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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Groundwater level predictions using 
LSTM and RF models achieved satisfac-
tory accuracy across Abu Dhabi Emirate.

• Incorporating time lags improved the 
models’ accuracy for groundwater level 
predictions.

• Global sensitivity analysis approach 
assessed the impact of input data on the 
model performance.

A R T I C L E  I N F O

Keywords:
Groundwater level
Machine learning
Random forest
LSTM
Sensitivity analysis
El Niño-Southern oscillation

A B S T R A C T

Accurate prediction of groundwater levels is crucial for managing groundwater resources efficiently. The com-
plex aquifer heterogeneity and groundwater abstraction variation present challenges to have accurate ground-
water level models over Abu Dhabi emirate, United Arab Emirates. In the present study, two data-driven models 
are employed, which are the Long Short-Term Memory (LSTM) and the Random Forest (RF) to develop a model 
for the prediction of monthly groundwater level in the Abu Dhabi Emirate. The incorporated data in the models 
are precipitation, terrestrial water storage, soil moisture, evapotranspiration, and the El Niño-Southern 
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Oscillation (ENSO) 3.4 index. The groundwater monitoring wells data are obtained for 263 monitoring wells 
distributed over Abu Dhabi emirate for the period 2000–2023 in a monthly temporal scale. The models’ per-
formance was assessed using the Nash-Sutcliffe efficiency (NSE), root mean square error (RMSE) the coefficient 
of determination (R2) and Percent bias (PBIAS). An optimization technique was also applied to address the 
impact of the lags on enhancing the groundwater level model. The LSTM model outperformed the RF model 
during the testing period, achieving R2 = 0.79, NSE = 0.70, RMSE = 0.38 m and PBIAS = 0.2% with a 3-month 
lag. The global sensitivity analysis was applied to understand the importance of each parameter and its influence 
on the models’ output. This study highlights the potential use of data-driven models for the prediction of 
groundwater level which could aid water managers to monitor the groundwater resources at a regional scale. The 
developed model can serve as an alternative approach for predicting groundwater level change over the Abu 
Dhabi Emirate.

1. Introduction

The dynamic of groundwater storage change is challenging to un-
derstand owing to the numerous factors influencing its fluctuation (Alley 
et al., 2002; Dangar et al., 2021). Accurate estimation of groundwater 
level change is crucial for sustainably managing groundwater resources. 
The high depletion rate and drawdown in groundwater level is caused 
due to the global population growth and the increase in water demands 
from the industrial and agricultural sectors (Long et al., 2020). The 
groundwater abstraction is estimated to account for 25%–33% of the 
total withdrawals in the world (Döll et al., 2012; Hanasaki et al., 2018; 
Taylor et al., 2013). Thus, groundwater sustainable management is vital 
since aquifers provide 50% of the global drinking water supply and 43% 
of the world’s irrigation (Siebert et al., 2010; Smith et al., 2016).

Depletion or overexploitation occurs when the rate of abstraction 
surpasses the recharge rate (Gleeson et al., 2010). The majority of 
aquifers are experiencing a severe groundwater level decline (Ali et al., 
2020; Shamsudduha and Taylor, 2020; Wada et al., 2010), alarming 
many water managers to furtherly understand the dynamic of the 
aquifer systems and its response to climate change for the purpose of 
sustainable groundwater management. This decline will lead to several 
environmental issues, such as saltwater intrusion, land subsidence and 
the deterioration of water quality (Gong et al., 2020; O’Reilly et al., 
2020; Su et al., 2017).

Arid and semi-arid regions are vulnerable to a water deficit to meet 
the water demand, given the limited rainfall events to recharge the 
groundwater aquifers (Huang et al., 2015). This has been noticed in 
several aquifers where the depletion rate reached 40 mm/year in 
north-western India and 27.6 mm/year in the high plains, USA and 22 
mm/year in the North China Plain (Feng et al., 2013; Rodell et al., 2009; 
Scanlon et al., 2012). Various studies have addressed the approaches 
that should be adopted for sustainable water resources management. 
The common conclusion from all studies emphasized the importance to 
accurately simulate and quantify the groundwater level changes for 
achieving a sustainable management for groundwater resources (Gao 
et al., 2022; Samani et al., 2022; Yin et al., 2021).

Groundwater dynamics have been modeled using a conceptual (De 
Filippis et al., 2020) and physical models for the purpose of predicting 
the groundwater level (Boughriba and Jilali, 2018; El Yaouti et al., 
2008). Although conceptual models require fewer data and parameters, 
it has limitation on providing detailed information over the studied area 
(De Filippis et al., 2020; Izady et al., 2014). Common numerical models, 
such as, MODFLOW (Harbaugh, 2005), FEFLOW (Diersch, 2014) and 
HydrGeoSphere (Brunner and Simmons, 2012) are used for the simu-
lation of groundwater flow and could have limitations and uncertainties 
when observation data are scarce, particularly in the case of transient 
model, due to its process nature on oversimplifying the dynamic of 
physical process and the extensive data required (Sikdar, 2019; Wunsch 
et al., 2021b).

Usually, observation data collected manually or from telemetric 
devices suffers with outliers and gaps in the timeseries due to signal loss 
and battery failures in the telemetric devices leading to errors and un-
certainty (Oikonomou et al., 2018). Consequently, developing transient 

numerical models may also experience large uncertainty since these 
temporal gaps within the datasets are filled using imputation techniques 
such as regression approaches (Cooley and Naff, 1990; Salas, 1980, 
1993), interpolation techniques (Sorensen et al., 2021; Wunsch et al., 
2022), machine learning techniques (Dax and Zilberbrand, 2018; Dwi-
vedi et al., 2022). Additionally, the uneven distribution of observation 
data will require the use of spatial interpolation methods for the con-
versions of point data (e.g. precipitation station and groundwater 
monitoring well) to areal (Khazaz et al., 2015; Yao et al., 2014) which 
could lead to another source of uncertainty in the case of developing a 
regional scale model. The accuracy of interpolated data depends on the 
size of the study area and the spacing between the observation points 
data.

Furthermore, physically based models require extensive geological 
and hydrological data for setting boundary conditions which are not cost 
effective and time consuming (Di Nunno and Granata, 2020; Gupta 
et al., 2003). Factors like the nonlinearity of the governing groundwater 
flow equation, the complexity of the aquifer geology, and the spatial 
variation of rainfall patterns and aquifer characteristics along with the 
inconsistency of the human abstractions and recharge, contribute to a 
large source of errors when simulating the groundwater flow. It worths 
mentioning that the illegal abstraction from unregistered wells and 
water pipe network leakage to groundwater could result in errors during 
the calibration process of physical models (Al-Bakri, 2016; Gropius 
et al., 2022; Khaledi-Alamdari et al., 2022). All the discussed factors 
could negatively impact the calibration process and sensitivity analysis 
for these physical models where it could be biased to certain parameters 
causing a discrepancy in the model (Højberg and Refsgaard, 2005; 
Masafu and Williams, 2024; Rojas et al., 2008).

The exponential growth in the satellite industry resulted in the 
availability of remote sensing products with large data freely accessible 
to researchers. This growth paved the way for the application of Arti-
ficial Intelligence (AI) technology in the hydrology field. Machine 
learning approaches which is a data-driven technique is a branch of AI 
and has been applied for the prediction of groundwater level (Sahoo and 
Jha, 2013; Sahoo et al., 2017; Solgi et al., 2021; Tao et al., 2022; Wang 
et al., 2018; Wunsch et al., 2021b). Machine learning techniques identify 
the patterns hidden in historical data and learn from these patterns to 
predict the future changes and scenarios without exhaustive hydrolog-
ical parameters knowledge.

Several studies assessed and compared physically based models with 
models developed from machine learning methods (Almuhaylan et al., 
2020; Chen et al., 2020; Coppola et al., 2003; Mohammadi, 2008; 
Nikolos et al., 2008; Parkin et al., 2007) and concluded that data driven 
models outperformed physical models. Some machine learning models 
require hydrological and meteorological parameters coupled with the 
anthropogenic practice data (e.g. irrigation rate, land cover, service 
population and dams) as an input for predicting the groundwater level 
(Coulibaly et al., 2001; Feng et al., 2008; Lallahem et al., 2005; Sahoo 
et al., 2017). In contrast, other models are designed to make predictions 
based on historical groundwater level data (Chang et al., 2016; Chen 
et al., 2010; Solgi et al., 2021; Yang et al., 2015).

