, like cellulose, but primarily
their physical arrangement into microscopic structures determines their physical properties. Through
controlling cell wall structure, cell walls can be adjusted to a wide range demands with a relatively
small set of chemical constituents. These wonderful material properties, moreover, develop in-place
and according to local demands.
In this review, I will discuss some of the most fascinating cell wall structures, their function and

what we currently know about how they are formed.

The cell wall
Plant cell walls consist of multiple layers (Figure 1; [2–4]). Typically, the formation of the cell wall
starts during cytokinesis with the cell plate, which completes cell division [5]. Subsequently, the wall
is modified and thickened through the deposition of additional materials between the plasma mem-
brane and existing wall [5]. From outside to inside, a mature cell wall consists of a pectin rich middle
lamella that glues neighboring cells together [6]; a primary cell wall that mainly consists of cellulose
microfibrils (CMFs), embedded in a matrix of pectins and hemicelluloses; and, depending on cell
type, a secondary cell wall rich in CMFs, hemicelluloses and the more hydrophobic lignin. Plant cells
grow through the plastic (i.e., irreversible) extension and simultaneous assembly of the primary cell
wall [7]. The much thicker secondary cell walls do not allow for extension, and are typically produced
when cells have nearly or completely stopped growing. Additional proteins and polymers like callose
and suberin further modify local cell wall properties [2–4]. For more details on the chemical compos-
ition of the (primary) cell wall and its dynamic regulation, see [4, 8, 9]. For a detailed review on the
structure of secondary cell walls, see [1, 2].
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CMFs, the main load-bearing component of the wall, control the direction of anisotropic expansion of
primary cell walls if they are deposited in highly aligned layers (Figure 3). In isotropically expanding cell wall
sections, however, the CMFs are much less aligned [7]. By varying the cellulose anisotropy and the local degree
of (irreversible) cell wall expansion, many complex cell shapes can be formed (Figure 3A; [3, 7]). Where the
CMFs are deposited and with which orientation, is primarily guided by the cortical microtubule array
(Figure 1C; [2, 10–12]).
The cortical array is found in most interphase cells and consists of dynamic microtubules (Figure 2A) that

are attached to the inside of the cell membrane. These microtubules can self-organize into highly aligned struc-
tures through the frequent collisions they have among themselves and their angle-dependent outcomes
(Figure 2B,C) [14, 15, 20]. Contrary to animal systems, the microtubules of the cortical array are not nucleated
from a single microtubule organizing center, but nucleation occurs distributed throughout the array and pre-
dominantly from existing microtubules [23, 24]. Theoretical studies have clearly demonstrated that the details

(A)

(B)

(C)

Figure 1. Cell wall structure and construction.

(A) Example of a thick (tracheid) cell wall. The cell wall fully surrounds the cell, but only part of it is drawn. (B) This cell wall

consists of multiple layers. Only a small part of the secondary cell wall of the right cell is depicted. The mature secondary cell

wall consists of three layers (S1, S2, S3, indicated with different shades of magenta) that can be recognized using polarized

light due to the different main orientation of the cellulose microfibrils (CMFs) (indicated by yellow double headed arrows) [1]. (C)

Deposition of cell wall materials. Vesicles (V) deliver various materials via exocytosis (dependent on the actin cytoskeleton; not

drawn). CMFs add anisotropic mechanical properties to the cell wall and are deposited by cellulose synthase complexes

(CSCs). These CSCs are propelled by the polymerization of the CMFs and tend to follow cortical microtubules that reside on

the cytoplasmic side of the plasma membrane. CSCs in primary and secondary cell walls are composed of different subunits,

and show different CMF polymerization rates [2].
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(A) (B)

(C)

Figure 2. Dynamics of cortical microtubules determines their spontaneous alignment. Part 1 of 2

