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Abstract

Xue, Y. (2026). Envisage phenotyping: integrating artificial intelligence in image analysis for
selective breeding in aquaculture. PhD thesis, Wageningen University, the Netherlands.

Automated phenotyping is a rapidly evolving interdisciplinary field focused on high-
throughput, non-invasive phenotype collection to support breeding and
management decisions in aquaculture. Current development primarily targets
production traits, leaving a gap in traits linked with metabolism, health and
physiological well-being. These traits are complex and difficult to measure, but
advancements in Al-based prediction models combined with imaging technologies
provide opportunities. This thesis used fish image data collected in breeding
facilities, to broaden the scope of predicted phenotypes that contribute to the
breeding goals for these species.

For production traits, a structural framework was introduced to determine optimal
image-based prediction strategies, demonstrated in gilthead seabream (Sparus
aurata). The framework captures both simple and high-dimensional relationships
between images and target traits. Interpretation of the model was provided by
visualizing predictive imaginal features.

To dissect the genetic basis of swimming performance in rainbow trout
(Oncorhynchus mykiss), a novel workflow identified accessible and heritable
morphological indicators. Among fish of the same weight, relatively larger and
broader epaxial muscles, larger heads, and smaller caudal fins were associated with
poorer swimming performance. This study illustrates how images and AI can be
interpreted physiologically using Explainable Al

Individual re-identification is essential for longitudinal traits. Although image-based
re-identification is promising, it remains infeasible for Atlantic salmon (Salmo
salar) under realistic aquaculture conditions due to variation in the phenotyping
environment, especially lighting, and limited phenotypic stability. In search for
solutions, a review was conducted on the current state of vision-based re-
identification in aquaculture. Limitations in data acquisition, data analysis, and
practical implementation were identified. Without high-tech data acquisition, multi-
dimensional data quality frameworks, and benchmarking methods, vision-based re-
identification is found too immature to replace PIT tags. Future progress depends on
dataset standardization, methodological refinement, and strong alignment with
aquaculture systems.

The objectivity of qualitative phenotypic measurements using images was improved
and applied to body shape in gilthead seabream (Sparus aurata). Two moderately
heritable traits, “Distance to the Best” (DtB) and “Distance to the Worst” (DtW), were
derived for the deviation of each fish from an ideal or undesirable shape. This



approach is objective, automated, visually intuitive, and flexible for updating target
shapes.

This thesis emphasizes that successful integration of Al and image analysis requires
an understanding of the entire breeding program, not just phenotypic data collection
and analysis. This thesis contributes advanced phenotyping and decision-support Al
tools to the ongoing integration of emerging Al trends to improve animal production,
health, and welfare.
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1. General introduction



Chapter 1

The observation of animals has always been a remarkable source of inspiration for
humanity. One of the most classic debates in Taoism emerged from observing fish in
a river:

Zhuangzi and Huizi were crossing the Hao River by the dam. Zhuangzi said:
See how free the fishes leap and dart: that is their happiness. Huizi replied:
Since you are not a fish, how do you know what makes fishes happy?

Zhuangzi said: Since you are not I, how can you possibly know that I do
not know what makes fishes happy? Huizi argued: If I, not being you,
cannot know what you know, it follows that you, not being a fish, cannot
know what they know.

Zhuangzi said: Let us get back to the original question. From the terms of
your question, you evidently know I know what makes fishes happy. I know
the joy of fishes in the river through my own joy, as I go walking along the
same river.

-- Zhuangzi, Chapter 17, Autumn Floods (476—221 BC), based on
translation by Merton (1969)

This debate highlights the consciousness of animals and whether it can be perceived
by humans. While Zhuangzi’s speculation on the happiness of fish reflects a
subjective human perspective, it stems from a momentary observation of animals in
their natural environment.

Over thousands of years, through domestication and cohabitation, more
comprehensive observations of animals have been documented, often accompanied
by philosophical insights. Nietzsche, for example, reflected on the contentment of
animals through their behavioral pattern:

Observe the herd which is razing beside you. It does not know what
yesterday or today is. It springs around, eats, rests, digests, jumps up
again, and so from morning to night and from day to day, with its likes
and dislikes closely tied to the peg of the moment, and thus neither
melancholy nor weary ... One day the man demands of the beast: "Why do
you not talk to me about your happiness and only gaze at me?" The beast
wants to answer, too, and say: "That comes about because I always
immediately forget what I wanted to say."

Nietzsche interpreted the forgetfulness of cattle (the beast) as a blessing, enabling
them to find happiness in the repetition of daily life. As Nietzsche’s attempt of verbal
communication with the herd failed, he could only rely on his own reasoning to infer
the herd’s inconceivable experiences.

But by then the beast has already forgotten this reply and remains silent,
so that the man wonders on once more (Nietzsche, 1874).
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Despite their seeming unknowability, the thoughts and feelings of animals have long
been a topic of curiosity and importance. Animal sciences germinated and flourished,
and humans grew into the role of caretakers, responsible for ensuring the welfare of
farmed animals. This responsibility includes fulfilling animals’ needs by providing
conditions that allow them to thrive in optimal habitats. Understanding and
nurturing animals requires scientific evidence that reflects their well-being, shifting
from subjective human projections of emotion and experience to objective,
observable indicators related to animals’ behaviors and health.

1.1 Phenotyping

The word phenotype originates from the Ancient Greek @aivw (to appear, show) and
Tomog (mark, type), referring to the observable and measurable characteristics of an
organism. Phenotyping, therefore, is to observe and measure such exhibited
characteristics. Scientifically, phenotyping is the assessment of expressed traits,
influenced by many factors such as genetics, the environment, and the interaction
between an animal’s nature and nurture.

Phenotyping has a long history in animal breeding and management. As early as
1859, Darwin described the phenotyping process in the selection of merino sheep:

the sheep are placed on a table and are studied, like a picture by a
connoisseur; this is done three times at intervals of months, and the sheep
are each time marked and classed, so that the very best may ultimately be
selected for breeding (Darwin, 1859).

Traditionally, phenotyping was carried out by experts (connoisseurs) who manually
measured and recorded traits (Fig. 1.1, left). In dairy cattle, for example, common
recorded phenotypes include morphological traits such as body weight and height;
production traits such as milk yield and fertility; behavioral traits such as lameness;
welfare traits such as mortality; and color pattern for individual identification. These
traits inform decisions on breeding selection, herd management, and veterinary
interventions (Fig. 1.1, right).
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Figure 1.1 Left: A cow was extensively inspected and assessed by the inspector for studbook
registration, 1955 (de la Bruhéze, Lintsen, Rip, & Schot, 2000). Right: Calf sketches from the breeding
register, including the spot pattern of both sides of a calf, together with data such as date of birth,
parents, owner, breed, health condition. The sketch was used as the passport of the calf to prevent and
trace the outbreak of diseases. Source:

https://www.deverhalenvangroningen.nl/alle-verhalen/er-

tbe-bewij & https://www.estersheem.nl

The relative importance of traits has often been tied to economic returns. Historically,
traits with clear economic benefits were prioritized, such as milk yield in dairy cattle,

egg number in laying hens, carcass weight in pigs, and fillet yield in fish. However, a

narrow focus on maximizing production has sometimes led to undesirable

consequences (D'Eath, et al., 2010; Rauw, 1998), urging phenotyping to expand its

scope to include more health and welfare-related traits (Hu, Do, Gray, & Miar, 2020;

Weimer, Mauromoustakos, Karcher, & Erasmus, 2020).

Assessing animal wellbeing is rarely a one-time task. Phenotyping is often repeated
throughout an animal’s lifetime to monitor changes in traits and ensure accurate
assessments. While production traits are straightforward to acquire, animals
nowadays are evaluated for more complex traits. For instance, measurements on
physiology and metabolism can be invasive or post slaughter, such as white blood
cell count in chicken (Ribeiro, et al., 2024), feed digestion via ruminal cannulation
in cattle (Castillo & Hernindez, 2021), and visceral lipid weight in fish (Kause,
Paananen, Ritola, & Koskinen, 2007). Such phenotyping requires a high level of
expertise in animal health and welfare, while repeated assessments increase the
demand for manual labor. These challenges highlight the urgent need for more
advanced and innovative phenotyping approaches (Neethirajan & Kemp, 2021).