Common machine learning (ML) models applied in groundwater 

K. Alghafli et al.                                                                                                                                                                                                                                Groundwater for Sustainable Development 28 (2025) 101389 

2 



level prediction are Multiple Linear Regression (MLR) (Sahoo and Jha, 
2013), multi-layer perception (MLP) (Müller et al., 2021; Sahu et al., 
2020), gated recurrent unit (GRU) (Cai et al., 2021; Gharehbaghi et al., 
2022), support vector machine (SVM) (Suryanarayana et al., 2014; Yoon 
et al., 2011; Yu et al., 2006), Random Forest (RF) (Wang et al., 2018; Yin 
et al., 2021), neural network (NN) (Coppola et al., 2003; Coulibaly et al., 
2001; Feng et al., 2008; Lallahem et al., 2005), adaptive neuro-fuzzy 
inference system (ANFIS) (Samani et al., 2022), genetic programming 
(GP) (Cobaner et al., 2016; Fallah-Mehdipour et al., 2013; Kasiviswa-
nathan et al., 2016) and others (Rajaee et al., 2019).

Furthermore, utilizing deep learning for groundwater level change 
modeling became appealing with many studies published recently. In 
particular, the recurrent neural network (RNN) and others exhibited a 
promising output in groundwater level prediction and modeling (Xu 
et al., 2019). The Deep Learning models are capable of automatically 
extracting complex trend variations without the need of preprocessing 
steps. A long short-term memory (LSTM) networks is a type of recurrent 
neural network (RNN) capable of processing sequential data such as 
timeseries, text and speech (Hochreiter and Schmidhuber, 1997). The 
LSTM was recently adopted by many researchers for the prediction of 
groundwater and was applied in many aquifers and showed high accu-
racy (Afzaal et al., 2019; Bowes et al., 2019; Jeong and Park, 2019; 
Kochhar et al., 2022; Müller et al., 2021; Sun et al., 2022; Wunsch et al., 
2021b).

Several studies have used only the groundwater level data without 
restoring or forcing in any other meteorological data to predict the 
groundwater levels using LSTM (Solgi et al., 2021). Many papers 
assessed the LSTM and concluded that it has a superiority over other 
machine learning models such as Random Forest, Artificial Neural 
Network and simple NN (Müller et al., 2021; Solgi et al., 2021; Wunsch 
et al., 2021a; Yin et al., 2021). Other studies showed that Random Forest 
(RF) outperformed other machine learning models in reflecting the dy-
namic of groundwater level change (Rodriguez-Galiano et al., 2015; 
Youssef and Pourghasemi, 2021).

The integration of remote sensing products for the prediction of 
groundwater level in an aquifer with various parameters influencing its 
fluctuation can increase the accuracy of the prediction. Previous 
research integrated hydrological parameters such as (temperature, 
precipitation and historical groundwater level data) as an input to pre-
dict groundwater level (Rajaee et al., 2019). Other factors like the 
abstraction rate, and the hydraulic connection between the aquifers 
could impact the groundwater level, but it is challenging to monitor it 
regularly (Wunsch et al., 2021a). The Gravity Recovery And Climate 
Experiment (GRACE) satellites capture the total storage for the entire 
aquifer. Several studies have used GRACE in estimating the groundwater 
storage change regionally and locally (Alghafli et al., 2023b; Bhanja 
et al., 2016; Chen et al., 2019; Shamsudduha et al., 2012). GRACE could 
be used to improve the model prediction and estimation. Thus, coupling 
GRACE with the In-situ observations and other remote sensing products 
using LSTM and RF models will be investigated. Previous research that 
forced GRACE products using machine learning for the prediction of 
groundwater level concluded it improved the performance of the models 
(Liu et al., 2021; Mukherjee and Ramachandran, 2018; Sun, 2013). 
Limited studies coupled GRACE products with data driven models for 
the purpose of groundwater level prediction (Ali et al., 2022; Khorrami 
et al., 2023; Malakar et al., 2021; Seyoum et al., 2019; Yin et al., 2021; 
Zhang et al., 2020).

Recent studies have investigated the impact of El Niño-Southern 
Oscillation (ENSO) on the response of groundwater level change and 
concluded that it has a strong influence (Batista et al., 2018; Fleming and 
Quilty, 2006; Kolusu et al., 2019; Sulaiman et al., 2023; Susilo et al., 
2013). The ENSO phenomenon is a key driver influencing global climate 
variability and the rainfall characteristics (Capotondi et al., 2015). The 
sea surface temperature of the central eastern Pacific is linked with the 
global rainfall variation. In literature, the El Niño and La Nina phe-
nomenon has been evident to impact the rainfall characteristics globally. 

Within the data-driven approaches limited studies integrated the index 
of ENSO in the machine learning models (Kalu et al., 2022).

While various studies have applied machine learning techniques in 
groundwater (Bordbar et al., 2022), significant gap remains, especially 
in regions like the Arabian Peninsula, where groundwater resources are 
experiencing significant depletion. There is no research that has 
explored the integration of remote sensing products with ML techniques 
for groundwater level prediction in Abu Dhabi Emirate, United Arab 
Emirates, where groundwater faces major drawdown. Furthermore, the 
influence of large-scale climate drivers, such as the ENSO on the 
groundwater levels remains unexplored. There are no studies that 
assessed the impacts of ENSO on groundwater storage change in this 
region or incorporated the ENSO index into ML models for the 
groundwater level prediction. Therefore, this study aims to address 
these gaps by developing a regional model for predicting the monthly 
groundwater storage change in Abu Dhabi Emirate. Moreover, we 
investigate the role of the ENSO on the temporal variability of ground-
water level.

The groundwater depletion in Abu Dhabi Emirate is mainly attrib-
uted to the emirate’s economic development and agricultural area 
expansion. Over the last three decades, groundwater levels near agri-
cultural areas have declined more than 120 m (Alsharhan and Rizk, 
2020). The UAE government reduced the pressure on groundwater re-
sources when the water domestic use shifted from groundwater to 
desalinated water, yet the aquifer systems in UAE continue to decline 
due to the ongoing agricultural practices. Effective management and 
sustainable planning of groundwater resources is required. To achieve 
that, an accurate simulation of groundwater storage change is needed. A 
robust model could help on understanding the different parameters 
influencing the groundwater storage change and seek for effective pol-
icies for the purpose of preserving the groundwater resources. Thus, the 
LSTM and RF models are utilized to train a model using inputs such as 
terrestrial water storage, soil moisture, precipitation, evapotranspira-
tion, and the El Nino Index. The selected inputs are chosen based on 
previous research that have concluded these data have high influence on 
the groundwater storage variations (Adiat et al., 2020; Ali et al., 2024; 
Sahoo et al., 2017; Samani, 2024). These models will be optimized for 
the highest accuracy with the generation of a model that can accurately 
predict the groundwater levels. This assessment will help draw a 
conclusion on what ML models could simulate the groundwater level 
over the Abu Dhabi Emirate.

