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Propositions

1. Semantic interoperability is the Achilles’ heel of digital agriculture.
(this thesis)

2. Effective connections between spatial data, models, systems, and
researchers are a requirement for impact with digital agriculture.
(this thesis)

3. Digital agriculture is amplifying inequality faster than it reduces
hunger.

4. The peer review process is an essential slowing down of scientific
progress.

5. Placebos work because the brain prefers meaning over molecules.
6. The whole universe is one big quantum simulation.

7. Scuba diving is a perfect way to get off-the-grid.
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Summary

Digital agriculture marks a transformative phase in food production, propelled by the
convergence of digital technologies such as remote sensing, the Internet of Things, big data
analytics, artificial Intelligence, and autonomous machinery. These technologies promise
to improve productivity, sustainability, and resilience in agricultural systems. However, to
harness their full potential, robust geospatial data engineering practices are essential. This
thesis explores how spatial data engineering can be designed and implemented to support
the ongoing digitalisation of agriculture, offering a conceptual and empirical foundation
for the development of Agriculture 5.0.

The central thesis is that spatial data engineering functions not only as a technical enabler
but also as an integrative and human-centric discipline. Four critical dimensions of
connectivity are identified: connecting data, models, systems, and researchers. Each of
these is investigated through dedicated empirical chapters and is accompanied by applied
case studies and peer-reviewed research.

Chapter 2 focusses on connecting data and evaluates the challenges posed by the charac-
teristics of big data: volume, velocity, variety, and veracity. The work identifies semantic
heterogeneity and data veracity as especially pressing issues for agricultural applications.
Although semantic technologies such as ontologies and Resource Description Framework
(RDF) triples offer theoretical solutions, their real-world adoption remains limited due to
complexity and lack of tooling. The chapter advocates for lightweight semantic approaches
and FAIR data principles to improve data interoperability and trust.

Chapter 3 explores connecting models through the use of OpenMI, a standard for integrating
models across different domains. This research demonstrates the operational feasibility of
model linking and highlights the importance of semantic and spatio-temporal coherence.
The role of OpenMI in facilitating data exchange among soil, weather, and crop models
is highlighted, and the findings suggest the need for standards that are both technically
robust and easy to adopt.

Chapter 4 addresses connecting systems by implementing a scalable simulation infras-
tructure using Apache Spark and the WISS-WOFOST crop model. The performance
and efficiency of the system are evaluated in cloud and high-performance computing
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configurations. The results show substantial speed improvements in simulation runtime
and aggregation tasks, demonstrating the potential of distributed computing in agricul-
tural forecasting. However, the complexity of such systems poses barriers to adoption by
agronomists and agricultural data scientists.

Chapter 5 examines connecting researchers through the lens of Virtual Research Environ-
ments (VREs). The chapter evaluates VREs as platforms for collaborative, interdisciplinary
digital agriculture. A mixed methods assessment indicates that VREs can improve pro-
ductivity, reproducibility, and user satisfaction when properly integrated into research
workflows. The chapter concludes that co-designed, user-informed digital tools are vital to
foster trust and engagement across stakeholder groups.

The synthesis in Chapter 6 integrates the findings and articulates the societal and ethical
implications of spatial data engineering. It calls for transparent, explainable, and human-
centred design in digital agriculture to counter the risks of opaque, technocratic systems.
The discussion juxtaposes technocratic (Al-optimised) and agroecological (low-tech, farmer-
centric) futures, showing how spatial data engineering is relevant to both scenarios. The
research positions spatial data engineering as a conduit between technology and practice,
enabling knowledge flows and supporting inclusive innovation.

In conclusion, this thesis argues that geospatial data engineering is fundamental to realising
the promise of digital agriculture. Its success requires interdisciplinary collaboration,
stakeholder inclusion, and ethical oversight. By bridging the gaps between data, models,
infrastructure, and people, spatial data engineering becomes a cornerstone of sustainable,
scalable, and human-aligned agricultural innovation.

*
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Chapter 1

Introduction

"All around me were machines, busily at work, machines
that threshed and winnowed grain... A picture of
machines and no man to control or watch them!
Machines that seemingly with full consciousness walked
out into the fields to do their daily work. And even now
there was no living being among them save myself... Had
these machines in some incredible fashion been provided

with brains?"

- The Hidden Colony, von Hanstein, 1935
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1.1 Context

1.1.1 Transformations in agriculture

Approximately 12,000 years ago in the First Agricultural Revolution, the traditional
hunter-gatherer lifestyle was replaced by permanent settlements and animal domestication.
After a long time, this was followed by the second revolution that occurred from the 17"
century onwards with the reorganisation of farmland, following the end of feudalism in
Europe. The 3™ (green) revolution introduced chemical fertilisers, pesticides, and new
high-yield crop breeds alongside heavy machinery in the 1950s and 1960s. The era in
which we are now in is referred to as the fourth agricultural revolution, or the digitization
of agriculture, by the manifestation of the Fourth Industrial Revolution (Schwab, 2017)
within the agricultural sector. This digital agriculture increasingly uses various technologies
such as sensors and robotics and aims to optimise agricultural practices using data-driven
methods.

Figure 1.1: An autonomous farm robot. Illustration by Frank R. Paul depicting the mecha-
nized farm scene in The Hidden Colony (von Hanstein, 1935), translated from Die Farm des
Verschollenen (von Hanstein, 1924).

The earlier paradigm precision agriculture (Franzen and Mulla, 2016) (1980s - 1990s),
which became possible, among others, by the development of the Global Position System
(GPS) and Variable-Rate Application (VRA) farming machinery, paved the way for
digital agriculture, incorporating and integrating new technologies and seeking data-driven
agriculture solutions. Precision agriculture aims to maximise crop yields and farm profits
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while reducing environmental costs by ensuring the optimal use of water, fertilisers, and
phytosanitary products (Chlingaryan et al., 2018; Ruiz-Real et al., 2020; Schieffer and
Dillon, 2015). Another variant of digital agriculture, called smart farming (Wolfert et al.,
2017), goes one step further and incorporates informed decision-making based on data
and context awareness (Sundmaeker et al., 2016). Smart farming is expected to start to
bridge the gap between farming and Artificial Intelligence (AI) (Karunathilake et al., 2023),
allowing the further development of advanced autonomous farm robots, such as those
envisioned many years ago (Figure 1.1). Advanced integrated robotics and Al, combined
with next-generation network technology and driven by Big Data, are expected to be
crucial to Agriculture 5.0 (Fountas et al., 2024).

The transformation from traditional agriculture that relies highly on farmers’ intuitions
and experimental decision-making, with coarse site-specific farm management, to modern
agriculture, particularly digital agriculture with precise field and in-field optimised farming
activities, is considered crucial for addressing the many challenges faced by agriculture
and our food systems. Such challenges result from global climate change, demand from an
increasing population, geopolitical struggles, and better informed customers (Gebbers and
Adamchuk, 2010; Moran et al., 2008; Slavin, 2016). Meanwhile, current systems and their
extensive use of resources are also causing new problems such as decline in biodiversity
and soil degradation (Stoate et al., 2009). Changes towards more resilient and sustainable
food production and food supply chains are urgently needed. Increased digitisation in
agriculture is commonly considered a necessity for a transition to “do more with less”, that
is, produce more (sufficiently nutritious) food while using fewer resources, to address the
growing levels of food insecurity facing many countries (Food and Agriculture Organization
of the United Nations (FAO) and International Fund for Agricultural Development (IFAD)
and United Nations Children’s Fund (UNICEF) and World Food Programme (WFP) and
World Health Organization (WHO), 2022).

Benefits are expected by many, however, progressing traditional agriculture and agriculture
science to become more data-driven has proven to be a challenging undertaking and
a rather slow moving transition. Reviews of the literature on the topic carried out
around 2017 (Kamilaris et al., 2017; Wolfert et al., 2017) found only a small number of
publications and concluded that the adoption of big data processing and analytics was
only in an “embryonic” stage at that time with many barriers to increased adoption still
to be addressed. In particular socioethical and sociopolitical challenges, but also a call for
science to strengthen the evidence base for digital agriculture and prompt the required
new thinking (Ingram et al., 2022). Furthermore, Shepherd et al. (2020) mention that
addressing the challenges should go hand in hand with solving the related technological
issues, and agriculture science has to make a similar transition, including the potentially
required organisational changes. Today, the technologies that are being researched and
available for smart agriculture have improved significantly (Barbosa Junior et al., 2024;
Paudel et al., 2025). However, their adoption is still trailing, as is our understanding




4 Introduction

of how to assess the barriers that cause it (Osrof et al., 2023; Talero-Sarmiento et al.,
2022).

Although transition and adoption are slow, the possibilities of digital agriculture continue
to evolve through rapid developments in technology and data sources, currently leading
to the coexistence of different practices and paradigms (Figure 1.2). (i) Model-centric
digital agriculture focusses on the optimisation of models (typically mechanistic models),
using experimental data, and treating them as static. The experimental data results
from controlled trials and research adhering to strict scientific protocols. (ii) Data-centric
digital agriculture that focusses on rich and high quality data, mostly non-experimental
but collected from real-world farming activities, processed by machine learning models
and big data technologies. (iii) Al-centric digital agriculture that seeks to combine both
paradigms, infusing existing physical and agricultural knowledge into data-driven machine
learning to gain the best of both worlds (Roscher et al., 2023).

Increase in technology and data use over time "
Modern agriculture involves

advanced practices, technologies,
and approaches in farming,
Modern incorporating machinery, fertilizers,
pesticides, irrigation systems, crop

Traditional varieties, and decision support
to enhance productivi

agriculture and efficiency.

agriculture

Data-centric digital agriculture
focuses on rich and high-quality
data to drive advancements in
digital agriculture,

Model-centric Data-centric
digital digital
agriculture agriculture

Traditional agriculture involves
historical farming practices that
are rooted in local knowledge
and experience. It relies on
manual labor and traditional
techniques.

Model-centric digital agriculture
focuses on the optimization of
models, treating the data as static.

Digital agriculture integrates digital technologies and data-driven methods into agricultural processes, enabling data-based

decision support and enhancing overall efficiency by | ging data ion, is, and use.

Figure 1.2: Transformations in Agriculture, illustration from Roscher et al. (2023)

1.1.2 Geospatial data engineering

One commonality between the various paradigms of digital agriculture is a high dependency
on spatially explicit data and models, i.e. data that record locations or positional details of
observations or phenomena and models that take them into account. Spatial data can
describe the distribution of things in any kind of space, e.g. the human body, a room,
or outer space. Geospatial—a concatenation of ‘geography’ and ‘spatial’—indicates that
the focus of the data is on features relating to planet Earth. Non-geospatial data, on the
other hand, is data that is independent of geographic location. The terms ‘spatial’ and
‘geospatial’ will be used liberally in this thesis.
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The fact that location matters makes spatial data special. Nearby events usually are more
correlated than distant ones (Tobler’s (1970) first law of geography, see Waters (2017)),
requiring special techniques to handle such spatial autocorrelation problems. For example,
in spatial data mining—which is the process of discovering non-trivial, interesting, and
useful patterns in large spatial datasets—the most common of such spatial pattern families
are co-locations, spatial hotspots, spatial outliers, and location predictions (Golmohammadi
et al., 2020; Li et al., 2015). Such relationships among spatial attributes are usually implicit,
while those among non-spatial attributes are ezplicit. That is, the fact that two spatial
boundaries are typically neighbours is not explicitly described, whereas tractor X having
fuel consumption Y will be directly represented in a data record.

Another distinguishing aspect is that while non-spatial data have the familiar types of
nominal, ordinal, interval, and ratio, those of spatial data are raster and vector. Raster
data are composed of grid cells or pixels and vector data of points, lines, and polygons.
All are described using coordinates, which require coordinate reference system to relate
them to a location on the (curved) Earth, and/or transformations to project them onto
a flat surface such as a screen or a piece of paper. Such projections, unfortunately, are
never ideal and always have to choose either not to distort angles and shapes (conformal
map projections), not to distort areas (equal-area map projections), or to not distort line
length (equidistant map projections) (Hargitai et al., 2017).

Finally, working with geospatial data requires understanding and using specific file formats,
databases, tools, and algorithms (such as R-tree indexing (Guttman, 1984)), which are
surrounded by many standards and organisations involved in development and support.
Historically, this has been the domain of Geographic Information Systems (GIS) and
Spatial Data Infrastructures (SDI, Hu and Li 2017), providing shared and national or even
global access to many essential spatially interoperable data sources and the computational
algorithms for processing them. GIS professionals typically work with powerful (desktop)
computers and large (removable) storage devices, access data via Internet services that
may be part of SDIs and based on well-known open standards such as those managed
by the Open Geospatial Consortium (OGC, http://www.ogc.org). And/or make use of
cloud-based (web) GIS for computational and storage-demanding processing of remote
sensing data, such as satellite imagery, for near real-time insights. The currently emerging
integration of Al and GIS as the field of Geospatial Artificial Intelligence (GeoAl, Gao et al.
2023) will only further increase the demands and complexity of the domain, expanding it
to the field of spatial data science (Figure 1.3).

Spatial data science builds on GIS by integrating advanced statistical, computational,
and machine learning techniques. Where GIS focusses on spatial data organisation and
traditional geospatial analysis, spatial data science broadens the scope, using these foun-
dational tools to uncover deeper insights, make predictions, and solve complex geographic
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Spatial
Nbata Dgtu
Science Science

Figure 1.3: Spatial data science is the intersection of GIS and Data Science, and focuses on
the unique characteristics of spatial data, moving beyond looking at where things happen to
understand why they happen there. SDS treats location, distance and spatial interactions as
core aspects of the data using specialized methods and software to analyse, visualise, and apply
learnings to spatial use cases (Li et al., 2023a).

problems. An overview of some of the differences between GIS and spatial data science is
given in Table 1.1.

Table 1.1: An overview of the differences between GIS and Spatial Data Science.

Aspect GIS Spatial Data Science

Focus Spatial analysis and mapping Advanced analytics and prediction

Methods  Traditional geospatial tools (buffering, overlays)  Machine learning, spatial statistics

Tools GIS software (ESRI ArcGIS, QGIS) Python, R, Scala, big data platforms (Apache Spark,
Apache Flink, etc.)

Scope Primarily spatial data Integration of spatial with non-spatial data

As spatial data science itself evolves, a clear distinction from spatial data engineering is also
required to address the growing complexity of data workflows. Spatial data engineering
emphasises the infrastructure and processes required to efficiently manage, store, and
process spatial data. This includes tasks such as designing geo-databases, ensuring data
quality, optimising spatial data pipelines, and integrating diverse data sources. Spatial
data engineering is a specialisation of more generic data engineering, which is itself a
branch of computer science that deals with managing the creation, storage, maintenance,
use, and dissemination of data. It uses programming languages such as Python, SQL, R,
and Scala that aid in the manipulation of big data, and in many, if not all, cases it is
known to be the most time-consuming aspect of data science (Hosseinzadeh et al., 2023).
By separating the roles, spatial data engineers provide robust and scalable frameworks on
which spatial data scientists can rely to analyse and extract value from increasingly large
and complex spatial datasets.

"Data Engineering is the development, implementation, and maintenance
of systems and processes that take in raw data and produce high-quality,
consistent information that supports downstream use cases, such as analysis
and machine learning. A data engineer manages the data engineering lifecycle,
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beginning with getting data from source systems and ending with serving data
for use cases."

- Fundamentals of Data Engineering, Reis and Housley (2022)

Spatial data science and spatial data engineering play an important role in modern digital
agriculture, where location-specific insights are crucial to optimise agricultural practices.
Without adequate spatial data engineering, several challenges arise, including:

i. Inaccurate farm-level insights: Poorly managed spatial data can lead to inaccuracies
in mapping farm parcel boundaries, soil types, or crop distributions, directly affecting
decision making.

ii. Inefficient integration of diverse data sources: Digital agriculture relies on the
integration of satellite imagery, IoT sensor data, weather models, and other data
sets. Lack of data engineering makes it difficult to standardise, merge, or process
these diverse sources, reducing the effectiveness of spatial data science in generating
actionable insights.

iii. Slow or inconsistent analysis: Large-scale agricultural data, such as satellite imagery
or drone-based surveys, require robust processing pipelines to handle high-volume
and high-velocity data. Inefficient systems slow down analysis, which can delay
critical farming activities, such as pest management or irrigation scheduling.

iv. Challenges with real-time decision making: Modern digital agriculture increasingly
depends on near-real-time data, such as live weather updates or sensor feedback.
Without a strong spatial data engineering foundation, delivering timely insights
becomes difficult, undermining the value of spatial data science in operational
decisions.

v. Limited scalability and accessibility: As farm operations scale or expand across
regions, spatial data systems must handle larger datasets and provide insight across
geographies. Weak data engineering can limit the scalability of spatial data science
solutions, particularly in supporting smallholder farmers in low- or middle-income
countries (LMICs).

vi. Reduced predictive accuracy: Spatial models are heavily dependent on clean and
high-quality datasets. Poorly engineered systems can introduce noise or bias into
data, leading to inaccurate predictions for yield estimation, climate risk analysis, or
crop health monitoring.

vii. Barriers to knowledge sharing and collaboration: In digital agriculture, shared plat-
forms and collaboration between stakeholders — farmers, policymakers, agronomists
and researchers — are vital. Inefficient spatial data systems hinder interoperability,
create silos, and reduce the effectiveness of collective decision-making.
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Neglecting spatial data engineering undermines the effectiveness of spatial data science,
limiting its potential to provide actionable insights and impact decision-making processes
for modern agriculture and related environmental sciences.

1.2 Research gaps

In geospatial data engineering, there are still several critical research gaps that hinder its
full potential, in addition to its slow adoption. These gaps can be identified at the various
levels that are involved in the processing of raw data into information, the interpretation
of that information into knowledge, and the effective application of that knowledge to
make better decisions. Specifically, the need for scientific and application improvements in
heterogeneous data integration, the integration of spatially aware computational models,
the use of scalable distributed computing in digital agriculture, and the facilitation of
interdisciplinary collaboration and knowledge sharing will be highlighted.

At the data level, modern digital agriculture is based on a wide array of spatial data
sets from satellites, drones, proximal sensing, and ground-based agricultural monitoring
systems. And since agriculture is the largest interface between humans and our natural
environment, it cannot be considered in isolation. Other kinds of data sets from various
research disciplines have to be included as well, for example about soil, climate, and
biodiversity. Together, these form large to big data collections that have to be handled by
data engineering. Suitable technologies exist, but little is known about their applicability
for data-driven agriculture.

Once raw data are pre-processed and structured into information, computational models
(including mechanistic, machine learning, and hybrid approaches) are used to further
process them, or features extracted from them, to generate insights, predictions, or
classifications. These outputs are structured information as well, ready to be interpreted
by humans or systems to derive knowledge. Often there are multiple models in play,
e.g. for interdisciplinary research, integrated assessment studies, or when the interacting
components of complex systems have been modelled separately. This introduces the
problem of interoperability; existing models often function in isolation, making it difficult
to integrate the outputs or to use the output of one model as input for the next one in a chain
of models. In case of spatial-aware models, it can be even more tricky due to differences
in handling the spatial aspects of the data, and differences in spatial and temporal scales,
e.g. between fine-resolution (farm, field and intra-field) and coarse-resolution (regional or
global) agricultural data.

Since modern agriculture is data-driven, it will depend on capable data storage and compute
facilities to handle data pre-processing, information processing, and transformation into
knowledge. This requires a robust infrastructure, such as compute clusters and the use
of scalable computational frameworks. While common in other scientific domains, e.g.
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bioinformatics and climate research, their use for digital agriculture is under-explored.
However, existing infrastructures often struggle to handle the volume and complexity of
agricultural geospatial data in particular. Furthermore, the lack of proper and shared
infrastructure leads to siloed systems and platforms operating within closed ecosystems,
making it difficult to standardise and collaborate on workflows for spatial data ingestion,
processing and analysis, for digital agriculture.

Finally, effective application of knowledge to make better decisions in digital agriculture
requires productive communication and collaboration between researchers, engineers,
and agricultural stakeholders. Several barriers currently limit such interdisciplinary
approaches, including: (i) fragmentation of research communities that leads to disconnected
advancements; (ii) limited adoption of the principles of Findable, Accessible, Interoperable,
or Reusable (FAIR) data (Wilkinson et al., 2016), restricting the sharing of knowledge; and
(iii) lack of centralised openly accessible repositories for agricultural geospatial data sets
and research findings, which limits innovation and application. Portals, science gateways,
and virtual research environments are known technologies that support e-research; however,
their adaptation and deployment within the digital agriculture sector are relatively under-
explored.

1.3 Research objectives

This thesis investigates and enables spatial data engineering for use in digital agriculture by
testing and incorporating technological developments in agricultural applications. Based on
the mentioned research gaps, it identifies key challenges towards: (i) connecting data; (ii)
connecting models; (iii) connecting systems; and (iv) connecting researchers. Addressing
them is crucial to facilitate not only geospatial data engineering but also directly and
indirectly improve geospatial data science for modern data-driven agriculture. The research
framework for the thesis is given in Figure 1.4, and its content is structured as follows:

Connecting data is discussed in Chapter 2, based on the paper “Analysis of Big Data
technologies for use in agro-environmental science”, which looks at the characteristics of big
data (Volume, Velocity, Variety, and Veracity), the multidisciplinary data — information
— knowledge — wisdom (DIKW) pyramids that typically have to be dealt with in digital
agriculture, and answers the research question of which aspect(s) of Big Data we best
focus on from a perspective of spatial data engineering in agriculture.

The Chapter 3 on connecting models is based on the publication “Evaluating OpenMI as
a model integration platform across disciplines”. The Open Modelling Interface (OpenMI)
is a standard accepted by the Open Geospatial Consortium (OGC) that enables the
run-time exchange of spatial data between numerical models and modelling tools. This
chapter examines the standard and the approach of model linking in a number of research
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Figure 1.4: The research framework of this thesis

domains, driven by the research question if and how such a standard can facilitate spatial

data engineering work.

Next, in Chapter 4, connecting systems is discussed based on the manuscript “Efficient
and scalable crop growth simulations using standard big data and distributed computing
technologies”. It looks at the applicability of of-the-shelve available software and hardware
for running a numerical crop growth simulation model at scale, i.e. for calculating millions
of simulated crop yields on a compute cluster, compared to more traditional solutions by
building bespoke systems. When successful, having such standard capabilities available
would be beneficial to agricultural data engineering.

Finally, connecting researchers, is studied in Chapter 5 with the paper “Evaluating
Virtual Research Environments in agri-climatic research”. While the previous chapters
address research questions related to geospatial data engineering, here the research question
is related to Data Science and researchers in digital agriculture, particularly across domains,
and whether and in which form Virtual Research Environments can be helpful.

The Synthesis, in Chapter 6, integrates the key findings of the research and highlights their
collective contribution to the field. The work is situated within the broader context of
modern digital agriculture, evaluates its relevance in light of recent advances in spatial data
engineering, and discusses limitations. It also identifies remaining research gaps and outlines
future directions to enhance geospatial data engineering for digital agriculture.

s



Chapter 2

Connecting Data

This chapter is based on:

R. Lokers, M. Knapen, S. Janssen, Y. Van Randen, and J. Jansen (2016b). “Analysis of
Big Data technologies for use in agro-environmental science”. Environmental Modelling &
Software 84, 494-504. DOI: https://doi.org/10.1016/j.envsoft.2016.07.017
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Abstract

Recent developments like the movements of open access and open data and the un-
precedented growth of data, which has come forward as Big Data, have shifted focus
to methods to effectively handle such data for use in agro-environmental research. Big
Data technologies, together with the increased use of cloud based and high performance
computing, create new opportunities for data intensive science in the multi-disciplinary
agro-environmental domain. A theoretical framework is presented to structure and analyse
data-intensive cases and is applied to three case studies, together covering a broad range
of technologies and aspects related to Big Data usage. The case studies indicate that most
persistent issues in the area of data-intensive research evolve around capturing the huge
heterogeneity of interdisciplinary data and around creating trust between data providers
and data users. It is therefore recommended that efforts from the agro-environmental
domain concentrate on the issues of variety and veracity.
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2.1 Introduction

Societal challenges (e.g. food security, ecosystem restoration, climate change, resource
use efficiency as captured in the Sustainable Development Goals (http://sustainable-
development.un.org/topics/sustainabledevelopmentgoals) and EU’s societal challenges
(http://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges) re-
quire more and more complex approaches in terms of combining cross-sectoral and cross-
discipline knowledge, information and data. For example, Steffen et al. (2015) introduce
the concept of planetary boundaries to define a safe operating space for humans in the
earth system, and thereby using data and models coming from many different domains and
background. Such integrated scientific and societal perspectives require the combination
of a multitude of data sources and the application of different analytical techniques.

Traditionally, science has operated along disciplinary lines in using and applying its data
and analytical tools. Data management and curation was hardly an issue, with data being
connected and analysed for separate applications and with researchers working with data
les on their own computers and not actively publishing or sharing these. In roughly the
period 1985-2005 there was a large focus on developing models for knowledge derivation
from available data, see for example a review of farm models in Janssen and Van Ittersum
(2007), crop models in Van Ittersum and Donatelli (2003), ecological models in Schmolke
et al. (2010), land use models in Verburg et al. (2004). This period was followed in
20002012 by a period of building modelling frameworks as a method of combining more
comprehensive analysis for decision making (e.g. Argent 2004; Knapen et al. 2013; Van
Ittersum et al. 2008; Van Meijl et al. 2006), combined with many information technology
and computational innovations to enable rapid analysis of large amounts of data within a
single discipline (e.g. Villa et al. 2009). As a consequence, at this stage the capabilities
within disciplines for data processing and analysis are well developed, just as the high-level
linkage of models in abstract modelling frameworks, even if the methodological framework
underlying such efforts is often lacking (Janssen et al., 2011). Looking at Wang’s Levels of
Conceptual Interoperability Model (Wang et al., 2009), in environmental modelling and
simulation there has been substantial and useful progress at the lower levels of technical
and semantic interoperability. To advance, besides further addressing these lower levels,
also the still unexplored higher levels of semantic and conceptual interoperability have to
be targeted.

Fortunately, in recent years a number of trends have emerged that could fundamentally
change this status over the coming decade. First and for all, the mentioned trend of
broadening policy and decision contexts research has challenged the science domain in
general towards much more multi-disciplinary and integrative research, while the pace of
decision making also puts pressure on the timeliness of research results. Second, the politi-
cal attention has turned to open data as public good resource, as witnessed by open data
initiatives (e.g. Global Open Data for Agriculture and Nutrition, www.godan.info), open
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data conferences and open data portals (e.g. data.gov, data.gov.co.uk, data.overheid.nl,
data.fao.org). This development was preceded by a movement to make scientific publi-
cations available as open access, which has led to specialised journals being set up and
traditional journals offering the option to publish under open access licences. Third, the
amount of data available for science has grown enormously in the past years, driven by tech-
nology developments such as open access repositories of remote sensing images, the advance
of the mobile phone enabling crowd sourcing and citizen science and digital connectedness
through social media and internet of things. Fourth, the computational resources have
massively increased over the past decades, according to Moore’s Law, with also a better
availability and accessibility of storage and computational resources in the cloud such as
Platform-as-a-Service (PaaS) and Model-as-a-Service (MaaS) technologies.

These developments of more (open) data and higher connectedness in principle offer
opportunities to support larger, faster and more complex data-intensive processing and
analysis across disciplines as required for supporting evidence-based decision making
towards societal challenges. Against this background, recently Big Data has emerged and
to some extent has been hyped as a new trend to provide unlimited capabilities in analysis of
data, providing revolutionary new insights (boyd danah and Crawford, 2012; Manyika et al.,
2011; McAfee and Brynjolfsson, 2012). Related to the agro-environmental domain, Vitolo
et al. (2015) have investigated web technologies dealing with “Big Environmental Data”,
while Lokers et al. (2015) explore the use of semantic technologies to improve access to Big
Data in agriculture and forestry science. For the purpose of this paper, Big Data is defined
as: a term encompassing the use of techniques to capture, process, analyse and visualise
potentially large datasets in a reasonable timeframe (as defined in Networked European
Software and Services Initiative (NESSI) 2012), while incorporating both structured and
unstructured data and covering several disciplines and domains. This definition primarily
focusses on technology and on the technological support of some of the elementary data-
intensive tasks in science. Use cases on data management in research (Lokers et al., 2014)
show a variety of technological challenges associated for instance with environmental
modelling, that range from metadata oriented information retrieval issues to heavily data-
oriented problems related to Big Data mining and data integration. These challenges in
particular concern the effective discovery of the appropriate data for a specific research
task. In data-intensive research areas like agro-environmental modelling we have reached
the point where automated procedures for selection, collection and indexing are becoming
indispensable to effectively exploit this global network of data.

In this paper we examine and analyse use cases from three European projects as guidance to
describe current possibilities and future challenges for deployment of Big Data techniques
in the field of agro-environmental research, facilitating decision support at the level of
societal challenges. For that purpose, a theoretical framework is proposed that allows
positioning of Big Data challenges and techniques in the context of interdisciplinary science
and the policy-science interface. This framework is then applied to analyse three scientific
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cases in the agro-environmental domain and to reflect on the current state of play of the
application of Big Data technologies in the domain. Based on the analysis of the cases
along the theoretical framework, overall observations are made on technology readiness
and suggestions are provided for further developments.

2.2 Analysis

2.2.1 Theoretical framework

It is useful to start from a theoretical framework framing the complexity of challenges and
demystifying the hype of Big Data. Such a theoretical framework needs to be tailored to the
context of the agro-environmental domain. To achieve this, Big Data, its characteristics and
ways of processing should be connected to the context of evidence based decision making
and to the specifics of data-intensive challenges in the agro-environmental domain.

To frame the way (big) data is used in decision making we introduce a knowledge manage-
ment model, extending a broadly used and recognised concept which has been elaborated
on in numerous publications in different forms and under different names and to which we
will refer here as the data-information-knowledge-wisdom or DIKW hierarchy (Rowley,
2007).

The model (see Figure 2.1) is used to contextualise data, information, knowledge, and
sometimes wisdom, with respect to one another and to identify and describe the processes
involved in the transformation of an entity at a lower level in the hierarchy (e.g. data) to an
entity at a higher level in the hierarchy (e.g. information). The idea is that decision makers
need “wisdom” for taking evidence based decisions. Such wisdom can be developed by
combining available knowledge with less tangible assets like interests, values, preferences,
ethics, etc. The knowledge base they use is essentially derived from data. Data can in
this respect be considered the raw material to produce information through the addition
of meaning. Information is again enriched, creating knowledge by using and combining
decision and policy contextual applications like for instance integrated models, impact
assessments or decision support systems.

Agro-environmental research use cases usually concern dynamic systems with complex
interactions between living organisms or perishable products (e.g. plants, animals, humans,
agricultural products) and their environment. Describing such systems requires complex
and usually detailed information regarding status and behaviour of its entities and their
environmental conditions. It can include its actual status, but also historical or predicted
future conditions. Because of the spatial dynamics and temporal variability of living
systems, data regarding the temporal and spatial behaviour of entities and local condi-
tions are essential. Moreover, understanding these interactions requires the observation,
analysis and integration of knowledge of subsystems of very different nature, for example
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Figure 2.1: DIKW hierarchy, from Big Data to decision making for societal challenges

biological, climate, soil and water subsystems. The complexity of describing, analysing
and understanding such systems and the magnitude and heterogeneity of the data involved
can be easily understood.

The complexity of handling Big Data is highly associated with its typical characteristics,
often described as the “3 V’s” of Big Data, i.e. Volume, Variety and Velocity (Laney,
2001).

Volume refers to the unprecedented amounts of data becoming available through new
technologies supporting massive generation or collection of data and efficient means of
storage. Relevant examples for the agro-environmental domain include climate data
(especially climate projections) and remote sensing data. Terabyte to Petabyte size
volumes are easily reached when attempting to capture — for example — natural variability
on detailed spatial and temporal scales.

Velocity refers to the speed at which new data is becoming available, e.g. through real-
time data streams, but also refers to the usually high requirements regarding processing
time to make the data and its value-add derivatives available for end users. In the agro-
environmental domain, real-time data generated by sensor networks or citizen science
networks are good examples of such streams, while monitoring and early warning systems
commonly require near-real-time processing of such data streams in order to provide timely
information to decision makers.

Variety concerns the ever increasing heterogeneity of data relevant to decision-making.
Firstly, this is caused by the continuous evolvement of available streams and formats, e.g.
from social media and mobile applications. Moreover, information from an increasing
range of disciplines is needed, in particular in the agro-environmental domain. This is
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due to the many subsystems of very different nature, the tremendous width of current
societal challenges to be addressed, and the resulting complexity of associated decision
contexts. Because individual disciplines tend to have a background of working in silos
and using their own tailored data formats and vocabularies, these attempts to integrate
data or information from different domains face a multitude of technical and semantic
challenges.

In addition to the three V’s mentioned, additional characteristics of Big Data have
been identified. Veracity, often mentioned as being “the fourth V” (http://www.ibmbig-
datahub.com/infographic/four-vs-big-data), seems to be the most relevant one when we
specifically consider the agro-environmental domain. Veracity, which addresses among
others the integrity and accuracy of data and data sources, is highly associated with trust
and with having confidence that the quality of data is sufficient to serve as evidence base
for critical decision making. Researchers will have to leave the safe environment of familiar
data silos in peer networks, while at the same time the growing size and complexity of the
data ecosystems grows beyond the capacities of a human being to judge the quality of all
associated data sources. Consequently, frameworks and working procedures that ensure
integrity of data and its derived products and trustworthy indicators for integrity become
indispensable.

Figure 2.2 shows how these Big Data characteristics are linked to the DIKW layers when
we also consider that in most agro-environmental cases multiple disciplines are involved,
with different content regarding data, information and knowledge and different perspectives
on policy and decision making.

Wisdom Wisdom

Information Information

Figure 2.2: Multidisciplinary Big Data pool and characteristics

In the context of Big Data, the DIKW hierarchy also conceptualises the process of turning
the enormous mass of data, which as a raw material has little or no significance to end users,
into compact, structured and contextualised, manageable “chunks” that are applicable
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in a specific decision making context. End users will implicitly presume that these have
been synthesised using the most appropriate sources from the Big Data pool, interpreted,
and processed according to their decision context, using the most reliable and timely
information available. Evidently, such presumptions pose an enormous challenge to the
whole community of ICT-experts, data scientists and domain experts that are involved in
handling the various steps in this process. The broad scope, both vertically over different
ICT, data science and knowledge management expertise areas and horizontally, covering the
multi-disciplinary of present-day decision contexts, requires a highly cooperative approach
and the establishment of harmonised concerted processes, organised through a combined
top-down and bottom-up approach.