1.2 Automated phenotyping

The development of automatic and robotic systems has enabled high-throughput
data collection in livestock and aquaculture, generating large volumes of objective
information on animal productivity and behaviors. These datasets are used to define
and derive traits relevant for selective breeding, production, and management
decisions. Such process is referred to as automated phenotyping.

For example, the collection of daily, individual milking records in dairy cattle has
been made possible through the widespread adoption of automated milking systems,
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with the main aim of monitoring milk production for management. With advances
in statistical methods, these production and behavioral data can now generate
additional insights, such as earlier detection of diseases, especially mastitis,
monitoring of physical activity (Ozella, Brotto Rebuli, Forte, & Giacobini, 2023), and
analysis of social dynamic of dairy cattle (Fadul-Pacheco, Liou, Reinemann, &
Cabrera, 2021). Similarly, automated feeders in pig pens can record daily visits and
feed intake, enabling improved estimations of feed efficiency (Garrido-Izard, Correa,
Requejo, Villarroel, & Diezma, 2022) and optimization of feeding strategies (Marcon,
Brossard, & Quiniou, 2015).

1.2.1 Data collection

In automatic systems, high-throughput data is primarily collected through sensors
and cameras. Sensors are commonly employed to monitor environmental conditions
in animal facilities, such as ammonia emissions in poultry houses and methane
emission in cattle barns (Li, et al., 2023; Aldhafeeri, Tran, Vrolyk, Pope, & Fowler,
2020). On top of that, for individual-level measurements in livestock, sensors can be
implemented as wearable devices to minimize disruption to the animals’ daily
activities. In aquaculture, sensors are typically used as implants to monitor complex
traits, including heart rate, respiratory frequency, and other metabolic or health
indicators (Abbink, Palstra, Agbeti, Lembo, & Komen, 2022; Martos-Sitcha, et al.,
2019; Wu, et al., 2015). However, the application of sensors on individual level is
often associated with high costs and maintenance, with many mainly suited for
research and development purposes (Ellen, et al., 2019). Wearable sensors are also
less suitable for small animals with high density, such as poultry compared to cattle.
And for fish, the implantation and retrieval of sensors require invasive and often
delicate procedures, which can limit their practicality.

In contrast, cameras provide a non-invasive, remote, and cost-effective approach of
data collection that is broadly applicable across species, making them particularly
attractive for both livestock and aquaculture systems.

Image data captured by cameras can take various forms, each offering unique
advantages for phenotyping application. Standard RGB images consist of three-color
channels (Red, Green, Blue) with the final color of each pixel defined by the intensity
of these contributing colors. Videos are continuous sequences of images, allowing
the capture of changes and movements. Three-dimensional (3D) images contain
pixel-wise depth measurements that capture the volume of the object (Fig. 1.2).
Spectral imaging extends beyond the visible RGB channels into other regions of the
electromagnetic spectrum to reveal details that are invisible to the human eye.

15
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Figure 1.2 Different forms of rainbow trout (Oncorhynchus mykiss) images. Left: Depth image, where
each pixel contains distance from the camera to the fish. Middle: RGB image, a visual representation of
the fish. Right: 3D hologram constructed with depth and RGB images.

To process high-throughput data, automated phenotyping also requires advanced
data analysis and statistical methods. The development of artificial intelligence (AI)
has provided powerful analytical tools to extract meaningful trait information from
large and complex datasets (Pérez-Enciso & Steibel, 2021).

1.2.2 Machine learning

A key component of artificial intelligence applied in automated phenotyping is
machine learning, including neural networks and deep learning. There are several
learning paradigms, with the most common being supervised learning, unsupervised
learning and transfer learning (Mahadevkar, et al., 2022).

Supervised learning involves training algorithms on labelled datasets, where the
desired output is predefined and annotated by humans. Once trained, these
algorithms can automatically determine the expected outputs for new, unseen data.
Supervised learning is the most widely applied in animal research, with examples
including tracking and behavior detection (Ariza-Sentis, Vélez, Martinez-Pefia, Baja,
& Valente, 2024; Liu, Li, Liu, Li, & Yue, 2024).

In contrast, unsupervised learning is particularly valuable in uncovering patterns in
large and complex datasets without annotation. In animal studies, unsupervised
learning is commonly applied in species classification (Guerrero, Bedoya, Lopez,
Daza, & Isaza, 2023), individual identification (Hossain, et al., 2022), and behavior
patterns identification (McVey, Hsieh, Manriquez, Pinedo, & Horback, 2023),
although it may not outperform supervised methods in similar tasks (Manohar,
Kumar, & Kumar, 2016).

Transfer learning leverages the knowledge gained from one task to improve
performance on another. It is becoming increasingly popular in animal studies,
where dedicated datasets are often scarce, but large datasets in other fields are
abundant and publicly available. For instance, a model trained to recognize human
faces can transfer its understanding of basic facial structures, such as the relative
positions of eyes, nose and mouth, to a task of identifying individual cows (Ruchay,
Kolpakov, Guo, & Pezzuolo, 2024).

The advancement of machine learning provides innovative solutions in gaining
detailed knowledge of individual animals, with an increasing focus on their health
and welfare (Vinci, 2025; Garcia, Aguilar, Toro, Pinto, & Rodriguez, 2020). These
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developments have greatly contributed to the growth of precision farming, an
interdisciplinary field that uses automated phenotyping to support data-driven
decision-making in animal breeding and management (Morrone, Dimauro,
Gambella, & Cappai, 2022; Norton, Chen, Larsen, & Berckmans, 2019).

1.2.3 Image analysis and computer vision
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Figure 1.3 Illustration of hierarchy of process. Left: An 18x12 input image. Right: each pixel value
of the input image. Low level process will show each pixel value in the image. Middle level process will
output the coordinate of the black pixel as contour detection. High level process can recognize that the
shape resembles a fish.

As mentioned earlier, image data plays a crucial role in precision farming, and
artificial intelligence methods applied to image analysis are often referred to as
computer vision. In practice, there are no clear boundaries between image
processing, image analysis, and computer vision. Computer vision explicitly
incorporates artificial intelligence and focuses on enabling machines to analyze,
interpret, and understand visual information. Similarly, image analysis and image
processing can also benefit from artificial intelligence to improve performance
(Zhang & Dahu, 2019). Overall, computer vision, image analysis and image
processing are interconnected yet hierarchical, organized by the level of processing
involved and the increasing complexity of their outputs (Fig. 1.4) (Gonzales & Wintz,

1987).
This thesis emphasizes the involvement of artificial intelligence (AI) in image-based
automated phenotyping, focusing on the extraction and interpretation of complex

image features to produce traits and indicators relevant for animal breeding, through
methodologies that cover both image analysis and computer vision (Fig. 1.4).
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Complexity of output
A

» Operations using Al to interpret and understand visual info
* Output: Cognitive functions such as prediction and identification

« Operations such as object detection, and segmentation
« Output: image attributes, such as edges, contours, object identity and description
(length, height, weight, colour...)

Low >>> High

~ Image processing
» Primitive operations such as contrast enhancement, noise reduction, etc.
* Output: image

» Level of processing
Low >>> High

Figure 1.4 The relationship between image processing, image analysis and computer vision, with the
scope of this thesis.

1.2.4 Phenotyping and computer vision in animal breeding

Animal breeding plays a crucial role in advancing animal production systems by
exploiting genetic merit and managing genetic diversity through structured breeding
programs (Granados Chapatte, 2021). Automated phenotyping has further
contributed to this landscape by enabling the collection of high-throughput,
objective data on individual animals.

Definition of Definition of
production system breeding goal

of this thesis

Evaluation

Collection of information ,  Automated phenotyping
I Breeding program » Phenotypes - - Breeding goal traits
+ Family relationships + Indicator traits
Dissemination * Genotypes
\ Selection Determining J

and mating selection criteria

Figure 1.5 The structure of a breeding program (Oldenbroek & Calus, 2024) and the main
contribution of automated phenotyping highlighted with yellow.