The aim of the present study is to develop a regional model to predict 
the monthly groundwater storage change within the aquifer system of 
Abu Dhabi emirates. This model will support decision makers on un-
derstanding the aquifer dynamics and evaluate the regional ground-
water using remote sensing products solely. The sensitivity analysis is 
employed to explore the influence of the input parameters on the model 
output’s performance and to understand the interaction between the 
input data within the developed model. To our best of knowledge, this is 
the first research apply the LSTM and other machine learning techniques 
in the United Arab of Emirates for the prediction of groundwater level 
coupling GRACE and other remote sensing products (Nourani et al., 
2024). The extensive datasets acquired from the Environment Agency of 
Abu Dhabi give this research an advantage in trusting the output and 
will support the analysis and the validation. Furthermore, this study 
examines the influence of the ENSO phenomenon’s on precipitation 
patterns and, consequently, on groundwater level fluctuations within 
the region. There is no research that has assessed the impact of El Nino in 
the groundwater over the Arabian Peninsula and limited studies incor-
porated El Nino in the LSTM and RF models. Overall, the development of 
a regional model that incorporates environmental and climatic variables 
is highly advantageous for formulating climate adaptation strategies 
under future scenarios on a national scale. We believe that our study 
offers valuable insights that can advance future groundwater modelling 
in the UAE, facilitating better-informed decision-making.
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2. Study area and datasets

2.1. Study area

Abu Dhabi emirate is located in an arid climate zone with limited 
precipitation and the inland area of Abu Dhabi is around 80,000 km2. 
The precipitation varies spatially from 90 mm/year in coastal areas to 
160 mm/year on the eastern region of Abu Dhabi near the mountains 
(Alsharhan and Rizk, 2020). The evaporation rate is averaged 2000 mm 
annually. The obtained data for groundwater monitoring wells are 
within the Abu Dhabi Emirate (Fig. 1). The Quaternary unconfined 
surficial aquifer geology consists of sand, gravel, sand and gravel, and 
Sabkha sediments. Due to the high depletion rate near agricultural areas 
that is exceeding the recharge rate, the groundwater level has declined 
by 100 m near the agricultural areas. The groundwater resources are 
mainly used to meet the demand of agricultural irrigation purposes with 
an annual abstraction of 2.7 billion cubic meters (Sherif et al., 2021). 
The groundwater is also used for oil production and recovery, but no 
data are available on these wells abstraction rate. A cone of depression 
exists near the agricultural areas where the majority of farms increased 
the wells depth reaching the limestone aquifer. To align with the aim of 
this study, both the quaternary and limestone aquifers’ data are used in 
the analysis to further understand the groundwater storage change 
regionally. Additionally, GRACE signal captures terrestrial water stor-
age in all depths; thus, it cannot distinguish between the two aquifers. 
The signal from GRACE could also be influenced from the abstraction of 
groundwater from the limestone. As a result, both aquifers are consid-
ered in the analysis.

2.2. In-situ groundwater

A groundwater monitoring network was established for the assess-
ment of the groundwater resources over Abu Dhabi Emirate. The daily 
groundwater level data is obtained from the Environment Agency of Abu 
Dhabi (EAD) for the 263 monitoring wells (Fig. 1). The majority of the 
monitoring wells represent the shallow unconfined aquifer whereas 

several wells are deployed with dual telemetric devices representing the 
shallow unconfined aquifer, the limestone aquifer and Sabkha aquifer. 
Prior to using the groundwater level data, the data with outliers were 
removed from the calculation. For example, if the trend shows a sudden 
jump with no heavy rainfall events occurs before, these records are 
removed. The obtained groundwater data period is from 2003 to June- 
2023 in a daily time step. Certain wells show a gap for months or 
years due to the battery issues with the telemetric devices; therefore, 
these gaps were not interpolated. Missing data could cause a problem by 
reducing the statistical power of the data and this could result in bias 
(Kang, 2013). Instead, when averaging the groundwater level data, the 
weight of these wells is not considered in these dates. All the data is 
measured using telemetric devices and none are taken manually. The 
groundwater timeseries for the monitoring wells show a different 
timespan because of the difference in the commissioning and decom-
missioning of the wells. Thus, averaging the data with no interpolation 
applied will reduce the uncertainties associated with the interpolation 
techniques. The monthly time steps are considered for the analysis to 
ensure a match in the temporal resolution between the groundwater 
level data and the remote sensing products.

2.3. Selected predictors

Five variables were selected as groundwater level predictors. These 
variables are Terrestrial Water Storage Anomalies (TWSA), soil mois-
ture, precipitation, evapotranspiration, and ENSO. These variables 
directly influence groundwater resources, thereby providing insight into 
fluctuations in groundwater levels. Precipitation acts as a primary driver 
of groundwater availability and recharge, while evapotranspiration re-
flects climatic and land use characteristics (Sherif et al., 2018). Addi-
tionally, soil moisture serves as an indicator of irrigation practices and 
potential irrigation return flow. TWSA information from GRACE data, 
when integrated with unsaturated zone information (i.e., soil moisture), 
can aid in interpreting observed changes within the saturated zone 
(Alghafli et al., 2023b). Most importantly, ENSO is known to have a 
strong impact on the precipitation in the region (Niranjan Kumar and 

Fig. 1. The geographical location of the study area and groundwater monitoring wells obtained from the Environment Agency of Abu Dhabi.
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Ouarda, 2014).

2.3.1. Terrestrial water storage
GRACE products capture the monthly terrestrial water storage in the 

globe and come in two forms namely spherical harmonic (SH) and mass 
concentration (mascon) (Tapley et al., 2004). The main difference be-
tween the two forms is in the preprocessing steps and the models inte-
grated for the corrections (Swenson and Wahr, 2006). These solutions 
are processed by different centers, and each has its own unique 
approach. In this research, Release 6 (RL06) is used obtained from three 
SH solutions (known also as GSM) and two mascon solutions. The 
terrestrial water storage is processed by three GRACE centers which are 
the Center for Space Research (CSR), NASA JET Propulsion Laboratory 
(JPL), and GeoforschungsZentrum Potsdam (GFZ). Even though GRACE 
products come in a resolution of 0.25◦, 0.5◦ and 1◦, the native resolution 
of GRACE is 3◦ × 3◦ (Tapley et al., 2004). The mascon solutions used in 
this study is processed by JPL and CSR. Due to battery issues, GRACE 
was decommissioned on 2017 and GRACE FO altered the previous sat-
ellite starting from 2018. The two years gap was ignored in the analysis 
for the purpose of reducing the uncertainty and errors.

2.3.2. Soil moisture
Multiple soil moisture products were derived and input in the model 

for the purpose of predicting groundwater level. The Global Land Data 
Assimilation System (GLDAS) simulates the energy and water cycle 
fluxes in monthly scale by forcing observation and satellite data in a land 
surface models (Rodell et al., 2004). The soil moisture fluxes were ob-
tained from GLDAS version 2.1 for the analysis. In this study, the soil 
moistures products are obtained from GLDAS models namely the GLDAS 
catchment land surface models (CLSM) (Li et al., 2018, 2019), Noah 
model (Beaudoing and Rodell, 2020a) and Variable Infiltration Capacity 
(VIC) model (Beaudoing and Rodell, 2020c; Hamman et al., 2018). 
These models are different in their structures, parameterization, and 
validation process to estimate the soil moisture flux. The time resolution 
for the products was aggregated to a monthly average.

Noah model features a multi-layer soil moisture model product with 
a capability of integrating the interaction between soil vegetation and 
atmosphere (Beaudoing and Rodell, 2020b). The penetration depth of 
Noah is up to 2 m. A layer from 0 cm to 200 cm was used in the analysis. 
The VIC model applies a unique approach to simulate the soil moisture 
by integrating the soil’s characteristics and soil’s water capacity storage 
(Hamman et al., 2018). VIC is used for regional scale areas and has a 
coarse resolution. All the soil moisture data were averaged.

2.3.3. Precipitation
Based on previous research, the following precipitation products 

showed good agreement with In-Situ precipitation gauges over UAE. The 
Climate Hazard Group InfraRed Precipitation with Station data version 
2.0 (CHIRPSv2) (Funk et al., 2015) and the PERSIAN Climate Data Re-
cord (CDR) products (Sorooshian et al., 2014) are used in this study. 
Previous research concluded that both products outperformed other 
rainfall products over the UAE (Baig et al., 2022). Thus, both are used in 
the analysis. CHIRPSv2 is generated based on 14,000 gauges with 
monthly records and 200,000 gauges with daily records. It also uses 
CFSR reanalysis datasets when gaps exist in the data. It integrates the 
TRMM 3B42 precipitation products during the data generation process. 
The spatial resolution of CHIRPS is 0.05◦ with a time range spanning 
from 1981 to present. PERSIAN CDR have multiple input data for the 
precipitation generation and incorporate observation data obtained 
from the Climate Prediction Center (CPC) and the National Center for 
Environmental Prediction for the calibration process (Sadeghi et al., 
2021). The precipitation data are bias corrected using the data from the 
Global Climatology Project (GPCP) V2.3 (Sadeghi et al., 2019). The 
acquired precipitation data from PERSIAN CDR provides a daily pre-
cipitation estimates in a 0.25◦ × 0.25◦ spatial resolution from 1983 to 
present. All data were aggerated to obtain monthly scale precipitation to 

match with the other datasets for the groundwater level prediction.