To explore the possibilities to meet the challenges described above, in the next Section
three data-intensive use cases from the agro-environmental domain will be described and
analysed with regard to their position in the theoretical framework and the associated
Big Data characteristics. Table 2.1 summarises the linkage of the cases with the Big Data
characteristics and the DIKW model described above.

Table 2.1: Analysed use cases characteristics

Use case Volume Velocity Variety Veracity D I K W
Semantic driven discovery X X X X X X
Data driven discovery X X X X X

Big Data querying X X X X X

2.3 Case: semantic driven discovery

2.3.1 Problem statement

This use case addresses the harmonised provision of scattered and heterogeneous data
for impact assessment to decision makers and researchers. An impact assessment study
typically requires assessing the potential economic, social, and environmental effects of
alternative policy options through a number of scientific computer models that can span
various science domains. Each of the models requires sets of trustworthy input data.
For example, agricultural impact assessment studies could use scientific models such as:
APES-a cropping system model (Donatelli et al., 2010); FSSIM-a bio-economic farm
model (Louhichi et al., 2010); CAPRI-an agricultural sector model (Britz et al., 2009);
and GTAP-a computable general equilibrium model for global markets (Hertel and Tsigas,
1997). Input data required would include, amongst others, crop parameter data, data on
local soil types, historical and simulated future weather data (on local, regional, and global
scale)). Many of such datasets are available, either locally in organization’s repositories, or
on the Internet as open data. Due to the expanding use of sensors and satellites that can
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measure e.g. crop, soil and meteorological data at increasingly finer temporal and spatial
resolutions, not only the amount of available datasets is growing, but also their sizes. This
makes finding the usable pieces of data one of the key challenges of Big Data.

In an approach to address this discoverability challenge, the LIAISE project developed
the LIAISE Toolkit (http://www.liaise-kit.eu). LIAISE-Linking Impact Assessment
Instruments to Sustainability Expertise-was established in 2009 to improve the application
of Impact Assessment (IA) by both the research and the policy making communities. The
Toolkit facilitates the categorisation and discoverability of metadata for different types of
knowledge resources related to TA, for example datasets, scientific models, frameworks,
practical examples and domain experts. Submitted information is categorised into topics
by key experts before it is published and made accessible through the Toolkit website.
Initially this website supported directory based discovery with a faceted search mechanism.
Following technological developments near the end of the project it was explored how the
search capabilities could be improved by the use of semantic technology. In particular
this included investigating whether and how recent Natural Language Processing (NLP)
and Machine Learning (ML) techniques could be used to automatically derive required
metadata from unstructured text sources and relate it to a defined LIAISE overall ontology.
It was assumed that using these techniques could lead to a system which does not only
rely on manual provision of metadata by experts, but which can also get its content from
automated discovery of relevant metadata, or enriching existing sparse metadata from
auxiliary documentation such as reports, published papers, or websites. It would support
finding the relevant small pieces of data (at the DIKW Information layer), as well as make
the system more “intelligent”, operating at the Knowledge and Wisdom layers, linking
available heterogeneous knowledge sources from multiple disciplines to specific contexts of
decision and policy making. Furthermore, the case is strongly connected to the variety
characteristic, establishing semantic links between the knowledge and decision-making
layers and by exposing new opportunities for innovative re-using and combining tools in
new domains. Through its foreseen approach of automated linkage, it also touches the
aspect of improving velocity, while at the same attempting to retain veracity or trust in
the generated knowledge.

2.3.2 Methodology and implementation

For its practical implementation, the case aimed at extending the existing LIAISE Toolkit
with (i) a way to use the LIAISE ontology for linking existing external datasets to all
already available knowledge resources in the Toolkit, and (ii) the use of a similar pathway
to relate typical impact assessment questions to relevant knowledge resources in the Toolkit,
providing a semantic search mechanism. Figure 2.3 illustrates the foreseen steps, including:
(1) selecting and processing of auxiliary documentation of simulations models and datasets
using NLP techniques, (2) mapping of the data to the de ned LIAISE ontology, and (3)
storing it. For retrieval through a stand-alone web interface (6) or from the Toolkit website,
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questions posed in natural language will be processed (4), related to the stored information
and used to find (5) matching search results (i.e. relevant knowledge resources).

LIAISE Ontology

S0

NLP

4, Question processing 5. Search results

Document
Document

LIAISE Information Retrieval

C?_-.) ‘tex‘l | Search |

6. Web interface
Figure 2.3: LIAISE semantic driven information retrieval concept

As a proof-of-concept the semantic linkage exercise was developed around the datasets
provided online by the European Environmental Agency (EEA, http://www.eea.europa.eu/-
data-and-maps). The metadata of these EEA datasets contains references to a list of
topics relevant for EEA resources (see http://www.eea.europa.cu/themes). LIAISE, on the
other side, uses a taxonomy of impact areas for tagging included knowledge items.

For reasons of performance and quality an automated procedure periodically retrieves
metadata of available EEA datasets from their semantic web SPARQL endpoint. It
then attempts to find and add relevant LIAISE taxonomy-based impact area tags to
the metadata, thus establishing links that allow the LIAISE web portal to mention the
datasets at appropriate places, for example, as potentially suitable input to a simulation
model. To create the links, the automated procedure needs to perform some kind of
semantic comparison based on available metadata and/or data. Several approaches for
such a semantic comparison were explored and tested.

The first approach was based on the exploitation of Machine Learning and Natural
Language Processing techniques, enabling computers to derive meaning from human
or natural language input (Ng and Zelle, 1997). It foresaw the building of a corpus
for the automatic determination of relevant terms from the metadata available through
LIAISE knowledge resources to subsequently analyse and tag the external metadata with
a Machine Learning algorithm. Unfortunately, at the time of development the Toolkit was
just started to get filled by the experts and a corpus of adequate size could not yet be
constructed within the project time boundaries. Existing resources such as the online,
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publicly available dictionary WORDNET (Miller, 1995) do not contain the very domain-
specific knowledge required for e.g. semantic parsing, and a sense-tagged corpus needs
to be added to improve automated semantic interpretation. Finding sufficient material
for building training data for machine learning was an additional, yet related problem.
Consequently, initial ambitions for this case had to be scaled down.

A second, less elaborate approach based on textual matching techniques was subsequently
explored. Using the OpenNLP tools (http://opennlp.apache.org), each textual description
of a LIAISE taxonomy term for an impact area (e.g. “Environmental Impacts - The
environmental consequences of firms and consumers - Sustainable production and con-
sumption”) was syntactically analysed to find all nouns in it, and compared to nouns
found in any text field (title, description, topics, etc.) of each resource from the EEA
ontology referring to a dataset. The more nouns matched, the more relevant the resource
was considered, and the higher it was ranked in the search results. This simple approach
proved to be relatively successful due to the fact that both EEA and LIAISE work in the
environmental science domain and thus already use a kind of shared vocabulary. Their
words and terms in most cases mean the same things. Yet, LIAISE topics and subtopics
purposefully have broad and non-restrictive titles so that experts can always find one or
more topics their knowledge resources fit in without having to define new topics. While
this keeps the taxonomy stable, it makes it harder to use for machine processing. Hence
precision and recall of the text matching turned out to be too low to make it an acceptable
approach, and the search results contained too much noise over signal to make it acceptable
to the users.

Therefore, the final implemented approach was an expert-driven linkage process. This
method uses a mapping table in which the expert manually links the LIAISE impact areas
(or taxonomy terms) to EEA thematic topics. It does not provide an explicit indication of
the quality of the match, which is implicitly associated with the expert and their level of
expertise. Because this mapping requires manual input by experts for each data provider
to be added to the system and for changes in the taxonomies, it is more time consuming
and less dynamic, but it does provide expert-based quality of the links, creating trust for
the web portal users, thus addressing the veracity aspect.

2.3.3 Results

From the three explored approaches to link (EEA) datasets with the knowledge base
available in the LIAISE Toolkit, the semi-manual method where experts manually link
Impact Assessment terms to terms related to the datasets was implemented. The two
automatic processes that were examined proved to be too costly or ineffective in this
particular case. For the Machine Learning and NLP-based approach, the main barrier was
that building a working corpus for this purpose from available LIAISE resources was not
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possible, due to the lack of sufficient material available at the time of development, and
the unforeseen amount of time that it would take.

Using textual matching, it appeared that in all cases the process resulted in considerable
amounts of erroneous matches (low precision and recall values) producing undesired and
unusable results. This could be at least partially assigned to the relative simplicity of
the non-semantic textual matching techniques used in the process. Moreover, matching
also failed because the process operated on extracted high level generic terms (water, air,
pollution) instead of more specific compound terms (also known as n-grams) like “surface
water” and “air pollution”. Retrospectively it can be concluded that trust, or veracity, also
plays a relevant role. Even if conditions are met to successfully implement automated
procedures for tagging, it will remain hard at the moment for these technologies to gain
the level of trust that the scientific user community tends to exhibit if experts perform the
job manually.

2.4 Case: data driven discovery

2.4.1 Problem statement

The Trees4Future project (www.trees4future.eu) is an integrative European Research
Infrastructure project that aims at integration and further development and improvement
of major forest genetics and forestry Research Infrastructures. One of the objectives is to
make forestry scientific data discoverable and accessible for a broad audience of modellers
and decision makers in and outside the forestry research community. Like in many other
scientific domains, forestry researchers traditionally rely on their own peers and scientific
networks when collecting the data required for their work. Only recently the forestry
research community has started to harmonise and share their data, especially in the area
of genetics. However, a lot of relevant data is still stored in silos, sometimes even in local
or private repositories. Moreover, datasets often are not documented with appropriate
metadata. In many cases, researchers do not see the benefits of documenting data, or
data is consciously kept private for example because associated research results are still
to be published or because of fear for misuse. In general there is often no incentive,
nor sense of urgency to actively share data other than through (trusted) networks and
personal contacts. This corresponds to observations in literature, suggesting that apart
from the technology challenges, many disciplines also still lack the institutional and cultural
frameworks required for efficient data sharing, together leading to a “scandalous shortfall”
in the sharing of data by researchers (Nature Editorial Board, 2009). Thus, valuable
research data is hard to find without knowing the right people, and only partially available
for the whole community of interest. Consequently it still remains hard to acquire the
specific targeted data for interdisciplinary work. This lack of discoverability is an even more
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pressing issue for “newcomers”; for scientists from associated domains that require forestry
data for their work or for decision makers looking for evidence-based information.

One of the research communities in the Trees4Future project are forestry modellers. Their
work on present-day societal challenges (e.g. related to bio-economy, climate change)
requires interdisciplinary approaches, like integrated modelling. As an example, assessing
climate change impacts and exploring climate adaptation strategies requires coupling
of models that describe various sub-domains and cover different spatial and temporal
resolutions. In Trees4dFuture, such integrated assessments required the linkage of the
ForGEM model (Kramer et al., 2013), the EFISCEN model (Nabuurs et al., 2000) and the
Tosia model (Lindner et al., 2010). While the ForGEM model assesses genetic adaptive
responses on the individual tree and population level, the EFISCEN model projects forest
resource development on a regional and European scale, and the Tosia model analyses
environmental, economic, and social impacts of changes in forestry-wood production
chains. Heterogeneous data, varying from detailed genetic data, phenotypic traits and
high resolution climate and soil data, to statistical data on species distribution, forest
management practices and market information are required to address such integrated
modelling exercises. Given the current disconnectedness and lack of context, it is quite
complex and time consuming to discover and get access to these data. The Trees4dFuture
project aims at improving this situation by developing technical solutions to facilitate the
documentation, publication and discoverability of forestry data by setting up a forestry
data infrastructure. Moreover, through this infrastructure it aims at demonstrating benefits
and fostering broader uptake of data sharing and documentation practices.

From the perspective of the theoretical framework, this case is strongly connected to
veracity, addressing issues of trust and quality. This obviously works in two directions. On
the data owner side, there needs to be trust that data is sufficiently documented and will
not be misinterpreted or misused. Data consumers, on the other side, should have trust in
the reliability and correctness and completeness of associated metadata. The case also
addresses variety, through the requirement to provide integrated access to sources coming
from a range of relevant subdomains and the related need to provide semantic linkages
over the associated (meta)data. This case mainly concerns the lower levels of the DIKW
hierarchy (the data and information level) and the need to make the available data and
information part of the multidisciplinary Big Data pool, adding the required context on
the dataset level to make data potentially usable for the broader community.

2.4.2 Methodology and implementation

To improve access to data required for and generated by forestry research, a data search
and discovery service on top of a federated metadata repository was developed. Main
objectives were firstly that the system had to be able to provide both already documented
and accessible datasets and up till now inaccessible datasets, thus connecting not only
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organisations that have already organized and standardised their processes but also the
smaller organisations and individuals that are not equipped with the required infrastructure.
Secondly, end users were to be provided with a facility to easily search and discover available
forestry data, once datasets have been documented and published through the developed
mechanisms. This search function was considered to be the necessary “proof of the pudding”,
required to convince end users to use the system, but also to convince data owners of the
benefits of documenting and publishing their data.

To achieve improved discoverability, the following components were developed to support
the data publication process depicted in Figure 2.4:

i. A concise metadata schema, based on the widely supported and extensible Dublin
Core standard and extended with additional metadata elements to support forestry
specific metadata;

ii. A public metadata registry, composed of an online metadata editor and an underlying
repository, which publishes its metadata records through the OAI-PMH protocol,
providing a standardized and harvestable metadata endpoint;

iii. A forestry ontology that allows the conceptualization of datasets and its interlinkage
with commonly used external ontologies (e.g. AGROVOC (http://www.fao.org/-
agrovoc/), a genetic traits ontology);

iv. A metadata harvesting, triplification and annotation mechanism that supports
harvesting metadata following the developed forestry metadata schema as well as
standardized metadata schema’s like INSPIRE and ISO; decomposes the metadata
into ontology concepts using among others natural language processing (NLP)
techniques and stores these in an RDF (Resource Description Framework) database;
and links the derived dataset concepts to the concepts of the available external
ontologies;

v. A semantic search mechanism and search interface, allowing users to transparently
search the registered datasets, using the power of semantics in the underlying RDF
store.

2.4.3 Results

The developed infrastructure clearly has increased the discoverability of forestry research
data and improved its availability for a broader audience. It covers the variety of data
required for integrated forestry modelling cases, like the described climate adaptation use
case and others. This is, first of all, because it provides federated access to the currently
scattered and sometimes inaccessible wealth of forestry research data. The developed data
infrastructure already publishes metadata of more than 300 data sets from major European
data repositories, and offers the option for small organisations and individuals to publish
their (meta)data through a managed access point. Moreover, it offers opportunities to
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Figure 2.4: Publication process workflow developed in Trees4dFuture

publish reference datasets for integrated modelling, providing less experienced modellers
with entry points to build their experiments.

The developed infrastructure has been tested with a set of queries to evaluate its added
value through the use of semantics. Typical examples include the linkage of synonyms
(e.g. rainfall results in datasets tagged with the concept rain) and broader and narrower
terms (e.g. precipitation results in datasets tagged with rain, snow, hail). These tests,
and the first impressions of its use in practice, show that even with relatively simple
knowledge technology additions, well documented data can be made accessible in a better
way, making it easier to discover data through better structuring, indexing and search
capabilities. The addition of semantic capabilities and its ability to directly search topics,
concepts and associations linked to a vast number of sources to a metadata repository
increases the discoverability of datasets, because it reveals otherwise unknown linkages
between the common vocabularies of different users and the actual metadata concepts.
This is accomplished by (1) returning results that are semantically related to the provided
search terms and (2) revealing related terms to the user when composing their search
conditions (e.g. by a semantically driven autocomplete function). An observed additional
benefit is that providing the scientific community with improved discovery mechanisms
increases awareness that data documentation is important, and contributes to insights in
how data could be best documented in order to provide added value to end users.

On the other hand, we also conclude that in forestry and related domains the currently
available metadata is scarce and often of low quality, which complicates the linkage of
metadata concepts with (external) ontology concepts. A second observation is that currently
available metadata standards provide insufficient possibilities to (automatically) select
datasets that fit researchers needs, e.g. in technical domains like modelling and simulation.
In general metadata schemas lack the structure and depth required to structurally capture
the complexity of scientific datasets. Commonly used and essential fields, like, for example,
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lineage, do not provide the structure required to address the complex production processes
of data. Moreover, the lack of depth prevents that the structure and contents of the data
itself (for example its attributes and datatypes) can be addressed in a structured manner.
In the use case, this issue was tackled by combining and linking isolated fragments of a
broad coverage vocabulary (AGROVOC) with specific and detailed subdomain specific
semantics. Obviously, this is a very customised and elaborate approach and not a viable
generic solution.

2.5 Case: Big Data querying

2.5.1 Problem statement

Research in the agro-environmental domain has to deal with large and very diverse
datasets, both in content, structure, and storage format. Because of the current move
towards open access and open data, an increasing amount of data is brought out of their
information silos and made accessible as part of what is called the Linked (Open) Data
(LOD) cloud, resulting in an extensive network of distributed heterogeneous data sources.
Unfortunately, access to this network to date is neither easy nor transparent, and current
centrally-managed or even distributed data repositories are not able to meet the data
science challenges ahead, starting with adequate Big Data querying facilities. The EU FP7
research project SemaGrow examined solutions to provide more effective and transparent
ways to access distributed data. It aimed at developing algorithms and infrastructure for
the efficient querying of large-scale federations of independently-managed data sources,
i.e., the nodes of the Linked Data cloud. To address the differences in storage formats, it
builds upon the already established and frequently used principles behind the Semantic
Web, namely RDF and the SPARQL query language. These standards enable the sharing
and reusing of data across applications and scientific community boundaries, and allow
the interconnecting of data in the LOD cloud.

SemaGrow specifically focussed on the agriculture domain and its use cases through a
series of data pilots, exploring the specific data challenges of this domain. These challenges
typically include discovery, merging and integration of large and very diverse spatio-
temporal datasets. One of the use cases explored in SemaGrow is regional agro-climatic
modelling in the frame of climate adaptation. Climate parameters required for regional
modelling are usually stored in large multidimensional les, often with global or trans-
regional spatial coverage and long term temporal coverage. Modellers tend to duplicate
large amounts of data for their modelling experiments, which are then locally processed
to the required extent and scales. Besides the general issue of resource efficiency, such
ways of working can pose significant barriers, specifically in regions where networking,
storage and computing resources are limited. SemaGrow has examined ways to allow
the thematic, spatial and temporal querying and merging of large distributed datasets,
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returning relatively light and integrated datasets. As an example, this would allow an
agricultural modeller in Ghana with limited networking and storage resources to acquire a
merged subset of temperature, precipitation and soil parameters for a specific region in
the country.

With regards to the theoretical framework, the case primarily focussed on the volume
and variety characteristics of Big Data, exploring ways to allow scientists to efficiently
access large, distributed data sources in a federated manner and to download and merge
manageable subsets of different nature. Although velocity was not the primary focus, it is
relevant to note that the case elaborates on automating data integration problems that
generally are very labour and time intensive through the involvement of experts of different
disciplines. While developed solutions might technically be considered as non-performant,
they could still result in dramatic improvement of efficiency in the face of timely provision
of information required for decision making. It concerns mainly the data and information
layer of the DIKW hierarchy, attempting to efficiently bridge the gap between these levels
by automatically processing and harmonising sources from the Big Data pool to a level
that offers better opportunities for connecting data with the tools (e.g. models, data
analysis) operated on the information level. Consequently, it not only potentially reduces
the efforts and resources required to produce information from raw data, but also touches
some of the integration challenges associated with interdisciplinary science.

2.5.2 Methodology and implementation

To be able to demonstrate SemaGrow Big Data querying capabilities in the frame of real-
world applications, and to be able to compare its characteristics to a reference situation,
as one of the pilots the TreesdFuture Clearinghouse system described in the previous case
was adapted to work using SemaGrow technologies. For that purpose, the Trees4Future
back-end was replaced with the infrastructure developed by SemaGrow, the so-called
SemaGrow Stack, and a set of distributed RDF databases containing triplified data and
metadata. As a result, the demonstrator application also extends the reference application
by offering the option to perform semantic queries on metadata but also on the underlying
data.

The SemaGrow Stack (http://github.com/semagrow/semagrow) is a “federated SPARQL
query processor” that can efficiently query a set of distributed heterogeneous data nodes. It
includes a query planner that uses metadata about the nodes of the federation to optimise
the query execution. This metadata follows the Sevod vocabulary (http://www.w3.org/-
2015/03/sevod), also developed in the project, that extends the VoID vocabulary with
statistical information akin to database histograms. The Stack uses the reactive software
paradigm to properly handle unresponsive or slow data nodes in the federation. As
such, the SemaGrow Stack provides a unifying endpoint that allows transparent querying
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of the underlying triple stores without having to know their (possibly) heterogeneous
schemas.

Triple stores were set up, holding triplified agro-environmental data, selected from the
ISI-MIP and AgMIP data harmonisation initiatives. ISI-MIP, The Inter-Sectorial Impact
Model Inter-comparison Project, is a community-driven modelling effort bringing together
impact models across sectors and scales to create consistent and comprehensive projections
of the impacts of different levels of global warming. Input and output data from ISI-MIP is
made available as NetCDF les using the Climate and Forecast conventions for its metadata.
The Agricultural Model Inter-comparison and Improvement Project, AgMIP, is a major
international effort, linking the climate, crop, and economic modelling communities with
cutting-edge information technology, to produce improved crop and economic models and
the next generation of climate impact projections for the agricultural sector. AgMIP
provides data in JSON format using the ICASA Variable List for its metadata. Both data
collections are harmonised, but are quite different in nature, e.g. global gridded time-series
data of simulation model projections, versus single point location based time- series of
field management and weather station observed data. These features make them well
suited to evaluate how the SemaGrow Stack handles the heterogeneity related aspects.
Data from these sources has been “triplified” into triple stores, so they can be queried
using SPARQL. Besides, the different vocabularies used (CF Conventions for ISI-MIP
data and ICASA for AgMIP data) have been aligned through the use of the AGROVOC
thesaurus. The amount of data sets that have been triplified for the demonstrator is
limited. It concerns around 10 global coverage, long-term ISI-MIP data sets and a few
dozen of AgMIP datasets. However, especially due to the volume of the ISI-MIP datasets,
the total size was at the Tera triples level, allowing to also explore the volume related
aspects and the associated behaviour of the SemaGrow infrastructure.

Lastly a spatio-temporal triple store (Strabon, http://strabon.di.uoa.gr) has been added
to the federated nodes so that spatial queries, e.g. point-in-polygon, can be resolved. To
connect the web application front-end of the demonstrator with the SemaGrow Stack
instance, a small additional layer of middleware software was needed. It translates URL
requests including parameter values into the proper SPARQL queries for the Stack, and
vice versa preprocesses the raw query results into a response the demonstrator can handle.
Furthermore, it is able to create valid NetCDF files from the RDF Data Cube format used
internally, to better serve end-users needs.

2.5.3 Results

So far, the described demonstrator application has been tested by a limited group of
end-users. The demonstrator gets positive remarks for the functionality it offers, but
people expect better performance both for metadata searches (less than 10s expected,
versus 5s—-30s measured) and for data downloads (less than 30 min expected, versus several
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minutes to several days measured, depending on the size of the selected data), as well
as access to much more data. Both can possibly be met by massive upscaling of the
infrastructure. Notably, in the performed expert enquiries, several experts have explicitly
mentioned that, even with the measured response times, the demonstrated querying
and data fusion facilities can be quite useful. It should be realised that, for example,
in the formerly mentioned use case of agricultural modelling in Ghana, composing a
dataset for modelling requires different processing steps. It usually requires consultation
of, and cooperation with local and remote specialists, and consequently aggregated time
investments and resulting lead times can be high. Thus, automated data-fusion queries,
even when taking hours or days, could make the research process in such cases more
efficient.

The SemaGrow project has also shown how time-consuming it remains to process data
so that it is properly annotated with metadata, triplified, and aligned to make it part
of the LOD. While tools for ontology matching and alignment were available through
the project, these could not be used because reference vocabularies did not comply with
the supported standards. Moreover, it appeared that a commonly used vocabulary like
AGROVOC is not well suited to effectively annotate data sets on the level of detail required
for the research problems examined. AGROVOC provides relatively rough concepts for
specific variables and provides no specific unit taxonomy. However, fitting selections for
specific modelling experiments would require more specific specifications to describe, for
example, the parameter “mean daily temperature 2m above ground level” as well as its
specific unit of measurement. Besides, in contrast to for example bibliographic data or text
documents, the multi-dimensional data used in agro-environmental science still challenges
state-of-the-art triple stores and current semantic web technology. Issues like different
spatial projections, spatial and temporal scales, unit conversions, handling streaming data
or simple data manipulations, could not be considered within the scope of the project,
but were on the list of evaluation comments by the end-users. Consequently, providing
transparent and unified access to these datasets is not yet trivial.

2.6 Conclusions and recommendations

Three use cases are described that have addressed different issues related to Big Data
usage and technologies in the agro-environmental domain. These have also been put
into the perspective of a theoretical framework to structure their complexity. In the
analysed cases, a variety of issues were encountered spanning the whole range of Big Data
characteristics (the 4 V’s) and the layers of the DIKW hierarchy. Cases generally focused
on discovering and combining heterogeneous datasets for modelling and decision making
in interdisciplinary domains. While it is obvious that challenges regarding the volume and
velocity aspects exist, and there are not yet clear solutions in all cases, the contours of
future technical solutions are already visible, combining cloud-based storage and computing
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with improved and better integrated infrastructural components. Research initiatives
explore and develop innovative infrastructures and several commercial services are offered.
More important for the agro-environmental domain is that steps are being taken to improve
the handling of Big Data, including the aspect of dealing with the spatio-temporal data
that are very common to the domain. Specific processing requirements of this type of data
include spatial and temporal up- or down-scaling and handling a large variety of spatial
reference systems. Such processing could be more effectively handled by an additional
software layer, e.g. through a data centric design (http://research.ibm.com/articles/-
datacentricdesign/), where much of the processing is moved to the places where the data
is stored.

More persistent barriers in agro-environmental science, and probably also in other areas
that require highly interdisciplinary knowledge for decision-making, lie in handling the
variety and veracity aspects. Not surprisingly, these aspects are also crucial to link the
different levels of the DIKW hierarchy, both vertically, allowing to work up raw data
to knowledge fit for decision making, and horizontally, to meaningfully connect content
from different disciplines that are currently often disconnected. In order to be able
to meaningfully link heterogeneous sources coming from different disciplines and being
generated for different purposes, improved semantic interoperability is needed. Possibly it
also is needed to strive towards a higher level of the Conceptual Interoperability Model
introduced by Wang et al., 2009. Based on the work done on the three presented cases, two
approaches can be recognised, one top-down driven and the other one bottom-up.

The top-down approach would include defining and agreeing upon a top-level ontology
for the agro-environmental domain, and all subdomains relating their specific ontologies
to this top-level ontology by harmonising or alignment efforts. Many vocabularies and
ontologies exist in the agro-environmental domain, developed with different purposes and
covering different subdomains. They vary from broad coverage and relatively global (e.g.
AGROVOC) to very specific coverage and detailed. The scope of agro-environmental
scientific challenges usually requires dealing with different vocabularies that are typically
not interoperable and sometimes even conflicting, which in practice makes it very hard to
align semantics in such a way that the result remains meaningful and is fit for a specific
purpose. Therefore, besides the elements of coverage and granularity, serious barriers are
the fact that different standards are used, and that alignment is very labour intensive and
requires interdisciplinary expertise. The analysed cases particularly show that standardised
and broadly accepted semantics to describe datasets on the level of its attributes are
generally lacking, and that available ontologies and vocabularies cannot easily be applied.
Solutions like combining (fragments of) different semantic sources or manual linkage of
vocabularies for very specific purposes can work for the specific case, but are obviously not
sustainable. Yet, these, often small, semantic differences between simultaneously existing
ontologies competing for adherents may simply continue to exist as part of our academic
and political freedoms. Still it would be worthwhile to at least work towards common,
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linked ontologies instead of ending up with, exaggerating, one ontology per disciplinary
data silo.

A more bottom-up oriented approach revolves around the use of semantic interpretation
technologies such as Natural Language Processing and Machine Learning algorithms.
With more data, including e.g. text documents and web pages, and metadata becoming
available, it will become impossible for humans to properly relate the data to ontologies,
next to discussions about which ontologies to use. It certainly seems more practical
when computers can tag data on an ad-hoc, case-by-case basis, based on some level of
understanding of the meaning of the data. The WORDNET dictionary already provides
a good starting point, but needs to be extended with domain specific knowledge, like
discussed in the use case on semantic driven discovery. Building up such a corpus covering
the agro-environmental domain is a time consuming activity, but it would be highly
reusable in many future applications. Currently, the use of semantic technologies is not
very well developed in the agro-environmental domain. Consequently, consistency of
produced results is still varying, making its introduction and acceptance (“veracity”) a
challenge.

The sketched approaches are of course not mutually exclusive, and might meet somewhere
in the middle. A relevant initiative that demonstrates a possible way forward is CYNERGI
http://earthcube.org/group/cinergi). This initiative tries to combine bottom-up (e.g.
enhancers using semantic techniques to improve metadata) and top-down (e.g. using a
generic metadata schema) aspects to harmonise access to interdisciplinary datasets. More
importantly, CINERGY recognises the shortcomings of available metadata, semantics,
and available technologies, like machine learning and NLP. It explicitly includes human
engagement as an indispensable factor in the process of making data fit for interdisciplinary
science. Direct involvement of scientists to select relevant data sources, metadata elements
and to validate generated metadata and query results is regarded a crucial element to
serve cross-domain, fit-for-use data to scientists. This corresponds with the experiences
and outcomes of the analysed cases.

Looking from the perspective of the analysed cases at the lower levels of the DIKW
hierarchy, the provision of sufficient, high-quality metadata hinders the smooth access to
and linkage of scientific data sources. To be able to work with the available metadata and
to deal with its shortcomings, all observed cases were somehow confronted with the need to
develop customised solutions. Applied solutions range from implementing manual ontology
alignment as an alternative for metadata-driven automatic annotation to the improvement
of awareness and provision of metadata creation and editing facilities. In general, despite
the availability of standardised metadata schemas, well-documented scientific data is still
scarce. This also appears to be a cultural issue, where scientific practice is often still based
on working in silos and interchanging among trusted peers, and data management policy
is not well developed. There is a clear link to the veracity aspect of Big Data here. Data
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users need to trust the provided data, which is expressed most clearly by the quality of its
metadata. On the other hand, data providers require trust that their data is used in a
proper way, which again can be promoted by adequately documented datasets.

Promising and viable approaches for ICT driven mechanisms to improve interdisciplinary
data-intensive research using technologies related to the Big Data domain have been
identified, examined, and implemented in the analysed use cases. Although in most cases
implementation was successful, we can also conclude that effectiveness is limited, due to
the current state of data management and semantic coverage in the agro-environmental
domain. Based on the analysed cases and the above-stated conclusions, we recommend
that Big Data research, and especially the efforts to be delivered in this area from the agro-
environmental domain (in contrast to the more technically oriented ICT research), focusses
on variety and veracity challenges. This focus should lead to the improvement of conditions
and development and application of methodologies and techniques required to efficiently
provide access to and semantically interlink sources from different disciplines. Obviously,
this does not only require technological advances, but also a disruptive change of culture
and behaviour. To this end, the development and promotion of working demonstration
cases in research environments has proven to be a valuable instrument to create awareness
and catalyse such change.
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Abstract

For decision makers in the domains of agriculture and environment, for instance in
government agencies, farmers, environmental NGOs and farmers’ unions, it is beneficial
to evaluate ex-post or to asses ex-ante the impacts of their choices. To research these
interdisciplinary relationships, models developed by different scientific disciplines and often
operating at different scales can be integrated into model chains that cover processes
across disciplines. In order to assemble models into an operational model chain conceptual,
semantic and technical levels of integration have to be taken into account.

The main focus of this paper is on technical integration to ensure repeatability and
reproducibility of model chain runs and to optimise use of computer hardware for model
simulations. Technical integration itself can be achieved by different approaches (i.e.
manual, scripting, building or using a proprietary framework, using an open framework
based on standards). From the many available modelling frameworks (e.g. OMS, TIME,
KEPLER, FRAMES, MODCOM, OpenMI) the emphasis will be on OpenMI, the Open
Modelling Interface and its use and usefulness as a readily available, generally accepted
and open standards-based framework.

OpenMI is an open source software standard for dynamically linking models at runtime,
which can potentially be used in many domains, but is currently mainly applied in the
water and environmental domains. This paper describes and evaluates the use of OpenMI
in several multi-disciplinary large projects that worked on integrated models. These
projects operated in the disciplines of agriculture, land use, nitrogen cycling, forestry,
hydrology, and economics.

To this end two workshops were organised to acquire feedback from both software de-
velopers and modellers that contributed to the aforementioned projects on the use of
OpenMI. Perceived advantages and disadvantages of OpenMI differed between modellers
and software engineers, although both identified the lack of standard functionality as
a major disadvantage and the prescription of a way of working through OpenMI as a
standard as a major advantage. In conclusion, OpenMI can be used as a standard for
technical model integration across disciplines, and it is not limited to one particular
discipline.
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3.1 Introduction

For decision makers in the domains of agriculture and environment, for instance in
government agencies, farmers, environmental NGOs and farmers’ unions, it is beneficial to
evaluate ex-post or to asses ex-ante the impacts of their choices. An ex-post evaluation
occurs after such a choice has been made, while an ex-ante assessment tries to simulate
the potential impacts of choices before these are made. In ex-post evaluation, data is likely
to be available or can be collected on relevant variables in the period after the choice
took effect. In contrast, an ex-ante assessment tries to shed some light onto the future
and data is not available. Modelling and modelling tools can be helpful by providing a
simplified representation of reality, simulating potential contrasting pathways into the
future and improving the understanding of interdisciplinary cause-and-effect relationships.
A model is defined as a deliberate simplification of reality that represents part of reality
as a quantitative system.