Automated phenotyping contributes to measuring both breeding goal traits and
indicator traits in the breeding program (Fig. 1.5). It enables large-scale trait
measurements, often through non-invasive, high-throughput methods (Difford,
Boison, Khaw, & Gjerde, 2020). This is particularly beneficial for production traits
such as body weight and carcass weight, opening the possibility to obtain very high
selection intensities. Additionally, certain traits are only measurable invasively or
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post-slaughter. Automated phenotyping can provide non-invasive, repeated
measurements of these traits directly on the selection candidates (Ahmad, et al.,
2025; Rezende, Perazza, Freitas, Hallerman, & Hilsdorf, 2023; Elalfy, et al., 2021).

Another major contribution of automated phenotyping lies in acquiring indicator
traits, especially for complex breeding goals related to animal health and welfare.
Recent technologies, such as pose estimation, can decompose behavior into fine-
scale body movements by tracking joint positions, offering new insights into activity
patterns and stress responses (Fodor, et al., 2023; Jiang, Lee, Teotia, & Ostadabbas,
2022). Furthermore, automated phenotyping can help recognizing and tracking
individuals over time (Meng, et al., 2025) to potentially facilitate the collection of
longitudinal data, such as growth curves. Automated phenotyping helps incorporate
indicator traits with high genetic correlations to breeding goals to accelerate genetic
gain (Billah, et al., 2025; Brito, et al., 2020)

1.3 Image-based automated phenotyping in aqua breeding

While livestock and their products remain the primary source of animal-based
protein for the global population, aquaculture is the fastest-growing food production
sector (Mair, Halwart, Derun, & Costa-Pierce, 2023). Worldwide, aquatic foods
provide 15% of animal proteins (FAO, 2025). They account for at least 20% of the
average per capita intake of animal protein for 3.2 billion people (Fig. 1.6), and are
an essential source of key nutrients, including omega-3 fatty acids, minerals, and
vitamins (FAO, 2024; Boyd, McNevin, & Davis, 2022).
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Figure 1.6 Aquaculture production & fisheries of aquatic animals: utilization and apparent
consumption (FAO, 2025).
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Genetic improvement is one of the important reasons for the growth of aquaculture
production (Scanes, 2018). Still, only a small proportion of aquaculture production
is based on genetically improved stocks (Gulzari B. , 2023; Gjedrem, Robinson, &
Rye, 2012) and relatively few distinct strains or varieties are available per species in
aquaculture compared to that of livestock (FAO, 2025), leaving considerable room
for improvement by means of selective breeding (Boudry, et al., 2021).

An emerging challenge in aqua breeding and genetics is to safeguard production
despite rapid climate change (Esposito, Carputo, Cardi, & Tripodi, 2019). This
requires breeding programs to boost production by optimizing selective breeding for
performance under variable conditions. Most fish breeding programs target
economic production traits such as growth rate (GR) using direct measurements.
However, body composition is an important component of GR and a promising
predictor trait for feed efficiency (Knap & Kause, 2018). Body composition includes
protein and fat content (Breck, 2014), typically measured invasively, and carcass
traits such as carcass weight, offal weight, fillet yield, and abdominal fat measured
post-slaughter (Vallecillos, et al., 2021). With increasing requirements to improve
wellbeing, breeding programs must incorporate traits related to health and
physiological wellbeing (Seibel, Weirup, & Schulz, 2020). Welfare indicators include
stress resilience and susceptibility to diseases (Barreto, Rey Planellas, Yang, Phillips,
& Descovich, 2022), which are measurable, but only invasively and lag the real time
development of the animal. Future data collection strategies should target more
direct measurements of complex phenotypes, such as disease resistance, but at the
same time societal pressures make collecting such data more controversial. Such
challenges can be answered with advancement in automated phenotyping (Mandal
& Ghosh, 2024; Wang, et al., 2021).

To date, automated phenotyping in aquaculture has targeted image analysis for
species identification (Miyazono & Saitoh, 2017), physical parameters and fillet
quality. For instance, automated phenotyping can replace labor-intensive
measurements such as body weights and other production parameters such as body
length, width, and dimensions of body areas (Prchal, et al., 2020; Xue, 2019; Al-
Jubouri, Al-Nuaimy, Al-Taee, & Young, 2017), and enable predictions for traits on
whole fish that are otherwise measured invasively, such as fillet yield (Gulzari B. ,
2023; Grassi, Casiraghi, & Alamprese, 2018), carcass yield (Vandeputte, et al., 2017)
and feed intake (Difford, et al., 2023).

Challenges arise when extending the concept of precision farming to aquaculture
(Fore & Alver, 2023), as the biology and housing systems of aquaculture species
differ from those of terrestrial livestock. Breeding programs in aquaculture typically
involve larger numbers of selection candidates than livestock systems, creating
difficulties for both individual and group phenotyping. Furthermore, the unique
biology and aquatic environments of fish result in distinct metabolism and behavior,
which require alternative approaches for defining health and welfare indicators
compared to those for terrestrial livestock species such as ruminants (cattle, sheep,
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and goats) (Tzanidakis, Tzamaloukas, Simitzis, & Panagakis, 2023; Groher,
Heitkdmper, & Umstitter, 2020) and non-ruminants (broilers and laying hens)
(Olejnik, Popiela, & Opalinski, 2022; Li, Ren, Li, & Zeng, 2020). Because fish are
housed underwater, they are less accessible for direct observation by humans and
often require more intensive handling during phenotyping. These factors pose
unique challenges and opportunities for image-based automated phenotyping in
aqua breeding, to develop tailored approaches supported by advancements in
artificial intelligence.

1.4 Aim and overview of this thesis

In this thesis I study the integration of artificial intelligence in image-based
automated phenotyping aimed at selective breeding in aquaculture. Image data was
used that was collected on three common aquacultural species: gilthead seabream
(Sparus aurata), Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus
mykiss). These fish were selection candidates with pedigree information. All image
data collection took place in breeding facilities.

Definition of

ee — .
breeding goal Image-based automated phenotyping for aqua breeding
* Breeding goal traits
* Non-invasive prediction (Chapter 2)
Collection of information + Complex indicator traits break-down
Breeding program ° Phenotypes * Morphological indicators (Chapter 3)

+ Family relationships

* Novel indicators (Chapter 6)
* Genotypes

* Longitudinal traits
¢ Individual identification (Chapter 4)
Determining * Repeated phenotyping (Chapter 5)
selection criteria

Figure 1.7 The structure of all chapters in this thesis.

To extract relevant information from image data for breeding applications, the
objectives of automated phenotyping can be divided according to the types of traits
it aims to deliver (Fig. 1.7). For some breeding goal traits, especially those related to
production, images can be used as non-invasive alternatives for manual
measurements. Chapter 2 introduces a structural framework, including both
numerical methods and deep learning, for optimizing the use of image data in
predicting invasive production traits, illustrated through case studies on seabream.

As breeding goals become more complex, such as improving health and welfare,
indicator traits are often employed by measuring aspects of metabolism and
physiology. However, these indicators can also be challenging to measure. Chapter
3 addresses this issue with an Al-driven workflow, to identify accessible and
heritable morphological indicators that account for a proportion of the variance in
metabolic traits, with a specific focus on swimming performance in rainbow trout.
Defining indicator traits often involves manual annotation, and many of these traits
are recorded categorically using scales derived from expert judgment. In Chapter 6
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I use shape analysis in seabream as an example to propose an automated, image-
based transformation to increase the resolution of shape-related traits, and to
improve the genetic correlation assessment between shape and production trait such
as body weight.

Finally, breeding value estimation benefits greatly from repeated measurements,
and certain traits are longitudinal. Chapter 4 explores the potential of image-based
individual identification for tracking animals over time within breeding programs,
while Chapter 5 critically reviews previous research on re-identification. Based on
existing research, I identify key challenges and propose an aquaculture-centered
approach to guide future studies by improving data acquisition, enhancing data
analysis, and emphasizing practical implementation.