2.3.4. Evapotranspiration
The Global Land Evaporation Amsterdam Model (GLEAM) simulates 

evapotranspiration (ET) by including the transpiration, bare soil evap-
oration, open water evaporation, interception loss, and snow sublima-
tion. ET plays a key role in the hydrological cycle and could have an 
impact on the climate through feedback mechanisms (Shen et al., 2015; 
Shukla and Mintz, 1982). Two dataset versions available from GLEAM 
and the main difference between both are the forcing datasets during the 
process of estimating ET. GLEAM v3.7a is forced by satellite and rean-
alysis data whereases the GLEAM v3.7b is forced solely by satellites 
datasets (Martens et al., 2017; Miralles et al., 2011).

GLEAM has been validated globally and outperformed other ET 
products (Alghafli et al., 2023a; Ding and Zhu, 2022; Wang et al., 2022; 
Yang et al., 2017). There is no study that compared different ET datasets 
over the study area nor validated GLEAM over the study area. Since 
GLEAM showed better agreement in other regions, it was used as an 
input for the groundwater level model. The ET derived from GLEAM is in 
a 500-m resolution spanning from 1980 to 2022 for the GLEAM v3.7a 
and from 2003 to 2023 for GLEAM v3.7b. To match with the time range 
of the other datasets, GLEAM v3.7b was used in this study area and the 
daily scale was aggregated to monthly scale to ensure a similar temporal 
resolution with the other datasets.

2.3.5. El Niño southern oscillation (ENSO)
The influence of the Pacific Ocean temperature results in a global 

climatic response. The temperature and wind interchange causes a 
famous El Nino event during warm ocean water and La Nina event oc-
curs when the Pacific Ocean sea surface temperature is colder than the 
averaged sea surface temperatures (Ropelewski and Halpert, 1986). A 
common metric used to characterize the El Nino phenomenon is called 
the El Nino 3.4 index which is an anomaly representing the sea surface 
temperature in a location located in the central equatorial Pacific Ocean 
spanning from 5◦ N to 5◦ S latitude and from 170◦ W to 120◦ West 
longitude (Trenberth, 1997). El Nino occurs if the sea surface temper-
ature anomalies in the Nino 3.4 region is higher than 0.4 (Celsius) C

◦

averaged over five months for at least 6 consecutive months (Trenberth, 
1997). The Pacific sea surface temperature (SST) was analyzed with 
respect to the rainfall globally and it was concluded that the SST 
anomaly is linked with the rainfall variations (AlEbri et al., 2016; Diro 
et al., 2011; Gleixner et al., 2017; Thielen et al., 2023). In the Arabian 
Peninsula, several studies investigated the relationship between rainfall 
and El Nino (Abid et al., 2016; AlEbri et al., 2016; Atif et al., 2020; 
Horan et al., 2023; Niranjan Kumar and Ouarda, 2014). In the context of 
groundwater, there is no study that evaluated the influence of El Nino 
phenomenon in the groundwater level fluctuation in the Arabian 
Peninsula. Even though the relation is indirect through the rainfall and 
eventually through the groundwater recharge from rainfall, its input in 
the model will help in finding a relation between this phenomenon and 
the groundwater recharge. El Nino 3.4 index was obtained for the pur-
pose of understanding its impact on the groundwater level (Rayner et al., 
2003). The statistical values of the input data are described in detail in 
supplementary material (Table S.1) for the training and testing datasets.

2.4. Data scaling

Data are averaged for each hydrological parameter leaving one re-
cord for TWSA, soil moisture, and precipitation. The utilized data for the 
analysis shows variation and difference in the magnitude, which hinders 
the applied model ability to learn for the prediction of groundwater 
level. A common approach to keep the input data consistent in the scale 
and ensure its convergence, is to scale the data. In other words, input 
parameters with a large variation in scales could lead the model to favor 
the parameters that have a large range and ignore those with a smaller 
range. Thus, the input data were scaled using the min-max normaliza-
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tion technique prior to the model development (Eq. (1)). The Min-
MaxScaler from the scikit-learn python packages was employed to 
rescale all the input parameters (Pedregosa et al., 2011). This normali-
zation approach has been successfully applied in hydrological studies 
that focused on developing a ML model (Jeong and Park, 2019; Patra 
et al., 2023; Yaseen et al., 2016) 

X(ij)scaled =
(X − Xmin)(
Xmax− Xmin

) (1) 

Where Xscaled represents the scaled data in a ith month and jth year, X is 
the data in ith month and jth year. Xmin is the X minimum and Xmax is the 
X maximum.

The spatial averaging of environmental variables inherently over-
looks spatial variability. Nevertheless, we consider this approach 
adequate for our objective of investigating the temporal variability in 
environmental variables and its relationship with groundwater level 
fluctuations. It is important to acknowledge that localized interactions 
may exhibit distinct behaviors, which lie beyond the scope of this study.

3. Methodology

In this study, the LSTM and RF models are developed for ground-
water level prediction. These models were chosen due to their wide-
spread application in groundwater level forecasting. The LSTM model is 
particularly advantageous because it retains memory of historical 
events, which is crucial for groundwater studies (Tao et al., 2022). 
Meanwhile, RF offers a straightforward and less computationally 

intensive algorithm that is both reliable and commonly used in 
groundwater level predictions (Afrifa et al., 2022). Moreover, the impact 
of lags on the accuracy of the deep learning models have been investi-
gated. Its influence should be considered where it could enhance 
models. The lags up to − 6 months lag were considered on all the data-
sets. All the datasets are normalized following the suggestion of Law-
rence et al. (1997). The datasets are split into two periods. From 2002 to 
2019 for training and 2020 to 2023 for the validation. Thus, the training 
and testing splits are 85% and 15%, respectively. The input parameters 
are assessed using statistical analysis to understand the relationship 
between the variables.

A common approach to analyze the relationship between the vari-
ables and to choose the important variables for the model is to use 
correlation coefficient (Derbela and Nouiri, 2020; Vu et al., 2021). 
However, having a strong correlated predictors could negatively impact 
the performance of the developed model due to the effect of the 
collinearity (Bouramtane et al., 2023). Therefore, the importance of the 
variables used in the study is assessed by conducting a sensitivity 
analysis, which investigates how the variations in the predictors can 
impact the variations in the model response (groundwater level in our 
case). In this study, the Global sensitivity analysis and the feature 
importance method are applied. Feature importance is a strength of 
Random Forest (unlike LSTM), as it quantifies the significance of pre-
dictors based on their contribution to the target variable (i.e., ground-
water level). This is determined by calculating the increase in error 
when a predictor is removed, with higher errors indicating greater 
predictor importance. For regression problems, the error is represented 

Fig. 2. The input parameters used for developing LSTM and RF models.
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by the mean square error. Since the LSTM model does not inherently 
provide feature importance, we further conducted sensitivity analysis. 
Both methods help interpreting the most important variables in the 
machine learning model and which variable is more sensitive to the 
machine learning model. Sensitivity analysis will highlight the signifi-
cance of each variable. The input data for developing the models are 
displayed in Fig. 2. The methodology flowchart for this study is illus-
trated in Fig. 3.