(A) Individual microtubules grow through polymerization at their ends, particularly the plus-end (+). They frequently switch

between the growing and shrinking state. These transitions are called ‘catastrophe’ and ‘rescue’. The minus-end (–) is less

dynamic and shows net retraction [13] (once released from the nucleation complex by katanin severing). (B) Being confined to

the cell cortex, cortical microtubules interact via frequent collisions. The outcome of such collisions depends on the relative

angle: bundling, continued growth along the obstructing microtubule, for angles less than +40�; crossover (continued growth)

or induced catastrophe for larger angles [14]. Induced catastrophes confer a direct penalty to microtubules growing against the

majority orientation. This reduces the life time of such microtubules and is the main driver of spontaneous alignment. This

mechanism is called ‘survival of the aligned’ [15]. Crossovers are subject to katanin severing. The probability of ‘immediate’

rescue of the newly formed plus-end can be tuned and determines the impact of katanin [16]. *: With static minus ends,

bundling is a neutral interaction [17]. With retracting minus ends, however, it contributes to increased alignment [18]. (C) Sketch

of bifurcation diagram based on Deinum et al. [16]. G on the horizontal axis is a so-called control parameter that collapses the

dynamic parameters of individual microtubules to a single number. As G increases, the number of interactions per microtubule

life time increases (see [19, 20] for more explanation). S2 on the vertical axis, an order parameter from polymer physics,

quantifies the degree of alignment from 0 (isotropic) to 1 (perfectly aligned). With sufficient interactions, the cortical

microtubules will spontaneously align (towards the right of the diagram). Crossovers are themselves neutral, but are subject to

crossover severing by katanin, which primarily affects the latest arriving microtubule. In the common case that the newly
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of cortical microtubule nucleation have profound influence on array behavior, including its orientation, homo-
geneity and potential to adopt special patterns [20, 25–28]. The organization of the cortical array can change
dramatically while cells develop, e.g., reorient when seedlings emerge above ground [21], or during stomatal
guard cell development [29].

Structures in the cell wall
Complex structures in the cell wall have profoundly different effects, depending on whether they occur in the
primary or secondary cell wall (Figure 3). Through localized enzyme action and excretion of cell primary wall
materials, cells can control where they expand, whereas cell wall stiffening and the aligned deposition of CMFs
can locally constrain and orient expansion (Figure 3A). These principles form the basis of many complex cell
shapes like puzzle shaped (leaf ) epidermal cells [35–39], trichomes with multiple branches [30], or tip growing
pollen tubes and root hairs [40–42], the latter of which may branch [31] or curl (in response to nodulation
factors) [43, 44]. The dynamic changes in cell shape may feed back on the systems that pattern the secretion of
wall materials. Patterns in primary cell wall structure can, moreover, guide turgor driven, reversible cell defor-
mations, enabling, e.g., opening and closing of stomatal guard cells [29, 45, 46] and bending of Mimosa pudica
leaves/leaflets upon touch, at a specialized organ, the pulvinus (Figure 3B) [32].
In case of patterned secondary cell wall reinforcements (Figure 3C1–C4), cells typically do not change shape

during the patterning process and possibly not even grow. The best studied example of this is the formation of
primary xylem patterns in angiosperms. While the cells themselves maintain a relatively simple, near cylindrical
geometry, their cell walls show banded/spiral (protoxylem: Figure 3C1) or net-like/gapped (metaxylem:
Figure 3C2) patterns of cellulosic deposits that are later lignified. These different patterns reflect different mech-
anical requirements. Protoxylem matures earlier during root development, when the tissue still elongates,
whereas metaxylem is inextensible but supports wider vessel diameters [2, 47]. Carlquist [48] presents an inter-
esting overview of functional differences between gymnosperm earlywood and latewood that are formed during
different phases of the growth season and how the varying challenges on water transport are solved with adap-
tations at the vessel level, including different cell wall patterns/structures. Additionally, a variety of structures
on the walls of water transporting tissues is thought to enhance drought resistance, from ‘pegged rhizoids’ in
liverworts (Figure 3C5) [34] to small scale surface roughness of various patterns on xylem walls [49]. The latter
is called wall sculpturing. Wall sculptures occur more frequently in temperate than in tropical trees [50]. It is
thought to increase the resistance to embolism via increasing the wettability of the surface (an opposite ‘lotus
effect’) [49, 51, 52]. Such sculpturing occurs in various patterns, including small ‘warty’ protrusions and helical
thickenings that occur on the inside of pitted vessel walls (Figure 3C3,C4; [52, 53]). Besides these key examples,
an even wider diversity in secondary cell wall patterns exist. For a more elaborate review, see [2].