The general discussion (Chapter 7) synthesizes all results and discussions of this
thesis, including the challenges identified and the solutions proposed. In addition,
the experience and knowledge gained from this work are examined both within the
context of aquaculture and from the broader perspective of livestock systems.
Together, these insights offer a vision for the future integration of image-based
automated phenotyping with artificial intelligence in animal breeding.
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Chapter 2

Abstract

Accurate measurements of breeding traits on individuals are critical in aquaculture
for obtaining breeding values and tracking the progress of the breeding program.
Modern breeding programs prioritize not only production traits, but also complex
traits related to production, product quality, body composition, disease resistance,
and fish health, such as slaughter traits. Slaughter traits can be selected indirectly
and incorporated into breeding programs. Indirect selection is cost-effective, but
there is often little genetic correlation between measured and target traits. Accurate
phenotypic prediction of the target traits using modern phenotyping technology can
be game-changing in indirect selection. This paper proposes an analytical framework
for predicting slaughter traits using images. The framework demonstrated that using
images in addition to body weight improved fat percentage prediction accuracy from
0.4 to 0.7 when compared to a model that only used body weight and its numerical
derivations. The framework also allowed for the interpretation of the prediction by
providing imaginal features. In the case study, the dorsal side, the upper edge of the
pectoral fin, and operculum edge were discovered to be the three regions on
seabream that have properties that are negatively correlated with fillet fat
percentage. The framework showed that both body weight and visceral weight are
highly correlated with total fish body area. The framework also revealed that the
lower edge of the pectoral fin, operculum edge, and anal fin are the regions with
properties that explain variation in the visceral percentage. Future research will be
required to segment and quantify each predictive imaginal feature to calculate its
heritability. The framework can potentially predict other harvest, post-slaughter,
and metabolic traits for aquacultural study.

Key words: Novel phenotyping; Machine vision; Non-invasive prediction; multi-
input framework; Machine learning

24



Analytical framework for production traits prediction

2.1 Introduction

Accurate phenotyping is essential for selective breeding to be successful (Gjedrem &
Robinson, 2014). Different traits, however, necessitate different phenotyping
methods (Fu & Yuna, 2022). In the current practice, fish has to be sacrificed to
determine a particular set of traits. These are primarily quality traits such as fillet
yield and visceral weight (Gjedrem T. , 1997). Quality traits, as well as appearance
(Salerno, Berlino, Mangano, & Sara, 2021; Colihueque & Araneda, 2014; Violle, et al.,
2007), metabolic (Metcalfe, 2016) and behavioral (Carter, Feeney, Marshall,
Cowlishaw, & Heinsohn, 2013) traits, are regarded as complex because they involve
many genetic and environmental factors, and their interactions (Gjedrem &
Robinson, 2014). Direct measurements of these traits are typically invasive and
stressful for fish. Stressful practices may have a negative impact on both product
quality and animal welfare (Poli, Parisi, Scappini, & Zampacavallo, 2005).
Phenotyping methods should accommodate the increasing diversity of traits
emphasized by modern aquaculture breeding programs.

Sibling selection and indirect selection can be used in breeding programs to integrate
traits that are invasive or difficult to measure on selection candidates. Siblings are
used to provide data to estimate breeding values for the selected candidates on
slaughter and survival traits (Gjedrem T. , 2010). Sibling selection is often combined
with genomic selection (GS) to include the within-family genetic variation. However,
the implementation of GS also requires large-scale phenotyping which can be very
expensive for some species in aquaculture. Indirect selection, on the other hand,
selects on correlated traits to improve the traits of interest. These correlated traits
can be measured on the selection of candidates and can be used as predictors for the
target traits. Although introduced a long time ago (Eknath & Doyle, 1985; Doyle,
Singholka, & New, 1983), the indirect selection is not favored by breeders due to the
typically low genetic correlations between the predictor and target traits. However,
the strength of the genetic correlation can be improved by choosing a more
appropriate phenotype as the predictor traits (Gulzari, Mencarelli, Roozeboom,
Komen, & Bastiaansen, 2022; Kause, Paananen, Ritola, & Koskinen, 2007). The
success of a cost-effective, indirect selection strategy, therefore, depends on the
accuracy of the phenotypic prediction of the target traits using the predictor traits.

Emerging technologies enable advanced, accurate and automated phenotyping (Yue
& Shen, 2022). For instance, computer vision and sensors allow high-throughput,
non-invasive data collection on live fish (Saeed, Feng, Wang, Zhang, & Fu, 2022;
Yang, et al., 2021; Saberioon, Gholizadeh, Cisar, Pautsina, & Urban, 2017). Based on
the data collected, phenotypic prediction models are established using machine
learning (ML) and deep learning (DL) approaches, targeting traits like body weight
and carcass weight (Yang, et al., 2021; Fernandes, et al., 2020). Considering the
success of large-scale phenotyping in plants (Yang, et al., 2020), there is a huge
potential for the use of computer vision and machine learning techniques in
aquaculture. The new phenotyping tool is expected to make it possible to evaluate
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morphology and physiology across entire populations and throughout an
individual’s development. Slaughter traits are frequently used in practice to assess
morphology and physiology. Accurate predictions of slaughter traits based on non-
invasive traits can thus allow for individual, non-destructive, and repeated
morphological and physiological assessments (Ventura, e Silva, Yahez, & Brito,
2020). This study proposes an analytical framework for predicting slaughter traits
using images. To best demonstrate the use of the framework, we predict three
example traits: slaughter traits, fat percentage of the fillet, visceral weight, and
visceral percentage of the fish. With the framework, we develop predictive models
for slaughter traits by combining images and other non-invasive measurements. The
framework can also extract specific imaginal features that contribute to the
predictions, allowing for a better understanding of how such predictions work.

2.2 Materials and methods

The main contribution of this study is to propose an analytical framework to
phenotype traits of interest by prediction. Once the prediction model has been
established, it can be used for future phenotyping of the same trait.

2.2.1 Data preparation

To build a prediction model, the measured traits are divided into two categories:
predictor trait(s) and target trait. Predictor traits, such as body weight, are acquired
via non-invasive measurements. Images are also collected non-invasively and are
listed as a separate input in the framework. The target trait is the trait of interest for
prediction, mainly slaughter traits depending on the goal of the application.
Predictor and target traits can both be categorical or continuous. The framework can
only accept one target trait but multiple predictor traits.

Exploratory data analysis (EDA) is not included as a part of the framework but is a
critical step in data preparation. Some of the framework’s analytical methods are
sensitive to outliers. When combined with domain knowledge, EDA can help identify
and remove outliers caused by measurement errors during data collection.
Descriptive statistics such as histograms and scatter plots were used and presented
in this study.

After EDA and removal of outliers, the data is divided into three sets: training,
validation, and test. Training and validation sets are combined into a single large
training set when cross-validation is used. The three data sets are divided in a 3:1:1
ratio and used by the different framework sections (Fig. 2.1). Training and validation
sets are used repeatedly, while the test set is used only once per method in model
comparison, feature extraction, and visualization.
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Figure 2.1 Analytical framework of traits prediction. To generate the best prediction model, data was
processed in the order of training, validation, and testing. Each section uses a unique subset of the
data, starting from the bottom of the framework. Three methods are included for training and
validation. Linear regression and multi-layer perceptron both require only numeric inputs. Images are
required for the neural network. The neural network also facilitates feature extraction and visualization
once the prediction model is established for testing.

2.2.2 Overview of framework

Figure 2.1 presents the architecture of the framework.

Analytical methods

The framework includes three analytical methods: linear regression (LR), multi-
layer perceptron (MLP), and neural network (NN). Each method generates a model
that captures a different level of relationship that underlies the predictors and target
trait.

Numeric models

Two of the three analytical methods, LR and MLP, requires only numeric inputs. LR
assumes a linear relationship between the predictors and the target trait. In
application, LR is combined with the K-fold cross-validation to avoid overfitting. The
value of K is chosen from a range of 2 to 50 based on the highest adjusted coefficient
of determination (adjusted R?) on the validation set.