3.1. Long short-term memory neural network (LSTM-NN)

LSTM is part of the recurrent neural network (RNN) family 
(Hochreiter and Schmidhuber, 1997; Rumelhart et al., 1986). It is 
commonly used for time series and sequence data modeling. The LSTM 
learning process is distinguished from the known RNN since it is not 
restricted only to backpropagation but forward propagation as well from 
the previous data. LSTM does not suffer from vanishing gradient prob-
lems since it is mainly designed to memorize long term dependencies in 
sequential data (Hochreiter and Schmidhuber, 1997). On the other 
hand, RNN models usually suffer with the vanishing gradients when the 
sequence gets longer resulting in the disconnection of information across 
a long distance in the sequence. The memory cell in LSTM manages 
multiple data with several gates (input, output, and forget gate) to 
control the needed and ignored information (Hochreiter and Schmid-
huber, 1997). The gates regulate the information whether to eliminate 
or add the information to the cell state. In other words, LSTM has a 
complex network structure with three gates to control the flow of in-
formation. Each gate has a sigmoid neural net layer and its value ranges 
from 0 to 1 indicating how much of each component should be accepted. 
For example, a value of one indicates that all the information will go 
through while a value of zero means nothing will go through. The forget 
gate determines the needed information and whether it should be 
ignored or kept (Gers et al., 2000). It decides if this information is 
relevant or not. The input gates update the cell with the chosen values to 
update the cell memory. A hyperbolic tangent function is applied to 
rescale the information between [− 1,1]. If the calculated value from the 
input gate is negative, the information will be subtracted from the cell 
state, whereas a positive value will indicate an addition. Finally, the 
output gates decide the needed elements of the cell memory to update 
the hidden state of the cell. The cell memory helps the LSTM on con-
trolling the long term dependencies since the information could remain 
in the memory for multiple steps (Hochreiter and Schmidhuber, 1997).

The architecture of the LSTM consists of four key elements: the 

Constant Error Carrousel cell and three gates: input gate, output gate, 
and forget gate as depicted in Fig. 4. The information is processed 
through a series of sequential calculations executed iteratively. The 
following equations are used for developing the LSTM model and spe-
cifically for the calculation of the hidden vector ht for the LSTM model: 

ft = σ
(
wf ht− 1 +Uf xt +bf

)
(2) 

it = σ(wi ht− 1 +Ui xt + bi ) (3) 

ot =σ(wo ht− 1 +Uo xt +bo) (4) 

Cꞌ(t)=Tanh(wc ht− 1 +Uc xt +bc) (5) 

Ct = ft ⊗ Ct− 1 + it ⊗ Ct (6) 

ht = ot ⊗ Tanh(Ct) (7) 

Where it, ft, ot, and Cꞌ(t) are the values of the input, forget, output gates 
and the memory cell in the memory block. Ct is the memory cell state at 
time t. The ht is the initial state at time t while the ht-1 is the previous 
hidden state of the cell at time t-1. bi, bf, bo and bc are the bias terms for 
the input, forget, output gates and new information respectively. The wi, 
wf, wo and wc represent the weights for each gate. The Uf, Ui, Uo and Uc 
are the weights associated with the gates for input xt at time t. The σ 
represents the sigmoid activation function. The tanh is the hyperbolic 
tangent function to regulate the values flowing through the network. 
The LSTM model was developed in Python 3.9 using the Keras packages 
with TensorFlow backend (Joseph et al., 2021).

During the configuration process, the overfitting was carefully 
considered. The overfitting could result in a perfect model during the 
training only where outliers could influence the model resulting in poor 
prediction outcomes. During training, multiple time steps are used in the 
calculation to look back and provide the best overall models. The 
following timesteps are used to choose the most optimum models (3, 6, 
8, 10,12 months).

3.2. Adam optimizer

Optimization algorithms are used to minimize the loss function 
during the model training. A common optimizer algorithm used are 
Adam and Root Mean Square Propagation (RMSprop) where these al-
gorithms help on the reduction of errors when applying LSTM algorithm. 
Adam optimizer tis a Stochastic Gradient Descent algorithm used for 

Fig. 3. Pseudocode illustrating the groundwater level prediction process, incorporating all input variables.
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discrete optimization combining the RMSprop (Tieleman and Hinton, 
2012) and Adaptive gradient (AdaGrad) algorithms (Duchi et al., 2011; 
Kingma and Ba, 2014). It converges faster and resulted in a better per-
formance than the stochastic gradient descent (SGD) (Kingma and Ba, 
2014). The LSTM with ADAM optimizer trained using the mean square 
error (MSE) as the loss function. The initial learning rate that was 
applied for the developed LSTM model is 0.001.

3.3. Random forest

Random Forest (RF) regression is an ensemble learning approach 
that could be used for classification and regression tasks. The RF belongs 
to the family of decision tree employs multiple trees to define the best 
trees with the highest correlation (Breiman, 2001). RF regression de-
velops multiple decision trees during training and the output in the case 
of regression task is the average prediction. RF is capable of handling 
non-linear relationships between variables for the purpose of predicting 
groundwater level. Each tree is built from a different random sample of 
the data and the replacement is done using bootstrapping resampling 
technique. The final prediction of the RF model is the average of all the 
individual decision tree predictions. Using multiple trees helps reduce a 
common issue with individual decision trees which is the risk of 
overfitting.

RF performance depends on the hyperparameters such as number of 
trees, sample size, minimal node size and the number of input param-
eters for the splitting of each node (Biau and Scornet, 2016). RF models 
consist of multiple decision trees, each contains a series of nodes that 
also branch off into additional nodes by splitting the data based on the 
given criteria and finally it reaches a terminal node. A terminal node is 
when additional splitting is not required (i.e., meeting the predefined 
criteria) or may not be possible. The data was split into training and 
testing periods. The training period is from 2003 to 2019 while the 
testing period is from 2020 to 2023.

3.4. Model evaluation criteria

Multiple statistical metrics are used to assess the accuracy of the 
developed groundwater level model during the training and validation 
phases; the Nash-Sutcliffe model efficiency (NSE) coefficient (Eq. (8)), 
the coefficient of determination (R2; Eq. (9)), the Root Mean Squared 
Errors (RMSE; Eq. (10)) and the Percent Bias (PBIAS; Eq. (11)). These 
errors and linear fitting metrics are applied to test models’ performance 
and have been widely used (Ali et al., 2023; Sarkar et al., 2024). The 
optimum groundwater level model will yield an NSE and R2 equal to one 
and RMSE and PBIAS equal to zero. 

NSE=1 −

∑n

i=1
(Gi − Si)

2

∑n

i=1
(Gi − Gmean)

2
(8) 

R2 =1 −
SSres

SStot
(9) 

RMSE (mm)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Si − Gi)

2

√

(10) 

PBIAS=

∑n

i=1
(Gi − Si)

∑n

i=1
(Gi)

× 100 (11) 

where Gi is the observed monthly groundwater level from the telemetric 
monitoring wells at time i, Si is the predicted groundwater level derived 
from LSTM or RF models. Gmean is the mean of the monthly groundwater 
level. SSres is the sum of residual squared and SStot is the total sum of 
squares.

3.5. Sensitivity analysis methods

The feature important method is utilized for the RF model to analyze 
the effect of input variables on the model’s output, while the global 
sensitivity analysis is applied for both RF and LSTM models. The global 
method assess the impact of the uncertain input by varying the param-
eters simultaneously (Song et al., 2015). This approach incorporates the 
impact of the input variables over the whole range of variation, making 
it proper for non-linear models. This method has been widely used in the 
field of hydrology (Baroni et al., 2018; Baroni and Tarantola, 2014; 
Makler-Pick et al., 2011; Rosolem et al., 2012).

There are various methods within the global sensitivity framework, 
this study employs the Sobol method (Sobol’, 1990; Soból, 1993) for 
both LSTM and RF models. The Sobol method applies variance decom-
position to assess the contribution of each uncertain input variable to the 
overall output variance of the model. The first-order and total-order 
Sobol’s indices are utilized to examine the total contribution of each 
parameter to the output variance and assess the individual effects as 
opposed to its interaction with other parameters.

In other words, the Sobol method is a variance based global sensi-
tivity analysis approach that can assess the influence of each input 
variable on the groundwater level model performance and the total- 

Fig. 4. LSTM module with the layers.
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order Sobol’ indices determine the interaction between these variables 
within the groundwater level model (Zhang et al., 2019). This method 
will give an insight on understanding the variables and which variables 
has the highest impact on groundwater storage change.