Ex-ante assessments through models and modelling tools could provide valuable insights
on potential choices for complex societal and environmental problems (e.g. climate change,
achievement of the United Nations’ Millennium Development Goals, as well as Millennium
Ecosystem Assessment (Carpenter et al., 2009)). A prominent example of the use of
an ex-ante assessment is the assessment of the likely impacts of climate change on the
biophysical environment and society (IPCC) by the Intergovernmental Panel on Climate
Change. An example on a lower spatial scale is the FARMSCAPE project (Carberry et al.,
2002), in which farmers, advisory services and researchers jointly applied a simulation
tool to assess the potential for alternative management strategies of cropping systems on
Australian farms. Such ex-ante assessments need to involve multiple disciplines and cover
multiple scales.

Mono-disciplinary models cover only a few processes from a single domain, be it economic,
agricultural, or environmental and lack descriptions of some relevant processes. These
models generally do not cover the relevant multiple scales to handle all assessment questions.
Mono-disciplinary models can complement each other and thereby provide comprehensive
and balanced assessments across scales. Therefore, it becomes necessary to integrate
models from different disciplines, sometimes operating at different scales into model chains,
covering processes across disciplines. In order to arrive at an operational model chain for
applications in integrated assessment procedures, semantic, methodological and technical
integration of models is required. Ideally, model integration leads to a model chain that can
be trusted, is transparent, and can be used and understood by a community of researchers,
not only the individual modeller.

Semantic integration means speaking a common language and achieving a shared under-
standing between all models and modellers working together (Hinkel, 2008; Jakobsen and
McLaughlin, 2004; Scholten, 2008; Tress et al., 2007). The methodological integration
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focusses on aligning different scientific methodologies and identifying required model
improvements necessary for meaningful linkage. Methodological integration in a model
chain requires that the data produced by one model are a meaningful input to another
model, usually operating data at a different temporal and spatial scale (Liu et al., 2008).
Finally, technical integration means automating data exchanges between models, making
them jointly executable, without human intervention. Technical integration aims to ensure
repeatability and reproducibility of model chain runs and to optimise use of computer
hardware for model simulations (e.g. batch running, grid computing, cloud computing,
high performance computing).

This paper focusses on technical integration and touches slightly on aspects of semantic
integration while leaving methodological integration aside. Technical integration can be
achieved using different approaches. First, the most straightforward method is soft linking:
a manual and ad-hoc linking of models through output files of one model that are used
as input files to another model after conversion, reformatting, and transformations in,
for example, spreadsheet programmes through manual work. The EURURALIS project
(http://www.eururalis.eu) is one of the many projects that apply this type of model
integration. It is perfectly suitable when the integration does not have to be repeated
often. Second, scripts (i.e. Python, Perl) can automate some of the manual steps in
the conversion of output files to input files (for an example, see the description of the
SENSOR project later on in this paper). Third, models are integrated in a proprietary
method, where one model encapsulates the other model, making it possible to share input
files and variables in memory, to implement feedback loops between models and to run
models as one large monolithic model (SWAP - http://www.swap.alterra.nl/, MODFLOW
— http://www.modflow.com/, WOFOST - http://www.wofost.wur.nl/). Fourth, instead
of building a large monolithic model, a proprietary approach can be used to loosely link
the models (IMAGE - http://themasites.pbl.nl/en/themasites/image/). In this approach,
models become substitutable and the linking mechanism can be more transparent and
better documented. The proprietary approach for linking the models has to be built
and is specific for the models integrated or the organisation that develops and maintains
it. Five, instead of a proprietary approach to link models, an available and generally
accepted modelling framework can be used. Such a modelling framework can be based
on open standards, making it easily accessible to a larger community. In such a model
framework, the models are linked as independent components, exchanging data in a
standardised way. Different modelling frameworks have been developed, each with their
own setup and philosophy. The choice of one of the five approaches (i.e. manual, scripting,
proprietary large model, proprietary framework, open framework based on standards)
to technical integration depends on the institutional and project context and on the
researchers involved.

This paper focusses on one particular modelling framework, OpenMI, used for linking
models in an open framework based on standards. The paper describes the use of OpenMI
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in several multidisciplinary large projects that work on integrated models. These projects
operate in the disciplines of agriculture, land use, nitrogen cycling, forestry, hydrology,
and economics. The objective of the paper is to investigate the strengths and weaknesses
of integrated modelling according to open frameworks based on standards in general, and
OpenMI in particular. It recommends a list of improvements for OpenMI specific and
integrated modelling in general.

The next section Methods provides background on modelling frameworks for technical
integration, OpenMI, the projects, and the method used in evaluating the use of OpenMI.
In the subsequent Results section, the use of OpenMI across research projects and domains
is described and contrasted, and strengths and weaknesses are extracted from the research
projects. Finally, in the Discussion section, the main lessons in terms of using OpenMI
are highlighted for future OpenMI development and for researchers working on integrated
modelling.

3.2 Methods

3.2.1 Modelling frameworks

Following trends in software engineering and commercial software development and people
trained in such modern methods entering the environmental science disciplines there
have been several attempts to develop standardised approaches to modelling and model
integration in the environmental problem domain, resulting in a number of modelling
frameworks. A modelling framework brings together suites or libraries of modules with
the intention to standardise features such as data manipulation and analysis, exchanges
between models and data sets, structure an coding of modules, and visualisation of model
outputs. The term framework is commonly used to refer only to the underlying classes
and libraries, and environments to refer to systems that use these software frameworks to
support module development, model construction, and execution (Argent et al., 2006). A
further differentiation that can be made is that between the definition of a framework, the
specification or interface, and its implementation. When not further specified, the term
framework is used in its broadest sense in this paper.

Modelling frameworks have been conceived and developed for some time, with a varying
range of characteristics (Argent, 2004; Jagers, 2010). For brevity’s sake, further discussion
will be limited to the following well-known frameworks with which the authors have at
least some level of practical experience: the Open Modelling Interface (OpenMI - Moore
and Tindall, 2005), a software standard for dynamically linking models at runtime, which
can potentially be used in many domains, but is currently mainly applied in the water
domain. TIME (Rahman et al., 2003) which is, like the OpenMI, a generic computational
framework for building and executing models that may be applicable across domains.
MODCOM (Hillyer et al., 2003) which is used for linking biophysical process-based models
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in crop growth simulation. Moore et al., 2007 propose the Common Modelling Protocol
which nests dynamic models in a hierarchy with a common interface on top and also
focusses on dynamic and biophysical models. It is still at the core of the Agricultural
Production Systems Simulator (APSIM). The Object Modelling System (OMS), a reusable
domain-specific framework developed by the US Department of Agriculture (David et al.,
2002). The operational modelling environment FRAMES (Framework for Risk Analysis of
Multi-Media Environmental Systems), in use by the US Environmental Protection Agency
(EPA) (Whelan et al., 1997), and Kepler, a general-purpose workflow framework (Altintas
et al., 2004). The frameworks all differ in their setup and the design choices made.
Table 3.1 summarises a few core qualitative characteristics of these frameworks,; collected
from personal experience by the authors and from the literature. The table is given as an
illustration of the diversity of frameworks that exists, without pretending to contain a full
quantitative comparison of the frameworks, which is considered to be beyond the scope of
this paper.

Table 3.1: Characteristics of the examined modelling frameworks

FRAMEWORK COM- STANDARD IMPACT OPEN TECH- FRAME-
PLEXI- FUNCTIONA- ON DEVELOP- NICAL/ WORK
TY A LITY B MODEL C MENT D SEMANTIC TYPE F
E
Object Modelling System Low High Low Yes Technical Environ-
ment
TIME Low High Low No Technical Environ-
ment
OpenMI Medium  Low Medium Yes Technical Specifica-
tion
Common Modelling Protocol ~ Medium  Low High Partly Technical Specifica-
tion
MODCOM Medium  High High Partly Technical Environ-
ment
FRAMES High High Very low No Technical / Environ-
Semantic ment
Kepler High High High Yes Technical / Environ-
Semantic ment

A. The number of conventions the framework imposes upon the model for it to be compliant.

B. The amount of functionality included in the framework to support model integration, calculation
and data analysis and presentation.

C. Framework invasiveness, the degree of dependency between the framework and the model code (Lloyd
et al., 2011).

D. Denotes in how far framework development and use is controlled by an organisation, or is open for
interested people to contribute to.

E. Type of model integration supported by the framework.

F. Whether the framework is only an interface specification, a specification with a default implementation,
or a specification, default implementation including additional functionality, like a graphical user
interface and model execution, analysis and visualisation components.

Studying the table of frameworks, it should be clear that even this subset of all the
available frameworks varies tremendously in what they support and how they do so.
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Developing a framework, starting with writing its specification from a set of requirements,
providing a core implementation, and growing it into an environment with readily usable
modules for e.g. database access, analysis, and visualisation is a time consuming activity.
Choosing to invest and reuse a framework therefore partly becomes a strategic decision,
and aspects like international recognition start to play a role. In this regard the four levels
of model development and application ((i) specific single project use, (ii) used for a range
of problems, (iii) well documented, published use in case studies, readily available for
application, (iv) black box usage, accepted solution) defined by Argent, 2004 might as well
apply to the framework development and maturity. When compared to other software
framework solutions, e.g. Hibernate (http://www.hibernate.org/) for object-relational
mapping between object classes and database tables, which can be and is widely being
used in a black box fashion, model integration frameworks are clearly one or more steps
away from reaching such level of maturity and acceptance.

3.2.2 OpenMI

This paper focusses on the use of OpenMI in a set of large multidisciplinary research projects
in which models need to be linked. The OpenMI (http://www.openmi.org/) is a data and
model integration framework, designed to take independent data and computing systems
and provide a standard means of describing how time series are communicated between the
systems. It has been developed from the need to answer integrated hydrological catchments
management questions within the EU 5th framework programme project HarmonIT. The
main objective of the HarmonIT project was to provide a widely accepted unified method
to link models, both legacy code and new ones (Gijsbers et al., 2002).

As mentioned in Table 3.1 a modelling framework might exist as only a specification of
a standard, independent of specific programming languages, providing a definition of its
functionality and general operation, which can be implemented by others. For OpenMI
this is referred to as the OpenMI Standard, and it is the core of the OpenMI work. A
default (reference) implementation can also be provided together with the specification;
this in general helps the adaptation of the framework. For OpenMI this is known as
the OpenMI SDK (Software Development Kit). The core implementation can also be
extended with additional functionality supporting, for example, model integration, model
execution, data analysis, and presentation, creating a full model integration environment.
An example of this is the OpenMI OmiEd simple model linking desktop application.

The OpenMI is constantly under development, under supervision of the OpenMI Association
(OA), which aims to promote the development, use, management, and maintenance of
the standard. To improve the adaption of the standard the OA at the moment provides
reference implementations in the .NET and Java programming languages. The OA is
an entirely open international group of organisations and people, with a small core team
that supports, responds to, and is guided by a growing active worldwide user community.
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It is a non-profit organisation and therefore depends on the willingness of its members.
Organisationally, the OpenMI Association consists of a General Assembly, an Executive
Committee (OAEC), a Technical Committee (OATC), and a Dissemination Committee
(OADC).

The original version (1.4) of the OpenMI provided standardised interfaces to define,
describe, and transfer data between software components that run sequentially, based on
a pipes and filters architecture (Gregersen et al., 2007). The data definition concerns what
the data are about (quantity) and where (element set) and when (time) it applies. Each
component (a LinkableComponent object) has a meta-data description of its exchangeable
data in terms of a quantity and an element set. Fach unique exchangeable quantity is
registered and published in an Exchangeltem object. Connections between Exchangeltems
of LinkableComponents are defined by a Link and exist as a separate entity. Each Link
can provide a number of DataOperations, functions performed on the data when it passes
through the Link that transforms output data of one LinkableComponent into usable
input data for the receiving LinkableComponent. DataOperations can perform e.g. unit
conversions, aggregations or spatial mapping of point data to area data.

After the initial release of OpenMI version 1 in 2005 the OpenMI-LIFE project demon-
strated its usability at the operational level on real world-scale problems (Schade et al.,
2008), both hydrological and outside the hydrological domain (Van Ittersum et al., 2008),
integrating agricultural and economical models from the farm field to the world scale).
The OpenMI is seeing a significant increase in the number of applications leading to new
requirements. For example, integration of non-model components such as the web-based
hydrologic information system HIS (Goodall et al., 2011) or the decision support system
AM-DSS was possible but required some effort. To improve the OpenMI and advance it
to the next version, several European research institutes bundled activities and, after a
modelling community review period, released the OpenMI standard version 2 in December
2010.

Some of the key ideas of the new version include:

i. A geographical representation for exchanged data approaching the common repre-
sentation in the GIS-world. It is a step towards making OpenMI more compliant
with the standards of the Open Geospatial Consortium (OGC).

ii. The Use of adapters, e.g. interpolating in space or time, to transform data into a
requested form and of series connections of several adapters offering a piping and
filtering mechanism. The new version considers such adapters to be special types of
outputs, and a more straightforward replacement of the Link and DataOperation
classes.

iii. Removal of the restriction to time-step based models enabling the integration of new
kinds of models, e.g. neuron networks, in the future.
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iv. Setting and varying boundary conditions for individual models for running compara-
tive simulations, simplifying the use of the OpenMI in DSSs and tools for calibration,
optimisation and data assimilation.

v. The introduction of a set of mandatory base interfaces and sets of optional interfaces
has the aim of making the OpenMI fit for future requirements of integrated modelling.
The current edition includes the extension for time and space-dependent components.
Future extensions could support improved compliance with the standards of the
OGC or request and deliver data in terms of dictionaries or ontologies.

Although the OpenMI standard does not dictate it, the current reference implementations
are built around a single-execution thread (the smallest unit of processing that can be
scheduled by an operating system) idea, requiring at least all the linkable components to
be run from a single execution thread when calculating a chain of models. The linkable
component itself is free to access a calculation core (usually the actual model) in any way
it prefers, e.g. as a web service, which in turn allows the calculation core to use parallel or
high-performance computing. In this regard, the focus of the OpenMI Standard and the
current reference implementations is still to facilitate a high-level coupling of new and legacy
models. The possibility of building a more parallel, cloud, or high-performance computing
orientated implementation of the OpenMI Standard is still to be investigated.

The OpenMI is available under the terms of the LGPL open source licence (SDK imple-
mentations might apply the even less restrictive MIT open source licence) with the aim
of easier dissemination. It is currently implemented in C# and Java and offers ways to
wrap code from other languages. There are guidelines for migrating existing models to
OpenMI compliancy in order to maintain approved legacy code. One of the more common
ways to do so is to programme a wrapper LinkableComponent in Java or a.NET language
that drives that legacy model and transforms input and output data into appropriate
formats.

OpenMI was chosen as common strategy by Alterra, Wageningen UR in research projects
targeting model linking, as (i) it is relatively lightweight, requiring few modifications
to the models and works on the basis of well-defined and documented interfaces, (ii)
it is based on an open standard, which is further developed by an multi-institutional
organisation and which benefits from contributions from the larger research community,
(iii) it provides flexibility to implement the standard in any programming language and to
extend and adapt the implementation for the specific project, (iv) changes and additions
to the standard can be proposed to the OpenMI-association for future developments and
(v) it, as a multi-institutional organization, facilitates cooperation internationally and joint
development of projects with OpenMI.
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3.2.3 Projects

OpenMI has been applied as a modelling framework in several multi-disciplinary large
projects that worked on integrated modelling, most of them funded by the European 6%
Framework Programme (FP6). These projects operated in the disciplines of agriculture,
land use, nitrogen cycling, forestry, hydrology, and economics.

Table 3.2: Characteristics of the examined projects

PROJECT DOMAINS PROJECT HARDWARE / SOFTWARE MODELLING
PURPOSE PLATFORM LANGUAGES
SEAMLESS Agronomy and Model linking Microsoft Windows based modern Java, C#, GAMS,
economics server, web browser based client Adobe Flex
(Flash Player needed).
SENSOR Land use Results Microsoft Windows based modern Java, Adobe Flex
visualization server, web browser based client
(Flash Player needed).
EVOLTREE Genomics and Model linking Microsoft Windows based modern Java, C++, Visual
ecology desktop PC. Basic
NITROEUROPE  Nutrient cycling Results Microsoft Windows based modern C+#, Fortran
and soil science visualization desktop PC.
EFORWOOD Forestry and forest Model definition Modern desktop PC, Java 5 Java
ecology and linking compliant.
Splash! Hydrology Results Windows desktop PC. Java, Delphi

visualization

The SEAMLESS project (Ewert et al., 2009; Van Ittersum et al., 2008) developed a frame-
work for an ex-ante integrated assessment of agro-environmental policies and agrotechnical
innovations in the European Union. In this framework, a set of models operating at
different spatial scales and from different disciplines are integrated into a model chain.
The models are a cropping systems model, a bioeconomic farm model, an econometric
estimation and up-scaling model, and a partial equilibrium market model. By linking field-
farm-market models in a framework, changes in land use can be analysed at multiple levels
through a selected number of economic, environmental, and social indicators, accounting
for the impacts of farm responses that could not be analysed using only individual models
as stand-alone tools. OpenMI v1.4 was used in SEAMLESS as a linking standard and
SDK to link the different models together and to allow them to be executed on a personal
computer in a joint run (Janssen et al., 2011). OpenMI v.1.4 was extended with the
addition of semantic annotations for input/output exchange items.

The SENSOR project (Helming et al., 2008) developed a discussion support tool, the
Sustainability Impact Assessment Tool (SIAT — Verweij et al., 2010), which facilitates multi-
stakeholder discussions on the effect of different policy assumptions on multifunctional
land use and its sustainability within different future images. SIAT allows the user to
identify the geographical areas that are most sensitive to particular policies, identify
regional differences, analyse causes, look at potential trade-offs, and perform all analysis
dynamically (Potschin and Haines-Young, 2008). SIAT uses a small set of linked models
to translate land use changes and sustainability indicators for environmental, social and


https://cordis.europa.eu/programme/id/FP6
https://cordis.europa.eu/programme/id/FP6

3.2 Methods 43

economic dimensions into land use functions (Paracchini et al., 2011; Pérez-Soba et al.,
2008). The translation of policy to sustainability impact is done through a set of loosely
coupled models which have been run for several scenarios to produce a large data store
which is accessed by SIAT, and used dynamically by the linked Land Use Function model.
The loosely coupled models are a macro-econometric model, a European forestry model,
an agricultural model, and a land use allocation model (Jansson et al., 2008). In SIAT,
OpenMI v1.2 is used as a linking standard and SDK to link different user interface
modules.

EVOLTREE (http://www.evoltree.cu) is a network of excellence project that analyses the
impacts of climate change on forest ecosystems. It sets out to link genomics and ecology
to understand the evolution of diversity in terrestrial ecosystems. EVOLTREE develops
methods to assess and forecast changes in biodiversity, structure, function, and dynamics
of ecosystems and their services. To reach these objectives it uses experiments, genetic
analysis, models and European wide datasets, and integrated modelling is only a small
part of the EVOLTREE project. In EVOLTREE, OpenMI v1.2 was applied as a linking
standard and SDK to link two models in different programming languages.

NITROEUROPE (Sutton et al., 2009) establishes an integrated perspective needed to
quantify the net effect of N on the greenhouse-gas balance. It will advance the fundamental
understanding of C-N interactions at different scales and deliver: process-based models,
landscape-level assessments, European maps of C-N pools, Nr fluxes and NGE, and
independent verification of GHG inventories, as required under the Kyoto Protocol. A part
of the NITROEUROPE project is the development of INTEGRATOR, a modelling tool
for European-wide scenario assessments of nitrogen budgets and greenhouse gas emissions.
In NITROEUROPE, OpenMI v1.2 was applied to couple different inputs and outputs of
the model to the user interface of the INTEGRATOR tool.

EFORWOOD (Lindner et al., 2010) built an assessment tool and procedure for environ-
mental, social and economic sustainability in the Forest-Wood-Chain as a chain approach.
Forest Wood Chains are defined as chains of production processes (e.g. harvesting-transport-
industrial processing), which are linked with products (e.g. a timber frame house). The
developed Tool for Sustainability Impact Assessment (ToSIA) calculates sustainability
values as products of the relative indicator values (i.e. indicator value expressed per
unit of material flow) multiplied with the material flow entering the Forest-Wood-Chain.
Indicators are presented for the segments or for the complete chain. Sustainability is
determined by analysing environmental, economic, and social sustainability indicators for
all production processes along the chain. In ToSIA, OpenMI v1.2 links many different small
models together, each model representing a single process or step in the calculation.

Splash! (Wachowicz et al., 2003) is a Sim City-like game for teaching aspects of water-
management. The player takes the role of a super water-manager that has to arrange all the
spatial activities (e.g. farming, industry, cities) in the game area properly to assure clean
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water and keep all virtual stakeholders (citizens, employers, farmers, environmentalists,
etc.) happy. Building dikes, water towers, and strategic zoning are some of the tools the
player can use, naturally within all kinds of constraints, like a limited budget and the
occasional simulated flooding. The game area is modelled according to an existing (Dutch)
area and simplified models are used to simulate the results of the actions a player takes.
Splash! is primarily intended as a teaching instrument. OpenMI v.1.2 connects the game
engine to the user interface in Splash!.

3.2.4 Method

To evaluate the use of OpenMI in the mentioned projects and assess its value for model
integration undertakings, two half-day workshops were organised, one with software
developers and the other with domain modellers. Software developers have a training
in Computer Science, and are practised in building complex applications for personal
computers by adopting the latest innovations from the computer science domain. Domain
modellers have been trained in specific domain (e.g. agronomy, economics, forestry) and
focus on conceptual model development, implementation, and testing as done in a specific
scientific domain, with often one known technology that works. In the software development
workshop, we invited six software developers who were involved in the projects and worked
with the modellers on the integration of their models through the use of OpenMI. For each
project, we asked the developers to give a short presentation on the goal of the project,
the role OpenMI played in the project, the strength and weaknesses of OpenMI based on
the experiences in the project, the lessons learnt and the suggestions for improvements to
OpenMI.

After the presentations a discussion was held about the outcomes, particularly focussing
on the noted strengths and weaknesses, lessons learnt, and suggested improvements. The
information collected from this and the presentations was gathered and combined into
a first concept of this paper, which was then handed to the modellers involved in the
projects and whom we invited for a second workshop.

In this second workshop, five modellers were asked to respond to both the concept of the
paper and to our initial findings and conclusions, approaching it from their own perspective.
For the most part, it was a round-table discussion that provided lots of feedback and
triggered interaction between the modellers. Typically, the software developers present
at the first workshop all knew each other and worked together on one or more occasions,
while for the modellers it was their first time to interact about the subject.
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3.3 Results

3.3.1 Roles of OpenMI

Based on the feedback from the developers and the modellers gathered during the workshops,
two distinctive ways were used to apply the OpenMI in the projects: (a) using models
directly and modifying the model source code to make it OpenMI compliant (Figure 3.1),
and (b) building a wrapper component to provide the OpenMI compliance while leaving the
model largely untouched (Figure 3.2). Using the model directly from a LinkableComponent
allows for more detailed integration, but usually takes more time to implement and requires
the use (in the model) of the same or at least compatible programming languages. For
example, if you are using the Microsoft .NET environment, OpenMI SDK and OpenMI
graphical editor (OmiED), it is easy to directly integrate a model written in C# or Delphi
for NET, but harder to integrate a model written in Scala or Fortran. In such a case, a
wrapper of some kind is needed to cross the programming language barrier. The wrapper
approach is also useful to make models comply with the OpenMI standard in regards
to data definitions, exchange formats (e.g. from in-memory data exchange to file or
database-orientated exchange), and model execution sequences. Building generic wrappers
makes it possible to reuse this often required functionality.

Option A was used by three of the projects, option B by two, and the SEAMLESS project
applied both methods to integrate models. A variety of models from different domains
were linked with the use of OpenMI in the projects, with a large diversity in the spatial
resolution the models operated on (e.g. from farm field to world market scale), the size
of the models (from EU market equilibrium model to very small wood processing steps
with many feedback loops), and the programming language used for the model (Java,
C#, GAMS, Visual Basic, NSM, CAPSIS — the latter two being complete modelling
environments that were made OpenMI compliant). Furthermore, the time dimension in
these projects played a less significant role than in typical OpenMI usage, where a whole
composition of linked models performs calculations in a time-step-based fashion. The Java
version of the OpenMI standard (1.2 and 1.4) was used and matching Java OpenMI SDKs
(Software Development Kits) to help with the implementation of models and systems.
Where needed, innovative solutions were added to the SDKs and later presented to the
OpenMI Association for consideration.

The Nested Systems Modelling (NSM - Van der Werf, 2009) and the Computer-Aided
Projection of Strategies in Silviculture (CAPSIS — http://capsis.cirad.fr/) that were used
in the projects and linked with other models in itself were modelling environments that as
a whole were made OpenMI-compliant. A very large initial development investment is
required, with the reward of later being able to use all kinds of OpenMI-compliant models
in the existing modelling environment. In case the programming languages match (e.g.
CAPSIS, written in Java could use the Java SDK to make it compliant with the Java
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OpenMI standard interfaces) it takes less development time than when they do not (e.g.
NSM written in C++) and more complex technology is needed to bridge the differences in
programming languages, virtual machines, etc. Using Microsoft COM, .NET interop or
Oracle’s Java Native Interface (JNI) has some possibilities, but these solutions are hard to
debug to find the cause of errors due to the multitude of programming environments. In this
case, using a network interface as a clean boundary between (too) different systems might
be a more manageable solution. This idea was used in the Splash! project to integrate
the completely different game engine (written in the Delphi programming language) with
a Java-based simple OpenMI model linking and execution system (Figure 3.3). Plain
network sockets were used for the interface and communication between the two parts,
keeping each separately implementable and testable.

Linkable
Component

> Model

Infrastructure Domain

Figure 3.1: Option A - Applied by SENSOR, EFORWOOD, SEAMLESS and Splash!

Linkable

1
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| <t——>
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Infrastructure Domain

Figure 3.2: Option B - Applied by NITROEUROPE, EVOLTREE and SEAMLESS

3.3.2 Detailed case: OpenMI in SEAMLESS

As explained in Section 3.2.3, OpenMI v1.4 was used and extended in SEAMLESS to link
a cropping system model, a bioeconomic farm model, an econometric estimation model
and a partial equilibrium market model. In the SEAMLESS modelling framework, each
model is linked to SeamFrame through wrapper components, which are implementations of
OpenMI components (Figure 3.4). Each wrapper prepares the data for the model in input
files, runs the model by calling on an executable, and reads the results from the output
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Figure 3.3: Option C - Applied by Splash!

files. Models were implemented in C#.Net for the crop model, in Java and GAMS for the
farm model, in GAMS for the upscaling and market model, while SeamFrame was built in

Java. In between models data is managed in SeamFrame by executing a list of models in
a chain (i.e. SeamChain in Figure 3.4). The shared definitions of data types are captured
in the SEAMLESS ontologies (Athanasiadis et al., 2009; Janssen et al., 2011) and are
used in SeamFrame and model wrappers (Figure 3.4), but not in the models themselves.

In this way, models are separated from each other, through wrappers and SeamFrame,
and from the knowledge layer describing the exchanged data types as captured in the

ontologies.
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Figure 3.4: Use of OpenMI in the SEAMLESS Modelling Framework

In the execution of the model chain, if all four models are included, the use of the

modelling framework including OpenMI takes little execution time compared to the models
themselves (Table 3.3). This is related to the nature of the models and the application.
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The crop model needs to be executed many more times for one sensible application than
the market model, leading to a long total execution time, even if the execution of one crop
model requires little time. Only after the market model, considerable time is required
to persistently store a multitude of results generated by this model. Some of the models
included in this case are optimisation models that sometimes need many iterations to
arrive at a solution, requiring a long computational time. This time division between
models and the modelling framework could be different if models are considered from
another domain. This case suggests that more efficiency gains in time can be made by
considering the models, and not as much the framework.

Table 3.3: Estimation of time required for a full chain run of the models in a typical application
for SEAMLESS.

Model Type Number of runs Time (sec) Time (sec) in ~ Time (sec) in
required in typical required per preparing  storing outputs

application run inputs
Crop model 900-1000 30 0.5 1
Farm model 50-60 60-1200 2 1
Up-scaling model 1 300 5 10
Market model 1 3600 20 400

3.3.3 Strength and weaknesses

Table 3.4 gives an overview of the aspects mentioned in the workshops that are considered
a strength or benefit of using the OpenMI, including both the OpenMI standard (the
interfaces, concepts and approaches to model linking) and an OpenMI Java or.NET
Software Development Kit (SDK). As described in Section 3.2.3, the projects involved
and the people working on them all used some kind of soft-linking — manual and ad-hoc
linking of models through using output files of one model as inputs to another — so
mentioned strengths and, in the next table, weaknesses are based on comparing this to
the OpenMI.

All comments mentioning the same aspect were grouped and the number of projects
for which the comment applied is listed in the second table column. An aspect that is
mentioned more often (by more projects) is considered to be a more relevant point, and
hence a better argument for considering or discarding the OpenMI as a suitable solution
for a project. It can be observed that for the mentioned advantages, the first 1 to 5 are
more general in nature, and only 6 and 7 directly relate to the OpenMI.

In addition to strengths, naturally, several weaknesses were also mentioned. These are
summarised in Table 3.5, using the same grouping strategy and layout as in the previous
table.
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Table 3.4: Strengths of the OpenMI framework

STRENGTH #PROJECTS
1  Open source standardisation; provides clear and fixed definition on how things are supposed to 5
work; potential for interoperability.
2 Separate interfaces from implementation (increases software maintainability); ability to use 3
(wrap) existing models.
3 Re-use existing OpenMI framework experience and knowledge. 2
4 Level of available documentation. 2
5  Solution for infrastructure (not a project goal to develop it). 2
6  Ability to operate over a network; enough flexibility in the framework specification; works well 2
for small and large models.
7 Quick support feedback to questions. 1
Table 3.5: Weaknesses of the OpenMI framework
WEAKNESS #PROJECTS
1 Regarded as complex or overkill by modellers. 5
2 Missing (expected / promised) environment and standard shared modules, e.g. for data analysis 5
and visualisation, multi-thread execution, programming language bridges.
3 Missing required features: OGC support, qualitative data exchange, raster data, multi-part 4
geometries, loops, N:M connections between inputs and outputs, support for semantic
integration.
4 Cumbersome to use, requires work-around for models outside the hydrology domain. 3

For the weaknesses most are obviously directly related to the OpenMI SDK, which, as a
conclusion, at the time of the projects was too immature to cover all the wishes of the
modellers out-of-the-box. Only argument 4 relates to the OpenMI standard, which at the
applied version 1.4 was still very specific for the hydrology domain and needed adaptation
and flexibility in use to make it fit to a broader environmental scope.

Although many strengths and weaknesses were mentioned during the two workshops,
some clearly distinct groups of comments became apparent. The participants (both
developers and modellers) liked the use of a standard and the benefits it apparently
(perhaps supposedly) offers, which are clarity in definitions, available documentation,
support and samples to work from, interoperability, improved software maintenance, reuse
of experience and skills. Having such an infrastructure in place is a benefit and typically
not a primary goal of an integrated environmental modelling project to build it but
instead to use it. The weaknesses of the current OpenMI, in this regard, are that it is
regarded as complex, cumbersome to use, and lacking features or standard functionality
(that could provide the added value to researchers working on model integration). An
often-encountered misunderstanding is the difference between OpenMI as a standard and
OpenMI as an implementation of the standard in a programming environment.

As a final result of the workshops Table 3.6 gives an overview of the improvements for
OpenMI, proposed by the participants. Most notably are (i) the clear wish for something
to help with an easy and fast way to start with using the OpenMI, and (ii) to better
communicate the short-term benefits of OpenMI instead of the long-term strategic goals.
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Although all these improvements related to the use of OpenMI have been mentioned, most
are very generic in nature. When introducing a model integration platform to a project,
it should not be a burden but as easy and as quickly to use as possible. Besides that, it
should not be overhyped to get it accepted into a project or forced upon a project where
it does not serve a purpose.

Table 3.6: Suggested improvements for OpenMI

SUGGESTED IMPROVEMENTS #PROJECTS

Quick start manual.

Do not hype / over-market it; better communication.

Do not force it upon modellers when it does not serve the project.
Graphical editor.

Add semantic layer to standard.

Increase ease of developing and testing model components.

DUl W N
e R

3.4 Discussion

This section presents an evaluation by the authors based on the results of the workshops,
summarised in the tables in the previous section, combined with their general knowledge and
experience from working in the fields of environmental integrative modelling, agricultural
modelling, and software engineering. The arguments and conclusions written here should
help fellow scientists; both integrative modellers and software developers, make more
informed choices and avoid similar potential pitfalls. In addition to that, for software
engineers working on model integration platforms, there are clear suggestions for areas to
focus on, which will increase the likelihood of adapting a framework.

The interviewed modellers and developers subscribe to the idea of using standards for
integrative modelling and the potential benefits this presents. Only the definition of the
standard is not enough; a full implementation is expected that handles all the boilerplate
work and provides all the right tools and components. Domain-orientated projects are
not setup and properly budgeted to contribute to framework development besides the
core content of the project itself, which was the case in the projects reviewed here. With
the standard specification available, benefits are already experienced, but the standard
functionality needs to become available as well.

A further cause of tension is the difference between building a model with a stand-alone
purpose and building a model suitable for linking to other models. The latter is usually
not the primary goal of the modeller working on the model and neither of the software
developer working on the framework. Making a model linkable clearly is an effort that
falls between two stools. Similar tension exists between developing models and integration
solutions specifically for a project versus developing them in a more generic way. Making
a strong (supra-)institutional strategy is helpful, which must also be supported by strong
project acquisition goals.



3.4 Discussion 51

A team effort between software developers and modellers to create an integrated model
with use of a software framework requires the software developers to learn about the
modelling and the domain context, and on the other hand the modellers need to pick up
some of the software engineering science and principles that they might not be accustomed
to. Common best practices of the software engineering community, such as using version
control, issue management, unit tests, continuous integration, as well as the Unified
Modelling Language (UML) and domain modelling (software), can be relatively new to
the modeller (Knapen et al., 2007; Verweij et al., 2010) and account for the burden of
having to use the framework. Thus, the complexity of model linking in a rigorous and
repeatable solution might overwhelm the modeller and software engineer when confronted
with the multitude of tools and approaches from software engineering and the complex
data types, large amounts of data, and scaling issues from the modelling domains.