2 20—
i = ¥)?
— R? —
Re, o o—q- LTROW-D
adjusted N—p—l

Where R? is the sample coefficient of determination; N is sample size and p is the
number of predictors.
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Multi-layer perceptron (MLP) captures the more complex, non-linear relationship
between the predictors and the target trait. Hornik et al. (1989) established that
standard MLP can approximate any measurable function to any desired degree of
accuracy. MLP is therefore considered as the universal approximator that can
capture a wide variety of complex relationships. MLP consists of three types of layers:
input, hidden, and output layers. The level of complexity that MLP can capture
depends on the number of hidden layers. The number of the hidden layer is chosen
from a range of 1 to 100. MLP constructed with the optimal number of layers
produces the lowest mean squared error (MSE) and the highest adjusted R? between
the predictors and the target trait on the validation set. At this point, adding more
layers will result in approximately the same MSE and adjusted R? on the validation
set. This is an important criterion to check if MLP truly captures the relationship
between predictors and target traits. In this case, increasing model complexity will
not further benefit the prediction but only increase the computing time and cost.

Machine vision

Convolutional neural network (CNN) is applied to incorporate images into
prediction. The architecture of CNN was adapted from the work of the NVIDIA team
(Bojarski, et al., 2016) on self-driving vehicles for the following reasons. First, most
CNN applications aim for categorical prediction such as classification and
identification, but like the study on self-driving vehicles, we aim for a continuous,
numeric prediction from imaginal inputs. Second, we also want to avoid human-
designated features. In the study of Bojarski et al. (2016) these features mainly
included lane markings and other vehicles, while in this study these features are
morphological measurements like length and width. Preliminary extraction of these
traits, although proven to be predictive (Vandeputte, et al., 2017; Kora, et al., 2000)
could narrow our view and limit a broader discovery of other possibly correlated
traits. Instead, whole fish images, without biological landmarks, are used as input
without any presumption on what imaginal features are most predictive for the traits
of interest.

To avoid overfitting, the original CNN architecture has been simplified empirically
and optimized through a series of experiments with various layer configurations (Fig.
2.2a). The final CNN includes an input layer, a normalization layer, and four
convolutional blocks with 24, 36, 48, and 64 layers, respectively. The input layer
takes RGB images with a resolution of 230x100. All convolutional layers use kernel
size 3x3. The output from the 4th convolutional block is flattened and 4 fully
connected layers are used before the final output. For visceral percentage prediction,
due to the heavy overfitting, the fully connected block is modified. Each fully
connected layer is followed by a dropout layer. The dropout ratio is empirically
chosen as 0.5, meaning that the value of half of the neurons in the previous fully
connected layer will be randomly changed to 0 in each training iteration. Dropout
layers can force the neural network to reveal imaginal features that are of the most
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relevance to the prediction. The final output layer performs regression through a
rectified linear unit activation function.

When receiving numeric variables in addition to images, the framework combines
CNN with MLP to construct a multi-input neural network (multi-input NN) that
integrates data of different types. A multi-input NN can process images through CNN
and simultaneously process numeric data through MLP. The outputs of these two
compartments are then combined by a concatenated layer and passed down to a fully
connected layer, and eventually, to the output (Fig. 2.2b).

In this study, NN was trained to minimize the MSE between the output and the
observed value of the target trait. MSE and Pearson correlation coefficient (r), also
addressed as the accuracy of prediction in this paper, are metrics to evaluate the
result of each training round. During the training section, if NN gradually captures
the relationship between predictors and target trait, MSE for training and validation
will correspondingly decrease and eventually stabilize to a minimum, while r will
increase and stabilize to a maximum. Visualization of changes in these metrics
during training and validation is called the learning curve.

The NN was built under Python 3.8 (Van Rossum, Drake, & others, 1995) with
Tensorflow 2.3 (Abadi, et al., 2016). The training and validation were performed on
an HPC cluster with one GPU (NVIDIA V100 Tensor Core). The average training
time of NN was 6 to 8 h per 100 epochs, with the aforementioned structure and
configuration.
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Figure 2.2 Neural network architecture.

Model comparison

Using the test data set, the performance of the three analytical methods is evaluated
using the MSE and r between the predicted and observed value. Lower MSE and
higher r therefore imply that a prediction model has better performance in terms of
prediction accuracy. The best-performing prediction model is then presented to be
used for future predictions of a specific target trait.

Feature extraction

Feature visualization shows the filtered features from each convolutional block
which aids the human understanding of the training process of the NN. From the test
set, we randomly choose an image, which is then fitted to the prediction model. This
image will be converted into feature maps in the same manner as that of the training
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and validation images. The more convolutional blocks there are, the more abstract
and informative the feature will be, and the more challenging they are for humans to
interpret. The visualized features can range from edges and textures to patterns and
individual object parts.

Visualization

The feature extraction reveals regions of images that contribute to prediction.
However, these features might have a different effect on the target trait. Phenotypic
correlation between traits can be positive and negative. The direction of correlation
matters because it has an impact on the selection of traits included in breeding
programs. This section explains the connection between the features and the target
trait, focusing in particular on how certain features affect the prediction. This is
accomplished by the Score Class Activation Map, or score-CAM, a novel post-doc
visualization method (Wang, et al., 2020).

The first step in score-CAM is to acquire the activation map. The activation map
shows the regions in the image that were relevant to the prediction. We randomly
select an image from the test set, fit it to the prediction model, and use the prediction
value for the target trait as the output. The activation maps are then produced by
adding a global average pooling layer after the last convolutional layer. The pooling
layer eventually produces numerous activation maps for this prediction after
repeatedly fitting the same image into the NN. These activation maps are then
applied to the original image as a mask, so that only the overlapped areas of the
activation maps and the original image are sent, again, repeatedly to the NN. Each
activated region will consequently receive a score to indicate how important it is to
the prediction. Ultimately, an average map is produced by linearly combining these
scores with their corresponding activation maps as weights. An activated region that
receives a higher score appears brighter and makes a greater contribution to the
prediction value on the final activation map. By doing so, score-CAM not only shows
the significant features but also their relative weight in predicting the target trait.

Score-CAM produces multiple scores for various prediction classes when used for
classification. However, when used for regression as in this framework, there is one
class with continuous prediction values. High-scoring regions, therefore, have higher
prediction values. In other words, increasing certain properties of these regions
could lead to a change of value in the target trait. We also modified the scores by
taking their negative values before combining them with their corresponding
activation maps. The value of certain properties of the features in these regions is
presumably negatively correlated with the target trait. The properties of the features
could be their size, length, shape, or even relative distance to other features.
Understanding the direction of the correlation gives one the chance to speculate
about the biological mechanism that links these imaginal regions or features to the
target trait.
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2.2.3. Case study: fat percentage, visceral weight, and visceral
percentage prediction

To demonstrate the framework, we used data that was collected on 4,766 gilthead
seabream (Sparus Aurata) at harvest. These fish were breeding candidates that were
gathered from two different farms in Greece and Spain. Fish were all from the same
population. However, since the main focus of this study is phenotype prediction,
pedigree information was excluded from the analysis because it is not relevant at this
stage. The data collection was conducted in sessions at different times between 2018
and 2020. Each seabream was first sedated and pictured in a lighting cabinet. The
lighting cabinet has three LED panels on the top, side, and bottom. All three panels
provide the light needed to take pictures of the object. The top horizontal panel is
equipped with a built-in RGB camera (Logitech HD Pro Webcam C920 in Greece and
Intel Realsense camera in Spain). Each seabream was laid with its lateral side up on
the bottom horizontal panel. A grid paper was placed as the reference scale between
the bottom panel and the seabream in Greece, and a blue paper as the background
in Spain. Before being imaged, each seabream was weighed manually on a scale for
body weight. Fat percentage was measured after imaging, using a hand-held device
called Distell Fish Fatmeter (Brosset, et al., 2015; Kent, 1990), hereafter termed
fatmeter, on sedated fish. Fat percentage is a potential indicator for fat composition,
metabolic health (Oskarsson, 2008), and fitness of a live fish, and it influences the
quality of the final fillet product. In total, 8 measurements of fat percentage were
taken for each seabream: two times on the dorsal side and two times on the ventral
side for each lateral side. Out of the 4,766 seabreams, 1,697 were slaughtered and
measured for their visceral weight. Visceral weight is the amount of intestine,
containing important organs such as guts, stomachs, and liver (Gjedrem T. , 1997).
The visceral percentage was calculated by taking the ratio of visceral weight over
body weight per fish.