4. Results

This section presents a comprehensive analysis and comparison of 
the developed models through statistical analysis. Then, a comparison 
between the LSTM and RF is conducted using statistical metrics. The 
95% confidence bound is used to measure the uncertainty associated 
with each model. An optimization technique is utilized to demonstrate 
the importance of the lags in improving the developed models. Finally, a 
sensitivity analysis is applied to identify the impact of each variable on 
model performance.

4.1. Hyperparameters results for LSTM and random forest

The hyperparameters achieved the highest performance for the 
LSTM and RF are shown in Table 1. These hyperparameters are carefully 
chosen and tuned, while the learning rate is adjusted for the parameters 
based on the ADAM optimization algorithm. The drop out is used to 
avoid the overfitting of the model and serves as a robust regularization 
technique (Hinton et al., 2012). Furthermore, having too many neurons 
is time consuming where significant computational demand is required. 
The high number of neurons could also lead to an overfitting whereas a 
small number of neurons could weaken the network’s learning ability 
(Zhang et al., 2018). Therefore, the chosen neuron number in this study 
for the optimal model is 20 hidden neurons (Table 1). The batch size 
indicates how many data points are processed to update the model 
weight.

4.2. Model performance assessment

Four statistical metrics are used for the assessment of the LSTM and 
RF models during the training and testing periods. The statistical metrics 
results for the two models are summarized in Table 2. The RF model 
outperformed the LSTM model during the training, while LSTM slightly 
outperformed RF during the testing. Both models were able to capture 
the seasonal fluctuations for the groundwater level during the training 
and testing periods (Fig. 5). Data with lags up to 6 months are incor-
porated in the analysis. Best models performance were achieved when 
using lag − 3 months for LSTM and − 6 month for RF model. Thus, based 
on both periods, the RF model has better accuracy than the LSTM model. 
Overall, both models showed acceptable results.

It is clearly shown that the significant rise in groundwater level in 
2016, due to the heavy rainfall storms, is captured by the model (Fig. 5). 
Previous studies have indicated that the El Nino years brings an 
exceptional precipitation rates above the average in the UAE (AlEbri 
et al., 2016). Specifically, 2016 was an El Nino year where precipitation 
amount was higher than the average contributing to recharge the 
aquifers in Abu Dhabi Emirate. This indicates that the developed model 
represents a complex dynamic of the aquifer and detects the trend that 

exhibited the non-stationary. Between 2009 and 2011, LSTM has a 
higher overestimation compared to RF. Moreover, during the period 
2015–2018, LSTM was less fluctuated, while RF seems to be responsive 
to the different signals in the input variables which may explain the 
better training performance.

The 95% confidence bound is applied to assess whether the models 
are within the 95% confidence bound or not (Fig. 6). The 95% confi-
dence interval has been applied in previous research to assess the un-
certainty associated with a model (Ballio and Guadagnini, 2004; Cooley, 
1997). It is clearly shown that both models fall within the 95% confi-
dence bounds therefore, making it inconclusive to judge which model is 
superior based only on this criterion. The testing period is crucial to 
decide which model yields better results. During the testing phase, the 
LSTM model yielded higher accuracy in the prediction of groundwater 
level. Previous research has concluded that the LSTM model has better 
results than the RF in predicting the groundwater level (Müller et al., 
2021; Wunsch et al., 2021a; Yin et al., 2021). This finding aligns with 
our research, confirming that the LSTM model has better performance 
than other machine learning models.

4.3. Optimization for the lags effects

To examine the impact of time lags on model performance, we run 
LSTM and RF using the input variables with different lag times. The 
statistical analysis showed a significant improvement in model accuracy 
due to the time lags, which is attributed to the aquifer’s delayed 
response to recharge after rainfall events. Groundwater recharge occurs 
when the rainfall water, irrigation return flows, or surface water bodies 
reach the groundwater table (Healy, 2010; Scanlon et al., 2006). The 
recharge occurrence varies spatially and temporally depending on 
various factors such as the rainfall amount, temperature, soil properties, 
land use and land cover change, and depth to water table (Scanlon et al., 
2006).

Based on the lag analysis as illustrated in Figs. 7–9, one can see how 
the NSE and RMSE output improves with the lags whereas the PBIAS for 
both models were within an acceptable range. These plots helped on the 
assessment of the models in an effective way. The analysis of lags 
significantly enhanced both the LSTM and RF models, with improve-
ments of 54%, 53%, and 63% in NSE, R2, and RMSE for the LSTM model, 
and 59%, 63%, and 75% in the same metrics for the RF model, respec-
tively. This highlights the crucial role of lag analysis in boosting the 
performance of the models.

Both LSTM and RF models successfully captured the seasonal fluc-
tuations in the groundwater level change; thus, both models are statis-
tically acceptable. The PBIAS optimal solution is 0 and the results from 
this study for LSTM and RF fall within the range of − 0.1%–0.2%. A 
negative value indicates overestimation while a positive value indicates 
underestimation. Both models are close to the optimal solution; there-
fore, the models are acceptable. All the statistical metrics for the training 
and testing periods were comprehensively represented through boxplots 
to ease the assessment of the models (Fig. 9).

4.4. Sensitivity analysis

All the variables showed varying correlation indicating the 
complexity of the hydrological characteristics of the region. Based on 
the feature importance method applied for the RF model, it showed that 
ENSO index, with a six-month lag, had the most significant influence on 
the model, while precipitation with a two-month lag was the second 
most influential factor (Fig. 10). This result highlights an important 
aspect of the ENSO index indicating its delayed impact on rainfall 
pattern in UAE. This lag is due to ENSO’s distant location, where it oc-
curs near the Pacific Ocean and resulting in the delayed effect on the 
UAE’s climate.

Precipitation is the primary source of groundwater recharge, so it 
significantly influences groundwater storage change. The two-month lag 

Table 1 
Hyperparameters for the optimized LSTM model.

Model Parameter Range Optimized value

LSTM Dropout rate  0.005
Batch size  20
Hidden Size  1
Neuron numbers  20
Epochs  2600

RF Maximum depth  20
Number of trees  20
Minimum sample no.  2
Maximum feature  0.8
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in precipitation validates an important point of groundwater recharge 
and the aquifer’s response to precipitation. Based on the feature 
importance method, as displayed in Fig. 10, one can see that ENSO (− 6, 
− 5, − 4), precipitation (0, − 2, − 3, − 4), and soil moisture (0, − 1) ac-
count for over 50% on effecting the RF model performance. Soil mois-
ture also exhibited a high feature important score, indicating its impact 
on the RF model.

Soil moisture represents the water content in the soil influenced by 
rainfall, temperature, soil characteristics and all other sources of water 
such as irrigation water. Previous research has demonstrated the po-
tential use of soil moisture data to predict the groundwater level and to 
estimate the groundwater recharge (Berthelin et al., 2023; Mathias et al., 
2017). As displayed in Fig. 10, the soil moisture shows a connection with 
the groundwater level change, indicating its influence on the ground-
water recharge. It also implies that the soil characteristics in the study 
area has a high infiltration rate where groundwater recharge rate is high 
(Sherif et al., 2018). It is worth mentioning that the majority of the 
landscape and forests in the study area are irrigated with treated sewage 
water and desalinated water (Sherif et al., 2021). Therefore, it is ex-
pected that soil moisture parameter will have an impact on the 
groundwater recharge.

Based on the First-order and Total order Sodol’ Indices as displayed 
in Fig. 11a, it is clearly shown that the precipitation and the ENSO Index 
also have the most significant impact on the groundwater level model 
developed by RF. Both the feature importance method and the Sobol’s 

method showed similar outcomes and highlighted the importance of 
ENSO and precipitation on the RF model. Precipitation is a major vari-
able, influencing the groundwater change by recharging the aquifer. 
Previous research has concluded that precipitation plays an important 
role in the ML models (Lam et al., 2021a; Moravej et al., 2020). In arid 
regions, where surface water is scarce, precipitation is the primary 
source of recharge; therefore, the interaction between surface water and 
groundwater is absent. During rainfall events, surface water flows from 
the mountains through channels (Wadi) towards the desert, but these 
surface water only persist for days. The ENSO 3.4 Index indirectly im-
pacts the groundwater by changing the climate pattern globally. The 
95% confidence interval in the Sobol’ sensitivity analysis helps to un-
derstand the uncertainty of these indices and have a robustness infor-
mation about the sensitivity analysis.