Plasmodesmata: neglected aspect of cell wall mechanics
and structure
Almost all cell walls separating neighboring cells contain holes in the form of plasmodesmata (PDs), narrow
channels that are critical for intercellular communication/exchange and normal development. The first
(primary) PDs are formed when the cell plate is deposited, but additional (secondary) PDs may be formed
later on [54]. PDs can have various structures and may be clustered in pit fields, particularly in interfaces that
sustain large fluxes through PDs [55, 56]. Cell walls surrounding PDs are enriched in callose, which is (also)
used to rapidly regulate PD aperture [56]. The presence of PDs locally disrupts the CMF organization,

Figure 2. Dynamics of cortical microtubules determines their spontaneous alignment. Part 2 of 2

formed plus-end starts in the shrinking state, severing turns crossovers into negative interactions, albeit weaker than induced

catastrophes and with a delay. This increases the parameter regime for spontaneous alignment (indicated with light yellow

shading between magenta and dashed cyan curve) [16]. If, however, the newly formed plus ends often undergo an ‘immediate’

rescue (blue curve, e.g., during blue light-induced reorientation [21], which depends on the protein CLASP [22]), the minority

direction could actually become amplified, shrinking (or abolishing) the aligned regime and leading to a rapid breakdown of the

existing aligned array. The light + dark yellow shaded area between the two katanin curves together indicate the parameter

regime in which temporarily increasing the fraction of rescues after severing can be employed to rapidly change the

array structure.
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(A)

(B)

(C)

Figure 3. Complex cell wall structures at multiple levels.

(A) Localized excretion of primary cell wall material and wall loosening enzymes, combined with local constraints on cell wall

expansion, leading to complex cell shapes through localized plastic wall deformation. A1: bulging of a trichoblast is the first

step in trichome or root hair formation [30, 31]; A2: tip growing root hair or pollen tube; A3: trichome/mutant root hair with

multiple branches; A4: legume root hair curling in response to nodulation factors produced by a Rhizobium sp. microcolony

(pink dot); A5: puzzle shaped leaf epidermal cell diffusely extending its lobes. (B) Structures in the primary cell wall supporting

reversible cell shape changes through fully elastic (i.e., reversible) deformations upon changes in turgor pressure. B1: (dicot)

stomatal guard cells in open (turgid: left) and closed (flaccid: right) state. Inhomogeneous cell wall thickness and anisotropy of

the CMFs facilitate opening and closure. B2: highly anisotropic Mimosa pudica pulvinus wall with co-oriented ellipsoid primary

pit fields. This structure facilitates rapid bending of the pulvinus. When the turgor pressure increases, the wall extends mainly

perpendicular to the CMF orientation [32]. (C) Many patterned cell wall structures, often secondary cell wall reinforcements

(pink), occur in relation to water transport. All these examples are deposited when cell growth has (almost) ceased. C1:

example (angiosperm) protoxylem: ringed pattern. After maturation and programmed cell death, these vessels can still be

extended. C2: example (angiosperm) metaxylem: pitted pattern. Mature vessels cannot be extended. Orthogonal detail C2a

shows overhanging borders/‘arches’ of bordered pits [33]. C3,4: so-called sculpturing of xylem walls. Note these patterned

depositions are placed on top of potentially patterned cellulosic secondary cell wall material. C3: warted pattern; C4: helical

pattern. C5: example of a liverwort’s pegged rhizoid. Density and shape of pegs (yellow) is highly variable within and among

species [34]. (A–C) Yellow double headed arrows indicate orientation of CMFs in cases where these are is highly anisotropic.
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particularly in case of pit fields [55]. Cell wall thickness may differ substantially within a cluster of PDs com-
pared to farther away [57]. This variation in thickness may help explain why PDs are often clustered, despite
the (mild) reduction of effective wall permeability this brings about compared to evenly spaced PDs [58].
Alternatively, the clustering may arise for developmental reasons [55]. Surprisingly little is known, however,
about the regulation of PD and pitfield distributions [59]. Rho-of-plants (ROPs) (see below) might be involved
[60, 61], although the (perpendicular) microscopy viewing angle in this study did not allow for appropriate
visualization of pit fields.
Although the mechanical impact of isolated PDs on the cell wall as a whole is typically ignored, pathogens