Data was divided into 3 overlapping subsets, to model for the predictability of three
traits: fat percentage, visceral weight, and visceral percentage separately. In each
subset, data were further randomly divided into training, validation and test sets
with a size ratio of 3:1:1. All three divisions of each subset contained no missing
values, while the outliers were removed based on domain knowledge: records with
negative body weight or visceral weight were removed; two fatmeter measurements
with the value of 112.9% and 82% were removed, as a single fat percentage
measurement should not be considerably higher than 20%. Images were connected
with trait information by a unique pit-tag ID for each fish. Some fish had images but
no traits information and vice versa. Records of these fish were also removed. Table
2.1 summarizes the variables within each modeling subset as well as the description
of each variable.
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Table 2.1 Division of Seabream data into three overlapping subsets for the prediction of fat
percentage, visceral weight and visceral percentage, respectively.

Description Group A Group B Group C
Prediction traits Fat% vw Viscera%
Variable traits BW Fat%, BW Fat%, BW
Number of images (train, validation & 1711, 679 & 679 1280, 209 & 1280, 209 & 208
test sets) 208

BW: body weight, Fat%: fat percentage, VW: visceral weight, Viscera%: visceral percentage.

2.3 Results

Table 2.2 includes the descriptive statistics of the three test sets: fat percentage,
visceral weight, and visceral percentage. Table 2.3 shows an overview of the
prediction performance by fitting LR, MLP and multi-input NN separately on each
test set, respectively.

Table 2.2 Descriptive statistics of test sets.

Description Group A — Fat% Group B - VW Group C — Viscera%
Mean (unit) 11.52 (%) 40 (g) 8.37 (%)
Standard deviation 2.5 18 1.91

Fat%: fat percentage, VW: visceral weight, Viscera%: visceral percentage.

Table 2.3 Evaluation of prediction models on test sets.

Group A - Fat% Group B -VW Group C - Viscera%

MSE (%32) r MSE(g?) r MSE (%2) r
LR 4.86 0.48 63.26 0.90 2.13 0.64
MLP 5.26 0.48 75.41 0.89 2.30 0.64
Multi-Input NN

2.98 0.7 87.14 0.87 2.39 0.66
(with images)

Fat%: fat percentage, VW: visceral weight, Viscera%: visceral percentage.

To summarize, the image model increased the prediction accuracy from 0.48 to 0.70
compared to both numeric models for fat percentage. For visceral weight, the
accuracy of prediction is high and similar for all models, ranging from 0.87 to 0.90.
For visceral percentage, the accuracy of prediction is moderate, around 0.6 for all
three models. The following subsections will illustrate in detail how the models for
all traits came to the prediction results, together with the feature extraction and
visualization.
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2.3.1 Fat percentage

Numeric models

Exploratory data analysis of fat percentage (Fig. 2.3a) suggested strong correlations
between the 8 individual fatmeter reads. Therefore, an average fat percentage was
taken for modeling instead of 8 repeated records. However, none of the records,
including the average, indicated a good correlation with body weight, with the
average correlation being 0.47. The correlation between body weight and fat
percentage is moderate. However, it is still questionable whether body weight as a
single variable was sufficient to explain the variance in fat percentage. This is further
confirmed by the low adjusted R? (0.22) from the K = 3 cross-validation of the linear
model, suggesting that only around 20% of the variance in fat percentage was
explainable by body weight (Fig. 2.3b). The presence of negative adjusted R? in
Figure 2.3b during training also implies that body weight is negligible for fat
percentage prediction, especially when the sample size is too small.
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Figure 2.3 Exploratory data analysis, training, and validation of numeric models for fat percentage
prediction.

The non-linear numeric model MLP showed similar results as the LR. A layer
number of 50 was chosen based on the MSE (Fig. 2.3¢) and adjusted R? (Fig. 2.3d)
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of the prediction on the validation set. However, as the layer number increased, the
model performance failed to stabilize. Furthermore, the highest adjusted R? of 0.16
in all rounds of validation was lower compared to that of LR. By comparison, a linear
model is as good as, if not better, than MLP in fat percentage prediction. The
similarity of LR and MLP on prediction accuracy indicates that the non-linear,
complex MLP failed to capture more information compared to a linear model. Given
the instability of the MLP performance during training, it is arguable whether a high-
dimensional relationship between body weight and fat percentage is formed.

Machine vision

On the other hand, the neural network quickly captured the relationship between
image, body weight, and fat percentage after 20 epochs of training as the learning
curves plateaued (Fig. 2.4). MSE on the validation set followed the same pattern and
stabilized at a value slightly higher than that of the training set (Fig. 2.4a). Pearson
r on the validation set fluctuated around 0.7 towards the end (Fig. 2.4b). The final
test set resulted in an accuracy of 0.7, considerably higher than that of LR and MLP.

100 Training set ’ A
%0 Validation set

MSL
Pearson 7

10 Training set
Validation set

O 10 2 30 4 5 6 70 8 9% 100 © 10 2 33 4 0 6 70 8 9 100
Nr. of Epochs Nr. of Epochs

(a) Learning curve - loss value decreases with (b) Learning curve - Pearson 7 increases with
epochs epochs

Figure 2.4 Training and validation of neural network for fat percentage prediction.

Feature extraction

The features extracted by the convolutional layers are displayed in Figure 2.5. The
first row illustrates that in the beginning, NN extracted whole-fish contours and
contrasts between regions as informative features for fat percentage prediction.
Several visually dark regions correspond to morphological locations like patch, eye
and fin on the colored image. However, NN quickly abandoned these regions and
focused on outlines and contours, shown by the features in the second row that
corresponds to the second convolutional block. The final convolutional block in the
last row comprises features mostly highlighted in visually dark color: the curvature
of the dorsal side and the upper edge of the pectoral fins.
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Figure 2.5 Extracted features by each convolutional block for fat percentage prediction. The four
rows represent the four convolutional blocks shown in the NN architecture. Each row only contains
features obtained from the layers in the same block.

Visualization

Three images were randomly selected from the test set. Visualization of the
prediction using ScoreCAM pointed to the same direction as feature extraction in
Figure 2.5. Figure 2.6 illustrates how certain regions in the images contribute to a
prediction output. For fat percentage prediction, all highlighted regions are
informative and important. However, they could affect the output in different ways.
Figure 2.6a shows regions that cause an increase in output. In other words,
properties of these regions which cover a major part of the fish body without the head
are positively correlated with fat percentage. The ventral side region was also
emphasized with strong brightness in all three images. While figure 2.6b accentuates
three specific areas: the dorsal side, the upper edge of the pectoral fin, and the edge
of the operculum. These regions have some properties that are negatively correlated
with fat percentage. One possibility could be the size of the region surrounded by
these three areas: the bigger this surrounding region becomes, the lower the fat
percentage will be.

(b) Specified regions and features whose propertics decrcase the output value in three random images.

Figure 2.6 ScoreCAM feature visualization under two situations - increase and decrease of the output
value for fat percentage prediction.
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2.3.2 Visceral weight

Numeric models

Exploratory data analysis showed a strong correlation between visceral weight and
body weight and a poor correlation between average fat percentage and the other two
traits (Fig. 2.7a). K = 10 was chosen for the LR model as it achieved the highest
average adjusted R? of 0.81 (Fig. 2.7b). MSE stabilized after using 5 hidden layers in
MLP (Fig. 2.7¢). The adjusted R? reached around 0.8 (Fig. 2.7d), similar to that of
the 10-fold LR. On the final test set, however, the accuracy of MLP was 0.89, slightly
lower than the result of LR.
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Figure 2.7 Exploratory data analysis, training, and validation of numeric models for visceral weight
prediction.