Advantages of using an existing and standards-based model integration framework are (i)
the short-circuiting of a lot of discussions, commonly when working with researchers, since
the standards have to be followed. The alternative is to spend extra resources on improving
and adapting existing functionality; (ii) it provides the opportunity to quickly start with
integration, run the model-chain and start acting on the results by improving the models
and making them more suited for the integration; and (iii) the adoption of a standard
proves to lead to better documentation and construction of the model making them more
comparable and easier to follow for researchers from other domains. The models do not
automatically become interchangeable, in practice a project tends to build a wrapper layer
around each model and a layer on top of a framework for the purpose of integration and
matching the framework set up to the specifics of the project (i.e. modelling languages,
model scales, desired end-use). Such layers can at a later stage be used to improve the
models and the framework itself.

Considering the large diversity of projects, domains (i.e. agriculture, land use, forestry)
and types of models described in this paper, the OpenMI standard can meaningfully be
applied outside the hydrology sector from which it originates. Some of the extensions and
adaptations required to fit project needs (i.e. more flexible data types, better support for
non-time-stepping models) and mentioned framework weaknesses (i.e. too complex and
cumbersome to use outside the hydrology domain) are already being addressed in version
2.0 of the OpenMI standard specification (Donchyts et al., 2010). In addition, in its SDK
implementations, which focus more on making its usage more lightweight and less invasive
for the models.

From the use and evaluation of OpenMI across the projects, a number of recommendations
can be made to modellers or developers interested in using OpenMI as their modelling
framework. First, a sufficient understanding of software development and its principles
must be available or developed before making a serious effort in model integration. Second,
if models with an existing (large) code base are integrated, OpenMI is a relevant solution
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as it intends to work with wrappers around the models, not requiring changes to the model.
Third, the commitment of both the modeller and the software developer is crucial to
identify and implement the often complex data types exchanged between models, probably
using any modelling framework, not just OpenMI. Fourth, different implementations of
OpenMI exist, allowing for some flexibility to choose the implementation best fitting the
model characteristics (i.e. language, operating system). Fifth, use of OpenMI is most
useful if integrated models can be used in different projects, ensuring the maintenance
and further development of integrated models with new subparts or extensions in other
subdomains.

Overall, OpenMI is a useful operational solution for integrating existing and new models
across domains and scales in a technical sense, often based on wrapper development and in
close interaction between modellers and software engineers. Future attention has to be on
developing and sharing standard functionality for use with model chains, achieving easy
re-use of available OpenMI compliant models, and moving towards simple, unobtrusive,
and ubiquitous uses of this standard in the field of environmental modelling.
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Abstract

The digitisation in agriculture has led to an explosion of highly detailed data generated,
offering opportunities to further optimise resource use in food production systems. However,
managing and processing these growing data volumes presents significant challenges.
This study investigates the suitability of standard big data and distributed computing
technologies with a crop yield forecasting case study, and benchmarks performance and
scalability of storage and compute. To that end a prototype system leveraging the Apache
Spark big data analytics framework and using the WISS-WOFOST crop growth simulation
model is assembled and evaluated for its efficiency and scalability when running large
numbers of simulations using distributed computing on commonly available infrastructure.
Existing data for maize and winter wheat, as typical summer and winter crops, is prepared
for distributed storage and processing and used to measure the performance of the system
on clusters of increasing sizes, from small Kubernetes Cloud deployments to large HPC
configurations. Specific attention is paid to the aggregation of the grid-based simulation
results to larger administrative regions for follow-up analysis and reporting. Our results
demonstrate that the selected standard big data and distributed computing technology
simplifies the application of distributed processing and storage, making the related trade-off
between runtime and costs more attainable. By increasing the distribution of our system 64
times and the total number of cores used 45 times compared to the baseline, we obtained a
99% reduction in simulation processing time and a 95% decrease in the aggregation time of
the simulation results, making detailed forecasting for large areas more tractable. However,
distributed implementations remain inherently more complex than conventional ones. As
such, the construction and use of distributed systems will continue to be a challenge for
agricultural agronomists and agricultural data scientists.
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4.1 Introduction

The ongoing digitisation of agriculture provides increasing amounts of data that can be used
to further improve our food production systems, including optimising resource use on the
farm with precision agriculture, forecasting regional and global yields, helping us to adapt
to the effects of climate change and allowing consumers to make better informed decisions
about their food purchases by tracking and providing sufficient information (Parra-Lopez
et al., 2024; Wolfert et al., 2017). All of these require attention to how increasing amounts
of data are stored, managed, and processed, both in operational systems and for research
purposes.

Higher demands for data processing and storage capacity can be handled in the first place
by upgrading computing equipment with more storage space, more memory, and faster
processors. This is referred to by the term "scaling up". To make the most efficient use
of the available hardware, concurrent processing can be implemented, utilising all CPU
cores in the system to their maximum. However, eventually all this will reach system
limits, and the use of a form of distributed computing (known as "scaling out") has to be
considered in order to still be able to perform all required processing in a timely fashion
(see Hennessy and Patterson, 2011).

Distributed computing refers to the use of a cluster of computers, typically with highly
available resources (processing cores, memory, and disk space). The main computational
task can then be divided and solved using all computers available in such a cluster, with a
final task that collects all outputs and integrates them to produce the end result. Due to
the inherent higher complexity of distributed systems, the initial (good) tendency usually
is to avoid using such solutions, stick to familiar single computers, and attempt to fit
the computational job. Or, not being familiar with the existing available IT technologies,
bespoke systems using multiple dedicated computers are constructed (such as, for example,
in Kim et al., 2020) which are highly dependent on specialised software and tailored servers,
usually not very fault tolerant and potentially a maintenance nightmare.

Fortunately, custom individually managed servers that require personal attention can
now be replaced by ephemeral commodity servers either located on-premises, for example,
as part of local Kubernetes cluster (http://kubernetes.io) or HPC (high-performance
computing) facilities, or hosted remotely ('in the Cloud’), e.g. Microsoft Azure, Amazon
Web Services, or the Google Cloud Platform. Making use of such computing facilities still
requires breaking down the total computational workload into a number of smaller tasks
that can then be processed in parallel. This scheduling, or orchestration, software can be
custom developed, for example, by accessing the Kubernetes Control Plane that allows
the dynamic creation and deletion of nodes in the cluster (if administrators allow) as done
by Kim et al., 2021, or by programming master-worker node implementations using internal
networking and a central database for distribution of tasks, as described in Li et al., 2023b.
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Alternatively, standard big data and distributed computing technologies can be leveraged,
such as the currently well-known open source frameworks Dask (http://dask.org), Ray
(http://ray.io), and Apache Spark (http://spark.apache.org).

In this paper, we investigate whether such a standard distributed computing solution can
be successfully applied to a classical use case from the agricultural domain, namely that of
crop yield forecasting. This is a key component of crop yield monitoring systems, which
are important tools for agricultural monitoring (e.g. for anomaly detection and early
warning) (Fritz et al., 2019). They are critical to informing stakeholders on the current
outlook on crop production and provide support for policies on market intervention and
import/export regulations. A few examples are the international Agricultural Market Infor-
mation System (AMIS, http://amis-outlook.org) of the Food and Agriculture Organisation
(FAO), and the GeoGLAM Crop Monitor (https://cropmonitoring.org). A variety of crop
yield monitoring systems exist, some based on field visits and in situ observations (e.g.
USDA system (U.S. Department of Agriculture, 2012)), some relying on remote sensing
imagery (e.g. FEWS-NET (Ross et al., 2009), NASA Harvest (Whitcraft et al., 2020),
CHARMS (Huang et al., 2018)) and a final category applying deterministic crop growth
models, often combined with other data sources including remote sensing data (e.g. EC
MARS (Lecerf et al., 2019)). This last category of crop yield monitoring solutions ingests
data on crop, soil and agro-management, and historical weather data, as well as ensemble
weather forecasts. Next, a cropping systems model is applied to provide estimates of various
crop variables, such as phenology and biomass, and to provide a forecast of the expected
crop yield at the end of the season. Monitoring systems are traditionally implemented on a
consistent geographical grid of 50 x 50 km or 25 x 25 km, on which all data are prepared and
different information layers are intersected. With the advance of digitisation in agriculture,
more data is becoming available with increasingly detailed spatial resolution. Examples
of such data products are the AgERAS weather data set (Boogaard and der Grijn, 2020)
at a resolution of 0.1 degrees, and the SoilGrids soil database at a spatial resolution
of 1 km (Poggio et al., 2021). Crop monitoring systems would be more useful if they
were upgraded to provide outputs with higher spatial resolution utilising those new data
sets (Paudel et al., 2023). This increases their usefulness as the outputs become relevant
for different user groups which often require data on cropping conditions for smaller spatial
entities (e.g., watersheds and counties). For example, the outputs of such systems could
be used for index-based insurance (Afshar et al., 2021) and real-time advisory services for
farmers and extension services (Hack-ten Broeke et al., 2019). However, such an upgrade
to high resolution significantly increases the computational requirements for operational
systems as the number of unique simulation units grows. How to address this, preferably
with existing tools, is an important research question.

Thus, in this study, we investigated, as the main research objective, whether a commonly
used distributed computing framework could successfully be applied to run simulations at
scale using a numerical crop simulation model, while benchmarking both performance and
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scalability of the system on data sets for two types of crops (maize and winter-wheat, as
typical summer and winter crops), and deploying it on computer clusters of various sizes,
using both Cloud and HPC configurations. However, to reach this objective, we first needed
to look at an existing system and adapt its key data management and processing steps
to make use of distributed technologies. Based on our familiarity with the WOrld FOod
STudies (WOFOST) cropping system model and its operational use in the MARS Crop
Yield Forecasting System (MCYFS) (De Wit et al., 2019), these were selected as the basis
for this work.

In section 4.2 we describe an implementation of a distributed system that embeds a
WOFOST cropping system model as a data transformation in Apache Spark, making use
of aspects of declarative (functional) programming. This includes key aspects for data
management in distributed computing, such as the data input and output schemas, data
denormalisation, data serialisation, and data deserialization, what distributed computing
entails, and how we used it to run the existing crop model, as well as for aggregating the
outputs of all model runs. Having this prototype system in place, we used it to run the crop
simulations for the maize and winter-wheat data sets, on various distributed computing
configurations. section 4.3 documents these benchmark experiments and their results,
which we further discuss in section 4.4, with the final conclusions in section 4.5.

4.2 Methodology

4.2.1 Overview

To meet the research objective presented in the Introduction, we chose to use the gridded
implementation of the WOFOST cropping system model (De Wit et al., 2020a) within
the European MARS crop monitoring system (Van der Velde et al., 2019) as a reference
for prototyping and benchmarking a distributed technologies-based system as a case
study.

Figure 4.1 shows an overview of the processing steps in the prototype system and already
mentions some of the distributed technologies used in the prototype (such as the Apache
Spark framework), which will be described in detail later. As part of the implementation,
we needed to find effective solutions for (i) managing the large input data for crop growth
simulations using distributed storage technologies (box 1 in Figure 4.1); (ii) efficiently
running a numerical crop growth model on a computer cluster (box 2 in the same figure);
(iii) collecting the results of large numbers of both successful and failed simulations from
all computers in the cluster (also in box 2); (iv) applying post-processing operations on the
vast amounts of simulation outputs to obtain the final results (box 3). More details about
these technologies and the solutions chosen are described in the following subsections.
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Our prototype leaves out or simplifies steps at the boundary of the system, i.e. it uses
data from the existing MARS system, and has no user interface components for control
and visualising outputs. To construct an operational system, these will have to be added;
however, they are not needed to experiment with the processing of the core crop simulation
model and to perform benchmark measurements.

Distributed
MARS Loading

Oracle
DB

run_wofost()

Spark
DataFrames

Figure 4.1: Overview of the crop simulation processing steps. (1) Extraction, transformation
(denormalisation), and loading of data into the Spark analytical framework, which represents
it as a DataFrame. (2) Distributed and parallel running of crop simulations for each row of
the DataFrame, producing results as a new DataFrame. (3) Using Spark SQL commands to
calculate aggregated outputs.

4.2.2 Case study

A clear use case for the sketched prototype that can scale out crop simulations is the com-
putation and use of the resulting crop simulation outputs for regional crop yield forecasting.
Examples of such systems are the mentioned European MARS Crop Yield Forecasting
System (MCYFS) (Van der Velde et al., 2019) and the CRAFT system (Vakhtang et al.,
2019) which were both designed to provide estimates of crop production at regional level
during the cropping season. Similar systems are in place in other parts of the world, such
as CGMS-Morocco (De Wit et al., 2013; Lahlou, 2018).

Complex systems like MCYFS or CRAFT typically segment the spatial domain into small
spatial units for which all input variables are assumed to be homogeneous. Next, a crop
simulation model is applied to each spatial unit, and its output is collected. The reason for
this approach is the non-linear response of a crop model to its inputs which implies that
simulations must be done at the lowest spatial level, followed by aggregating the model
outputs towards higher levels such as grids or regions.
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Currently, the MCYFS operates at a spatial resolution determined by the intersection of
the weather grid (25 x 25 km) and the soil map, which provides homogeneous grid/soil
units. For a crop such as winter wheat, the system employs 150,000 individual soil /grid
combinations that have to be simulated individually. Given that the system simulates
about 20 types of crops operationally, this will add up to approximately 3 million individual
simulations with the included model (WOFOST, further described in Section 4.2.3). These
simulations must be repeated every 10 days to take into account the latest weather
conditions.

Besides the computational burden that comes with running WOFOST on small individual
units, handling results from all those individual units also requires quite some attention.
The WOFOST simulation results at the lowest level are of little use for yield forecasting
and visualisation. Therefore, results are aggregated to grid and regional levels, each
following a different aggregation scheme. Aggregation from the lowest level towards grid
level is performed by computing an average of the simulated variables weighted on the
relative area of each soil type within the grid. Aggregation of grid level results towards the
lowest level regions is performed using the area of arable land for each grid as a proxy for
crop area, while aggregations from the lowest level towards higher levels are carried out by
crop area estimates obtained from EUROSTAT (http://ec.europa.eu/eurostat). Moreover,
at each level of aggregation, a climatology is required that is used to produce maps and
charts showing the current conditions relative to the long-term statistics.

In the current implementation of MCYFS; all crop simulations are done on a single compute
server that has a multi-core processor. The source code and data retrieval of the model have
been optimised for performance on this limited infrastructure. The current distribution of
simulations across the processor cores is done by splitting the spatial domain into tiles,
which works in practice but gives little flexibility: tiles which consist of fewer simulation
units (e.g., which contain few crop areas) will finish quickly but cannot pick up tasks from
other tiles (i.e., there is no “work-stealing” between tasks implemented). In addition, results
from individual crop simulations are first written to files and then loaded into a relational
database using dedicated data loading tools, which takes a considerable amount of time.
Finally, the aggregation of simulation results is carried out using database procedures
that compute the weighted averages for grids and regions, which is demanding, although
something that databases excel at. Finding solutions for the challenges mentioned above
will be critical for scaling crop monitoring systems towards higher spatial resolutions.

4.2.3 Embedding a WOFOST model

The WOFOST cropping system model has been used in the MARS crop yield forecasting
system since the early 1990s (De Wit et al., 2019). It is a core component used to determine
the impact of weather conditions on crop growth for the major arable crops in Europe
and other areas of the world. The model computes crop growth and development in a
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biophysical and process-based way and summarises the status of the crop through a set of
core state variables: phenological development, biomass in various plant organs, leaf area
of the plant canopy, and its interaction with the soil through soil moisture. The changes of
these variables from day to day are computed based on the underlying processes such as
photosynthesis, respiration, leaf dynamics, evapotranspiration and how they are influenced
by weather.

Crop growth simulation models themselves, such as those used in this study, are difficult
to further parallelise efficiently because of their internal use of interrelated state variables
calculated in time steps. Moreover, many of such existing models were not developed with
parallelisation and distributed computing in mind and contain legacy programming and
design constructs that make a switch difficult. For example, Jang et al. (2019) developed
a parallel computing framework to run a spatialised version of the EPIC model. However,
their approach still relies on file-based input/output which severely limits distribution over
multiple computing nodes. In addition, the structure of the model is such that simulations
are limited to using multiple CPU cores on a single computer, rather than using all CPU
cores in a cluster of multiple computers. Similarly, Alderman (2021) developed a gridded
version of the DSSAT-CSM model that has comparable limitations on scalability.

Running a single WOFOST simulation for a given location, crop, and year can be carried
out in less than 100 milliseconds using an efficient implementation on modern computer
hardware. However, the MARS system is a spatial implementation of WOFOST which
is computationally demanding overall. Given the strong non-linearity in crop models, a
spatial implementation of WOFOST must adhere to the principle of simulation at the lowest
level first, followed by performing output aggregations in time and space. Therefore, each
unique combination of the weather grid, crop mask, soil map, and agro-management must
be simulated separately, which generates a large number of unique simulation units.

Developments within the MARS system have steadily increased computational requirements.
These included a decrease in the size of the meteorological grid from 50 x 50 km to 25 x 25
km, extension of the area to be monitored, and inclusion of additional crop types. Moreover,
the inclusion of ensemble weather forecasts strongly increases the computational load
because model ensembles need to be calculated instead of deterministic model runs.
Efficiently handling such a computational load requires an optimised implementation of
WOFOST as well as a data infrastructure that can handle a large amount of input data
and output data in a performant way.

Recently, the 7.2 version of WOFOST (De Wit et al., 2020a), originally written in
FORTRAN, has been reimplemented in the Java programming language, focussing on
efficiency, performance, modularity and portability. This edition is also known as WISS-
WOFOST and consists of a lightweight framework (WISS, for Wageningen Integrated
Systems Simulator) (Van Kraalingen et al., 2020), and a component-based implementation
of the crop simulation model itself. An important design principle for this edition was that
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the model should be free of side effects as much as possible and can be run completely
in memory. Furthermore, the source code has been fully aligned with the WOFOST
implementation, which is part of the Python Crop Simulation Environment (PCSE) (De
Wit, 2021).

The only remaining side effects of WISS-WOFOST are exceptions (errors when running
the simulation) and log messages. These still make it an émpure function (see Section 4.2.4)
since it is not completely referential transparent, but both types of side effects can be
handled with relative ease. This functional programming-style implementation of WOFOST
together with the versatility and efficiency of the Java programming language greatly
increases the opportunities for using WISS-WOFOST in computational challenges and
big data applications. Java programmes are ultimately compiled into Java bytecode and
executed on a Java Virtual Machine (JVM), which then continuously performs dynamic
analysis and optimisations of the running code. Some other programming languages
are supported by the JVM as well, and language interoperability is then a given. This
is particularly convenient for embedding WISS-WOFOST into a framework such as
Apache Spark, which is written in Scala, one of the other JVM languages. However, the
interoperability of Spark is by no means limited to all JVM languages. It also supports the
frequently used programming languages in data science, Python, and R, and it includes
functionality to access command-line based models and applications (e.g. compiled C++
or Fortran code) via Linux pipes and interprocess communication.

The input data required by the spatial WOFOST implementation used in the MARS crop
yield forecasting system is stored in a relational database management system (RDBMS).
The use of a RDBMS is necessary because of the normalised structure and the many
relationships that exist between the different input data types (crop, soil, weather) and
the WOFOST output data for each unique combination. However, over the course of
three decades, the database schema behind the spatial WOFOST model has grown in
complexity to accommodate new features and options. This complexity has a negative
impact on the database performance for supplying the input data for WOFOST. Typically,
many tables have to be traversed and joined in order to obtain all the required inputs
for a WOFOST crop simulation, particularly those related to model parameters and crop
calendars. Moreover, a RDMBS and the server it runs on can only handle a limited number
of simultaneous connections, making them less scalable.

Fortunately, despite its complexity, most of the input data in the spatial WOFOST RDMBS
are static: they do not change during the course of a cropping season. Only weather
observations are appended based on new daily observations. This provides an excellent
opportunity to convert the WOFOST input data stored in the RDBMS into a temporary
format that is more suitable for distributed processing. In the following, we will describe
the approach we have implemented for this.
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Finally, the WOFOST model produces a time series of output variables for different model
scenarios (e.g., potential or water-limited production) for all unique combinations of grid,
soil, and crop. However, in practice, analysts never use the WOFOST results at the lowest
level of simulations. Instead, aggregated values are preferred at the grid or regional level
because they are easier to handle and visualise. Currently, all WOFOST simulation results
at the lowest level are loaded into the RDBMS and the spatial aggregations are carried out
using SQL procedures. This step is time-consuming because all data have to be loaded
first before aggregation can start. We have therefore experimented with an alternative
approach in which aggregation of results is already carried out on the Spark Dataset that
stores the WOFOST simulation output. This results in a much smaller amount of data
that have to be loaded into the RDBMS.

4.2.4 Functional programming

The design of computing systems is closely related to the programming languages that
control them, as each language is built on a computational model that shapes its paradigm
and programming style (Backus, 1978). Two major paradigms are imperative programming
and declarative programming (Roy and Haridi, 2004).

Imperative programming languages, such as C, Java, and Python, are based on the
Von Neumann computer architecture (described in 1945) and operate through sequences
of commands that modify the state of the programme. Although modern imperative
languages have begun incorporating functional features, their reliance on mutable state
and sequential execution limits abstraction and composition.

In contrast, declarative programming languages—including functional programming lan-
guages such as Erlang, Haskell, and OCaml—are rooted in mathematics and lambda
calculus (Rosser, 1941). They follow a declarative approach, constructing programmes
from pure, referentially transparent functions that avoid side effects and mutable state.
Features like immutability, higher-order functions, and recursion make functional program-
ming well suited for concurrent and distributed computing, as pure functions are easier to
parallelise and reason about.

Despite these advantages, functional programming can present challenges, including
a steeper learning curve due to its abstract nature, potential inefficiencies in CPU and
memory usage, and longer compile times due to advanced type checking and code generation.
However, these trade-off’s often lead to more robust, maintainable, and reliable software
systems.

4.2.5 Using distributed data storage

Distributed computing is frequently used for data-intensive applications, which requires
efficient data storage technologies to prevent persistence-related bottlenecks. While
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traditional relational databases excel in structured data management due to their robust
research foundation and optimisations, they often struggle to meet the scalability and
flexibility demands of big data. To address these limitations, NoSQL databases have
emerged, offering benefits such as horizontal scalability, schema flexibility, fault tolerance,
and high availability —often at the cost of delayed consistency.

Unlike traditional databases evaluated on ACID properties (Atomicity, Consistency, Iso-
lation, Durability), modern distributed databases are better evaluated using Brewer’s
CAP theorem (Brewer, 2012). This theorem states that distributed databases must
prioritise either Consistency and Partition Tolerance (CP) or Availability and Partition
Tolerance (AP). Highly available systems typically adopt eventual consistency to allow for
non-blocking synchronisation. The main categories of NoSQL include key value stores,
column-oriented storage, document stores, and graph databases, with open-source and
proprietary implementations available (Siddiga et al., 2017).

Beyond NoSQL, other big data storage solutions include parallel file systems and object
storage systems. Although parallel file systems, such as Lustre (www.lustre.org), offer high
performance in high-performance computing (HPC) environments, their strict adherence
to POSIX standards limits scalability at very large data volumes. In contrast, object
storage systems, such as Amazon S3, Apache Ozone, and MinlO (http://min.io), overcome
these bottlenecks by using abstract data containers with immutable objects, stateless
operations, and flexible metadata schemas (Liu et al., 2018). Initially suited for write-once,
read-many workloads, improvements in performance, and latency have expanded their
applicability.

In this study, the initial use of MongoDB (http://mongodb.com), a document-oriented
NoSQL database, was chosen for its ability to handle large volumes of JSON documents,
which matched the crop simulation input and output data format. However, the sys-
tem was eventually switched to MinlO object storage due to its native compatibility
with the Kubernetes environment, ease of deployment, and administrative simplicity.
In practice, Poznan HPC cluster administrators found integrating MinlO to be more
straightforward than setting up a network-connected MongoDB installation, highlighting
the practical advantages of object storage solutions for scalable data management in
distributed systems.

4.2.5.1  Simulation input data denormalisation

Traditionally, the required input data for the crop simulation model are stored and
managed using a relational database management system (RDBMS), with a high degree
of normalisation applied to minimise data redundancy and improve data integrity. As
a result, however, collecting all data needed for a single crop simulation then requires a
number of table joins or database views, making the data retrieval a relatively slow process.
When we want to optimise computing the crop simulations, this retrieval of the input data
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also has to be taken into account and optimised as well, or at least made suitable for the
type of processing that needs to be done. Similar aspects apply to the processing and
storage of the output data produced by the crop simulation model. Commonly, the data
storage systems used for big data processing accept less data normalisation and actually
prefer data duplication, where it serves to store the data on multiple computers so that it
can be retrieved with higher parallelism by concurrently running processing jobs. Most of
the NoSQL database systems described in Section 4.2.5 operate in such a way.

To transform the highly normalised data in the relational MARS database into a de-
normalised version, a Data Extractor programme was written that creates JSON Lines
format output (http://jsonlines.org) with complete simulation input data per line of the
file. An abbreviated single input record is shown in listing 4.1. For readability, it has been
expanded across multiple lines; however, in the file it would span only one long line.

These files do get large (multiple gigabytes); however, with a simulation per line they are
easy to process (e.g. filter, split, and merge) with standard operating system commands,
and they can be significantly compressed for storage or exchange. Big data tools and
distributed computing frameworks typically also have the capability to read compressed
JSON files directly, although this might be time consuming depending on how well they
manage to distribute the total workload.

{
"version": 1, "simId": "
grid1035126 _crop2_variety20095_year1980_smu9030002_stu9000979",
"simModel": "WOFOST", "simType": "waterlimited",
"simCrop": 2, "simCropName": "GrainMaize", "simCropVariety":20095,
"simYear": 1980, "simStartDate": "1980-04-28", "simEndDate":
"1980-12-31",
"location": { "type": "Point", "coordinates": [ 14.49247, 35.86522 ]
Yo
"sourceType": "CGMS",
"sourceDetails": { "name": "Malta",
"grid": 1035126, "smu": 9030002, "stu": 9000979, "altitudeM": 38,
"gridWeightFactor": 0.111111
To
"cropParams": { "id": "crop2_variety20095", "params": [
{ "name": "SPA", "units": [ "[ha.kg-1]" 1, "value": [ "0.0" ] 1},
05600 1
Ty
"soilParams": { "id": "stu9000979_smu9030002", "params": [
{ "name": "SMLIM", "units": [ "[cm]" ], "value": [ "0.3173" ] },
L
Vo
"siteParams": { "id": "grid1035126_crop2_year1980_stu9000979", "
params": [
{"name": "ANGSTB", "units": [ "[-1" 1, "value": [ "0.42" ] },

LI |

6
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P
"agromanagement": { "id": "grid1035126_crop2_year1980", "params": [
{ "name": "IDEM", "units": [ "[datel" ], "value": [ "1980-04-28" ]
Fe
o]
Vo
"meteo": { "version": 1, "id": "grid1035126",
"startDate": "1980-04-28", "endDate": "1980-12-31",
"data": {
"temperatureMin": [ 11.3, 10.3, "...", 11.3 1],
n n
}
}
}

Listing 4.1: An abbreviated single sample JSON input record for simulation

4.2.5.2  Data serialisation and deserialisation

After extracting the data from the RDBMS in denormalised JSON Lines files, they can
easily be imported into a MongoDB database (since it is based on working with JSON
documents in collections) that can be accessed by Apache Spark, or Spark can read the
JSON files directly for processing. In both cases, Spark handles the serialisation required
and deserialisation from binary format with Dataset Encoders. To allow parallel operations
in a cluster, Spark handles data via Resilient Distributed Datasets (RDD). RDDs are
collections of (data) elements partitioned across the nodes of the cluster and that can be
operated on in parallel. The Dataset API in Spark and the Encoder framework supports
the construction of Datasets from JVM objects, and the manipulation of them using
functional transformations (such as map, flatMap, filter, and so on). While Datasets
are strictly typed, Spark also has a more generic DataFrame API, which is in essence a
Dataset organised in named columns (a Dataset [Row]).

For this study, we had the advantage that we could define both the data schema and write
the Java JVM objects that match it. By following the JavaBeans specification (i.e. make
them serialisable, ensure a zero-argument constructor, and add accessor methods for all
relevant properties), a standard Spark encoder factory (Encoders.bean(...)) could be
used to create the Encoders from the JavaBeans.

The data schema we designed (for details, see 4.A) consists of a number of thematic blocks
(crop, soil, site, agro-management, weather). Every block can have both a set of named
parameters and a further flexible list of parameters. The named parameters are usually
the key parameters of a block and can be used for grouping or sorting. In the future,
these could be used, for example, to optimise the actual number of crop simulations to be

performed by running only one simulation for groups that have exactly the same inputs.
The flexible list provides the means of holding a variable number of additional parameters.
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They are stored and retrieved, but are slightly more difficult and time-consuming to operate
upon since they require unpacking first (Spark provides the functionality for this).

There is a schema for the input data (SimulationInput) shown in Table 4.A.1 and for
the output data (SimulationOutput) shown in Table 4.A.4. In the input schema, crop,
soil, site and agromanagement follow the same array-based schema containing name,
unit and value structure per parameter (Table 4.A.3). Table 4.A.2 represents the schema
of meteo providing weather data in time series between the start and end dates. On
the other hand, in the output schema, description gives general information about
the simulation (Table 4.A.6) and message contains a list of messages generated during
simulation run (Table 4.A.4). In addition, timeseries provide the simulation results in
time series (Table 4.A.7), while summary gives an overall summary of the simulation results
(Table 4.A.5).

A small caveat, particularly when dealing with data that include geographic names (e.g.,
countries, regions, or cities), is to ensure that proper character encodings are used, such as
UTF-8.

4.2.6 Using distributed computing

Distributed computing refers to the use of what is called a computer cluster with high
available resources (mainly cores, memory, and disk space). The computational problem
(the 'workload’ or job) is typically divided into a number of tasks, and each of those is
then solved by one or more computers. Or, in parallel computing jargon, each task is a
sequence of instructions that operate together as a group. Tasks are mapped to Units
of Execution (UE), which are the concurrently executing entities such as processes or
threads. These UEs need to be further mapped to Processing Elements (PE), the actual
hardware elements that execute the streams of instructions. The computers in a cluster
are connected by a network so that they can communicate, exchange messages and data,
and coordinate the work. When needed, there can be a final task that collects all the
outputs and integrates or aggregates them to produce the end result.

Computer clusters can be built in various ways, mostly characterised by how memory is
shared between computers and how instructions are executed on the data. Flynn’s taxon-
omy (in Flynn, 1966 and Flynn, 1972) categorises the options in SISD (single instruction,
single data), SIMD (single instruction, multiple data), MISD (multiple instruction, single
data), and MIMD (multiple instruction, multiple data). The latter is the most well-known
type, including computational grids, regular High Performance Computing (HPC) facilities,
and Kubernetes. HPCs typically are tailored for high performance through the use of
high-end components and allow computational jobs to be run by batch processing. That
is, a job has to be entered into a queue and will be scheduled to run on the HPC based
on the priority and availability of requested resources. Kubernetes environments usually
allow more dynamic processing and are more flexible in adding and removing additional
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resources based on demand. Today, it has become relatively easy to acquire computing
resources from cloud providers to use temporarily and pay for them based on usage.

Distributed computing systems rely on middleware software to manage resources and
tasks while abstracting low-level hardware details from users. In high-performance com-
puting (HPC) environments, tools like SLURM (http://slurm.schedmd.com) and Torque
(http://adaptivecomputing.com/cherry-services/torque-resource-manager/) serve as work-
load and job managers, often accompanied by modules for pre-configured software libraries
or containerised applications, such as those packaged with Singularity (Kurtzer et al.,
2017). In contrast, Kubernetes functions as both a platform and middleware, handling
the scheduling of Docker (http://docker.io) containers as pods across available nodes and
managing additional tasks, including those initiated by applications running within the
system.

Modern open source software frameworks such as those mentioned in the Introduction
section can help software engineers implement and deploy various kinds of data processing
application on such systems. Their main goal is to improve the execution performance by
reducing memory usage, disk 1/0O, and data shuffling based on optimisation and tuning
techniques. Apache Spark, for example, uses the familiar split-apply-combine programming
model and its specialised implementation called Map-Reduce (Dean and Ghemawat, 2008).
This model has been heavily used internally by Google (until about 2015). MPI (an
implementation of a Message Passing Interface) also uses partitioning and divide-and-
conquer techniques to split the processing on the available resources and calculate partial
results. While MPI is usually available as a programming library that allows low-level and
optimised control over the way distributed processing is performed, the other mentioned
frameworks offer medium- to high-level abstraction layers that provide a unified view of
the available hardware and handle most of the resource allocation details during data
processing. Typically, they support the development and testing of applications on a local
computer with small sample data sets, after which the same source code can be deployed
and used on a computing cluster to process the full data sets.

Since this use case revolves around performing batches of simulations with the Java based
implementation of the WOFOST crop growth model, which will be described later, we
choose to build on the Apache Spark framework, which uses Java Virtual Machines (JVM)
internally as well making the integration easier. As a side note, Spark also supports the
Python (PySpark), R (SparkR), and SQL (spark-sql) programming languages.

4.2.7 Experimental setup

For performance benchmarking, we will compare measurements with the current WOFOST
implementation used in MCYFS, the European MARS Crop Yield Forecasting System that
was introduced in Section 4.2.2. This system runs on Microsoft Windows 10.x, on a server
with an Intel Xeon E5 CPU @ 2.3 GHz that has 20 cores in total and 128 GiB memory. In
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comparison we run the system described in this paper on a physical GNU /Linux (kernel
5.x) server with also an Intel Xeon E5-vl CPU @ 3.2 GHz, with 12 cores and 40 GiB
memory. In addition, on a high-end laptop running macOS 12.x with an Intel Core i9
@ 2.4 GHz, 16 core and 16 GiB memory, and a small Kubernetes (v1.20.7) GNU /Linux
(kernel 5.x) cluster with 1, 2, and 6 vCPUs @ 2.4 GHz, allocating 1 core (from an Intel
Xeon E3-v2) and 3 GiB memory per vCPU (equal to a worker node in this case). This
information is also included in Table 4.1.