like rice blast fungus use PDs as weak spots in the cell wall for their intercellular spreading [62, 63].
Finite element calculations of wall mechanics of the legume pulvinus (Figure 3B2), however, show that PDs

clustered in pit fields could substantially impact wall mechanical properties: the ellipsoid primary pitfields, coa-
ligned with highly aligned CMFs, aid in rapid organ bending at the pulvinus [32, 64]. Curiously, these cells are
not elongated in shape, suggesting that the strong anisotropy of the CMFs may arise after cells reach their
mature size.

ROP system for local cell wall adaptation
ROP proteins1 are involved in diverse cases of cell wall patterning, with two well studied examples in Figure 4.
ROPs form a plant-specific subfamily of the Rho-GTPases that evolved early during streptophyte evolution
[65]. They are molecular switches that interact with various effectors when they are in their active state.
Additional protein families tune ROP activity: ROP activation and inactivation are promoted by guanine nucleo-
tide exchange factors (GEF) and GTPase-activating proteins (GAPs), respectively, and guanine nucleotide dissoci-
ation inhibitor (GDIs) take inactive ROP from the membrane to the cytosol. Many ROP effectors affect the
cytoskeleton and, through that, the localized deposition of cell wall materials [66–68]. Intracellular patterns of
active ROP can form through a reaction–diffusion mechanism, with diffusion of active ROP at the membrane
being slower than diffusion of inactive ROP [68–70]. This way, ROPs control cell shape, e.g., in tip growing
pollen tubes and root hairs [31, 42] and puzzle shaped leaf epidermal cells (Figure 4A) [35–37, 67]. Also
patterned secondary cell wall deposition in protoxylem and metaxylem is controlled via ROPs (Figure 4B) [71, 72].
Much more can be said about ROPs themselves. For recent reviews, see: ROP and GEF diversity [61],

the relation between mathematical models of ROP patterning and the molecular diversity in the different
components of the system [68], the role of nano-domains in ROP signaling [66, 67].

Nontrivial question: coexistence of many ROP peaks/clusters
The examples in Figure 4 have many active ROP clusters and pavement cells even develop additional clusters
as cell size increases [73, 74]. This is only possible with a ROP system that allows for the stable coexistence of
multiple clusters of active ROP [68, 75]. In the simplest mathematical models of small GTPases, however, the
stable solution is that all active GTPase ends up in a single cluster [68, 75]. This behavior was no problem in
the original context of cell polarization, but turned out problematic in describing occasional yeast cells with
multiple simultaneous budding sites and absolutely prohibited proper modeling of pavement cells and xylem
patterning. Ultimately, the behavior is independent of the number of ROPs involved [75] and originates from
the assumption of mass conservation: ROPs are only interconverted between states, but there is no protein
turnover. Much has been written about this problem (e.g., [68, 76]), and multiple solutions have been proposed
[69, 75, 77]. These solutions all have in common that the intrinsic competitive advantage of the largest cluster
is balanced by a disadvantage that increases with size, in other words: a balance between positive and negative
feedback [68, 75].

Complex cell shapes
Much is written about the development of complex cell shapes through the localized deposition of primary cell
wall materials and how this is coordinated with help of ROP proteins (see [42, 66, 78, 79] for some excellent
reviews).
Figure 4A shows a simplified description of the pavement cell, a widely used model system for cell shape. In

short, ROP proteins divide the cell into different zones, which via effectors (here: RIC4, RIC1) recruit different
cytoskeletal elements. In the actin zones, the cell wall materials and loosening enzymes are delivered to allow

1

ROPs are also called Rho-GTPases from plants.
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local expansion. In the microtubule zones, correlated CMF deposition stiffens the wall and may restrict the
orientation of cell wall expansion [42, 66, 78, 79]. This zonation in wall structures sustains a mechanical feed-
back mechanism that exaggerates the lobed cell shape, although recent evidence suggests that lobe initiation
itself starts with localized pectin stiffening or even mechanical buckling [38, 80, 81].
Pavement cells have their puzzle shape to increase mechanical stability of the tissue with multiple mechan-

isms proposed: preventing cell burst [74, 79], preventing tissue crack propagation [39] and reversible

(A)

(B)

Figure 4. ROPs contribute to complex cell shape and structured cell walls via partitioning the membrane into different

zones.