The Sobol global sensitivity analysis was also applied for the LSTM 
model. Based on Fig. 11b, the outcomes for both the first-order and total- 
order Sobol Indices showed that the ENSO -3 and soil moisture − 1 have 
the most significant impact on the LSTM model performance. Here, both 
the LSTM and RF models agree that the ENSO is an important parameter 
that influences groundwater storage change. However, the precipitation 
in LSTM model has the least influence which contradicts with the RF 
model. This could be due to the difference in models’ architectures 
where each model has its own interpretation for the input features.

Table 2 
The groundwater level models evaluation during the training and testing periods.

Model RMSE (m) NSE R2

Training Testing Training Testing Training Testing

LSTM 1.1 0.38 0.65 0.79 0.65 0.79
Random Forest 0.72 0.45 0.83 0.72 0.88 0.75

Fig. 5. Performance of the simulated groundwater level hydrograph over the entire modeled period. Predictions are based on two algorithms: (a) LSTM and (b) RF. 
The total period is divided into training (pre-2020) and testing (post-2020).
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5. Discussion

5.1. Machine learning and sensitivity analysis for groundwater insights

Using 20 years of measured groundwater level at 263 locations 
across Abu Dhabi emirate, our study aimed to develop the models rep-
resenting groundwater level changes and understand the different pa-
rameters impacting its variation. Our findings aligned with previous 
research that showed that LSTM outperformed RF models in 

groundwater level prediction (Wunsch et al., 2021a; Yin et al., 2021). 
This is because of the unique method adopted by LSTM where feedfor-
ward and backforward propagation are incorporated, thereby better 
capturing time-dependent phenomena. Although more advanced tech-
niques are available, we selected RF and LSTM as two distinct ap-
proaches that have demonstrated their adaptability to sparse data 
(El-Azhari et al., 2024; Zhang et al., 2018) and their successful appli-
cations in groundwater level prediction (Feng et al., 2024; Tao et al., 
2022). Moreover, previous studies have established a strong association 

Fig. 6. Zoomed-in view of the simulated groundwater level hydrograph during the testing period (post-2020), with predictions generated using two algorithms: (a) 
LSTM and (b) RF. The 95% confidence bound, based on observed data calculated as 1.96*SD for, provides a measure of accuracy relative to the observed variability.

Fig. 7. The performance of the LSTM model with different lags times during the training and testing periods.
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between groundwater level and El Niño, highlighting its significant in-
fluence on groundwater variability (Batista et al., 2018; Fleming and 
Quilty, 2006; Hund et al., 2021; Kolusu et al., 2019; Susilo et al., 2013). 
Thus, this index is an important factor to consider for groundwater 
studies and to understand the groundwater recharge dynamic. In our 
research, the model considered multiple parameters and showed an 
acceptable result to rely on for monitoring the groundwater resources 
across the Emirate regionally.

Although ML models are black box models which could be a disad-
vantage when compared to numerical models, applying sensitivity 
analysis can give an insight into the parameters and how they interact 
with each other (Borgonovo et al., 2017; Ratto et al., 2007). ML models 
are described as black box models due to the complexity of its internal 
structure’s mechanism. The Sobol’ indices identify the most influential 
parameter and how much each parameter contributes to the variability 
in the model output. This important information could guide decision 
makers on understanding the groundwater resources to apply different 
scenarios and which parameter to prioritize and focus on. For example, 
our Sobol analysis showed that precipitation, ENSO and soil moisture 
have strong impacts on the groundwater storage change. Thus, one 
should suggest adopting rainwater harvesting and applying the 
managed aquifer recharge to recharge the depleted aquifers. The ENSO 
impact could give an early alert for decision makers to prepare for a 

heavy rainfall season and how to benefit with these rainfall amount. It is 
important to emphasize that the model structure significantly influences 
sensitivity to input variables and lag time. The inclusion of lag-6 in the 
RF model reflects its need for longer temporal information to capture the 
extended influences of ENSO and precipitation on groundwater vari-
ability. In contrast, lag-3 was sufficient for the LSTM model, which le-
verages its temporal memory capabilities to account for water retention 
dynamics in soil moisture. The variation in sensitivity highlights the 
differing responses of groundwater at various time scales, leading to 
distinct temporal sensitivity interpretations. This validates our model 
selection and enhances our understanding of regional dynamics.

According to the projections from the Intergovernmental Panel on 
Climate Change (IPCC), precipitation amount and frequence will be 
changed due to global warming (Le Treut et al., 2006). The projection of 
rainfall and temperature data for future could be used to forecast the 
groundwater level and assess the impact of climate change on the 
groundwater level variations. Groundwater is vulnerable to changes in 
temperature and precipitation due to climate change (Lam et al., 
2021b). The increase in temperature will lead to an increase in the 
evaporation rates and could reduce the rainfall amount to recharge the 
aquifer. Recent studies have focused on applying ML and other modeling 
methods to forecast future groundwater level change under future 
climate projections (Dehghani et al., 2022; Ghazavi and Ebrahimi, 

Fig. 8. The assessment of the random forest models with the lags times during the training and testing periods.

Fig. 9. A statistical metric shown in a boxplot, with whiskers indicating the 5th and 95th percentiles, to visualize model performance across different lag times.
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2018; Lam et al., 2021b). The relationship between the climate change 
and groundwater storage is non-linear, however, in this research one can 
see the impact of climate change by increasing the temperature of the 
Pacific Ocean causing a change in rainfall and groundwater storage in 
Abu Dhabi Emirate.

5.2. Regional drivers of groundwater dynamics

It’s important to note the complexity of recharge characteristics 
across the Abu Dhabi emirate, influenced by various factors such as soil 
variability, rainfall intensity, geology, topography, and rapid land use 
changes. For instance, the eastern region near Alain city experiences 
double the rainfall intensity compared to the western region (Alsharhan 
and Rizk, 2020). Sand dunes covering gravel plains can reduce aquifer 
recharge, while steep ground surfaces, especially in mountainous areas, 
result in minimal recharge rates (Sherif et al., 2018). Land use changes 
also play a significant role in recharge dynamics (Scanlon et al., 2006). 
Therefore, despite our regional-scale analysis, it’s crucial to acknowl-
edge substantial spatial variations in factors like land use, water avail-
ability, and groundwater level changes across our area of study. Rainfall 
distribution across the emirate varies significantly, with mountainous 
areas receiving approximately 160 mm annually compared to around 
90 mm in coastal regions (Alsharhan and Rizk, 2020). Accordingly, to 
construct our regional groundwater model, we aggregated all remote 
sensing data products at the national scale. For an accurate represen-
tation of the spatial distribution in groundwater levels, future research 
should concentrate on formulating a spatially distributed model. Such a 
model would facilitate a more comprehensive understanding of 
groundwater dynamics in relation to climate, anthropogenic influences, 
and prospective changes. Additionally, localized analyses can clarify 
primary predictors of groundwater levels within specific regions, 
thereby offering valuable insights for future decision-making 
considerations.

The ENSO teleconnections significantly impact the precipitation 
patterns in the Arabian Peninsula. It has been observed that rainfall 
increased during the El Nino phases and drought conditions occurred 
during the La Nina Events (Felis et al., 2000). The El Nino phases can 
cause a shift in the atmospheric circulation resulting in more moisture 
moves from the Pacific to the Arabian Peninsula (Niranjan Kumar and 
Ouarda, 2014; Niranjan Kumar et al., 2016). Rainfall plays a critical role 

in recharging aquifers in the UAE. For example, studies have shown that 
rainfall events during the summer limit the aquifer recharge due to the 
high evaporation rate, while winter rainfall event could result in 
groundwater recharge (Sefelnasr et al., 2022). Imes and Wood (2007)
demonstrated the impact of the thick high dunes on limiting the 
groundwater recharge even during heavy rainfall events. Based on the 
Carbon-14 dating method for various samples obtained from the Qua-
ternary aquifer within the study areas, it is suggested that the source of 
water in the aquifer originates from rainfall periods between 32000 and 
26000 years Before Present (BP) and between 9000 and 6000 years BP 
when annual rainfall was approximately 200 ± 50 mm (Wood and Imes, 
2003; Woods and Imes, 1995). This supports our findings on the 
importance of ENSO as it controls the rainfall rate and intensity.