Furthermore, the scalability of the system has also been benchmarked on a Kubernetes
(v1.20.7) GNU/Linux (kernel 5.x) cluster, using larger numbers of bigger worker nodes
with 4 cores and 16 GiB memory per vCPU @ 2.5 GHz (Intel Xeon E3-v2). The tests
were carried out with 1, 2, 4, 8, and 16 worker nodes. Finally, on the Poznan HPC we ran
scalability experiments with 32, 48 and 64 worker nodes running GNU /Linux (kernel 5.x)
having 7 cores (Intel Xeon E5-v3) and 8 GiB memory each, using the high performance
PSNC Eagle cluster.

In all cases Apache Spark version 3.0.2 and the same application (including the same
WISS-WOFOST version) were used to execute the crop simulations and aggregate the
results. OpenJDK 11 has been used as a JVM with the default garbage collector (GC)
selected with no specific tuning done.

4.2.8 Distributing crop simulations with Spark

The Spark encoders described above can thus be used to convert the crop simulation input
and output data between, e.g. a JSON representation and an instance of a corresponding
Java JVM object. As mentioned, the WISS-WOFOST crop simulation model uses both a
Java class that holds all input parameters, called ParXChange, and a class that collects all
the output data produced by the simulation, the SimXChange class. WISS-WOFOST has
been built so that all needed input can be passed to it via a ParXChange instance, which
it can then use to run a crop simulation completely in memory. The output of the crop
simulation is fully captured in a SimXChange instance. Via configuration, it can be set to
write log messages e.g. to the console during processing. It is also built to fail fast when
an error is detected, terminating with an exception. These can be captured for further
handling.

Listing 4.B.1 in 4.B illustrates how only a few lines of code are needed to create the input
(SimulationInput knows how to represent (part of) its data as a ParXChange instance)
and output objects, an instance of the model, and use a TimeDriver to run a simulation.
The TimeDriver object in this case externally drives the day-to-day time stepping of the
model, until it reaches an end state. During the simulation, the calculated daily states (of
the crop and the environment) are recorded in the output object. After completion, these
states are used to update the SimulationOutput object. Finally, it should be noted that
the type of result of the run method is a Try[SimulationOutput], so it can be a success
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with a SimulationOutput, or a failure with a Java exception (in Scala Try is a type that
represents a computation that may either result in an exception, or return a successfully
computed value).

The object (which in Scala defines a class that has exactly one instance, i.e. a singleton)
and its run method from the listing 4.B.1 are further used as illustrated by the listing
4.B.2 (in 4.B) to perform the crop simulations in a distributed way using Apache Spark.
Depending on the hardware on which it is used, Spark takes care of dividing the workload
between the available cores and the computers, as illustrated in Figure 4.2.

Worker Node

Executor I’ﬂ_
Orver Program

SparkContext Cluster Manager

Worker Node

Executor | Cache

Figure 4.2: Main components of Apache Spark, including Executors deployed on Worker
Nodes allocated from a computer cluster by the Cluster Manager. The Driver Program sets
up the SparkContext used to control the distributed processing via Tasks. (From the Apache
Spark documentation)

For that, the main programme (called the driver program of each Spark application gets a
SparkContext object that handles the coordination of the processes of the application in
a cluster. Via cluster manager (e.g. YARN or Kubernetes) which allocates the cluster’s
resources, it acquires executors on worker nodes. These are the processes that run the
computations and store the data for the application. Next, Spark sends the application
code (JAR or Python files) to ezecutors, and finally sends them the tasks to perform. For
their operation, exrecutors needs to be able to communicate with each other and with
driver program. Also, for performance reasons, it is best to run the driver program close
to worker nodes, so in our study we always deployed it on the cluster as well instead of
running it on a local computer.

Within a programme, the entry point to all Spark functionality is the SparkSession class.
In listing 4.B.2 this is created at the beginning, followed by the construction of the Encoder
instances for the SimulationInput and SimulationOutput classes to handle the input
data deserialisation and output data serialisation (see Section 4.2.5.2). Since Spark is based
on lazy evaluation, the next lines of code define the expressions to read the simulation
input data from JSON file(s), perform crop simulation runs with WISS-WOFOST for all
input splits into a requested number of partitions, and write the output of all successful
simulations to JSON file(s). Note that it is the final save method that will require Spark
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to actually evaluate all expressions and thus run the simulations. The code also calls
the cache method on the Dataset[SimulationOutput] which holds the results of all
crop simulations, so that it can be used for multiple types of (post)processing, including
aggregation of the data as described in the next section. The schema of these data is
shown in Tables 4.A.4, 4.A.5, 4.A.6, and 4.A.7 in 4.A.

The Spark Dataset (which is a typed version of the more generic Spark DataFrame) is
a high level view of the partitioned data that represents it as a (very large) table with
named columns (similar to a spreadsheet), while hiding all underlying complexity to the
user. Typically, the amount of data to be processed makes it impossible to keep everything
on a single computer and requires that it be distributed across multiple computers in the
cluster. Still, for analytical purposes, Spark will make it appear as a single data set for
which a processing pipeline can be specified in a declarative way, which it then translates
into a number of possible logical plans for execution, of which the best is translated into a
physical execution plan that is optimised for the available worker nodes. Unless it is needed
to collect the content of a data set on a single computer (typically where driver program
runs), it will keep it distributed and apply all requested processing accordingly.

4.2.9 Aggregating crop simulation results with Spark

The simulations with WOFOST are carried out for each unique combination of grid and soil
unit in order to avoid aggregation errors caused by non-linearity in model responses. For
defining these unique units, the European soil database is intersected with the simulation
grid, leading to combinations of grid and so-called Soil Mapping Units (SMUs). However,
the physical properties of the soil required for running the WOFOST soil water balance
are not defined at the SMU level but are available for the so-called Soil Typological Units
(STU). These STUs are not defined spatially, but only their percentage coverage of an
SMU is known. Therefore, aggregating WOFOST simulation results requires one to take
into account the interdependency of grid, SMU and STU. Moreover, final output is also
required at the regional level, which involves aggregating from grids towards the lower
administrative districts ( the so-called NUTS3 regions) and to the national level (NUTS0).
Furthermore, it should be noted that crop areas are not known at the level of grids or SMUs,
only for the lowest administrative levels crop-specific area statistics are available.

The aggregation approach is visualised in Figure 4.3. At the lowest level, simulation results
for each grid, SMU and STU combination can be aggregated toward the grid level based on
a weighting factor computed from the configuration of STUs within the SMU and the area
of each SMU with the grid. Then, aggregation was performed to the lowest administrative
level taking the grid-level results and using the arable land area derived from a land cover
map within each grid as a weight factor for the regional results. Finally, aggregation from
the lowest administrative level towards higher levels was done by crop area statistics which
are available from EUROSTAT.
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Figure 4.3: Schematic representation of the WOFOST result aggregation from individual crop
simulations for unique combinations of inter-cell Soil Mapping Unit (SMU) and Soil Typological
Unit (STU) to grid cell level (lower grey box) and from grid cells to regional level (upper grey
box).

Despite the complexity of the aggregation scheme, the weight factors that are used to
aggregate the results are static and can be computed a priori. Thus, they can be provided
as an input to the simulation (e.g. in the JSON Lines formatted files) and replicated in
the output from WOFOST. The aggregate of WOFOST results to the grid/region level
can therefore be carried out with Spark by grouping on the grid/region ID, multiplying
the WOFOST output by the respective weight factor, summing up the results, and writing
the output to a new Spark Dataset. Aggregation of results from the lowest administrative
level towards higher levels was not done from within Spark because the weight factors vary
by year (e.g., annual crop area statistics). Moreover, the two aggregation steps already
reduce the size to such an extent that adding this final step does not provide a substantial
reduction of processing time.

Technically, aggregation is implemented in Spark using its select, group, and aggregation
methods available for Datasets. It could also have been done by using its SQL API, but
the total query needed is rather complex, and writing it in programming code makes it
more manageable. The complete code is included as listing 4.B.3 in 4.B.

Finally, listing 4.2 shows a sample output record in JSON format, with the daily time
series abbreviated. TAGP indicates the Total Above Ground Production (dead and living
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plant organs) in kg/ha, and TWSO the Total Dry Weight of Storage Organs (dead and
living) in kg/ha. More information about these variables can be found in the WOFOST
system description (De Wit et al., 2020b). The values are the aggregated results of the
water-limited crop simulations for maize, at the indicated grid location.

{
"ERR": O,
"Total_Weights": 1.0,
"NonErr_Weights": 1.0,
"Crop_Code": 2,
"Crop_Name": "GrainMaize",
"Crop_Variety": 20102,
"Grid": 1102097,
"Region": "Zuid-Limburg",
"Latitude": 50.96572,
"Longitude": 5.60555,

"Model": "WOFOST",

"Simulation": "waterlimited",

"Year": 2020,

"Date": [ "2020-05-20", "2020-05-31", "..." , "2020-12-20",
"2020-12-31" 1],

"TAGP_at_Date": [ 41.44378, 347.10842, "..." , 15950.85701,
15950.85701 1,

"TWSO_at_Date": [ 0.0, 0.0, "..." , 3821.31834, 3821.31834 ]

Listing 4.2: A single sample JSON output record after aggregation

4.2.10 Deploying on distributed computing infrastructures

Since Apache Spark can be used with various hardware configurations, it allows us to
deploy and test the distributed crop simulations system on several setups. The simplest
of them is a laptop, desktop computer, or single server. This can be used to develop the
software and to run crop simulations on a limited scale (less than 1 million, depending on
the hardware). Spark can use all available CPU cores for processing, so it can perform
reasonably well on small amounts of crop simulations. It does, of course, introduce some
overhead, so a single-computer setup is not necessarily the best approach in this case.
In addition, it will not work for data sets that are too large to fit in the memory of the
computer. This will require Spark to start overflowing data to temporary files, which
reduces the overall performance.

To be able to process larger numbers (over 1 million) of crop simulations within acceptable
time frames it is needed to use Spark with a configuration of multiple computers, such as
a compute cluster. At the high end, these computers can be nodes of a supercomputer
that provides High Performance Computing (HPC) facilities. Spark can be deployed on a
subset of these nodes and then used to run the crop simulations. We have experimented

S SR R
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with such configurations by using our university’s HPC and the larger facilities from
the Poznan Supercomputing and Networking Centre (PSNC, http://www.psnc.pl). A
supercomputer can provide many compute resources at relatively low cost, but they are
very static and are usually operated in batch mode. Every processing job is entered into
a queue and then has to wait its turn and until all requested resources are available.
Running Spark on a Kubernetes (K8S) cluster provides a more dynamic approach but is
typically also more expensive. The compute resources in a K8S cluster can be increased
and decreased on demand, and Spark can use them directly to do additional work or more
work at the same time. We have used Spark in a small K8S cluster provided by UBITECH
(http://ubitech.eu) in various configurations to test processing scalability.

For deployment, the programming code to access input data, run crop simulations, and
aggregate the large amount of simulation results needs to be combined into a Spark
application. This needs to be packaged together with all dependencies (code libraries) it
requires, so that Spark can distribute everything across all available worker nodes. A script,
called spark-submit, is available to launch the application on a cluster. Depending on the
cluster manager (e.g. SLURM or Kubernetes), this submit script can be called directly
from the command line, or integrated into a cluster-specific deployment script. In the
listing 4.C.1 (in 4.C) an example is given for a small-scale deployment (using 4 nodes) in
our university HPC. In this case, SLURM will assign the requested nodes, and Spark will
then automatically take care of setting them up as worker nodes, distribute the software
(and data if needed) and start the application as driver program. While Spark handles
most of the needed distribution and collection of data over the nodes, the log messages
that might get written on each node are typically handled and automatically transferred
to the user’s home directory on the cluster by the cluster management software.

4.2.11 Summary

For this study, we took the standard and open source Apache Spark big data analytics
framework and tested if it could be used to run large numbers of crop simulations with an
existing version of the WOFOST crop growth model. Although Spark provides API’s for
Python and R, it is JVM-based at its core so we chose to use the Java WISS-WOFOST
implementation to avoid performance loss due to data marshalling between programming
environments and runtimes. All input data needed for the simulations were extracted from
a relational database, denormalised, and stored in MongoDB or MinIO. These NoSQL
types of storage better support distributed and parallel data access and can avoid 1/0
bottlenecks. Regular Spark SQL commands were used to aggregate the results of all
individual crop simulations to grid cell and regional levels. The setup has been tested
and benchmarked on a small Kubernetes cluster and large HPC configurations, which is
further described in the following section.
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4.3 Results

4.3.1 Overall performance

To benchmark the Spark-based WISS-WOFOST approach, we analysed the execution
times of a test data set on different hardware configurations (see Section 4.2.7) and
compared them with the execution time of the current WOFOST implementation used in
MCYFS (the baseline). Table 4.1 summarises the different hardware specifications used.
Parallelisation indicates the number of processing elements (see Section 4.2.6) used to
perform the crop simulations (in parallel), while Processing lists the total execution time
measured. Note that MCYFS did not fully use all available cores. The total workload
(Simulations in the table) for the operational system by default consists of more than
3.7M simulations, while the test data set we used is much smaller, 113K simulations.
This has been taken into account when computing the execution time per simulation
(Time/Simqy). Moreover, the results for the MCYFS system only contain the execution
time for Processing while for the Spark-based system the results cover both Processing and
JSON preparation taking into account that 1/0 reads have to be done in both cases. That
is, MCYFS retrieves the simulation data directly from its database, while in the other
cases this data is first extracted from the database into JSON files, which are subsequently
loaded into the system. Both steps are part of the indicated JSON preparation time, which
is constant here due to Spark only using the driver program node for the read I/O in these
experiments.

Table 4.1: Overview of various hardware configurations and measured crop simulations
processing times. The Time/Simy,, times include both the processing time and the JSON
preparation time when available. From that the Time/Simge, single-core normalized execution
time is calculated by inverse-scaling and assuming perfect parallelization.

Characteristic MCYFS Server Laptop | Cluster 1 | Cluster 2 | Cluster 3
CPU type Xeon E5 | Xeon E5 Core 19 Xeon E3 Xeon E3 Xeon E3
Clock 23GHz | 32GHz | 24 GHz 2.4 GHz 2.4 GHz 2.4 GHz
Cores 20 12 16 1 2 6
Memory 128 GB 40 GB 16 GB 3GB 3GB 3GB
Parallelisation 10 12 16 1 2 6
JSON preparation N/A | 18.2 min | 18.2 min 18.2 min 18.2 min 18.2 min
Processing 4153 min | 14.7 min 2.4 min 34.0 min 20.0 min 7.5 min
Simulations 3.773.853 113.662 113.662 113.662 113.662 113.662
Time/Simray 0.0660 s | 0.0174s | 0.0109 s 0.0276 s 0.0202 s 0.0136 s
Time/Simgcn 0.6600s | 0.2088s | 0.1744 s 0.0276 s 0.0404 s 0.0816 s

The single-core normalised execution time (7Time/Simg.,) corrects for the number of
processing elements that are used to execute the WOFOST simulations by inverse scaling
(e.g., the total time would double when going from 2 cores to 1). Like the raw value
it includes both the JSON preparation time when applicable and the crop simulation
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processing time. For simplicity, perfect parallelisation is assumed in the calculation. In
reality, this is never the case and actual scn values can be expected to be a little lower.

The results demonstrate that the Spark-based framework considerably reduces the pro-
cessing time required for individual simulations compared to the baseline MCYFS system.
Also, the use of more modern computer architectures still has a significant impact given
that the Linux server with an older Intel Xeon E5 generation CPU is far slower (single-core
normalised execution times) compared to the high-end laptop (Intel Core i9) and the
clusters 1-3. Moving from single machines to multiple machines for the small clusters
shows both the advantage of the overall processing times being significantly reduced due
to the distribution of the workload, but also the cost of the increasing overhead by the
higher Time/Sims., values when more compute nodes are being introduced.

Some clarifying remarks apply to these benchmarks: (i) The measurements are only useful
for relative comparison between the various configurations, the calculated single-core
normalised execution times are indicative at best. (ii) JRC is working on a new MCYFS
system that is based on a similar distributed approach based on the Python implementation
of WOFOST (PCSE), which is said to show comparable computational behaviour as the
WISS-WOFOST based implementation described here. (iii) The MCYFS processing
measurements in the table have been calculated by analysing application log files of 10
parallel tasks that run crop simulations on the system, instead of active monitoring of
a running system (which was no longer available at the time of writing). However, this
should not affect the results. (iv) We did not compensate for the higher clock rate of
the (Linux) server (3.2 GHz versus 2.3 - 2.4 GHz of the other configurations), since the
net effects are hard to estimate and can only increase the gap in performance already
shown.

4.3.2 System scaling

In addition to comparing performance, we also analysed the scalability of the system.
Specifically, we looked at how adding more compute resources affected the total runtime
required for processing two larger crop simulation input data sets. For this study, we
selected all maize and winter wheat simulations between 2000 and 2020 from the MCYFS
EU27 archive. The first data set has 3.8M (3 869 586) records and the second 5.1M (5 137
804) (each record contains all the data needed for a single-crop growth simulation). Both
were used as input for running crop simulations on a Kubernetes cluster consisting of 1, 2,
4, 8, and 16 nodes (and the same number of Spark Executors) with 4 cores and 16 GiB per
worker node. Table 4.2 shows the total processing times measured per experiment.
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Table 4.2: Processing times for all maize and winter-wheat crop simulations between 2000-2020
from the MCYFS EU27 archive, on a Kubernetes cluster with various configurations.

Processing time
Spark Executors | Total Cores | Maize (3.8M sims) | Winter-wheat (5.1M sims)
1 4 670.9 min 820.9 min
2 8 324.9 min 445.9 min
4 16 164.1 min 219.2 min
8 32 84.3 min 137.8 min
16 64 48.4 min 88.2 min

The plot of the processing times on a graph (see Figure 4.4) clearly shows the relation
with the number of worker nodes used and that after a certain number of nodes adding
more resources will no longer be cost-effective.
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Figure 4.4: Plot of the processing times for all the maize and winter-wheat crop simulations
between 2000-2020 from the MCYFS EU27 archive, on a Kubernetes cluster with various
configurations. The diminishing benefit of adding more nodes is clearly visible.

The general scaling behaviour is similar for the 3.8M (maize) and 5.1M (winter-wheat)
simulations. However, an important difference between these two data sets is that the
latter, winter wheat, is a winter crop that has a significantly longer growing season (the
period between sowing and harvest). So not only does the data set have more simulation
records, each record also requires more storage space due to the longer time series of
weather data it contains (the weather data are the largest component of a simulation
record). Since Spark splits the total workload (all simulations to perform) into a specified
number of partitions to be processed in parallel (using the cores available to each Spark
Executor), both mentioned factors affect the memory space needed per partition, as well
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as the JVM GC (garbage collection) (background) process that periodically frees up
deallocated memory blocks. Besides that, depending on the processing workflow partitions
sometimes have to be exchanged between the worker nodes (an operation known as a shuffle
in Spark), which is a time consuming operation. These, and other considerations, make
the number of partitions an important tuning parameter for Spark performance. Tables
4.3 and 4.4 illustrate this. On the same system, using 400 partitions is more performant
for the maize simulations, while for winter-wheat it is 200 partitions (more optimal choices
might exist). In these two cases, the effect is not very large. However, in an operational
setting, such differences add up over time and are worth keeping in mind.

Table 4.3: Processing times for 3.8M maize simulations with different numbers of partitions,
measured on a Kubernetes cluster with various configurations.

Processing time (Maize, 3.8M sims)
Spark Executors | Total Cores | 200 partitions | 400 partitions | 800 partitions
1 4 670.9 min 668.9 min 681.7 min
2 8 324.9 min 322.9 min 330.2 min
4 16 164.1 min 162.9 min 183.2 min
8 32 84.3 min 83.1 min 98.5 min
16 64 48.4 min 47.6 min 56.5 min

Table 4.4: Processing times for 5.1M winter-wheat simulations with different numbers of
partitions, measured on a Kubernetes cluster with various configurations.

Processing time (Winter-Wheat, 5.1M sims)
Spark Executors | Total Cores | 200 partitions | 400 partitions | 800 partitions
1 4 820.9 min 827.4 min 836.0 min
2 8 445.9 min 461.3 min 461.3 min
4 16 219.2 min 228.6 min 239.7 min
8 32 137.8 min 144.7 min 164.8 min
16 64 88.2 min 94.4 min 104.6 min

The second study of system scalability was performed using the HPC of the PSNC Eagle
cluster. This has a large number of nodes with 2x14 cores and 64-128-256 GiB memory,
from which we used 32, 48 and 64 instances (with one Spark Executor each) and assigned
with 7 cores and 8 GiB memory. In practice, the cluster manager could therefore combine
two of these instances on a physical node or keep them separated; however, this should
not affect the performance measurements. There is a clear, and to be expected, significant
advantage of the HPC hardware (such as Infiniband networking with very high throughput
and very low latency) over the Kubernetes Cloud hardware. Even when considering the
increase in Spark Executors and the number of cores assigned per Executor. The measured
execution times for the crop simulations are summarised in Table 4.5. The processing of
the larger winter-wheat data set also allows Spark to use additional worker nodes and
cores more than the smaller maize data set, where the advantages are marginal. However,
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comparing the fastest processing of all maize simulations with the standard MCYFS
system, we observe a significant 99% reduction in total runtime on hardware that has a
64-times higher distribution factor (64 nodes versus 1 node) and in total uses roughly 45
times more cores (448 cores versus 10 used by MCYFS).

Table 4.5: Maize and winter-wheat crop simulations processing times on a HPC cluster using
various configurations with large numbers of cores.

Processing time

Spark Executors | Total Cores | Maize (3.8M sims) | Winter-wheat (5.1M sims)
32 224 5.43 min 13.81 min
48 336 5.20 min 10.25 min
64 448 4.79 min 7.55 min

4.3.3 Data aggregation

As discussed in Section 4.2.9 the total workload usually consists of two parts. The execution
of a large number of crop simulations for grid cell / SMU / STU combinations, followed
by aggregation of the simulation results first to grid cells and later to administrative
regions for reporting. In the MCYFS an Oracle relational database is used to calculate the
aggregated data, after first all simulation results have been ingested (and indexed). This
loading of the data can take some time, but after that the needed database operations
are typically fast. As an alternative option, we explored using Spark for the initial data
aggregation (to grid cells). Due to the partitioning of the data on networked nodes, the
required groupBy and similar Spark operations are known to be costly (in time). However,
aggregating with Spark significantly reduces the amount of data needing to be imported
into the database afterward, and it might not always be required to store the full detailed
output of every crop growth simulation run (when necessary, they are fast to rerun).

Table 4.6 shows the measured processing times of the two data sets in the Kubernetes
system. For this experiment, we only used the configurations with 8 and 16 nodes, again
with 1 Spark Executor per node and 4 cores assigned to each executor. For simplicity,
we estimate the time needed for the data aggregation by comparing the processing time
of all simulations followed by the aggregation and the processing time of all simulations
only. Regular SQL operations, such as used for the aggregation, are heavily optimised by
Spark, and combined with the required data shuffling, a detailed analysis of the system in
operation would be needed to get more precise numbers. We considered this unnecessary
for the more superficial comparisons made here.
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Table 4.6: Results for the maize and winter-wheat crop simulations followed by output
aggregation from grid cell to regional level, on a Kubernetes cluster using 32 and 64 cores.
Time used for the aggregation is estimated based on the measured total processing time.

Configuration

Spark Executors (cores used)

Data set Result 8 (32) 16 (64)
Maize (3.8M sims) Overall processing time 89.24 min 50.44 min
Only simulations 84.28 min 48.42 min

Estimated aggregation time 4.96 min 2.02 min

Winter-wheat (5.1M sims) | Overall processing time 154.31 min 103.42 min
Only simulations 137.82 min 88.16 min

Estimated aggregation time 16.49 min 15.26 min

Comparing aggregation and data loading times between the MCYFS and Spark-based
approaches is also complicated due to all the differences between the systems. However, to
get at least an impression, we took the following approach. For both MCYFS (see Table 4.1
for the configuration) and Kubernetes deployment with 16 Spark Executors (using 64
cores total), we collected the processing times for crop simulations, data aggregation, and
database loading, either by analysis of the application log files (in case of MCYFS) or by
running the system (in case of Spark). To compare the aggregation performance in the
database (using PL/SQL) and by Spark (Spark SQL), we estimated for both the number
of STU records/sec and used this factor to calculate the estimated aggregation times for
the two test data sets. Similarly, for database loading, we calculated the rows/sec loading
speed and applied this factor to estimate the time it would take to load the Spark results
into the Oracle database. The results are included in Table 4.7.

Table 4.7: Data aggregation and database loading times comparison between using the
database for the aggregation (as done in MCYFS), and using Spark SQL to aggregate before
inserting the results into a database (as done in our prototype system).

MCYFS (agg in DB) Spark (agg before DB)
Maize (3.8M) | Winter-wheat (5.1M) | Maize (3.8M) | Winter-wheat (5.1M)
DB Load 14.90 min 49.78 min 1.03 min 1.69 min
Data Agg 9.59 min 14.09 min 2.02 min 15.26 min
Total 24.49 min 63.87 min 3.05 min 16.96 min

We would like to note that with Spark, the data is aggregated before loading it into the
database, while the MCYFS first loads all simulation results into the database and then
performs the aggregation. In addition, the Spark configuration uses a significantly higher
number of cores (64 versus 10 for the MCYFS), which helped to keep the aggregation time
similar to the more optimised performance from the Oracle database. However, it clearly
indicates that multiple aspects of a distributed system must be taken into account when
evaluating its performance, as illustrated by Figure 4.5 (based on Table 4.7).
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Figure 4.5: Combined times for data aggregation and database loading, when using the
database to do the aggregation and when using Spark SQL. Results shown for both the maize
and winter-wheat crop simulations.

As a final experiment, we used the PSNC HPC to run both crop growth simulations and
data aggregation to the grid cell level with Spark SQL on large sets of nodes. For the
results, see Table 4.8 and Figure 4.6. On the maize data set the benefits of adding more
nodes are small, and the estimated aggregation time even gets slightly worse when the data
is distributed across more Spark Executors. Still, comparing the estimated aggregation
time on 64 nodes with 448 cores total, with that for the standard MCYFS system (1
node with 10 cores used) shows that a 95% reduction in processing time is achieved.
Interestingly, on the larger winter-wheat data set, the medium configuration (on 48 nodes)
shows less good performance improvements, most likely because the number of partitions
is not ideal for the number of Spark Executors available. This illustrates once more the
importance of performance tuning of Spark based systems in order to get the best results
from them.
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Table 4.8: Results for the maize and winter-wheat crop simulations followed by output
aggregation on a HPC cluster using 224, 336 and 448 cores. Time used for the aggregation is
estimated based on the measured total processing time.

Configuration
Spark Executors (cores used)
Data set Result 32 (224) | 48 (336) | 64 (448)
Maize (3.8M sims) Overall processing time 7.32 min 6.11 min 6.02 min
Only simulations 5.43 min 5.20 min 4.79 min
Estimated aggregation time 1.89 min 0.91 min 1.23 min
Winter-wheat (5.1M sims) | Overall processing time 18.13 min | 15.78 min | 10.89 min
Only simulations 13.81 min | 10.25 min 7.55 min
Estimated aggregation time 4.32 min 5.53 min 3.34 min

Crop Simulations and Aggregation on HPC
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Figure 4.6: Plot of the results for the maize and winter-wheat crop simulations followed by
output aggregation on a HPC cluster using 224, 336 and 448 cores.

4.3.4 Aggregation results

The aggregation process combines the output of the crop simulations first at the grid cell
level (25 x 25 km) and then further at the lowest regional level. See Section 4.2.9 for
more details. Taking the simulations of the maize crops as an example, the process results
in 6.555 values for the Total Above Ground Production (TAGP) in dry weight kg/ha of
biomass and for the Total Weight of Storage Organs (TWS0) in dry weight kg/ha, in 2020
for regions in EU27. The maps of these results are shown in Figures 4.D.1 and 4.D.2,
in 4.D. Further aggregation can be performed for larger administrative regions.
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4.4 Discussion

Using a typical numeric crop growth simulation model and a widely used standard
framework for big data processing and analytics on distributed systems, we successfully
built a prototype of the core of a yield forecasting and monitoring application. We then
benchmarked its performance and scalability characteristics on a few different hardware
configurations based on ephemeral resources such as those that can be used from cloud
or HPC providers. The measurements were based on the processing of existing data sets
for the maize and winter wheat crops and for a climate scenario. Although the data
required for a single simulation is not that extensive, the large total number of simulations
to be processed and the amount of output data produced place the task in the big data
domain.

The obtained results illustrate that the expected effect of scaling on total run-time for
performing crop growth simulations with the process model also applies, and thus allows
trading-off compute costs with required result availability (within certain bounds). Based
on these findings we conclude that currently available standard distributed computing
Sframeworks, specifically Apache Spark, are sufficient for building a system that is capable
of running very large volumes of crop growth simulations. Furthermore, the following
insights can be deduced:

i. It is quite possible to base such a system on standard ephemeral compute resources
managed by a commonly available open source framework, that hides a lot of the
details of distributed computing, such as workload partitioning and hardware failure
recovery, and makes it more easily accessible.

ii. A distributed system as described is capable of handling large amounts of crop
simulations in reasonable time-frames, including all related (big) data management.
The performed benchmarks provide insights into the performance and scalability
that can be expected. As already common practice in other science domains such as
climate sciences and hydrology, distributed technologies such as described in this
paper are ready to be leveraged in the agricultural domain.

iii. Existing numerical models and data storage might need some adaptation before they
can be efficiently used for distributed computing. In the case study little effort is
needed to split a total workload into separate jobs that execute crop simulations
simultaneously (in parallel computing this is referred to as an embarrassingly parallel
workload). While an easy approach when applicable, it is not necessarily the most
performant or power-efficient one. In this study little to no time has been spend on
tuning the system to get the best possible performance. Spark has many configuration
options that can be experimented with, the workload/simulations can be created
or executed in a more efficient way, and the model (or parts of it) perhaps can be
parallelised or replaced by faster solutions.
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vi.

vii.

viil.

iv. A certain level of knowledge about the specifics of distributed computing and

distributed data storage technologies will still be required, and comes with a learning
curve that might not suite everyone. Specifically this will be needed when it comes
to resolving issues (debugging the system) and for performance tuning.

. In the case study we configure a prototype system for distributed processing of crop

growth simulations using a specific implementation (the Java version) of WOFOST,
and set up an extract-transform-load (ETL) pipeline to ingest the input data it
needs for the crop simulations. Both on top of the generic Spark framework. Due
the flexibility of the framework for communicating with models written in JVM
languages, Python, and R, as well as to any command line oriented model (compiled
or interpreted) via standard Linux pipes, it should be straightforward to incorporate
any of the other WOFOST implementations available (De Wit et al., 2019). Other
kinds of crop models will require additional configuration since the APIs and data
requirements of these models can vary (Janssen et al., 2017; Porter et al., 2014). Still,
it can be done as well, using the same framework and the methodology described in
this paper.

The prototype provides only the core of a potential operational system, as noted in
Section 4.2.1, this was sufficient for the aim of this paper. As a follow-up the work
can be extended into a production oriented application with e.g., a user interface
that can hide some or most of the complexity from domain experts for day-to-day
use.

Spark is a generic distributed framework for batch processing and analysis of big
data. Instead of the numerical model used in the prototype other kinds of models,
including machine learning model training and inferences, can equally well be
used. Alternatively, there are other frameworks available that specifically focus on
machine learning (particularly useful for deep learning), or streaming data processing.
Fortunately the basic concepts of distributing workloads across computers are the
same for all these frameworks and experience with one easily applies to others.

Various kinds of simulation output data post-processing and analytics can already be
done on the same distributed system, which can reduce the size of the final results,
making them easier manageable. An advantage is that the numerical model used is
deterministic. Since individual simulations can easily and quickly be reproduced,
there might be no need to store all output data from every simulation performed.

. The scalability of the system follows the expected curve with high gains on the initial

increases of compute nodes, and decreasing benefits when the system gets bigger.
Within limits, it allows a trade-off between acceptable compute costs and overall
calculation time to obtain the result. Such flexibility is a benefit, but it also requires
changes in thinking about costs of computations. E.g. they might no longer be fixed
department I'T costs, but rather become related to specific tasks or projects.
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Although distributed technologies proved to be suitable for the case study and can
similarly be expected to be equally applicable to other big data processing and analytics
that are or will be part of digital agriculture, for example, for the processing of streams of
data from many IoT devices (sensors) or for the computationally intensive 4D-Var data
assimilation (Huang et al., 2019), they are yet not commonly known in the agricultural
informatics domain, where most agricultural modellers and data scientists will first have
to invest in the additional knowledge required. Naturally, the kind and depth of required
expertise will vary, ranging from basic awareness of the existence and possibilities of the
technology to expert and practical knowledge of distributed computing frameworks and,
for example, functional programming (as mentioned in Section 4.2.4).

It can also be an important step going from personally curated data sets stored and
processed on a local server to working with distributed, remote (perhaps even Cloud
based), storage and processing of data. Some of the changes required are described in
Section 4.2.5. However, in addition to those technology-oriented considerations, it can
impact broader organisational aspects as well, since distributed computing and the sharing
of resources such as infrastructure and data can go hand in hand. Furthermore, as a
related aspect, users, managers, and developers will be confronted with new and different
cost models, e.g., pay per use of temporarily allocated compute resources, which might
not readily fit into the classical budgeting of IT resources.