ROP and other protein numbers refer to Arabidopsis. (A) Consensus model of key players involved in pavement cell shape

development. Mutually inhibitory microtubule (MT) friendly (magenta) and actin friendly (yellow) zones are formed, in which the

ROP-interactive CRIB motif-containing protein (RIC) effectors promote the polymerization of the respective cytoskeletal

elements. The actin cytoskeleton aids the local delivery of primary cell wall materials and wall loosening enzymes, whereas

microtubules constrain expansion via controlling the orientation of new CMF deposition. Katanin is required to relay the effect

to microtubules (drawn as black lines). (B) Consensus model of the key players in metaxylem pit formation. AtROP11 recruits

MIDD1 and Kinesin 13A, which locally promote the depolymerization of microtubules. MAP70-5 (magenta circles) decorates

the microtubules at the pit boundary and reduces their persistence length.
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accommodation of mechanical stretching [82]. For this, the coordination of lobes and indents between neigh-
boring cells is at least as important as the shape of individual cells. This calls for a new generation of multi-
level models, adding auxin and interacting receptors TMK1 and ABP1/ABL1/ABL2, as well as mechanical
coupling between cells [66, 79, 83, 84].

Spotlight: the role of katanin in pavement cell morphology
Locally aligning cortical microtubules in lobes (downstream of ROP6 and RIC1) genetically depends on
katanin (KTN1 in Figure 4A) [85]. Katanin is also required for hyperalignment of the cortical array in pave-
ment cells under artificially increased mechanical stress [86, 87]. This microtubule severing protein [88, 89],
however, can act in different ways. Katanin preferentially severs at microtubule crossovers (Figure 2B), with a
preference for the later arriving microtubule, which most likely is on the exposed, cytoplasmic side of the cross-
over [21, 90]. Theoretical work shows that crossover severing increases the parameter regime of spontaneous
alignment, provided a large majority of the plus-ends formed through severing appears in the shrinking state
(Figure 2C). This difference creates a regime where loss of katanin severing results in reduced microtubule
alignment [16]. The fraction of rescues immediately following crossover severing can be increased by the
protein CLASP [22], to the point that microtubules of the minority orientation are amplified [91, 92] and align-
ment breaks down (Figure 2C). In this state, katanin actively contributes to array reorientation [21, 22, 91–93].
Indeed, array orientation is more stable in the clasp-1 mutant [22, 94]. Finally, the animal/in vitro literature
suggests that katanin may increase microtubule stability via making incomplete cuts that subsequently heal
with GTP-tubulin, leaving behind transient ‘rescue-sites’ [95–97]. This mechanism could potentially enhance a
specific subset of microtubules, e.g., those under tensile stress, but this needs further investigation.
Notably, the clasp-1 mutant shows hyperaligned arrays in pavement cells, with less deep indents/less pro-

nounced lobes, and their orientation more tightly aligned with the likely orientation of supracellular wall mech-
anical stresses [87]. With the above mechanisms in mind, this suggests that katanin’s contribution to pavement
cell morphology depends on the local induction of alignment via crossover severing, and that CLASP normally
dampens this effect by promoting rescues after severing (see also: [79]). Following frequent rescues after sever-
ing, the final orientation must be selected via some bias in microtubule stability [92]. Simulations by Smithers
[98] also demonstrate the importance of selectively stabilizing microtubules by orientation for reproducing the
typical pavement cell pattern.