5.3. Limitations and sources of uncertainty

In our analysis, we primarily focus on deterministic modelling 
without an explicit consideration of model uncertainty, due to our 
broader interest in the influence of the selected variables on ground-
water level change. However, our results are subject to various sources 
of uncertainty associated with our selected algorithms, including input 
data, model structure and optimization, and data aggregation methods. 
First, the input data did not encompass all relevant variables influencing 
groundwater levels, and inaccuracies or uncertainties in these datasets 
may propagate to the outputs, a factor that was not investigated. Second, 
optimization could be further refined by exploring a larger parameter 
space to potentially reach a global minimum. Lastly, the input data had 
varying spatial resolutions, which were aggregated to obtain regional 
values, potentially impacting the results.

In this study, the groundwater level variation was not smoothed to 
assess the performance of ML algorithms in detecting these sharp rises 
and declines. Future work should consider multiple parameters for a 
better performance. The UAE adopted desalination plants for the do-
mestic supply. Recently, the Department of Energy in Abu Dhabi has 
connected the water networks to farms to reduce the groundwater 
pumping and preserve the groundwater resources. Furthermore, treated 
sewage water has been treated in UAE and distributed to farms two or 
three times a week. These water sources were not accounted in the 
calculation since data was not accessible. Due to the geological condi-
tions in UAE, it has been estimated that irrigation return flow accounts 

Fig. 10. Feature importance of predictors for groundwater level prediction using the Random Forest model. Results are based on the best model, incorporating inputs 
with a lag of up to 6 months.
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for 20% of the irrigation rate (Sherif et al., 2021). Since desalinated 
water (DSW) and treated sewage water (TSW) are used for irrigation, the 
soil moisture data could give an indication of recharge. Evidence of such 
an impact is observed by Sobol sensitivity analysis for the LSTM model 
as displayed in Fig. 11. The first order and total order Sobol method for 
the LSTM model showed a high score indicating the strong influence of 
soil moisture in the LSTM model. Additionally, the feature importance 
applied for the RF showed a similar outcome. The feature importance 
score has revealed that the second most important parameter is the soil 
moisture for the RF model. This indicates that aquifer recharge from 
DSW and TSW may have an impact on the groundwater. Thus, access to 
the DSW and TSW data could enhance the model’s performance.

Oil production and produced water injection could also impact the 
analysis since GRACE accounts for water at all depths. This study did not 
include the produced water from the oil field in the model development. 
Access to wells in the oil field could improve the model and reduce the 
uncertainty in the calculations. This research data is obtained from 263 
telemetric monitoring wells indicating the well-developed monitoring 
network established by the Environment agency of Abu Dhabi. This gave 
credibility and helped to develop an accurate model representing the 

aquifer dynamic of Abu Dhabi emirate.

5.4. Prospects for future groundwater modeling

Numerical modeling software has demonstrated satisfactory results 
in simulating groundwater flow across the Emirate (Sathish et al., 2018). 
However, to run these models in a transient mode, continuous temporal 
data on groundwater levels data, abstraction rates, rainfall and evapo-
transpiration are necessary. The dependency of numerical models on 
substantial data volumes could be a drawback and could be altered with 
data obtained from ML models to enhance the model performance, 
especially in the absence of continuous observational data. These 
continuous groundwater level timeseries developed from ML models 
could be used as an input in the conversion of numerical models in a 
steady state mode to a transient model. For example, the developed 
model in this study can be run easily by obtaining the freely available 
remote sensing data. These machine learning models can give important 
information of the aquifer dynamic in a fast time compared to the nu-
merical models that require time and additional observation data. The 
timeseries obtained from the ML models could be used in numerical 

Fig. 11. (a) First order Sobol’ indices and the total order Sobol’ Indices for the variables with lags applied for (a) Random Forest model and (b) LSTM model, and the 
black lines represents the 95% confidence interval associated with each variable.
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models for developing a transient model or for the purpose of calibration 
and sensitivity analysis. However, these models connect the inputs to the 
outputs without providing insights into the internal processes underly-
ing these relationships. This limitation, commonly associated with ma-
chine learning, has led to their characterization as “black box” models. 
This drawback can be addressed by utilizing “physics-informed” or 
“theory-guided” machine learning approaches, which constrain these 
models using physical characteristics and phenomena (Adombi et al., 
2021).

A promising approach to reduce inaccuracies in current groundwater 
level simulations is to implement more advanced algorithms. Hybrid-
izing existing models can enhance the performance of standalone 
models in predicting groundwater levels (Boo et al., 2024). For instance, 
CNN-LSTM models have recently gained considerable attention in hy-
drological applications (Ng et al., 2023). The convolutional neural 
network (CNN) component allows for the integration of spatially vari-
able inputs, which contributes to greater heterogeneity and improved 
model reliability. Additionally, incorporating decomposition techniques 
helps to extract relevant features from input data, a key advantage given 
the highly nonlinear and non-stationary nature of groundwater systems 
(Maheswaran and Khosa, 2013).

While this study offers novel insights into groundwater level vari-
ability in the UAE, several promising directions have emerged for future 
research. A more spatially detailed study that incorporates groundwater 
heterogeneity is one such direction. Two key approaches to achieve this 
include downscaling GRACE data and developing grid-scale models. 
Although the TWSA data used in this study is coarse, downscaling 
techniques can enable higher-resolution analyses (Ali et al., 2024). 
These refined models could be especially useful in incorporating future 
climate scenarios, such as ENSO-related variability and broader climate 
change projections, which could significantly affect groundwater 
availability. By linking spatially distributed modeling with these climate 
scenarios, we can better capture the potential impacts of seasonal and 
long-term climate shifts on groundwater systems. Additionally, devel-
oping machine learning models for individual grid cells offers distinct 
advantages (Faruki Fahim et al., 2024). This approach allows for more 
spatially varied groundwater simulations, including local processes, and 
enables model extrapolation to grids without monitoring wells, thereby 
enhancing groundwater monitoring on a national scale.

6. Conclusion

Abu Dhabi Emirate is facing significant groundwater depletion, and 
the government is actively seeking solutions to preserve its groundwater 
resources. Regional environmental variables influence groundwater 
variability through complex interactions that are not yet well under-
stood in the region. Gaining a better understanding of this variability, 
along with accurate modeling, is essential for more effective resource 
management and informed decision-making, particularly in the context 
of climate change challenges. The high cost for groundwater monitoring 
network maintenance and operation hinders water managers from 
having access to groundwater level change data. Alternatively, this 
research assessed the performance of remote sensing products coupled 
with machine learning techniques to predict the groundwater level. This 
study marks the first application of LSTM and RF models using satellite 
data and Earth observations in the Abu Dhabi Emirate. Furthermore, it is 
the first attempt to integrate ENSO into groundwater modeling in the 
UAE. We developed and evaluated the performance of two machine 
learning models, LSTM and RF, for regional groundwater level predic-
tion. The developed LSTM model outperformed the RF model during the 
testing period.

A key finding in this research is the impact of the ENSO on 
groundwater level changes in the Abu Dhabi Emirate. The statistical 
metrics are acceptable to rely on the developed model. The LSTM’s 
statistical metrics for the NSE, RMSE and R2 are 0.79, 0.38 m, and 0.79, 
respectively. The lags enhanced the LSTM and RF models significantly 

and the optimization techniques helped on demonstrating the influence 
of the lags. The Sobol global sensitivity analysis revealed a surprising 
outcome where among all the parameters derived from remote sensing 
products, the ENSO has the highest impact on the LSTM and RF models. 
This outcome implies the importance of considering the climate pattern 
and their impacts on the amount and variation of precipitation which 
eventually will impact the groundwater recharge. However, similar 
studies, both within the region and internationally, using traditional and 
advanced models, would be valuable for further comparison with our 
approach and findings. Finally, integrating remote sensing products into 
the LSTM and RF models can provide an acceptable groundwater level 
model.
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