Although the implemented prototype system described in this paper covers everything
needed to create an operational version of it, there certainly remain a few interesting
topics for future work:

i. In our approach, we take advantage of the WISS-WOFOST model implemented
in Java, which matches well with Apache Spark, which is JVM-based. However,
Apache Spark also supports Python, so a similar study could be performed using
PySpark and the PCSE implementation of WOFOST (written in Python). However,
this might incur a performance cost since data will need to be marshalled between
the Python and the JVM environments.

ii. The described implementation is rather straightforward and takes an embarrassingly
parallel approach for the computations. A possible optimisation is the minimising of
the number of crop growth simulations (by sorting or caching results) that actually
needs to be performed, e.g. by smart use of the named parameters we already
included in the data scheme.

iii. As noted above, the weather data make up the largest part of each simulation input
record. A possible improvement then is the broadcasting of these data to worker
nodes and constraining crop simulation runs to those nodes that have the required
weather data. This would reduce the size of the simulation record, overall I/O need,
and thus increase performance and simulation throughput.
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iv. Spark uses an optimisation technique called adoptive query execution, which uses
run-time statistics to select the most efficient query execution plan. This works well
for Spark SQL; however, the crop growth simulation process model is an opaque
data transformation step in the processing pipeline to Spark, and therefore it cannot
include it in its optimisations. If this can be improved, it should be beneficial for
overall performance.

v. The data currently used includes (text) IDs for grid cells and administrative regions,
which allow for simple text-based aggregations. Future data sets and aggregation
approaches might not have this convenience and thus need support for geospatial
data types and operations. There is quite a bit of history and development of
spatial extensions on top of the Spark framework (both JVM and Python based),
e.g. Apache Sedona (https://sedona.apache.org/) where many initiatives seem to
end up. Integrating it into the system described in this paper would give it real
large-scale spatial data processing and analysis capabilities.

vi. Although in this work a traditional numerical crop growth simulation model is used,
deep learning and machine learning are increasingly prominent in agricultural data
analysis and modelling, especially with large datasets. In addition to the comparison
already suggested with the Python PCSE implementation of WOFOST, evaluations
can be performed with machine learning-based models as the baseline, resulting in a
broad overview of current technologies for high-efficiency agricultural modelling.

Note that while standard frameworks and cloud or HPC resources certainly make distributed
computing more accessible and easier to use, building such an operational system is still not
trivial. In particular, when it is the first encounter with building a distributed application,
or with deploying such application on distributed cloud or HPC hardware. A framework
such as Apache Spark can handle and hide many of the low-level details (data partitioning,
task scheduling, handling batch and streaming data, hardware failure recovery, etc.),
besides providing extensive data science and machine learning libraries for data analytics.
However, ultimately it is still beneficial to know how the system is working and how it
can be tuned to achieve the best possible performance, with acceptable costs. Fortunately,
such knowledge is domain-agnostic and applicable to distributed systems in general, and
thus can be left to specialised data engineers.

4.5 Conclusions

Taking into account the research objective, the case study described in this article and the
benchmark results show that a usable system can indeed be constructed on top of standard
technology for big data analytics and distributed computing, in this case Apache Spark, and
that it can provide a solution when true big data processing and analytics are required in
the agricultural domain. Generally speaking, the chosen case study is a regular big data
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processing task, slightly complicated by the use of the numerical crop simulation model,
which is not regular SQL that the framework knows how to fully optimise, but will remain
a black box that can only be handled in a generic way. Still, the prototype leaves room for
further optimisation and fine-tuning of the system. Furthermore, the applicability of the
approach is not limited to this use case with a crop growth model. Due to the flexibility
of the Spark framework for embedding e.g. Python and command-line based (compiled)
models as well, it is a very generic solution.

In case data volume or computational requirements justify it, distributed computing using
these standard technologies is a viable and powerful approach in digital agriculture. With
the expected increase in demand for scalable processing—due the ongoing transformations
towards data-driven agriculture-these technologies will become increasingly relevant.
However, their use should be dictated by actual needs, due to the additional complexity
involved.

It is important for agriculture stakeholders, agronomists, data scientists, and (spatial) data
engineers, to understand distributed technologies, each in line with their role and expertise.
Sensible application and cross-disciplinary collaboration will be the key to unlocking the
full potential of distributed computing in agricultural informatics.
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Appendices

4.A Data schemas

Table 4.A.1: Overview of the schema for the crop simulation input data. Further tables show
the details of subsections.

root

|-- version: long

|-- simId: string

|-- simModel: string

|-- simType: string

|-- simCropId: long

| -- simCropName: string
| -- simCropVariety: long

|-- simYear: long

| -- simStartDate: string

| -- simEndDate: string

|-- location: struct

| |-- type: string

| |-- coordinates: array

| | |-- element: double
| -- sourceType: string

| -- sourceDetails: struct

| |-- name: string

| |-- grid: long
| |-- smu: long
| |-- stu: long
|

|-- altitudeM: long

| | -- gridWeightFactor: double
| -- cropParams: struct

| -- soilParams: struct

|-- siteParams: struct

| -- agromanagement: struct

|-- meteo: struct
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Table 4.A.2: Sub-schema for the meteo input data for a simulation. For efficiency the variables
are stored as arrays which need to match the date range.

| -- meteo: struct

|-- version: long

|-- id: string

|-- startDate: string
|-- endDate: string
|-- details: struct

| |-- grid: long
|-- data: struct

| |-- temperatureMin: array
| |-- element: double
| -- temperatureMax: array
| |-- element: double
| -- temperatureAvg: array
| |-- element: double
| -- vapourPressure: array
| |-- element: double
| -- windSpeed1OM: array
| |-- element: double
| -- windSpeed2M: array

|-- precipitation: array
| |-- element: double
|-- e0: array

| |-- element: double
|-- esO: array

| |-- element: double
|-- et0: array

| |-- element: double
|-- radiation: array

|
|
|
|
|
|
|
|
|
|
| | |-- element: double
|
|
|
|
|
|
|
|
|
|

| |-- element: double
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Table 4.A.3: Sub-schema used for all crop, soil, site and agro-management parameters that
are relevant but only need to be stored and passed to the model to run a simulation. For
flexibility text string representations are used here.

| -- parameters: struct

|-- id: string

|-- params: array

| |-- element: struct

| |-- name: string

|-- unit: array

| |-- element: string
|-- value: array

| |-- element: string
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Table 4.A.4: Overview of the schema for the crop simulation output data. Further tables show
the details of the subsections. The message field is used to save any error messages that occur
during the simulation, for later inspection.

root

|-- description: struct
|-- message: array

| |-- element: string
|-- timeseries: struct
|-- summary: struct

Table 4.A.5: Sub-schema for the simulation output summary, consisting of the main WOFOST
output variables, such as the Total Above Ground Production (TAGP) and the Total Weight of
the Storage Organs (TWSO).

|-- summary: struct
|-- dvs: double

|

| |-- laimax: double
| |-- tagp: double

| |-- twso: double

| |-- ctrat: double
| |-- cevst: double
| |-- rd: double
|

|

|

|

|

|

|-- dos: long
|-- doe: long
|-- doa: long
|-- dom: long
|-- doh: long

|-- dov: long
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Table 4.A.6: Sub-schema for the descriptive information about the crop simulation, indicating
amongst others the location, the type of crop, and which crop growth simulation has been run.

|-- description: struct
|-- simId: string
|-- simModel: string
|-- simType: string
|-- simCrop: long
| -- simCropName: string
|-- simCropVariety: long
|-- simYear: long
|-- simStartDate: string
|-- simEndDate: string
|-- location: struct

| | |-- element: double

| |-- type: string
| -- sourceType: string
| -- sourceDetails: struct
| |-- altitudeM: long
|-- grid: long
| -- gridWeightFactor: double

|

|

[

|

[

|

|

|

|

[

| | |-- coordinates: array
[

|

|

|

|

|

|

[

| |-- smu: long
[

|
|
| |-- name: string
|
|

|-- stu: long
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Table 4.A.7: Sub-schema with the time series data of key WOFOST variables during the
simulation. These can be helpful to solve simulation issues.

|-- timeseries: struct

|-- date: array

| |-- element: string
|-- elapsed: array

| |-- element: integer
|-- dvs: array

| |-- element: double
|-- lai: array

| |-- element: double
|-- tagp: array

| |-- element: double

| |-- element: double

|

|

|

|

|

|

|

|

|

|

| |-- twso: array
|

| |-- ctrat: array

| | |-- element: double
| |-- rd: array

| | |-- element: double
| |-- sm: array

| | |-- element: double
| |-- wwlow: array

|

| |-- element: double
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4.B Code listings

import
import
import

object

nl.wur. json.{SimulationInput, SimulationOutput}
nl.wur.wiss.core.{SimXChange, TimeDriver}
nl.wur.wissmodels.wofost.WofostModel

WofstRunner extends Serializable {

import scala.collection.JavaConverters._

def run(input: SimulationInput): Try[SimulationOutput] = Try {

}

// get the input parameters and prepare an output instance
val output = new SimXChange (input.getSimId)
val result = new SimulationOutput ()

// £ill a ParXChange instance from the input data
val params = input.getParXChange

// perform a daily timestep based simulation
new TimeDriver (new WofostModel (params, output)).run()

// collect input and output details into the result
result.updateDescription (input, output)

result.updateTimeSeriesSummary (input, params, output, true)

result

Listing 4.B.1: Code for embedding the WISS-WOFOST model in a Scala function
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val spark = SparkSession.builder ()
.appName ("WOFOST -Simulations")
.getOrCreate ()

// set up the encoders for the Dataset (row) types

implicit val inputEncoder: Encoder[SimulationInput]
Encoders.bean(class0f [SimulationInput])

implicit val outputEncoder: Encoder [SimulationOutput] =
Encoders.bean(classOf [Simulationoutput])

// define the (JSON) input dataset
val inputData : Dataset[SimulationInput] = spark.read
.option("encoding", "UTF-8")
.format ("json")
.load (/* inputDataPath */)
.as[SimulationInput]

// method to run simulations for all input records
def runByMapPartition(nPartitions): Dataset[SimulationOutput] = {
inputData
.repartition(nPartitions)
.mapPartitions (_.map(WofostRunner.run))

}

// define how to produce wofost simulation results

val outputData = runByMapPartitions(/* partition count */)
.cache ()

// extract all successful simulations and save them
outputData
.filter (array_contains (col("message"), "0Ok"))
.write
.format ("json")
.mode (SaveMode .Overwrite)
.save(/* failedSimulationsPath x*/)

Listing 4.B.2: Example of running WISS-WOFOST with Spark
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// define how to produce wofost simulation output data
val outputData = runByMapPartitions().cache ()

// define how to produce the aggregated result
val aggData = outputData
// add a column with O if simulation succeeded and 1 if there were
errors
.withColumn ("err", (!array_contains(col("message"), "0Ok")).cast ("
integer"))
.select(
col("err"
col("description.simCrop").as("crop_code"), col("description.
simCropName") .as("crop_name"),
col("description.simCropVariety").as("crop_variety"), col("
description.simYear").as("year"),
col("description.sourceDetails.grid").as("grid"), col("
description.sourceDetails.name") .as("name"),
col("description.location.coordinates").as("coordinates"),
col("description.simModel").as("sim_model"), col("description.
simType") .as("sim_type"),
col("description.sourceDetails.gridWeightFactor").as("weight_
factor"),
// expression so that the sum of weight factors for successful
simulations can be calculated
expr ("""case when err = 0 then description.sourceDetails.
gridWeightFactor else 0.0 end""").as("non_err_weight"),
// the timeseries are arrays, they require a bit more complex
processing
col("timeseries.elapsed").as("day"), col("timeseries.date").as("

date"),
expr ("""transform(timeseries.tagp, x -> x * description.
sourceDetails.gridWeightFactor)""").as("w_tagp"),
expr ("""transform(timeseries.twso, x -> x * description.
sourceDetails.gridWeightFactor)""").as("w_twso")
)
.groupBy (

col("crop_code"), col("crop_name"), col("crop_variety"), col("
year"), col("grid"), col("name"),
col("coordinates"), col("sim_model"), col("sim_type"), col("date
"), col("day")
)
.agg(
count ("*") .as("n_sims"
sum("err") .as("sum_err"), // sum the number of simulations that
had errors
sum("weight _factor").as("sum_weights"), // sum all weight
factors
sum("non_err_weight") .as("sum_non_err_weights"),
// element wise summing of the values in the arrays

10

11
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elementwiseSumDoubleArrays (collect_list("w_tagp")).as("sum_w_

tagp"),

elementwiseSumDoubleArrays (collect_list("w_twso")).as("sum_w_

twso")

)

.select(

col("sum_err").as("ERR"), expr("round(sum_weights, 5)").as("

Total _Weights"),

",

expr ("round (sum_non_err_weights, 5)").as("NonErr_Weights"),
col("crop_code").as("Crop_Code"), col("crop_name").as("Crop_Name

col("crop_variety").as("Crop_Variety"),
col("grid").as("Grid"), col("name").as("Region"),
col("coordinates").getItem (1) .as("Latitude"), col("coordinates")

.getItem(0) .as("Longitude"),

col("sim_model").as("Model"), col("sim_type").as("Simulation"),
col("year").as("Year"), col("date").as("Date"),
// element wise processing again of the arrays
expr ("""transform(sum_w_tagp, x -> round(x / sum_weights, 5))"""

).as("TAGP_at_Date"),

expr("""transform(sum_w_twso, x -> round(x / sum_weights, 5))"""

).as ("TWSO_at_Date")

)

.orderBy (col("Crop_Code"), col("Grid"), col("Year"), col("Day"))

// terminal action to perform the aggregation and save the result

aggData.write.format (outputFormat) .mode (SaveMode.0Overwrite) .save(
savePath)

Listing 4.B.3: Code for the data aggregation with Spark
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4.C Deployment script

# -= slurm Anunna HPC =-

#SBATCH --time=02:00:00

#SBATCH --mem-per-cpu=4G

#SBATCH --nodes=4

#SBATCH --cpus-per-task=2
#SBATCH --job-name="wofost-runs"
#SBATCH --qos=std

module load spark/3.2.3-2.7
source $SPARK_HOME/wur/start-spark

# Spark config
spark_deploy_mode=client
spark_master=1local [*]
spark_driver_memory=2g
spark_executor_memory=1g

# Set to proper path and file (needs to be absolute)

log4jconf=file:///home/WUR/[user]/wofost/wofost-spark-submit-v1/log4j.

properties
# Folder with jars (can be relative)
jarsdir=./jars

# submit the spark job

spark-submit \
--master ${spark_masterl} \
--deploy -mode ${spark_deploy_model} \
--driver -memory ${spark_driver_memoryl} \
--executor -memory ${spark_executor_memory} \
--class nl.wur.json.WofostRun \

--jars "${jarsdir}/WISSFramework-1.0.jar,${jarsdir}/WOFOST-WISS-7.2.

jar ,${jarsdir}/jafama. jar" \

--conf "spark.eventLog.enabled=false" \

--conf "spark.executor.extraJavaOptions=--XX:+PrintGCDetails --XX:+
PrintGCTimeStamps" \

--conf "spark.executor.extraJavaOptions=-Dlog4j.configuration=${
log4jconfl}" \

--driver -java-options "-Dlog4j.configuration=${logé4jconf}" \

--files /lustre/scratch/WUR/[user]/wofost_inputs/[crop-simulation-
input -datal. json \

${jarsdir}/WOFOST-JSON-1.0-jar-with-dependencies.jar --url ${
spark_master} \

--mode json \

--repartition 8 \

--in [crop-simulation-input-datal.json

Listing 4.C.1: Deploying a Spark application with spark-submit and SLURM
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4.D Example output maps

Figure 4.D.1: Map of aggregated Total Above Ground Production (TAGP) as dry weight in
kg/ha from the 3.8M Maize crop simulations (2020, WOFOST water-limited). Showing lowest
(700 kg/ha) to highest (29.000 kg/ha) values in light to dark shades of green.

Figure 4.D.2: Map of aggregated Total Weight of Storage Organs (TWSO) as dry weight in
kg/ha from the 3.8M Maize crop simulations (2020, WOFOST water-limited). Showing lowest
(0 kg/ha) values in purple, via blue and green, to highest (14.600 kg/ha) values in yellow.
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Abstract

From its early beginnings the Internet has been used by scientists to collaborate and share
information about their research. Increasing connectivity and networking capabilities
have resulted in improved collaboration functionalities ultimately combined in complete
virtual research environments (VRE) as a type of virtual laboratories. These aim at
providing collaborative online workplaces with access to all needed tools, data, and
computing resources, and supporting data sharing. Since each research domain has its own
characteristics, requirements, and preferred tooling, VRE providers must make trade-offs
between the specificity of components and the functionality provided. The D4Science
VRE adopts a modular approach based on open standards for constructing VREs for
interested communities. The agro-climatic science domain develops diverse analytical
tools that it connects to heterogenous data sources (i.e. climate data, experimental
fields, satellite data, soil samples) originating from other domains, which is often poorly
standardised and sparsely interlinked at best. The aim of this paper is to test and evaluate
the usefulness of the D4Science based VREs for this agro-climatic science domain, using
crop growth simulation and crop phenology estimation as characteristic use cases, with
specific attention to Open Science. Based on the needs of the use cases a VRE has
been composed and further developed in an iterative approach and evaluated at the end
of each implementation cycle. Both the development work and the evaluation results
point at the foreseen potential benefits of adequate VREs and the current existence of
sufficient opportunities and capabilities for constructing them. The focus when developing
VREs should be on supporting research with proven and stable tools, instead of striving
to include the latest and greatest. The agro-climatic research domain has ambitious
requirements concerning the availability and integration of data and models, which proved
to be particularly challenging for incorporating in a VRE. Yet, a clear but gradual adoption
of digital techniques to further the science itself is happening and VREs represent an
ultimate possible end-state of Open Science. To conclude, this paper provides a few
recommendations that we think can help this ongoing transition.
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5.1 Introduction

The agricultural system is a provisioning service that uses the natural environment to
produce healthy and safe food. This agricultural system is facing a lot of challenges at
the same time which are increasingly interconnected, for example, “How to feed the 9
Billion in 20507” (Godfray et al., 2010). This challenge concerns not only the availability
of sufficient food as a production and distribution challenge, but also the nutritional
content of food and the nutritional diversity, as documented in a prominent definition
of food security in 2001: Food security [is| a situation that exists when all people, at all
times, have physical, social and economic access to sufficient, safe and nutritious food that
meets their dietary needs and food preferences for an active and healthy life (Food and
Agriculture Organization of the United Nations (FAO), 2002). Due to climate change,
extreme events such as changes in the growing season, and changes in the production
area directly affect the crop production and animal nutrition. At the same time, there
is an increase in food-related diseases and health problems (i.e. obesity, malnutrition,
cardio-vascular diseases, for example, (Micha et al., 2017)). Finally, all these challenges in
the agricultural system must be achieved within our planetary boundaries (Steffen et al.,
2015).

Given the interconnected nature of these challenges facing the food & agricultural system,
a systems perspective adopted in science is a prerequisite to find smart solutions and
to support decision making, either in policy or private sector organisations active in the
agricultural system. Also, data about the agricultural system plays a crucial role to
advance scientific discovery in new ways leading to a digital agriculture science (Janssen
et al., 2017). There are a number of developments in agriculture and food science that
support systems thinking. Firstly, an important development is the emergence of a system-
perspective where the interconnectedness of challenges is highlighted, instead of being
considered as separate independent issues, in the past referred to as integrated systems
research (Harris, 2002; Jakeman and Letcher, 2003). This agricultural system perspective
increases the complexity of the discussions on the short term, but in the long run ensures
that responses can be much more targeted, balanced, and effective, while considering
explicitly the trade-offs in the system and the unintended consequences of food system
interventions.

Secondly, there is a rapid digitisation of the agricultural system, imprinted as a digital
revolution, digital food, digital agriculture & big data (Janssen et al., 2017; Lokers et al.,
2016a). Although this digitalisation has been promised, there are also still many open
points requiring further developments, for example, the application of the FAIR data
guidelines (Top et al., 2022), obstacles in data governance (Wolfert et al., 2017), and the
applications of machine learning techniques and the ethical aspects involved (Amiri-Zarandi
et al., 2022; Phillips et al., 2019; Rotz et al., 2019).
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Third, a close collaboration with societal stakeholders in trans-disciplinary science or
public-private partnerships leading to co- creation and co-design of the research has
become an expectation for delivering more societal and impact relevant research (Cash
et al., 2003).

Synergistic benefits are expected in agricultural systems research if trends in digitisation
and systems thinking can be combined, grounded in the Open Science developments
supported by developments such as FAIR data (Wilkinson et al., 2016) and Virtual
Research Environments (Barker et al., 2019). In other words, in such Open Science
developments, particularly when an agricultural system approach is adopted, there is a
strong imperative of scientists working together on multi- & trans-disciplinary solutions,
for using jointly developed data science solutions and interconnected (FAIR) data sets.
In a way, scientists need to be able to work together in a virtual room, using the same
resources and tools, without being in the same office. Such developments could potentially
accelerate scientific discovery in the food, agricultural and environmental sciences (Zervas
et al., 2018), allowing better contributions of science towards solving the agricultural
systems challenges. Zervas et al., 2018, as part of their roadmap, identify a range of
challenges concerning technical developments, community developments and governance.
A particular problem in these specific sciences is the lack of sharing and collaboratively
developing data, code, and data-analytical solutions, which is partly the starting point
to overcome many other obstacles within the research communities and in the setup of
collaborative infrastructures.

Over the past decades Virtual Research Environments (VREs) (Ahmed et al., 2018;
Gadzhev et al., 2018; Zuiderwijk, 2017) have been proposed as such collaborative tools,
and their prominence has increased with the advance of open science on the political
and institutional agenda. A VRE can be considered as a set of applications, services
and resources integrated by a standards-based, service-oriented framework, which will be
populated by the research and ICT communities working in partnership (Allan, 2009).
The objective of this paper is to test and evaluate Virtual Research Environments as a
potential collaboration tool with researchers from the agro-climatic domain, based on use
cases from that field. The following sub-questions are addressed in this evaluation: (1)
What are the requirements of agro-climatic researchers in their research tasks, specifically
to support Open Science?; (2) What would be the required functionality for a VRE to be
successful in fulfilling these requirements?; (3) How can agro-climatic researchers benefit
from a VRE and what are the implications for their work?; (4) What would be required
from researchers and research organisations in order to adopt a VRE?

This paper first gives a brief background on the Big Data issues faced by digital agriculture,
a brief timeline of VRE related developments, and current steps towards the Open Science
Cloud in Section 5.2, followed by a description of the VRE platform used and the two use
cases that were set up for the evaluation (Section 5.3). In Section 5.4 the applied evaluation
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methods are explained, and the associated results and insights described, considering the
research questions above. Based on the evaluation, Section 5.5 provides a discussion on
the usefulness of VREs in agro-climatic research, and in Section 5.6 we present our final
conclusions and recommendations for next steps of integrated digital and Open Science in
agricultural, food, and environmental sciences.

5.2 Background

This section provides brief information on the specific issues resulting from the increasing
amounts of data generated by the ongoing digitisation in the agricultural system. It
presents e-research (the use of information technology to support existing and new forms of
research), and Virtual Research Environments in particular, as potential helpful technology
for addressing some of the issues and places it into the context of Open Science and FAIR
data developments.

5.2.1 A brief timeline of VRE related developments

Before the year 2000, in the early days of the Internet, networked computers were only
supporting parts of the research process, for example, by providing file transmission,
electronic mail, and bulletin boards. Since 2000 the growth of the Internet has been
exponential, and smartphones and cloud computing have seen increasing popularity from
2009 onwards. This also provided new opportunities for developing improved e-research
platforms, among others, VREs with increased functionality (see Table 5.1). From 2000
until 2010 more complete and integrative VREs came into existence, but as bespoke or
custom solutions. Allan, 2009 provides a good overview of the extensive work done on
VRE development in this period, with a focus on projects funded by Jisc (www.jisc.ac.uk),
a UK not-for-profit company providing, advising on, and funding research in shared digital
infrastructure and services for education and research institutions. The nature of a VRE,
supporting targeted research workflows, means that it can only realistically be described in
terms of its intended capabilities rather than its precise component parts, since the latter
will and should evolve over time, depending on contemporary standards, requirements,
and technological progress (Allan, 2009).

Table 5.1: Evolution of VRE types and capabilities over time.

Timeframe VRE types and capabilities

Before 2000  Initial virtual collaboration foundations:ARPANET, e-mail, bulletin boards
2000 - 2010  Bespoke VREs:Globus; Portals and Science Gateways

2010 - 2020  Standardised and Commercial VREs:D4Science; Cloud Platforms

After 2020 Integrative VREs: Open APIs, FAIR data, shared semantics
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With the rise of Cloud Computing starting around 2010 there has been a split into efforts
to build VREs based on open standards (on top of the typical Internet standards) and
reusable components, such as the D4Science Data Infrastructure (since 2014), and efforts
by commercial organisations to provide VREs (mostly as part of their Cloud platforms,
e.g., Google Earth Engine, Google Collaboratory, Microsoft Planetary Computer, and
IBM PAIRS Geoscope). Considering the direction for next generations of VREs (see
also the findings by Calyam et al., 2021), there appears to be a clear drive to make
them more integrative, i.e., allowing digital tools already in use by a scientific community
to be effortlessly added, and data and algorithms to flow between components. Such
developments are encouraged by today’s movement of (data) science toward findable,
accessible, interoperable, and reusable (FAIR) data (Wilkinson et al., 2016), shared
semantics, and increased provisioning of web-based Application Programming Interfaces
(APIs) to make data and algorithms easier accessible.

5.2.2 Toward Open Science cloud and FAIR data

In Europe, some of the earlier projects and organisations focused on the sharing of
ICT infrastructure and research objects (including data sets and publications) in 2015
proposed the European Open Science Cloud for Research in a position paper (EUDAT
et al., 2015). In general, Open Science is interpreted as “the movement that aims at
more open and collaborative research practices in which publications, data, software,
and other types of academic output are shared at the earliest possible stage and made
available for reuse. With the expectation that it leads to increased scientific and societal
impact” (www.nwo.nl/en/open-science). It has a close link with the publication of the
FAIR guiding principles (Wilkinson et al., 2016). After several years of prototyping and
implementation the European Open Science Cloud (EOSC) is now more well-defined and
considered by the Council of the European Union as the science, research, and innovation
data space, which will be further connected with other sectoral data spaces, such as the
common European agriculture data space. As part of the new FEuropean data strategy
(digital-strategy.ec.europe.eu), these data spaces are thought to bring together relevant data
infrastructures and governance frameworks to facilitate data pooling and sharing. They
are encouraged to use common technical infrastructure and building blocks, which must
emerge from existing and new sectoral frameworks. While using European developments
as an example, these movements are naturally not limited to this specific region.

5.3 Materials and methods

In the AGINFRA PLUS EU Horizon 2020 project (plus.aginfra.eu, Assante et al., 2020) the
D4Science Data Infrastructure and VRE platform has been used to set up and evaluate a
VRE that can handle agro-climatic research related scientific tasks (aginfra.d4science.org).
Researchers can use this VRE as a Web portal to log in and get access to the various
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configured tools and added data sources. Provided models and algorithms can be used
and new ones implemented, combined into workflows, and used for data processing and
analytics. Other functionality includes tools for semantic data enrichment and Jupyter
Notebooks (jupyter.org) for exploratory data science work. The VRE has been constructed
in increments, with evaluations by its users and intended audience in-between and at
the conclusion of the work. The range of invited participants has been widened for each
consecutive event, starting within the project, and broadening via related networks and
communities of agro-climatic researchers.

5.3.1 The D4Science platform

The foundation for the VRE implementations supporting the AGINFRA PLUS use cases
is the D4Science platform, which adopts the system-of-systems approach (Maier, 1998) to
offer a comprehensive platform for setting up and operating VREs with the as-a-Service
delivery model. D4Science serves as a generic platform for the composition and deployment
of Virtual Research Environments, offering the core services required for e-research, and
allowing the setup and operation of dedicated, research domain-specific VRE instances
as-a-Service.

The D4Science infrastructure and the associated gCube (www.gcube-system.org) open
software stack offer a way to easily construct VREs by combining common and domain-
specific components and services based on the use of open standards. It allows tailoring
VRESs towards community-specific workflows, although this can still require community-
level implementation of specific interfaces before it can be executed.

D4Science uses open standards at several levels. Overall, it is based on familiar web-based
standards (from W3C) and technology such as web services, portlets, and a message bus
for inter-component communication. Basically, any web service that has a web front-end
can be plugged in. At a deeper level, it uses the gCube open-source framework that is
Java and Java Virtual Machine (JVM) orientated. It offers application programming
interfaces (APIs) that can be used to write components that are tighter integrated into
the core system and make use of small runtimes that provide the main gCube services.
The standards used at this level will be mostly known to software developers, for example
Google Web Toolkit (GWT) and the Java API for XML Web Services (JAX-WS).

The gCube framework furthermore provides a catalogue mechanism (gCat) that uses CKAN
(ckan.org) as underlying technology, which is a well-known open-source data management
system. gCat has a REST (representational state transfer (Fielding, 2000)) API that
gives access to the catalogues, both the global one and the VRE specific ones, so they
can be harvested by other catalogues. Similarly, items (metadata about scientific papers
and data sets) can be collected from existing community-specific and general catalogues
such as OpenAIRE (www.openaire.eu). It is also based on the DCAT (data catalogue
vocabulary) and Dublin Core semantic metadata standards, like used e.g. by FAIR Data
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Points (fairdatapoint.org) (although gCat does not fully implement such data points at the
moment). Furthermore, tools such as OpenRefine (openrefine.org) and the Silk Workbench
(silkframework.org) can be added to a VRE to help with semantically annotating research
objects to improve their interoperability. Relevant terms from existing ontologies and
vocabularies can be added for this (Assante et al., 2019).

The resulting platform is depicted in Figure 5.1, described in more detail in Assante et al.,
2020 and made available through a dedicated AGINFRAPIlus Gateway, described in the
next section.
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Figure 5.1: The complete AGINFRA PLUS platform architecture, with blocks indicating the
various components included.

5.3.2 VRE:s for agro-climatic modelling

For the VREs developed under AGINFRA PLUS, D4Science offers (i) the AGINFRAPIlus
Gateway as a single access point to the VREs; (ii) services for authentication and authori-
sation, offering seamless access to shared services and components; (iii) a shared workspace,
allowing users to store and share research artefacts like data sets, implementations of
algorithms or models; (iv) a social networking area, allowing to share and disseminate
information among VRE members, and facilitating discussions; (v) a catalogue, for pub-
lishing and sharing documented research assets with the community and the outside world.
Moreover, D4Science offers a variety of standard components to support the research
process, e.g., for semantically driven data management, data visualisation, and data
analytics.

Where each VRE already brings various services together for end-users, the data analytics
components provide researchers with access to distribute computing facilities as well. The
two main tools offered for this are the well-known Galaxy workflows (galaxyproject.org) and
the gCube DataMiner service (Assante et al., 2019). DataMiner provides simple procedures
that allow native software, e.g., algorithms such as R or Python scripts, to be distributed
on the available computers in a cluster and processed in a Map-Reduce fashion (Dean and
Ghemawat, 2008). D4Science builds the cluster from available compute resources using
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familiar web services standards, such as the Web Processing Service (WPS), the Simple
Object Access Protocol (SOAP) and the Extended Markup Language (XML).

5.3.3 Use cases

The work in AGINFRA PLUS was organised around three scientific user communities
working on the topics of agro-climatic modelling, food security and food safety respectively.
These communities have defined typical research use cases relevant for their domain, which
they expected would benefit from the capabilities of a VRE (Lokers et al., 2016a). These
use cases represent a range of domain-specific research workflows, covering the whole
chain of data acquisition, data processing, analysis, and publication. In current research
practice, these workflows are usually supported by applying different methods and tools,
largely depending on the detailed needs of the use case and often also on the personal
preferences of a researcher and the access she and her organisation have to specific tools.
In the following, we focus on the two use cases established specifically for the agro-climatic
user community, and the requirements and types of functions and tools that are needed
to perform the processes defined as part of these use cases. The first use case deals with
large-scale agro-climatic modelling, with as main objective to automate and efficiently run
large numbers of crop growth simulations using climate data and a variety of agronomic
data. Followed by aggregation, visualisation, and publishing of the simulation results.
The second use case focusses on crop phenology estimation, where the objective is to
develop, run and share algorithms to derive crop phenology from remote sensing data using
collaborative modelling to support the co-development and testing of algorithms.

While there are many implementation specific details, the use cases also share some
common functional requirements, which are: (i) to acquire and be able to easily combine
heterogeneous and often spatio-temporal large data sets and prepare them as input for
algorithms; (ii) to develop models for distributed computing and to deploy and run
them on compute clusters; (iii) to co-develop and test algorithms, using shared literate
programming tools that allow a collaborative and agile approach; and (iv) to publish and
share research assets for reuse in a standardised way, and to make use of assets shared
by other communities. It is notable that the first two requirements refer to known data
challenges of the agro-climatic domain. They are associated both with the massive sets of
climate and remote sensing data, and with the heterogeneity of data (besides climate and
remote sensing data also data about crops, soils, soil moisture and irrigation, agricultural
parcels and many more). They also reflect the complexity of processing such data, dealing
with the specifics of spatio-temporal data, and running models at massive scale on fine
grained resolutions. The other requirements are typically associated with the concept of
Open Science and the capacity to co-create and collaborate on research workflows and
to be able to publish and share research assets with other communities and likewise to
be able to access and reuse data, algorithms and other components developed by other
research groups.
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5.8.8.1  Crop growth simulation

Computer simulations based on crop growth models are one of the important components
in yield monitoring and forecasting, used frequently in food security research and related
research areas. Currently, the application of crop growth models is often still limited in
scale and level of detail by the available computing resources. The application piloted
in AGINFRA PLUS, applying European or world scale crop simulations at the detailed
level of agricultural parcels is today considered too demanding for many existing research
infrastructures (laptops, desktop computers, very small bespoke compute clusters) used
in the domain. This can easily be illustrated by considering running simulations over
the territory of the EU, with an estimated number of 100 million agricultural fields.
Even if a crop growth simulation for a single field and 1 growing season takes only a
few microseconds, say 10 milliseconds, calculating all simulations in sequence on a single
CPU would take roughly 12 days, while requiring substantial data sets of crops, soils, and
daily local weather, and producing simulation results per field for analysis. Therefore,
to meet the requirements for such large-scale, high-resolution crop growth modelling
exercises, the following facilities are indispensable: efficient retrieval of spatio-temporal
data, spatio-temporal data wrangling and data processing, running models at scale using
parallel computing and compute cluster resources, and intuitive spatio-temporal data
visualisation.