Primary xylem
The influence of ROPs in primary xylem is best established for metaxylem (see also Figure 4B, [71, 99, 100]).
Much of what we know of the process is discovered via induction of the VND6 and VND7 transcriptional
master regulators, which induce ectopic metaxylem and protoxylem formation, respectively [101], and allow for
detailed study of the proteins involved in the outer surface of the epidermis or cell culture. In Arabidopsis
metaxylem, patches of active AtROP11 form, which recruit MIDD1 and Kinesin-13A, which in turn lead to
local depolymerization of microtubules [71, 99]. Simulations in the protoxylem context show that such local
‘hostile zones’ subsequently translate to an array with dense and sparse regions in accordance with the ROP
pattern [28, 102]. After the pattern is established in the cortical microtubule array, subsequent cellulosic sec-
ondary cell wall deposits occur in the microtubule dense regions, establishing the typical xylem cell wall struc-
tures [102].
Although it is intuitively assumed unlikely that protoxylem patterning is governed by completely unrelated

proteins, and striated ROP patterns have been observed in developing protoxylem [72, 103], protoxylem pat-
terning is genetically much harder to perturb, as, e.g., even the Atrop7/8/9 triple knockout still shows a banded
pattern in the protoxylem cell wall, albeit with an altered band–band spacing [72].
Whether ROPs also play a role in pegged rhizoid (Figure 3C5) wall structuring, however, is an open ques-

tion. Peg formation precedes cell death [104], but compared to the above understanding of xylem patterning,
there are several differences (based on Marchantia polymorpha [104]): (1) the pattern appears base-to-tip
[104], rather than simultaneously per cell as in protoxylem [102]; (2) the transcriptional regulation is not via
MpNAC5, the sole ortholog of the VND genes in the M. polymorpha, but ZHOUPI and ICE [104], which in
Arabidopsis regulate endosperm breakdown to make space for the developing embryo on the seed [105];
(3) RNAseq including Mpzou1 and Mpice1 mutants, which lack pegged rhizoids [104], and TEM analysis [34]
suggests a different balance of wall components including much less cellulose in pegs. Whereas the last point
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suggests the cortical microtubule/CMF module is not involved, the involvement of ROPs in peg positioning
remains an open question.
Similarly, little is known about the involvement of ROP patterning in wall sculpturing. The phenomenon is

widespread among gymnosperm and angiosperm woody species (e.g., [50, 53, 106]) and, hence, little studied
genetically. Enzymatic digestions of the warty layer in Cryptomeria japonica show that they consist of a (xyla-
nase digestable) arabino-4-O-methylglucuronoxylan core coated by lignin [107]. It is unclear to what extend
this result generalizes. The warts in this particular species are small, with a 200–300 nm spacing (both larger,
micrometer spaced warts and smaller warts also exist [52, 106]). From a geometrical consideration, such a
pattern seems ill compatible with what we know about CMF deposition. The formation of long, thin stripes for
helical sculpturing patterns, however, seems possible or even most easily executed with help of long fibrils. To
my knowledge, however, nothing is known about the chemical composition of helical sculptures. Overall, the
range of shapes and sizes of wall sculptures could imply that multiple different patterning mechanisms are
employed across species.

Linking ROPs and microtubules
The above summary of ROP patterning in primary xylem may suggest that microtubules merely follow the
ROP pattern. Theoretical work shows, however, that a well oriented and well aligned cortical array is important
for the formation of straight protoxylem bands or spirals [108]. Also various experimental observations show
that the microtubules themselves feed back on the developing ROP pattern [26]. The katanin loss-of-function
mutant, which typically leads to less aligned arrays [16, 88, 89], shows slower band formation as well as less
straight bands and more remaining connections between bands [102]. Also mutations in microtubule related
proteins like MAP70-5, IQD13 and CORD1/2 (see below) affect xylem patterns.
Metaxylem pits have well rounded boundaries, which at some stage during their development are lined by a