Machine vision

Neural network performance plateaued (Fig. 2.8) after around 35 epochs of training.
MSE on the validation set stabilized at a value slightly higher than that of the training
set towards the end (Fig. 2.8a). Pearson r on the validation set did not fluctuate as
much, varying in a range of 0.85 to 0.9 (Fig. 2.4b). The final test set resulted in an
accuracy of 0.87, slightly lower than that of both LR and MLP.
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Figure 2.8 Training and validation of neural network for visceral weight prediction.

Feature extraction

Figure 2.9 displays the extracted features for visceral weight prediction. In the first
row, whole-fish contours were already captured as informative features. Afterward,
the attention of NN fixated on fish outlines and contours with different levels of
contrast to their surroundings. The final convolutional block in the last row basically
featured only the whole fish area imprinted on a background with different
brightness.

Figure 2.9 Extracted features by each convolutional block for visceral weight prediction. The four
rows represent the four convolutional blocks shown in the NN architecture. Each row only contains
features obtained from the layers in the same block.

Visualization

Score-CAM visualization added interesting details to the importance of the whole
fish area in visceral weight prediction. Figure 2.10a depicts dotted lines that either
outline the shape of the whole fish or cover the majority of the body area. These are
the regions and features whose properties contribute positively to visceral weight.
One obvious possibility is that the bigger the fish is, the more visceral weight it will
have. While Figure 2.10b highlighted three specific areas whose properties have a
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negative effect on the output: the end of the head, the lower edge of the pectoral fin,
and the back edge of the caudal fin.
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(a) Specified regions and features whose properties increase the output value in three random images.

(b) Specified regions and features whose propertics decrecase the output value in three random images.

Figure 2.10 ScoreCAM feature visualization under two situations - increase and decrease of the
output value for visceral weight prediction.

2.3.3 Visceral percentage

Numeric models

Exploratory data analysis (Fig. 2.11a) showed the correlation of visceral percentage
with other traits. The visceral percentage is more correlated with visceral weight than
with harvest body weight, although calculated from both traits. Therefore, to avoid
overfitting, only fat percentage and harvest weight were included as numeric inputs
to predict visceral percentage. In linear regression with 5-fold cross-validation, the
adjustedR? was 0.41. This indicated that body weight and fat percentage in total can
only explain 40% of the variance in visceral percentage (Fig. 2.11b).
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Figure 2.11 Exploratory data analysis, training, and validation of numeric models for visceral
percentage prediction.

For multi-layer perceptron, a layer number of 5 was chosen based on the MSE (Fig.
2.11¢) and adjusted R? (Fig. 2.11d) of the prediction on the validation set. Clearly,
adding layers did not manage to stabilize MSE. Comparable to fat percentage
prediction, MLP showed similar results as linear regression in visceral percentage
prediction. It is obvious that a high-dimensional relationship does not exist between
body weight, fat percentage, and visceral percentage.

Machine vision

The training of the neural network was not as smooth as the other two traits. To
stabilize both the MSE and accuracy, the neural network for visceral percentage was
trained 4 times more epochs than that of the other traits. After 150 to 200 epochs of
training, the MSE finally plateaued (Fig. 2.12a). On the validation set, Pearson r
showed a constant fluctuation around 0.6, roughly varying in a range of 0.55 to 0.65
(Fig. 2.12b).
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Figure 2.12 Training and validation of neural network for visceral percentage prediction.

Feature extraction

The extracted features for visceral percentage prediction in Figure 2.13 are alike that
for visceral weight. In visceral weight prediction, whole-fish contours were gradually
highlighted after two convolutional blocks. However, in the case of extracted features
for visceral percentage, the outlines of the fish were captured at the very early stage
of the convolutional process. Edges of the other objects in the images were also
captured, including the printed coordinate on the background and the written fish
ID on the side. These features increase the robustness of the network but could also
be the major source of noise for prediction.

Figure 2.13 Extracted features by each convolutional block for visceral percentage prediction. The
four rows represent the four convolutional blocks shown in the NN architecture. Each row only
contains features obtained from the layers in the same block.

Visualization

Score-CAM of visceral percentage also reveals similar regions of interest compared
to that of visceral weight. However, some differences can be observed. Figure 2.14a
shows the regions and features whose properties contribute positively to the visceral
percentage. Apart from the general contour, one interesting feature is the curve
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connecting the lower beginning of the tail and the vent. This region was also vaguely
highlighted by a dotted line for the visualization of visceral weight prediction. While
in visceral percentage prediction, it is visually more clearly defined. Biologically this
region corresponds to the position of the anal fin. Besides, the pectoral fin and the
edge of the operculum were also highlighted as important features. While in Figure
2.14b, compared to that of the visceral weight, less emphasis was shown on the end
of the caudal fin and the operculum.

(b) Specified regions and features whose properties decrease the output value in three random images.

Figure 2.14 ScoreCAM feature visualization under two situations - increase and decrease of the
output value for visceral percentage prediction.

2.4 Discussion

The framework provides a comprehensive, structural, and efficient strategy for
predicting slaughter traits. Three novel aspects of this framework are highlighted
here. The first is the direct use of images rather than the introduction of image-
derived landmarks. Images are unstructured data, whereas structured data typically
includes biologically intuitive descriptive information such as body length and width,
as well as morphometrics indices (Nash, Valencia, & Geffen, 2006; Jones, Petrell, &
Pauly, 1999). Common practice is to first extract structured information from
unstructured data, which frequently requires extensive landmark annotation
(Holmes & Jeffres, 2021; Prchal, et al., 2020; Navarro, et al., 2016; Haffray, et al.,
2013). However, descriptive morphological features, particularly indices
(McPherson, Slotte, Kvamme, Meier, & Marshall, 2011), are not always adequate for
predicting slaughter traits (Wilder, Raubenheimer, & Simpson, 2016). Prediction
accuracy is inherently limited by what can be derived from images and the biological
understanding of both predictor and target traits. The proposed framework
overcomes these constraints while prioritizing prediction accuracy. The framework
begins with unstructured, whole fish images, moves on to predictive analysis, and
then returns to descriptive insights (Vaughan, 2020). Descriptive information is
then revealed through feature extraction and visualization.
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Descriptive information is the second aspect of novelty: interpretability. Consider
the outcome of the case study on fat percentage prediction. Visualization revealed an
important region bordered by the edge of the operculum and pectoral fin. This region
anatomically overlaps with the abdominal cavity and the location of the liver and the
heart, both of which are important for fat metabolism. The ventral side is also
highlighted as an important region for fat percentage. The ventral side of the fish
contains more fat than the dorsal side on average, which may explain why this region
is a good indicator of fat percentage. Although the fat percentage is measured mainly
on the fillet, it is possible that there is enough exhibited variance along the
dorsoventral axis within the lateral side. The study of Gulzari et al. (2022) supports
similar results by showing both genetic and phenotypic correlations of fillet fat
percentage and visceral weight. For visceral weight, a simple linear regression from
body weight results in the best prediction. Nonetheless, feature extraction interprets
the significance of size and shape in predicting visceral weight, as these two features
are most frequently revealed by the convolutional blocks. Based on biological
knowledge, size and shape are morphometrics that is strongly related to body weight.
Previous research (Yang, et al., 2021) demonstrated the prediction of body weight
from images. Therefore, it is reassuring that the framework confirms that the size
and shape are sufficient to phenotype the traits of body weight and visceral weight
for seabream. However, when it comes to visceral percentage, it might be beneficial
to add different measurements since the visualization for visceral percentage
highlighted the position of the anal fin as an informative feature.