In the AGINFRA PLUS crop growth simulation use case, the pre-processing of spatio-
temporal data is an integral part of the AgroDataCube (Janssen et al., 2018) infrastructure
(agrodatacube.wur.nl). This infrastructure provides Dutch agricultural open data as a
service to research and business. The AgroDataCube ingests and harmonises different
spatio-temporal data sets that are relevant for agricultural and environmental applications
(among others, weather data, agronomic data, parcel geometries, Sentinel-2 satellite data,
and soil data). It provides a set of well-documented, ready to use Representational State
Transfer (REST, Fielding, 2000) services as Application Programming Interface (API) that
allows retrieval of the merged data at the parcel level in usable packages and a standardised
format (GeoJSON, geojson.org). To cope with the requirement of scaling up crop growth
simulations, the widely used WOFOST crop growth simulation model (De Wit et al.,
2019) was embedded into an actor-based framework for parallel computing (akka.io) and
integrated with the Web Processing Service (WPS) based distributed processing provided
by the D4Science software stack (Figure 5.2).

The resulting modules have been integrated into the VRE as DataMiner algorithms, and
were published, using the D4Science catalogue service, to make them discoverable and
reusable by the whole community. As the requirements for spatio-temporal data visualisa-
tion in this use case were substantial, a dedicated visualisation dashboard (Figure 5.3),
developed based on various VRE components, has been added as well.
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Figure 5.2: Logs of WOFOST computing jobs using the AGINFRA PLUS compute cluster.
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For visual inspections, this dashboard allows geospatial and temporal visualisation of
the various data services provided through the AgroDataCube API that are input to
the crop growth simulations. Moreover, it offers its users the opportunity to manually
search for and select a specific agricultural parcel and initiate a WOFOST crop growth
simulation by executing the VRE DataMiner algorithm using input data based on the
selected field. All calculated simulation results are stored on the VRE’s shared workspace,
and can be visualised as graphs, as well as compared and analysed side by side with the
used input data. After being tested and quality checked, the developed algorithms and the
generated output data can be shared with the broader user community, by publishing them
through the VRE’s catalogue service. Thus, the VRE is complying with the requirements
of FAIR (Wilkinson et al., 2016) data services and open science in general, adding to that
the opportunity to also share algorithms in a FAIR-like, reusable manner. For more details
see Knapen et al., 2020.

5.8.3.2  Crop phenology estimation

The development of an agricultural crop throughout the growing season, and the final
amount and quality of harvestable produce depends on various factors. While climatic
conditions are a major driver, soil conditions and farm management (e.g. applying
pesticides, irrigation, soil management) also have a substantial influence. Being able
to monitor crop development is a good means to support farm management and to be
able to predict yields. Crop phenology, defining the physiological development stages
of crop growth from planting to harvest, provides important information regarding the
development of crops over time. Being able to assess crop phenology “in the field” allows
researchers to verify the accuracy of crop growth simulations over the growing season. One
possible way to estimate crop phenology is by analysing remote sensing images acquired by
satellites. Satellite images can be processed to express the “greenness” of the earth surface
and represent a measure for the development stage of a crop in a field. Various algorithms
to calculate such vegetation indices exist, of which the Normalised Difference Vegetation
Index (NDVI, www.indexdatabase.de/db/i-single.php?id=>59) is generally considered to
give a good indication of the development stage of a crop. The development of crops over
time follows a relatively well-defined growth curve (see e.g. Vasilieva and Cherepanov,
2017), and the relation between the greenness curve and essential crop development stages
has been extensively studied. The idea here is that by fitting a curve through the calculated
NDVT values, it is possible to derive the crop development stages based on the NDVI
(illustrated in Figure 5.4).

This use case has a direct link to the previously described crop growth simulation use case,
as crop growth models heavily rely on crop phenology as a driving factor for the modelled
processes. In principle, such information also provides the opportunity to adjust the model
and improve model outcomes, e.g. through data assimilation of crop phenology estimates
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Figure 5.4: Relating crop development stages to NDVI. The small images show different
types of crops in fields at selected dates in the Dutch growing season, taken at an educational
farm. These dates match with the green vertical lines in the chart, which also shows growth
curves based on NDVI values for the fields, derived from remote sensing observations. The
annotations in black indicate the correlation between the NDVI curve and the actual phenological
development of sugar beets.

and using them to adjust model algorithm parameters in order to close the potential gap
between simulated results and observed reality.

There are several challenging aspects to this use case. First, satellite images are only
available according to a specific acquisition plan (about every 2—3 days for Sentinel 2
at mid-latitudes) and are often only partly usable because of cloud coverage (for the
Netherlands this seriously limits the available data, particularly in the autumn and winter
seasons). Second, there are many factors that influence the crop growth process. The type
of crop and variety itself is essential, but also other local factors like soil, climate, and
farm management are relevant. Being able to quickly and efficiently develop, test, and
improve algorithms helps in modelling the many parameters and complex interactions.
The main objectives of this use case were to accommodate such a collaborative and
iterative data science (Cao, 2018) approach for crop phenology estimation, to scale up
the computations from farm field to a regional level, and to publish the outcomes. This
includes experimenting with data analytics, working iteratively, combining different data
sources, and making extensive use of data visualisation, while being able to collaborate
and discuss results and improvements.

The development of the crop phenology estimation algorithms as part of the use case was
performed using a literate programming (Knuth, 1992) approach, that mixes explanation of
logic in natural language with snippets of computer source code. The D4Science platform
hosts Jupyter Lab (www.jupyter.org) and RStudio (www.rstudio.com) as contemporary
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components supporting this programming paradigm. For this use case, the Python
(www.python.org) programming language and Jupyter Notebooks were used to facilitate
the explorative modelling approach, applying the literate programming concept to facilitate
co-development, and exploiting the vast array of available Python libraries for data
management, (geo-temporal) data analytics and visualisation. Algorithms tested on the
crop parcel level were eventually deployed as DataMiner algorithms and integrated in
workflows to scale up from the parcel level to the regional level (the results are shown in
Figure 5.5), exploiting the VREs facilities and resources for distributed computing. As in
the crop growth modelling use case, the VREs publishing function and catalogue were
used to share the final algorithm and make it available in a FAIR manner.
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Figure 5.5: Example output for large scale “start of season” crop stage calculation performed
on the AGINFRA PLUS Platform.

5.3.4 User evaluation

Even within a specific research domain like agro-climatic modelling, there are many different
research approaches, and researchers and research communities have dedicated methods
and preferred tools to perform their research. To ensure that such different approaches
towards data science are accounted for when developing a virtual research environment,
AGINFRA PLUS implemented an iterative approach of learning and improving as part
of the development of its virtual research environments. For that reason, the e-research
pilots with different user communities were set up as a three-phase trajectory, where each
of the three development phases was concluded with a pilot evaluation performed by
potential users of the system. The main aim of these evaluations was to allow researchers
from different parts of the agro-climatic research community to work with the developed
VRE components and workflows and to then survey them in a structured way on their
experiences to discover the system’s strengths and weaknesses. In this way, valuable data
about the perception of independent users with different backgrounds could be collected
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and analysed, and subsequently used to improve both the VRE platform and the developed
components in the next development phase.

At the end of each of the three development phases, intensive pilot evaluations were
conducted with a targeted group of researchers and data scientists to gather user experiences
and perceptions around core VRE aspects like ease of use, learning curve and FATRness.
The groups were selected and invited based on their expertise in the use case domain and
their involvement in data science in general. It must be noted that the characteristics of
the user community differ per use case, and that different perspectives on the meaning
and relative importance of evaluation topics might have influenced the way individual
users approached the evaluation. However, this aligns with the main objective of these
evaluations to identify strengths and shortcomings from the usage and user community
perspective and to iteratively improve pilot functionalities.

All groups received a full day training and evaluation programme. First, they received
an introduction to the concepts of e-research and were demonstrated the basics of the
VRE and its components. Subsequently, participants independently worked on a set of
research exercises, using the VRE components and workflows developed by AGINFRA
PLUS. This setup allowed participants to not only learn, but to also perform hands-on
work, and to relate it to their common scientific practice. After the training and evaluation
exercises, participants were asked to report on their experiences and provide comments
through a survey, which resulted in useful feedback that was used for improvements in the
subsequent development phase.

After the last VRE development iteration, an additional validation exercise was performed
with a larger group of researchers. In this case, the objective was not to collect data and
inputs for further improvements, but to validate the results with a wider audience and
create broader awareness and adoption. It particularly allowed to collect more feedback
about how researchers and data scientists perceive the usefulness of VREs for research and
the potential for their deployment in research organisations. A broader group of potential
validators was invited, within and outside of the original application domains of the use
cases. The focus of this validation was specifically aimed at providing all participants
the same background information and providing a uniform survey to acquire harmonised,
comparable results. This validation was performed through an online webinar, where
participants learned about the VRE characteristic and received short demonstrations
of agro-climatic modelling VRE applications. Again, participants were requested to
subsequently participate in a survey, but this time focussing on assessing their perception
of the usability of the VRE and to explore the opportunities and barriers they saw for
uptake of a VRE in their work.

As part of the implementation work in the AGINFRA PLUS project, a group of researchers
and data scientists was intensively involved in the configuration of the VRE, the setup of
the research workflows in the described use cases, the evaluations and the formulation and
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implementation of requests for change based on evaluation feedback. Their experiences
with the D4Science platform and the development of VREs transcend the perspectives
of external evaluators. Therefore, their most relevant insights and experiences are also
shortly described.

5.4 Results

In this section an overview of the evaluation and validation results is presented. The
full details are available as one of the AGINFRA PLUS project deliverables (Lokers and
Knapen, 2018).

The AGINFRA PLUS evaluation surveys were conducted at the end of a full day VRE
evaluation session. They were set up as semi-qualitative surveys, collecting scores and
perceptions over 5 topics that are relevant for virtual research environments adopting the
principles of Open Science: (1) Ease of Use; (2) Usefulness; (3) Openness; (4) FAIRness;
and (5) Learning Curve. In total 22 of the participating evaluators have responded to the
evaluation survey.

Regarding usefulness and ease of use of the provided VRE, many participants appreciated
the overall VRE concept of being able to communicate, collaborate and co-develop in a “safe
and controlled” remote environment (Figure 5.6). While some participants have also noted
that although good tools supporting aspects of collaboration, analytics, and visualisation
are already on the market, the bundling in one integrated and shared environment is
generally acknowledged as an added value. Evaluators in general appreciated the options
to collaborate, but we also observed that especially data analysts and model/software
developers seem to have higher expectations when it comes to collaboration and co-
development on data analytics and coding. Being able to access and edit content with
multiple users at the same time (comparable to e.g. Google Docs) seems to become the
standard. Also, freely available data science tools like Google Collaboratory and Kaggle
notebooks are raising the bar for what users expect. Regarding the usefulness and ease of
use of the offered virtual research components, we saw that in general, participants tend
to prefer staying with components that they are already familiar with. The absence of
such familiar components in any research environment will increase the learning curve and
the required time investment, and thus might be a potential barrier for adoption. In our
VRE evaluation this issue was most clearly signalled for data visualisation functionality,
where options in many broadly used analytics environments are much more functional and
flexible than dedicated visualisation components that are currently offered by AGINFRA
PLUS.

The opinions on openness and FAIRness of the VRE varied among the evaluation par-
ticipants (Figure 5.7). In general, participants agreed that the offered VRE assets for
publishing data, algorithms and models are an effective way to foster more open research
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Figure 5.6: Evaluation survey responses for the topic “usefulness”.

ecosystems. When it comes to FAIR, participants see the potential of the VREs’ publish-
ing functions and catalogue to improve the discoverability and accessibility of data and
algorithms, which would also increase the likelihood of other researchers reusing them.
At the same time, the still limited support for interoperability was noted as a potential
weakness, where several participants particularly criticised the lack of functionality to
effectively use semantics and linked data.

Determining a good perception of the learning curve of a research environment proved
to be difficult for many of the participants. Most evaluators estimated a relatively steep
learning curve toward being able to effectively use the provided VRE. For instance, they
quite consistently estimated the efforts required to configure and run an algorithm or
model and to analyse its outputs as relatively high, while also acknowledging that this is
to be expected from any environment that integrates such a broad range of data science
tools.

5.4.1 VRE validation results

The VRE validation, using the final version of the developed AGINFRA PLUS VRE,
was performed with a larger and broader group of participants. While the evaluation
targeted experienced researchers and data scientists, the validation included potential
VRE users from more diverse backgrounds and levels. The setup of the validation was a
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Figure 5.7: Evaluation survey responses for the topic “FAIRness”.

one-hour webinar, where participants received a presentation of the VRE and its main
components and some practical examples of how the VRE was applied in research case
studies were demonstrated. In contrast to the evaluation, the validation did not include
the opportunity to perform hands-on work with the environment. The objective of the
survey was in this case much more targeted at assessing how participants perceive working
with such an environment, how they expect they could benefit from it themselves and how
a VRE fits and could be adopted in their organisations. The webinar was attended by 133
participants, of whom 42 have responded to the validation survey.

The results of the validation survey (included as Appendix A) show that respondents
see good opportunities in the VRE supporting them to get more productive, and from a
personal perspective are motivated to work with such environments. This positive attitude
is underpinned among others by the score on a 1-5 Likert scale (Allen and Seaman, 2007)
of responses on the following survey questions: Using such a virtual research environment
would increase my productivity (mean score = 4.21); A virtual research environment makes
work more interesting (mean score = 4.20); It would be easy for me to become skilful at
using such a virtual research environment (mean score = 4.07).

The validation survey also revealed some potential barriers to the introduction of VREs
as part to the research process. It becomes clear from responses that lack of sufficient
knowledge, lack of support for capacity building and lack of resources could impede the
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adoption and uptake of such environments. Moreover, there was quite a spread in the
perception regarding whether organisations and influential persons within organisations
would be motivated to adopt and would support the introduction and use of VREs.

In general, respondents answered positive regarding their motivation and the opportunities
they see to start using a VRE. This is among others supported by a mean score of 3.83 on
the statement “I intend to use such a virtual research environment in the next 12 months”.
Remarkably, there were relatively more respondents in the middle range of the Likert scale
compared to the statements on personal motivation and opportunities. This might be
partly related to the potential barriers that some see to get such environments adopted in
their organisations.

5.4.2 Developer experiences

In general developers have, over the three years of the project, experienced a gradual
improvement of the support for integrated agro-climatic research workflows by the AG-
INFRA PLUS VRE. This was mainly due to the adopted iterative approach, and the
opportunities it provided to adapt the VRE to feedback and new insights from developers
and users. Many requests for change were implemented on feedback of the developers,
improving particularly the functions to develop, deploy and run algorithms and to publish,
share and reuse research assets. There is a general agreement that the AGINFRA PLUS
VRE provides a safe and protected collaborative working environment, while at the same
time allowing to access and share resources, like data, algorithms and scientific knowledge
and contributing to the objectives of the European Open Science Cloud. As part of the
co-development process, the “social media components” in the environment offer effective
ways to communicate and stay connected. Regarding data analytics and modelling, the
AGINFRA PLUS VRE, supported by the underlying D4Science platform, has proven to be
useful to deploy reusable models and to run these on a computing cluster, although in some
cases adapting software to the specifics of the platform required substantial efforts.

While the VRE provides several semantic tools, these are up till now insufficiently integrated.
It appeared not possible to semantically tag the delivered research assets making use of
available vocabularies and ontologies, which is generally considered to be a minimum
requirement for FAIR sharing. The VRE’s data visualisation components proved not to
be fit-for-purpose for the agro-climatic research use cases, lacking much of the required
functionality, configurability, and integration hooks. Like the semantic components,
individual tools were available, but the lack of integration did not allow to link them into
practical research workflows. In practice, VRE developers in the use cases have either
developed visualisation components from scratch (e.g. the visualisation dashboard) or
used external libraries (e.g. in Jupyter Notebooks). Conclusively, a general observation is
that while the composition of a VRE using the D4Science platform consisting of individual
components is technically relatively simple, the integration of these components in such
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a way that they are useful to setup effective research processes is still a barrier to fully
exploit these tools as part of the AGINFRA PLUS VRE, at least for the agro-climatic use
cases examined.

5.5 Discussion

Researchers in the agro-climatic research domain have experienced the shared resources
offered through the D4Science powered AGINFRA PLUS VRE, from the options to
collaboratively experiment in a safe environment and eventually from the added value of
deploying, publishing, and reusing developed algorithms and data sets. Virtual Research
Environments offer the potential to facilitate collaboration and support open science,
also in the domain of agro-climatic research, by digitising and integrating many of the
research tools and processes that researchers regularly use in their work. Through the
described experiments we have tested this hypothesis for two characteristic use cases in the
agro-climatic domain, and we have evaluated the perception and experiences of researchers.
On the positive side, first, our results demonstrate that it is feasible to implement workflows
that automate and virtualise scientific processes in the agro-climatic domain in online
environments. Second, researchers testing the workflows also understood the potential
that these VREs have for accelerating their work, while opening new avenues for research,
and generally voiced high expectations of such environments in our evaluations. Third,
VREs offer the possibility to connect data and algorithms more easily, once the use case
has been clearly defined, thereby enabling a step towards FAIR data sharing, reusable
algorithms and models, and open science in general. Thus, the potential for added value
of VREs in agro-climatic science is clearly identified.

However, there are also a few important trade-offs to consider in the further development
of virtual collaboration tools between agro-climatic researchers to facilitate the transition
towards more digital agriculture: (1) investing in analysis ready platforms or investing
in generic tools that can be easily combined; (2) interoperability of data and tools; (3)
the need for an innovative VRE or a stable VRE based on proven technologies. We will
elaborate these trade-offs in the following paragraphs.

First, there is a dilemma in either developing platforms that combine tools as a ready-made
solution or deploying generic tools and leaving the combination of tools into workflows
to the researchers. Evaluation results showed that participants were sometimes doubtful
about the use of specific VRE components and preferred different solutions that fitted
better to their personal skills and experience. It suggests that the most appreciated
functionality is the easy availability of generic tools for collaboration and sharing (i.e.
GitHub, Python/R notebooks, data and analytics repository connections) which are
cross-platform and interoperable. Researchers in the agro-climatic domain tend to have
their own preferences for tools and platforms but want to share the data and analytics
through such generic tools. An important implication is that researchers will not accept
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platform specific lock-ins on their analytics, making these difficult to share with other
researchers. After numerous pleas to share code of analytical solutions (Goldacre et al.,
2019; Nature Editorial Board, 2018), agro-climatic researchers are keen to embrace this
practice, however, vendor-lock-ins in platforms then do not work. A challenge for platforms
is that the integration of all the tools on the platform and the data sources need to be
continuously updated and improved as new versions of tools become available or data
definitions are upgraded. Platforms are thus always catching up on such developments,
with the risk of losing users if the changes are not made quickly enough. Thus, when VREs
are conceived as comprehensive platforms that fully automate the researcher’s processes in
the agro-climatic domain, they are unlikely to succeed as the provided solutions are very
vulnerable to maintenance issues and risk locking in researchers into solutions that they
do not want. There is, however, potential for VREs to deliver generic tools for sharing of
analytical code and components and data connections that facilitate the work, without
striving to fully automate it.

Second, improvements in interoperability are required. Evaluation results clearly showed
that researchers are seeking ways to improve interoperability toward better reusability
of data, algorithms, and models. The need for tools to support semantic linking of
(meta)data was mentioned often, as well as the tested VREs being relatively weak in their
support for interoperability. Uses cases in this domain are commonly interdisciplinary,
combining aspects of domains with a different character and making semantic linkage
and interoperability a complex and laborious challenge. In agro-climatic research the user
communities are relatively small, and they often employ a systems perspective, combining
the different data sets and scientific sub-fields together in one approach. In a way VREs as
platforms might offer an opportunity to facilitate researchers with this systems perspective
as they bring together tools and data from different scientific subfields. At the same
time, involved user communities cannot easily make progress in establishing the conditions
required and, for example, lack suitable ontologies to develop interoperable resources. This
hampers progress on interoperability, even if the supporting tools are available.

In the cases presented here, the platform solutions are developed for a niche group of
researchers, as agro-climatic research falls into many diverse specialised segments studying
different aspects of agro-climatic systems. To illustrate this further, the agro-climatic
research community is at the intersection of three research communities, i.e. climate
science, agriculture, and Earth Observation. This is characterised in general terms with
respect to aspects of Big Data, (Table 5.2), even if that is not representative of all research
happening in these communities.

In climate science, the data sets describe physical and natural phenomena, and have been
measured, or are modelled for future predictions or long-term scenarios. The complexity
of the data is manageable (even though data sets can be very large) and quite easily
linkable (since they represent globally agreed upon physical phenomena). Besides, data
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Table 5.2: Characterising climate, agriculture, and Earth Observation sciences

of Big Data.

along four Vs

Research community

Volume

Velocity

Variety

Veracity

Climate High: Large size High: New forecasts Low: Data types are Medium: A lot of
gridded data sets and observations are consistent over data focus on
(e.g. in NetCDF) produced very sources. forecasting and
with high temporal  frequently. future scenarios.
resolution.

Agriculture Low: Usually Low: Data collection High: many diverse data High: Uncertainty

smaller data sets
(excluding weather
data) that can be
managed on a
single computer

is usually in pace with
crop growing cycles,
except for some
developments around
IoT devices.

types that can be
collected, following a
wide range of agricultural
systems across sectors
and regions.

on underlying
agricultural
system
functioning;
application of
expert rules.

Earth Observation

High: Imagery
with e.g. multiple
spectral or wave
bands covering
large regions in
high resolution.

Medium: Every day or
few days new imagery
becomes available for
a region.

Medium: A limited
number of spectral or
wave bands, however,
converting them to e.g.
indices for applications
introduces diversity.

Low:
Uncertainties
come from
different
algorithmic
approaches in the

conversion of the
indices.

are usually already shared between researchers due to the size and costs for collecting it,
and a relatively well-developed open culture. Climate researchers are used to work with
computational clusters such as available for High Performance Computing (HPC) or setting
up a specific calculation workflow using NetCDF files based on hardware restrictions of
individual servers or computers. This community offers good potential for VREs, as there
is a need for computational resources, and workflows can be standardised.

In contrast, in agricultural research, there is a lot of diversity of data as agricultural
systems are wildly diverse across sectors and geographies. Often only a specific aspect
of the agricultural system is studied, making modelling choices and assumptions, and
thus with a difficulty to link data sets to one another. A lot of research is built on
discovering relationships on how agricultural systems function as a living environment, and
often there are a lot of soft-knowledge and expert rules applied to establish relationships
when the underlying mechanisms are too complex. As an implication, data sets are also
heterogeneous, making it difficult to link them together on seemingly similar data types.
This might also explain the concern expressed by many evaluators about the lack of
operational functions available in the VRE to use semantics to link data sets. In addition,
access to data, both within the sciences and in the private or public sector, is a further
obstacle (Wolfert et al., 2017). There is generally less of a sharing culture, also because
research groups are relatively small and connected. Moreover, researchers often work with
the data on their own computers and might share with colleagues based on their preferences
(potentially competitive). There are few automated workflows, as every research question
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requires a different approach. This is exemplified in the use case with the WOFOST crop
growth model implemented in the AGINFRA PLUS VRE, which is set up to study a
specific case. If a different case is studied, for example related to soil fertility or nutrient
management, the model and the data set will need to be changed and there might be
expert knowledge required to link crop growth to nutrient management.

Finally, Earth Observation (EO) research focusses on the use of images taken by satel-
lites, drones, and other airborne sensor platforms to monitor and understand natural
phenomena, for example by deriving indices based on the different bands in a multispectral
image. Due to a basis in open access satellite data through e.g. the NASA Landsat
missions (https://www.usgs.gov/landsat-missions) and the Copernicus Earth observation
programme of the European Union (https://www.copernicus.eu/en) there is a widespread
common practice of making research results in terms of data available to others. In recent
years, through programmes such as EU’s Copernicus, more data became available with
finer spatial resolution and higher acquisition frequency. Each sensor requires its own
calibration and data processing algorithms, however the starting point, spectral or wave
bands, is often the same. This is shown by the second use case in the AGINFRA PLUS
VRE in which Sentinel-2 data is used to estimate the crop phenology and growth curves of
different agricultural crops. If another sensor was to be added, for example, a drone-based
camera, it needs to be calibrated against the already available sensor.

This is just one example of often many expert steps required before such data can easily
be used in a plug-and-play fashion. In case of more automated, generic procedures and
workflows, implemented as part of a VRE, there will be more data loss as only those
data that fall perfectly in line with data from other sensors can reliably be used. Also,
VREs do not necessarily provide access to the expertise needed to use it properly. Hence,
these interoperability challenges are an obstacle to the further adoption of collaborative
environments in agro-climatic research, which is partly due to the fragmented nature of the
research field and to the weakness of VREs in general to support this. These interoperability
challenges are not limited to scientific collaboration tools, but also applicable to FAIR
data (Top et al., 2022), and e.g. Farm Management Information System (Fountas et al.,
2015; Tummers et al., 2019), so they pose a larger challenge to the implementation of
digital agriculture and systems thinking in agro-climatic science.

Even though our use cases encompassed all three scientific fields, they were focused on an
analysis of the agricultural system, using data from climate science (e.g. weather records)
and earth observation (e.g. spectral indices derived from Sentinel-2 data). In hindsight,
use cases that focused more on the climate or Earth Observation might have been more
promising as there are (1) more common practices of working with remote computational
resources; (2) more familiarity with sharing access to research data; (3) basic sets of data
types that are more easily linkable across data sets compared to agriculture science. In a
way our findings reinforce the argument made by Allan, 2009: “Many VRE implementations
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revolve around finding niche solutions to sometimes very niche problems faced by a small
group of researchers working in a particular field of study”.

A third trade-off exists in the role that VREs play in the wider trend towards open
science. Ultimately, VREs represent a possible end-state of open science once it goes
beyond opening the scientific process in terms of data and algorithms. VREs are then
becoming an integrated collaboration and productivity tool, not only making the data and
algorithmic resources available, but also connecting researchers in common workflows and
conceiving innovative working environments (Thanos, 2013). Given their still innovative
nature and potentially more conceptual set up, VREs might not yet have a large day-to-day
role to play in open science practice. Open science is more about operationalising good
and proven practices of sharing than about experimenting with (immature) innovations.
This might also confuse researchers on the expectations of them in working according
to open science practices. What VREs and open science have in common, as argued
by Allan, 2009 and also found in our evaluations and validations, is that they need to
take into account the 4Cs to become a common practice: Culture of research embracing
new methodologies; Champions in open science; Communications to disseminate the added
value; and integrated Change management to make it happen.

5.6 Conclusions and recommendations

Based on the evaluation results, and analysis of the use cases, conclusions have been
reached on the four research objectives, as documented in Table 5.3.

Ultimately, agro-climatic research will gradually deploy more digital techniques to further
the science itself, increasing reproducibility and transparency. This represents a gradual
transition towards digital research, and to facilitate this transition, the recommendations
have been formulated against the different stakeholder roles, as listed in Table 5.4.
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Table 5.3: Overview of the research objectives and conclusions.

Research objective

Evaluation results and insights

What are the requirements of
agro-climatic researchers in their
research tasks, specifically to
support Open Science?

What would be the required
functionality for a VRE to be
successful in fulfilling these
requirements?

How can agro-climatic researchers
benefit from a VRE and what are
the implications for their work?

What would be required from
researchers and research
organisations to adopt a VRE?

Researchers are open to share their data and algorithms if
this is made easy. They want to avoid adapting too many
of their working practices to work with a new environment.

A VRE needs to offer generic tools and functionalities that
benefit the agro-climatic researchers to do their work
faster, and help them to publish data and tools, while
linking to existing data.

Agro-climatic researchers experience benefits if the data
processing steps they want to perform are fully
established, so that they can be incorporated in VRE
workflows, or for sharing algorithms, models and data sets.
VREs would need to be well integrated into the day-to-day
working practices of the researchers and research
organisations, and have a large enough base in potential
users to be usable and become self-sustainable with
respect to development and funding.

Table 5.4: Final recommendations.

Role Recommended activities

Research managers Ensure that researchers can work on the science itself, not on the
development of technologies to do the science, thus offering proven
technologies fitting into the daily working practices of researchers.
Researchers Embrace good practices in opening of research products, including data,
models, and tools, where the agro-climatic domain in some respects is
lagging.

VRE developers Focus on making those tools available that are proven solutions.
Technologically driven innovations are less relevant to achieve scientific
progress.

Research funders Support the transition in their funding models, most notably ensuring that
researchers make research products openly available, and by focusing less
energy on the technological innovation while applying (as with VREs and
FAIR) and building resilient and adaptive scientific communities which can

easily embrace new developments.
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Appendices
5.A Results of the validation survey

Table 5.A.1: The five-point Likert scale used in the survey for all questions

Strongly disagree 1 2 3 4 5 Strongly agree
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Table 5.A.2: Survey results of the validation webinar

Question 1 2 3 4 5 N/A N Mean Score
1. I Would find such a virtual research environment useful in 1 0 2 12 27 0 42 4.52
my job.

2. Using such a virtual research environment would enable 1 0 2 21 18 0 42 4.31
me to accomplish tasks more quickly.

3. Using such a virtual research environment would increase 1 0 4 21 16 0 42 4.21
my productivity.

4. If T used a virtual research environment, I would increase 0 4 18 12 8 0 42 3.57
my chances of getting a better position or salary.

5. My interaction with such a virtual research environment 1 2 11 20 8 0 42 3.76
would be clear and understandable.

6. It would be easy for me to become skilful at using such a 1 1 6 20 14 0 42 4.07
virtual research environment.

7. T would find such a virtual research environment easy to 0 2 17 15 8 0 42 3.69
use.

8. Learning to operate such a virtual research environment 1 2 12 19 7 1 41 3.71
would be easy for me.

9. Using such a virtual research environment is a good idea. 1 0 0 14 26 1 41 4.56
10. A virtual research environment makes work more 1 1 5 16 18 1 41 4.20
interesting.

11. Working with such a virtual research environment is fun. 0 1 10 15 14 2 40 4.05
12. T would like working with such a virtual research 0 1 3 8 5 25 17 4.00
environment.

13. People who influence my behaviour would think that I 1 7 12 15 7 0 42 3.48
should use such a virtual research environment.

14. People who are important to me would think that I 1 8 11 14 8 0 42 3.48
should use such a virtual research environment.

15. The senior management of my organisation would be 0 2 17 15 7 1 41 3.75
supportive of using such a virtual research environment.

16. In general, my organisation would support the use of 1 2 12 19 8 0 42 3.74
such a virtual research environment.

17. I have the resources necessary to adopt and use such a 4 11 9 12 4 2 40 3.03
virtual research environment.

18. I have the knowledge necessary to adopt and use such a 3 7 11 12 8 1 41 3.37
virtual research environment.

19. The virtual research environment does not seem 4 9 18 6 4 1 41 2.93
compatible with other systems I use.

20. In my organisation, a specific person (or group) would 8 9 18 6 4 1 41 2.76
be available to assist me with difficulties in using such a

virtual research environment.

21. I could complete a job or task using this virtual research 3 7 18 8 5 1 41 3.12
environment if there was no one around to tell me what to

do as I go.

22. T could complete a job or task using this virtual research 2 2 13 16 8 1 41 3.63
environment if I could call someone for help if T got stuck.

23. T could complete a job or task using this system if I had 3 3 13 13 8 2 40 3.50
a lot of time to complete the job for which the software was

provided.

24. I could complete a job or task using this virtual research 2 1 12 16 9 2 40 3.73
environment if I had in my organisation a facility for

assistance.

25. 1 feel apprehensive about using such a virtual research 11 5 9 11 3 3 39 2.74
environment.

26. It scares me to think that I could lose a lot of 13 15 9 2 2 1 41 2.15
information using such a virtual research environment by

hitting the wrong key.

27. 1 hesitate to use such a virtual research environment, 12 17 8 2 2 1 41 2.15
fearing to make mistakes I cannot correct.

28. Such a virtual research environment looks somewhat 16 14 7 2 2 1 41 2.02
intimidating to me.

29. I intend to use such a virtual research environment in 1 2 14 10 14 1 41 3.83
the next 12 months.

30. I predict I would use such a virtual research environment 1 2 13 14 11 1 41 3.78
in the next 12 months.

31. I plan to use such a virtual research environment in the 1 2 14 11 13 1 41 3.80

next 12 months.
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6.1 Main findings

This thesis focusses on data engineering for digital agriculture, specifically related to the
work with geospatial data. In general, data engineering involves the design, construction
and maintenance of systems that enable the collection, storage, and analysis of large
volumes of data. For geospatial data and modern digital agriculture the ‘V‘s (Volume,
Velocity, Variety, Veracity) that characterise Big Data quickly can become a concern
and need to be taken into account. When done effectively, it can further drive digital
transformation in agriculture by enabling and improving data-driven decision-making
processes.

Although spatial data engineering and spatial data science continue to evolve with rapid
technological advancements, the core principles established in this research remain funda-
mental for future innovations in digital agriculture. Specifically, it has been shown that:
(i) connecting data; (ii) connecting models; (iii) connecting systems; and (iv) connecting
researchers are beneficial to the required data engineering and thus to the data science as
well, following the classic data—information-knowledge—wisdom route. Table 6.1 provides
an overview.

Table 6.1: Geospatial data engineering for digital agriculture & the DIKW levels

Topic DIKW Level Data engineering aspects Example in digital agriculture

Connecting data Data Geospatial data ingestion and  Integrating satellite imagery (Sentinel,
storage Landsat) with IoT farm sensor data.

Connecting models Information Geospatial data processing Combining weather, soil, and crop models for
and modelling better analytics.

Connecting systems Knowledge Pipeline orchestration, Running large-scale models on (cloud-based)
scalability, and performance infrastructure.

Connecting researchers ~ Wisdom Governance, collaboration, Sharing actionable insights across digital
and decision support agriculture stakeholders.

Considering the research objectives of this thesis, the key findings are as follows.

Chapter 2 concludes that Variety and Veracity are the most interesting to focus on from
the perspective of spatial data engineering for agriculture. Veracity (“trust in the data”)
plays a part in Chapter 5, by using Virtual Research Environments (VREs) to provide
online community workspaces with trusted data sharing. Other solutions (e.g. blockchain,
data spaces, federated learning) are interesting and suggested for future research.