microtubule bundle [109]. Such high curvature, however, is at odds with the in vitro persistence length of
microtubules in the millimeter range [17, 110]. MAP70-5 is found specifically at the boundaries of developing
metaxylem pits [111, 112]. In vitro, this protein reduces the microtubule persistence length and promotes the
formation of circular microtubule bundles [110]. Tuning of the persistence length is important for array behav-
ior, as a moderate persistence length (hundreds of micrometers) allows microtubules to more easily adjust to a
specific ROP pattern, including straight protoxylem bands, but too low persistence length (e.g., the 26 mm used
in [113, 114]) jeopardizes array alignment [28]. Also CORD proteins, which promote local detachment of
microtubules, contribute to the oval shape of metaxylem pits [109]. They also reduce the overall degree of
alignment outside the gaps [109]. IQD13, which promotes microtubule attachment to the membrane, has the
opposite effect, with loss of function leading to more circular metaxylem gaps and overexpression leading to
more elongated ones [100]. The opposite effects of CORD and IQD13 mutations on pit shape could be
explained in a unified way via their effect on how strongly microtubules hinder ROP diffusion at the membrane
and how anisotropic they thus make ROP diffusion. This view is supported by the ROP patterning model of
Jacobs et al. [108], in which increasingly anisotropic ROP diffusion leads to more elongated gaps and, in the
extreme case, even to banded patterns like those observed with strong IQD13 overexpression [100].
Given the mutual feedbacks between ROP and microtubule patterns, it is imperative that the next generation

of models will dynamically couple both systems: stochastic microtubules and dynamic ROPs. Currently, two
models make a start at combining both systems. Jacobs et al. [108] includes both ROPs and microtubules in a
xylem patterning model, but the microtubules are included as density fields that affect ROP diffusion anisot-
ropy, not as dynamic discrete obstacles. The anisotropic ROP diffusion has a profound impact on the resulting
ROP patterns [108]. The pavement cell model by Smithers [98], on the other hand, contains explicit stochastic
microtubules (albeit without katanin severing at crossovers, finite persistence length and realistic microtubule-
based nucleation, which are known to affect array alignment and how well the array responds to local vs. global
cues [16, 26–28]), but these do not influence ROP diffusion anisotropy. Responsiveness to mechanical stress is
included via an elegant proxy: when microtubules hit the edge, they may undergo a catastrophe depending on
the local edge curvature and angle of incidence. The partial differential equation model of ROP2, ROP6 and
RIC1 shows high RIC1 activity at indent regions and only close to the cell edges. The different rules used for
coupling the stabilizing effect of RIC1 microtubule dynamics show that the typical patterns of microtubule
organization (Figure 4A) [86, 87] can be reproduced if the RIC1 effect is picked up mostly locally and enough
microtubules become long enough to sample the edge regions. See also the discussion about how cell
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dimension and average non-interacting microtubule length determine the sensitivity of array orientation to
edge-based cues in [27, 115].
These results so far show that we can expect more interesting discoveries when modelers continue to investi-

gate the mutual feedbacks between cortical microtubules and the ROP system on cell shape and secondary cell
wall patterning.
We should not lose sight, however, of other wall components. The wall around the (Arabidopsis) metaxylem

pit is further modified by the production of overhanging cell wall borders or ‘arches’ (Figure 3C2a) which
reduce pit aperture but not pit membrane area. Boundary of ROP domain1 and WALLIN recruit a ring of
actin at the pit boundary where the arch material is deposited [33]. In rice, the hemicellulose xylan is deposited
at the pit boundaries [116]. Mutants affected in xylan biosynthesis have larger metaxylem pit sizes, reduced sec-
ondary cell wall thickness and less aligned CMFs near pits [116, 117].

Perspectives
• Complex cell wall patterns are vital for a wide range of plant functions. They occur both in

primary cell walls, facilitating complex cell shapes and reversible shape changes, and second-
ary cell walls, resulting in ‘metamaterials’ optimally supporting a range of mechanically
demanding functions including water transport.

• The currently used model systems lead to a strong focus on the common factor: the inter-
action between ROP patterning and (microtubule) cytoskeleton and correlated structured
deposition of CMFs. Far less is known about the regulation of other cases of complex cell
wall patterning, which may involve substantially different components and systems.

• The degree of overlap between the patterning systems of (initially) cellulosic secondary cell
wall reinforcements in primary xylem on the one hand and on the other hand other xylem cell
wall sculpturing in various woody species and pegged rhizoids in liverworts remains a wide
open question. Simulation models, meanwhile, remain ideal tools for understanding the con-
sequences of mutual interactions between different key systems involved in the model
systems of cell wall patterning.
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