The variety of data can be split into two major parts: semantics and spatio-temporal
characteristics. Solutions to address data semantics are known for a long time (e.g.,
ontologies, resource description framework, SPARQL, and triple stores) but not so often
applied: (i) ontology engineering requires specific skills and is not an easy task; (ii) working
with knowledge concepts and their relations, broken down into elemental Resource De-
scription Framework (RDF) subject—predicate—object statements, is not part of mainstream
technology and software engineering; (iii) semantic tools and technologies are sparse, with
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open source solutions of lesser quality compared to the few expensive commercial software
available; (iv) there is a lack of usable globally linked agriculture ontologies, and given the
domain, these would quickly extended into other domains and sciences, making them even
harder to establish.

Related to spatial aspects of data, there is extensive standardisation rooted in Geographic
Information Systems (GIS) and supported by national Spatial Data Infrastructures (SDIs).
These frameworks offer well-established mechanisms for representing geographic features,
including vector and raster data formats, coordinate reference systems, and spatial meta-
data. However, these spatial standards do not necessarily overlap with semantic standards.
A key distinction lies in how spatial information is modelled. In GIS standards such
as INSPIRE (2024) or GML (2018), spatial entities are defined primarily through their
geometry—a polygon is the field. In contrast, semantic models typically describe spatial
characteristics as properties of conceptual entities—a field hasGeometry polygon. This
geometry-first approach contrasts sharply with the entity—property-relation structure
of semantic models and is one of the reasons why spatial and semantic interoperability
remains a complex engineering challenge.

For example, mapping a Global Positioning System (GPS) coordinate from an agricultural
data set to field geometries or vegetation indices (e.g., NDVI) stored in raster grids requires
more than just coordinate transformation and resolution alignment. It involves reconciling
different assumptions about how entities and their spatial attributes are structured, labelled,
and linked between standards. Bridging these paradigms demands deliberate engineering
to ensure consistent and meaningful integration of spatial information.

Although this thesis focusses primarily on spatial aspects, temporal interoperability presents
a parallel challenge. For example, in agricultural systems, the use of decadal time units
is widespread, whereas GIS platforms typically rely on timestamp-based models. This
discrepancy in temporal granularity also introduces a semantic gap that further complicates
data integration. Recent studies highlight the importance of harmonising spatial and
temporal dimensions to enable reliable data fusion and time-sensitive decision support in
digital agriculture (San Emeterio de la Parte et al., 2024; San Emeterio de la Parte et al.,
2023; Zeginis et al., 2024).

Both aspects of variety are relevant when connecting models and data sources at the
information level, as discussed in Chapter 3. It examined the usefulness of a standard
(OpenMI) for model linking that supports both semantics and spatio-temporal charac-
teristics of data in a number of research domains. Although such a standardisation is
appreciated (by researchers), its use should not be enforced, and the specification should
define a comprehensive, self-contained set of functionalities and protocols, ensuring that
compliant implementations possess all essential components, since research projects usually
do not contribute to the development of frameworks and common tools.
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In Chapter 2 the development of technologies that can address the Volume and Velocity of
Big Data is expected to be taken up by industry. Chapter 4 examines the usefulness of one of
such available solutions, the open-source Apache Spark analytics engine, applying it to the
running of large-scale crop growth simulations with a mechanistic model (WOFOST). It is
successful, but cannot avoid that scalable/distributed systems are inherently more complex
than non-distributed implementations. Scalable systems involve multiple computers
working together over networks and thus have to be able to handle failures and stay in
sync even when parts break or network communication gets delayed. This also affects
software engineering, especially when optimising for performance and low environmental
resource use in such settings.

Due to this increased complexity, agronomists might not adopt big data technologies and
instead accept long run-times or choose to only work with scaled down data. However, since
these tools are standardised, data engineers can gain experience with them and apply their
knowledge across projects. The functionality can then be made available to agronomists
and other researchers and stakeholders as part of a Virtual Research Environment, as has
been studied in Chapter 5. This research shows that VREs are an effective solution for
enabling scientists to collaboratively access, manage, and analyse large, complex data sets,
using computational resources from different locations, in an integrated digital workspace.
VREs can, however, be difficult to maintain, e.g. after a research project has ended
and there is only a small user community. Similarly to model integration frameworks
(discussed in Chapter 3), VREs have to provide all tools needed by the researchers, or at
least integrate well with the tools they are already familiar with.

6.2 Reflections

6.2.1 On the use of semantic technologies in digital agriculture

During the period covered by this thesis and its referenced literature, interest in using full
formal ontologies as part of semantic web technologies—such as the Resource Description
Framework (RDF) and the Web Ontology Language (OWL)-first increased and then
declined in the context of digital agriculture. With an ontology defined as an “explicit
specification of a conceptualisation” (Gruber, 1995), it becomes a formal ontology when
this specification is expressed in a machine-interpretable, logic-based form. A full formal
ontology is a highly structured and logically rigorous representation of knowledge within a
domain, defined using formal languages and logic-based semantics, typically aiming for
consistency (no contradictions), completeness, and automated logical reasoning. This is in
contrast to the recently preferred lightweight or "informal” ontologies.

The use of ontologies and other semantic technologies in digital agriculture, starting
with precision agriculture, has long been considered a critical enabler of interoperability,
that is, the solution to the challenge of data heterogeneity, especially in the domain of
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spatial data engineering. Semantics offers structured vocabularies—such as the ICASA
data standards (White et al., 2013)—and ontological scaffolds that can bridge gaps between
data variety (e.g. Rijgersberg et al. (2011)), linked models, and decision-making systems.
From the early 2000s domain ontologies such as AGROVOC, Crop Ontology, and the
Semantic Web for Earth and Environmental Terminology (SWEET), promise to unify
agronomic, environmental, and geospatial data sets. A promise that continues to prove to
be difficult to scale in practice. Ontology development is resource intensive, triple stores
and reasoning tools are not sufficiently performant for real-time applications, and uptake
outside academic projects is difficult and limited.

The initial wave of semantic integration in environmental and agricultural sciences—
prominent from the early 2000s through the mid-2010s-was marked by ambitious efforts
to develop formal ontologies for comprehensive knowledge representation. The projects
aimed to establish rigorous logic-based systems that could unify data across disciplines,
institutions, and geographic regions. These initiatives were fundamental in advancing the
vision of the semantic web for integrative modelling and data sharing (Athanasiadis, 2015;
Athanasiadis et al., 2009; Rizzoli et al., 2008; Samourkasidis and Athanasiadis, 2020; Villa
et al., 2009).

Despite their conceptual strength, full ontology-based approaches encounter significant
challenges in real-world application. Ontology engineering required intensive collaboration
between domain experts and knowledge engineers, and the maintenance of formal structures
proved difficult in the face of rapidly evolving scientific domains. Furthermore, reasoning
engines and semantic query languages were often too slow, complex, or poorly supported to
integrate with operational workflows in agriculture and environmental research. Specifically
for spatial data, it took a while before GeoSPARQL became the unified standard through the
Open Geospatial Consortium (OGC). Its focus is vector data; the combination of semantic
technology and spatial raster data remains an ongoing active area of research (Hamdani
et al., 2023). Although formal ontologies were originally intended to enhance clarity,
transparency, and integration in data-driven systems, such as decision support systems,
their implementation has often resulted in unintended opacity for the users. In practice,
full, formal ontologies—particularly those based on description logics (Horrocks, 2005)—can
become epistemic black boxes that obscure rather than illuminate reasoning.

In the mid-2010s, a clear shift was underway toward more lightweight, pragmatic technolo-
gies that emphasised flexibility, usability, and partial semantics. This transition was driven
by the need to enable rapid data exchange, integration, and reuse without the overhead
of formal ontological commitments. In this new paradigm, technologies such as JSON
for Linking Data (JSON-LD), the schema.org open community driven vocabularies, and
simple RESTfull APIs became preferred tools for implementing semantic interoperability.
The goal with these lightweight approaches is not full logical inference, but rather mutual
understanding and data discoverability. Instead of relying on formal axioms and deep
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class hierarchies, these systems encode just enough structure—through controlled vocabu-
laries, metadata standards, and simple linked data patterns—to support integration and
interpretation across platforms.

The rise of FAIR data movement (Wilkinson et al., 2016) further accelerated the adoption
of lightweight semantics. The FAIR principles—Findable, Accessible, Interoperable, and
Reusable—encourage data providers to use standard identifiers, ontologies, and metadata
schemas in ways that are machine-actionable but not overly rigid. This balance has led to
widespread use of shared vocabularies (e.g., DCAT (W3C), AGROVOC (FAO), Croissant
(ML Commons)), ontology portals (e.g., AgroPortal by the Agrisemantics Working Group
of the Research Data Alliance), and metadata catalogues (e.g., CKAN, GeoNetwork, STAC
— SpatioTemporal Asset Catalogs) in both research and development contexts.

In practice, lightweight semantic technologies have enabled greater agility and participation
in data-sharing initiatives. This shift represents not a rejection, but an evolution of the
semantic vision. The full formal ontologies laid the theoretical groundwork for machine-
understandable agriculture and environmental science. Lightweight technologies have
extended that concept into practical, scalable solutions that are more closely aligned
with the pragmatic realities of spatial data engineering, multi-stakeholder collaboration,
and rapidly evolving digital ecosystems. Unfortunately, the shift also enforces existing
limitations. Following the flow and terminology of the DIKW pyramid, much of digital
agriculture risks remaining trapped in the lower layers—data and information—with limited
progress toward machine-actionable knowledge and contextualised wisdom (actionable
insights), the layers where the interoperable aspect of FAIR is increasingly relevant.

Semantic technologies in some form, especially when coupled with spatial metadata stan-
dards, both preferably modern, lightweight, and practical, remain critical for lifting digital
agriculture beyond siloed data aggregation into integrated, knowledge-rich systems.

6.2.2 On mechanistic models and AT in digital agriculture

Artificial Intelligence (AI) and Machine Learning (ML) techniques have become indis-
pensable in digital agriculture (Kamilaris and Prenafeta-Boldd, 2018; Liakos et al., 2018;
Sharma et al., 2021), as also referenced in Section 4.4. This introduces a new and ar-
guably more critical appearance of epistemic black bozes in the domain. Although these
technologies provide powerful predictive capabilities and automation, they often lack trans-
parency, explainability, and causal grounding—qualities essential for scientific legitimacy
and responsible decision making.

Most modern machine learning models, particularly deep learning, operate as high-
dimensional, non-linear statistical approximators of the underlying function or relationship
mapping inputs to outputs in complex data. They excel at identifying patterns in large
data sets, but typically do so without revealing the underlying rationale behind their
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predictions. For example, fertiliser adjustments might be recommended to a farmer,
without any agronomically interpretable explanation. This opacity again poses a serious
risk to scientific understanding and decision making. Without sufficient insight into the
internal workings of a model, researchers and practitioners cannot assess whether outputs
are valid, biased, or generalisable. Moreover, current Al models frequently optimise for
correlation rather than causation, capturing superficial relationships in historical data that
may not hold under changing climatic, social, or ecological conditions. In the real world
machine learning models are faced with e.g. data drift and concept drift, which needs to
be monitored and the models retrained to maintain prediction accuracy.

Another concern is the hidden nature of data biases. Since AI/ML systems learn directly
from training data, they may perpetuate or amplify historical inequities, regional imbal-
ances, or data collection artefacts. These biases are often hard to detect due to the opaque
architecture of the models, creating a double layer of black-box behaviour—both in logic
and data provenance. The Garbage In, Garbage Out effect already applies to mechanistic
models, but it is an even bigger concern for AI and ML models.

Table 6.2 shows the parallels between the black box issues when introducing full formal
ontologies or non-explainable Al in digital agriculture (see also Section 6.2.1).

Table 6.2: Black Box aspects of formal ontologies and non-explainable Al in digital agriculture.

Aspect Formal Ontologies Non-Explainable AI

Black Box Cause Logical inference chain Statistical /mathematical abstraction
Risk Misunderstood formalism Unjustified correlations

Barrier Requires ontology expertise Requires ML/AI expertise
Transparency Low without logic tracing Low without explainability techniques
Validation Challenging for non-experts Difficult even for developers

There is a growing movement to address these concerns through interpretable and eX-
plainable AI (XAI) techniques—such as Shapely values, Local Interpretable Model-agnostic
Explanations (LIME), and causal inference-but these are not yet widely adopted in dig-
ital agriculture, environmental sciences, and Earth Observation in general (Tuia et al.,
2024).

In terms of the DIKW pyramid, Al-sub-symbolic in particular—can be seen as an attempt
to short-circuit the classical flow by bypassing some of the intermediate steps (especially
the human-driven interpretation between levels). Instead of relying on structured data
— information — knowledge — wisdom transitions, Al often tries to jump directly from
raw data to decision making, e.g., through deep learning and reinforcement learning. This
approach has both advantages and disadvantages:

i. Loss of explainability and trust: The classical DIKW flow builds knowledge incre-
mentally, allowing experts to verify information at each stage. Artificial intelligence,
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particularly deep learning, operates as a black box, making it difficult to justify
decisions in agriculture.

ii. Lack of incorporation of domain knowledge: Classical DIKW integrates, e.g. mecha-
nistic models that ensure consistency with agricultural science. Al can sometimes
detect spurious correlations in the data and base predictions on those.

iii. Over-reliance on data: AI models, if trained on biased or low-quality noisy data,
can produce misleading results. Classical DIKW transforms raw data into validated
information before it is used in decision making.

iv. Ethical and social risks: Al-driven decision-making can lead to unintended conse-
quences, when human oversight is lacking. In classical DIKW the human oversight
is built into the flow.

A hybrid classical DIKW flow including AI will therefore be more effective for digital
agriculture. For example, using ML for pattern recognition but validating or explaining it
with domain knowledge (i.e., by agronomists, or a self-explainable symbolic — sub-symbolic
AT model Hohl et al., 2024). Or by combining mechanistic models with AI (hybrid
modelling, or physics-informed modelling) for better accuracy and real-world consistency.
In general, using human-in-the-loop AI approaches and systems to increase trust and
explainability and avoiding full AT automation. Furthermore, to avoid technological push,
specifically in ML/AI, a human-centric design and development approach is to be preferred
(see next section).

Ultimately, science and decision making demand not just predictive power, but also un-
derstandability, accountability, and reproducibility. As digital agriculture moves toward
increasingly Al-driven systems, ensuring that these principles are preserved is both a
technical and ethical imperative for spatial data engineering.

6.2.3 On the need for human-centric design in digital agriculture

This research has shown that spatial data engineering plays an essential role in the digital
transformations of agriculture. As a discipline, it must bridge geospatial science, (spatial)
data science, information science, computer science, and agricultural practice-responsible
for structuring, transforming, and integrating diverse heterogeneous spatial data sources
to support insight generation and decision-making across farm, advisory, and policy levels.
At first glance, spatial data engineering for digital agriculture appears to be a purely
technical endeavour that involves complex pipelines, cloud platforms, and algorithms. A
central argument of this thesis is that technical excellence alone is not sufficient.

The success of digital agriculture hinges on downstream users—farmers, agronomists, and
other stakeholders—trusting and adopting the data-driven systems. In practice, if a data
engineering solution is delivered as an opaque black box, users may reject it in favour of
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local data and tools that they fully understand and control, even at the cost of lower data
granularity or output quality.

To mitigate this risk, transparency and human-centric design must be built into spatial
data engineering—being the foundation for data science—from the ground up, very similar
to common software engineering approaches (Knapen et al., 2010; Verweij et al., 2010).
This means providing clarity about data sources, processing steps, and the uncertainty or
rationale behind recommendations. Approaches such as eXplainable Al are valuable on
the data science side, for example, offering explanations for predictions of an Al model so
that farmers understand why a recommendation was made (see previous section). Beyond
ATl models, the entire data pipeline should strive for “white-box” characteristics when
possible. For example, instead of simply telling a farmer that “Field 107 needs irrigation,”
a human-centric system would convey the supporting information: e.g. “Field 107’s soil
moisture dropped below threshold X based on sensor data at 10 cm depth”.

Throughout this thesis, a recurring theme is connection-the idea that bridging gaps
between data, models, systems, and human experts can greatly improve spatial data
engineering and with that the data science outcomes. The research framework followed
connects these components to ensure that the flow from raw data to decision is seamless
and user-informed. In practice, this could mean interactive systems in which researchers
and farmers can inspect model output, adjust parameters, or trace back how the system
came to a suggestion. Virtual Research Environments, discussed in Chapter 5, can provide
such functionality.

Connecting researchers and domain experts into the loop is perhaps the most critical
connection. Instead of a one-way pipeline from data to model to user, a two-way collabo-
ration is needed: domain experts guide data engineering and data science by providing
ground-truth knowledge and validating results, and in return the system augments their
expertise by providing new insights. This cycle has been shown to improve both the
system’s performance and the user’s trust in the system. For example, incorporating
a “farmer-in-the-loop” can leverage the farmer’s experience to catch anomalies that al-
gorithms alone might miss, leading to more robust and trusted outcomes. Spatial data
engineering and data science, when viewed as a connected ecosystem of technology and
people, becomes far more robust and adoption-friendly than a siloed, fully automated
black-box approach.

An important insight from this synthesis is that human-centric design and technical
sophistication are not opposing forces-they are complementary and indeed codependent for
successful digital agriculture. The early visions of Agriculture 4.0 emphasised automation
and data on a scale, sometimes at the expense of human involvement. However, experience
has shown that purely technology-centric solutions can fail in real-world agricultural settings.
It is now increasingly recognised that the next phase — often termed Agriculture 5.0 — must
balance technological prowess with human context and needs. In the European Union,
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for example, emerging regulatory frameworks for Al in high-impact sectors (including
agriculture) explicitly mandate interpretability and human oversight, reflecting the necessity
of centring the human user. Far from reducing system efficiency or intelligence, a human-
centred approach enhances overall capability. As Holzinger et al., 2024 put it, we should
use Al and data systems as “power steering for the brain”, which amplifies human decision
making rather than trying to replace it.

On multiple occasions, this thesis also highlights the importance of interdisciplinary
collaboration. Spatial data engineering often serves as a link between traditional GIS
practitioners, who prioritise spatial accuracy and standards, and data scientists, who
focus on model performance and statistical robustness. Collaboration with domain
scientists and agricultural stakeholders brings domain knowledge, contextual insight,
and the aforementioned feedback loops that are essential for iterative improvement of
systems and processes. A key enabler of this collaboration is the presence of hybrid
roles—such as agri-informaticians—who can operate across technical, analytical, and domain
boundaries. These individuals ensure that spatial data-driven agricultural systems are not
only technically sound but also socially and operationally relevant.

This thesis positions spatial data engineering as a human-centric integrative practice that
is vital to provide reliable and impactful digital agriculture systems. The transition from
data to wisdom is not fully automatic—it must be carefully engineered, validated, and
conteztualised.

6.3 Societal relevance

Digital agriculture is increasingly recognised as a key driver for transforming food sys-
tems toward sustainability, resilience, and inclusiveness (Bertoglio et al., 2021; Food and
Agriculture Organization of the United Nations (FAO), 2019). By integrating advanced
technologies such as remote sensing, the Internet of Things (IoT), big data analytics, ma-
chine learning, and artificial intelligence, digital agriculture allows for more precise, efficient,
and adaptive farming practices. These innovations facilitate optimal resource management,
early detection of crop stress, dynamic pest and disease control, and customised soil and
water management, thus contributing to increased productivity and reduced environmental
impacts. In addition, digital agriculture supports broader socioeconomic objectives by
enhancing farm profitability, allowing informed decision-making among smallholder farm-
ers, and fostering more equitable access to agricultural innovations. Leading international
organisations, including the Food and Agriculture Organisation (2022) and the World
Bank (2023), have highlighted the pivotal role of digital agriculture in addressing urgent
global challenges such as food security, adaptation to climate change, and sustainable rural
development. As such, its societal relevance is now firmly established in the academic,
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policy and practice domains, positioning it as a cornerstone of the sustainable development
efforts in agriculture.

Spatial data engineering forms the backbone of digital agriculture by providing the
means to collect, manage, and analyse geographically referenced data essential for, e.g.,
precision farming and decision support systems (Obi Reddy et al., 2023). Despite the
limited number of studies explicitly assessing its societal impacts, its foundational role
within digital agriculture allows for a logical extrapolation of its societal relevance. A
comparable situation exists in software engineering, where empirical studies have begun to
address human and societal aspects (Garousi et al., 2020; Storey et al., 2020). However,
much of the research in software engineering still predominantly emphasises technical
innovation, with societal dimensions often considered secondary or analysed only indirectly.
This parallel suggests that the difficulty of empirically capturing societal relevance is
not unique to spatial data engineering but reflects a broader characteristic of technical
disciplines undergoing digital transformation. However, despite these empirical limitations,
numerous practical applications already illustrate how spatial data engineering directly
addresses critical societal needs within agriculture. Two examples serve to highlight this
contribution.

First, spatial data engineering supports the next generation of farmers by mitigating the
effects of initially limited hands-on farming experience through advanced, data-driven
decision-support systems. The increasing reliance on spatial data-driven tools in agriculture
illustrates a direct societal relevance. As Bampasidou et al., 2024 highlight, the emerging
generation of farmers exhibits greater technological proficiency than previous cohorts,
particularly in using digital and data-intensive platforms. However, this generation
often lacks the experiential knowledge and historical agronomic context that traditionally
informed agricultural decision-making, a gap that is exacerbated by the uncertainties of
a changing climate. Spatial data engineering, by enabling the development of robust,
accessible, and context-rich decision-support systems, plays a crucial role in bridging this
knowledge gap, thus supporting informed, adaptive, and resilient farming practices for
future generations.

Second, it empowers smallholder farmers in low- and middle-income countries (LMICs) by
providing localised spatial information and accessible platforms, enabling more informed
and resilient agricultural practices. Through the development of user-friendly platforms and
the provision of localised spatial data sets, spatial data engineering enables smallholders to
access actionable information on critical aspects such as planting, irrigation scheduling, and
harvesting. By facilitating informed decision-making at the farm level, these technologies
contribute to improving productivity, resource efficiency, and resilience among some of the
most vulnerable agricultural communities worldwide (Ceccarelli et al., 2022; Food and
Agriculture Organization of the United Nations (FAO), 2019).
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While these examples demonstrate the positive societal contributions that spatial data
engineering can enable, they also highlight the importance of ensuring that the benefits
of digital agriculture are equitably distributed. Without proactive intervention, digital
agriculture risks becoming another sector dominated by large service-oriented economies
and their private organisations. Table 6.3 outlines some of the possible negative impacts
this could have.

Table 6.3: Risks of BigAgri and BigTech for digital agriculture

Risk ‘Why It’s a Problem? Example

Proprietary Al and  Farmers depend on single-platform Closed Al-driven tractors restrict access to repair tools,
digital lock-in ecosystems controlled by corporations. forcing farmers to buy services from a specific provider.
Data extraction Farmers generate valuable agronomic AgTech firms collect soil, yield, and weather data but
without benefit data, but Big Tech owns and profits from  don’t compensate farmers.

sharing it.

Unequal access and  Al-based solutions favour large industrial ~ Al-driven precision farming tools require expensive
high costs farms over smallholders. sensors, cloud processing, and high-speed internet.
Market Small AgTech startups get acquired by One or two large companies dominate digital seed
concentration and Big Agri, reducing competition. analytics.

fewer choices

Through concerted efforts by farmers, researchers, and policymakers, it is feasible to estab-
lish a modern Al-driven agriculture that is more equitable and sustainable. Wageningen
University & Research must play a crucial role in shaping the future of ethical Al in digital
agriculture and in bridging the digital divide by leading a farmer-centric, human-focused
AT transformation, beginning with the development of a robust spatial data engineering
foundation for digital agriculture through:

i. Collaborating and actively promoting the development and use of shared (lightweight)
semantics in agriculture and related domains.

ii. Contributing to and/or funding open source related work relevant for digital agricul-
ture to increase their survivability in niche markets.

iii. Developing open-source Al and spatial-aware models that benefit farmers.

iv. Building farmer-owned data governance systems to prevent Big Tech from monopo-
lising Al-driven farm insights.

v. Shaping global AI and digital agriculture policy in general to ensure fair, transparent,
and equitable adoption of Al

Spatial data engineering extends beyond agriculture to support broader societal objectives
by promoting economic development, job creation, and informed governance. Improved
agricultural productivity through spatial data-driven systems improves farm and agribusi-
ness profitability, boosting rural economies. The advancement and application of spatial
tools generate employment opportunities in the technology, data analysis, and advisory
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sectors. Furthermore, policymakers can leverage spatial data for land use planning, de-
signing targeted strategies, and ensuring compliance with sustainability standards. These
initiatives are in harmony with global efforts, including the Sustainable Development Goals
of the United Nations, which focus on zero hunger, sustainable production, and climate
action.

6.4 Future research

Looking ahead, the future of spatial data engineering for digital agriculture depends not
only on technological innovation but also on a deliberate and coordinated effort to improve
connectivity across the socio-technical ecosystem. This work identifies four interrelated
domains in which future research is especially critical: connecting data, connecting models,
connecting systems, and connecting researchers. Each of these dimensions addresses current
bottlenecks, ranging from fragmented datasets to isolated disciplinary practices, and
outlines pathways toward more integrated, scalable, and human-centric digital agriculture.
By advancing research in these areas, the digital agriculture community can better harness
the full potential of geospatial data, artificial intelligence, and participatory innovation to
support sustainable and equitable agricultural transitions.

6.4.1 Data: Enhancing interoperability and standardisation

A central challenge in the advancement of spatial data engineering for digital agriculture
lies in connecting heterogeneous data sources in a meaningful, consistent, and interoperable
manner. At present, data ecosystems in agriculture remain highly fragmented, with critical
obstacles including: (i) fragmentation of data sources across sectors and stakeholders;
(ii) mismatches in spatial and temporal resolution between datasets; and (iii) limited
capabilities for real-time integration of multi-source data streams.

To overcome these issues, future research must prioritise the development of frameworks
and tools that enable seamless data connectivity. Key directions include:

i. Global geospatial data standards for digital agriculture: Establishing open and
widely adopted standards for geospatial data formats and metadata, tailored for use
in digital agriculture, will enhance interoperability between platforms, projects, and
regions.

ii. Automated spatial-temporal harmonisation: Advanced methods are needed to recon-
cile data collected at different resolutions or frequencies. Automated harmonisation
techniques can improve consistency and facilitate integrated analyses across scales.

iii. Decentralised data processing through edge computing and federated learning: These
approaches allow data to be processed locally—on-farm or at the sensor level-while
preserving privacy and reducing bandwidth demands. They are especially important
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in empowering farmers to retain control over their data while contributing to broader
analytics.

iv. Al-driven feature extraction for geospatial analytics: Leveraging artificial intelligence
to automatically identify relevant features from diverse datasets (e.g., satellite
imagery, in-situ sensors, weather feeds) will support scalable, real-time modelling
and enhance the utility of spatial data for decision support.

6.4.2 Models: Advancing Al, geospatial analytics, and digital twins

As digital agriculture continues to evolve, the integration and advancement of analytical
models—particularly in geospatial and Al domains-remains a critical area for future research.
Despite substantial progress in both physics-based and data-driven modelling approaches,
several challenges persist that limit their full potential in real-world agricultural systems.
These include: (i) a lack of integration between mechanistic crop models and Al-based
geospatial models; (ii) limited operational deployment of real-time models for early warning
systems (e.g., pest outbreaks, extreme weather); and (iii) difficulties in model generalisation
due to the heterogeneity of landscapes, soils, and farming practices.

To address these limitations and move toward a more predictive, adaptive, and context-
aware modelling ecosystem, the following research priorities are identified:

i. Development of hybrid Al-physics models: Combining process-based crop simulation
models with deep learning techniques offers the potential to merge domain knowledge
with data-driven flexibility. These hybrid models could provide improved robustness
and scalability for precision agriculture applications.

ii. Self-adaptive (spatial-aware) models: Future models should be capable of learning
and dynamically adapting to changing environmental conditions, cropping systems,
and management practices, i.e. be more robust to data and concept drift. This
adaptability is essential to maintain relevance in the face of climate variability and
evolving agricultural trends.

iii. Al-based uncertainty quantification: Enhancing the transparency of the model
through the estimation and communication of uncertainties is critical to trust
and usability. New research is needed in applying probabilistic and ensemble Al
techniques to quantify uncertainty in geospatial forecasting and remote sensing-based
agricultural predictions.

iv. Geospatial Digital Twins for agriculture: Digital Twins-virtual replicas of real-world
agro-ecosystems—offer a promising framework for real-time simulation, monitoring,
and decision support. Research should explore scalable architectures for Digital
Twins that integrate sensor data, remote sensing, and models to simulate agricultural
dynamics in near real-time. The LTER-LIFE initiative might serve as an example.


https://lter-life.nl/en
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6.4.3 Systems: Scaling geospatial pipelines and cloud-Al integration

The operationalisation of spatial data engineering at scale requires robust system archi-
tectures that can efficiently manage and process vast volumes of geospatial data. As
digital agriculture increasingly relies on high-resolution imagery, sensor networks, and
Al-driven analytics, system-level challenges related to computational load, latency, and
energy efficiency are becoming more prominent. Current limitations include: (i) the high
computational cost of processing complex geospatial datasets (e.g., hyper-spectral imaging,
lidar); (ii) insufficient capabilities for real-time Al inference in edge and cloud computing
environments; and (iii) the energy-intensive nature of training and deploying deep learning
models for geospatial applications.

To overcome these bottlenecks and ensure scalable, efficient, and sustainable data infras-
tructures, future research should focus on the following directions:

i. Serverless geospatial computing: Using serverless architectures can facilitate cost-
effective on-demand processing of agricultural data. This approach eliminates the
need for continuous infrastructure provisioning, making geospatial analytics more
accessible and scalable for diverse agricultural stakeholders.

ii. Al-powered edge computing: Deploying Al models directly on edge devices—such as
IoT-enabled farm sensors—can significantly reduce data transfer latency and enable
real-time responses to field conditions. This decentralised approach also supports
greater data privacy and resilience in network-constrained environments.

iii. Energy-efficient geospatial AI: The environmental footprint of large-scale geospatial
AT must be addressed through innovations such as neuromorphic computing, which
mimics biological neural processing, and emerging paradigms like quantum comput-
ing (Pook et al., 2025). These approaches promise to reduce energy demands while
maintaining high analytical performance.

iv. Decentralised geospatial infrastructure: Future systems should explore peer-to-peer
data exchange networks that allow decentralised sharing and processing of agricultural
data. This model improves resilience, reduces central bottlenecks, and empowers
local actors to retain control over their data assets while contributing to broader
knowledge ecosystems.

6.4.4 Researchers: Strengthening collaboration

The transformative potential of spatial data engineering in digital agriculture can only
be fully realised through effective collaboration across disciplinary, institutional, and
geographic boundaries. However, several critical barriers continue to limit this collaboration.
These include: (i) a lack of structured interdisciplinary engagement among agronomists,
data engineers, and Al researchers; (ii) unequal access to data and digital tools, particularly
for smallholder farmers who often remain excluded from the benefits of advanced geospatial
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analytics; and (iii) growing ethical concerns around the use of Al in agriculture, such as
algorithmic bias in soil fertility models or decision support systems that do not reflect
local farming realities.

To address these challenges and foster inclusive, responsible innovation in digital agriculture,
future research should prioritise the following areas:

i. Open-access geospatial data hubs: Shared platforms for storing, accessing, and
exchanging agricultural geospatial data can lower barriers to entry, encourage col-
laborative innovation, and support transparency. These centres should prioritise
accessibility, metadata quality, and interoperability to serve both researchers and
practitioners.

ii. Co-designed Al-based decision support systems: Active participation of farmers in
the design and development of Al tools is essential to ensure usability, relevance,
and trust. Co-design processes that bring together farmers, agronomists, and data
scientists can help tailor digital tools to real-world agricultural needs and contexts.

iii. Ethical AI frameworks for agriculture: As AI becomes more embedded in geospatial
decision-making, research must address fairness, accountability, and transparency.
This includes ensuring that models are interpretable, avoiding unintended biases,
and establishing governance structures that align with local values and regulations.

iv. Participatory research methodologies: Engaging local farmers, especially those
from under-represented or resource-constrained communities, in the research and
innovation process promotes both equity and adoption. Participatory approaches
can help validate models against lived experience, surface tacit knowledge, and build
stronger trust in digital systems.

6.4.5 Connecting. ..

Taken together, these four research avenues underscore a unifying principle of this thesis:
that spatial data engineering must function as a connective tissue-linking not only digital
assets and computational tools, but also disciplinary knowledge, human expertise, and on-
the-ground realities. Connecting data ensures interoperability and coherence; connecting
models brings together explanatory and predictive power; connecting systems enables
scalable and energy-efficient analytics; and connecting researchers promotes inclusive,
ethical innovation. Future efforts that embrace this integrative and collaborative ethos
will be best positioned to support trustworthy, context-aware, and widely adopted digital
solutions—ultimately contributing to resilient agricultural systems in an increasingly data-
driven world.
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6.5 Final thoughts

In The Wizard and the Prophet, Mann, 2018 contrasts two enduring paradigms for address-
ing environmental and agricultural challenges: one advocating technological innovation to
expand resources (the Wizard) and the other emphasising ecological limits and the need
for restraint (the Prophet). As a closing thought, here is how spatial data engineering can
play a role in both of these pathways.

In a technocratic scenario, Al and machine learning have become deeply embedded in
modern agricultural decision making. Lightweight semantic structures are streamlined
to support real-time data fusion, predictive modelling, and cross-domain systems (e.g.,
integrating agri-food, climate, and economic models). Spatial data plays a central role
in model calibration, model training, site-specific advisory systems, and adaptive pol-
icy feedback loops. Here, knowledge graphs and ontological metadata act as semantic
glue linking data, models, and decision systems into coherent, connected, and dynamic
infrastructures.

In a post-tech scenario, there is a societal shift away from large-scale Al, toward agroecologi-
cal sovereignty and low-tech resilience. Spatial data infrastructures serve local communities,
focussing on traditional knowledge, seed sovereignty, and participatory mapping. Seman-
tics remain relevant, not for automation, but for documenting and sharing place-based
knowledge using controlled vocabularies and open linked data. Farmer-centric approaches,
developed and tested in close collaboration, where they keep full control over their data
(e.g., it does not leave the farm), illustrate this trend toward decentralised, transparent,
and human-centric spatial data use.

Figure 6.1: Autonomous farm robots, as envisioned in 2025 (Suwin66, 2025)

What unites both scenarios is the recognition that better connections between data, models,
systems, and researchers are essential and that spatial data engineering will continue to
play an important foundational role in this for digital agriculture.
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