The third aspect of novelty is the possibility of selecting different target traits for
prediction. The framework was used in the case study to predict visceral weight, fat
percentage, and visceral percentage. In principle, any other slaughter traits that are
collected during harvest can be used as target traits for prediction. This increases the
feasibility of developing models that can relate exterior traits with indicator traits on
functions, metabolism and behaviors (Fu & Yuna, 2022), such as visceral fat. A next
step would be to predict visceral fat from body weight and images. Visceral fat is a
slaughter trait and also a key indicator of feed conversion rate. Fish with lower
visceral fat percentage convert feed more efficiently and are therefore preferred in
production (Besson, et al., 2022; Garcia-Celdran, et al., 2015). The Distell fat meter
used in our study measures fat percentage in fillet and muscle tissue. Fat percentage
in the fillet region may however be a poor indicator of visceral fat, which is found in
the abdomen. The framework can find the promising features that can be applied as
indicator traits for the reduction of visceral fat by breeding. In principle, the same
applied for any other slaughter traits that are collected during harvest.

The framework has the ability to use machine vision for regression analysis. To the
best of our knowledge, the majority of machine vision applications in aquaculture
are for classification, including identification (Saberioon, Gholizadeh, Cisar,
Pautsina, & Urban, 2017). In some livestock research studies (Shahinfar, Khansefid,
Haile-Mariam, & Pryce, 2021), quantitative measurements are converted into
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qualitative categories. The conversion of data types from continuous to categorical
can result in a significant loss of explainable variance in the target traits. The
framework takes whole-fish images as input so that more variances can be preserved.
Using whole images also saves time and effort on data annotation prior to model
training.

Studies on deep learning applications in aquaculture frequently include multiple
algorithms as analytical methods and compare their performance (Palaiokostas,
2021), particularly in genomic prediction. These algorithms are often state-of-art in
the field of machine learning. When a promising algorithm is applied to different
data for different research questions, the accuracy of performance cannot be
guaranteed. Taking this into account, our framework has a structure that includes 3
different analytical methods based on their ability to capture different levels of
complexity in the relationship between the predictor and target traits. We attempted
to include the most recent, cutting-edge analytical methods available at the time this
study was conducted. These methods are modularized, including feature extraction
and score-CAM for visualization. The framework is built by combining these
fundamental analytical methods and has the potential to be upgraded. LayerCAM
(Jiang, Zhang, Hou, Cheng, & Wei, 2021), for example, could replace score-CAM for
visualization; in machine vision, prediction accuracy can potentially be increased by
using a deeper NN with more convolutional blocks. It should be noted that the cost
of computing power and data storage potentially rises as more updated analytical
methods are integrated in the framework.

This framework can be improved further in two ways. First and foremost, data
collection and utilization. The seabream included in the study came from various
families, generations, and two different locations. This ensures that there is enough
variation so that the predictions are as applicable to future data as possible. If new
data is collected from the same location, it can be used directly for prediction as well
as to improve the framework’s performance. However, under certain conditions,
slaughter traits may vary seasonally and inter-annually (Gofii & Arrizabalaga, 2010;
Rodriguez, Fountoulaki, Grigorakis, Alexis, & Flos, 2010). When used in different
circumstances, such as a new farming location, it is still unclear whether re-training
of the framework is required, as the pre-trained framework may not cover the
variance introduced by the geographical differences. Another option is to add
location, season or family origin to the framework as a new input variable. It is also
worth emphasizing the importance of images in breeding data collection.
Incorporating imaging into the phenotyping routine can be difficult and expensive.
Image quality varies, which potentially influences machine vision results. However,
images play an important role in the framework. The framework proves that
including whole-fish images can be most beneficial, potentially improving model
accuracy and interpretability. Imaging is non-invasive and high throughput. In
combination with the framework, it creates room for more efficient and innovative
phenotyping practice. For instance, fat percentage can be measured using the hand-
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held fatmeter device. The time and labor required in this process will be considerably
reduced if the same measurement is replaced by image analysis. The same applies to
visceral weight. Visceral weight can be measured on fish in a non-invasive or even
contact-free manner using its correlation with the body weight, which can also be
derived from images using the size and shape of the fish. Given this trade-off, we
strongly advise breeders and other users of this framework to collect images in
addition to other trait data.

Another improvement is the requirement for additional qualification on the
visualized feature. Although features and regions revealed by feature extraction and
visualization appear intuitive to human eyes, they require quantitative description.
For example, the region bordered by the edge of the operculum and the pectoral fin
is shown to harbor information that is negatively correlated with fat percentage.
However, the precise properties of this region that are causing this prediction are
unknown. It could be the angle of the pectoral fin against the operculum, or the
distance between the pectoral fin and the dorsal edge of the operculum, or a very
different characteristic. More research is needed to properly segment these features
from whole-fish images and quantify the properties of these features. For visceral
percentage, the position of the anal fin, together with the edge of the operculum, was
shown to be the key to an improved prediction. Further work is required to transform
these features into precise landmarks or generate the activation map on new images
and use the color differences in the heat map to isolate these features. Furthermore,
visualization only shows the strength of the correlation between features in the
context of the same image. For example, the end of the caudal fin was strongly
highlighted as being negatively correlated with visceral weight. According to the
framework, body weight can explain the majority of the variance in visceral weight.
There is no clear evidence that the shape of the caudal fin has a significant impact on
body weight. However, the shape of the caudal fin is revealed to be accountable for
visceral weight. Therefore, to reach a more general conclusion, it is necessary to test
the significance of these features using other statistical analyses, such as stepwise
selection, ridge regression, or lasso regression.

2.5 Conclusion

In this paper, we present a framework for predicting invasive or destructive traits
based on non-invasive traits and images. The framework can capture various levels
of relationship between the predictor and the target trait and generate the prediction
model by prioritizing prediction accuracy. We provide a detailed interpretation of
the model by extracting and visualizing predictive imaginal features. We show how
to use the framework with three examples: visceral weights, fat percentage and
visceral percentage in gilthead seabream. The framework could be applied to other
harvest or post-slaughter traits such as visceral fat, liver weight, or even metabolic
traits. Further research can expand on this framework progressively in these three
aspects: 1. Predictive imaginal feature segmentation and quantification; 2. Including
pedigree and genetic data to estimate the potential for indirect selection in breeding;
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3. Using the framework on different invasive traits in different fish species, to build
a more complete phenotypic profile of traits and their correlations.
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Abstract

The physical and physiological condition of fish directly influences their swimming
performance, which is crucial for their health and survival. This study explored how
physical characteristics affect swimming performance in rainbow trout. 3D images
were used to capture the morphology of fish and assess its impact on critical
swimming speed (Uerit), measured via individual swim tests. A convolutional neural
network (CNN) was utilized to predict U from the images. Using Gradient-
weighted Class Activation Maps (GradCAM), image regions that contributed
to U.rit predictions were visualized. These regions were further refined into areas that
are biologically relevant to U.r, leading to the definition of four swim traits: head
volume, caudal fin volume, epaxial muscle volume, and shape. Our findings
indicated that U, is moderately heritable. Genetically, heavier fish demonstrated
poorer swimming performance; among fish of the same weight, those with larger and
broader epaxial muscles, larger heads, and smaller caudal fins performed worse.
Although genetic improvement of U.; is feasible, caution is advised because of
potential correlated responses that reduce the body volume and epaxial muscle
volume. The interdisciplinary workflow (data collection, model construction,
visualization, interpretation, definition, and evaluation) in this study demonstrated
how image-based deep learning can be used as a hypothesis-free approach to deepen
the understanding of the genetic background of complex traits. Additionally, it
highlights the value of genetic analysis to validate the physiological interpretation of
Explainable AI, broadening the opportunities to discover novel phenotypes in
aquaculture.

Key words: Deep learning; Critical swimming speed; Image analysis; Explainable
Al
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3.1 Introduction

The swimming performance of fish is an indicator of health and is crucial to survival.
One of the most common estimates (Farrell, 2008; Drucker, 1996; Beamish, 1978)
of swimming performance is the measurement of the critical swimming speed (Brett,
1964). Critical swimming speed, abbreviated as Upit, is the maximum velocity a fish
can maintain for a specific period of time. Often used as an indicator when
investigating behavior (Dehaan, 2019), production, health (Castro, et al., 2013;
Tierney & Farrell, 2004), and environmental resilience (Athammer, 2023; Silva,
Alexandre, Quintella, & de Almeida, 2021; Mengistu, et al., 2021; Vandeputte, et al.,
2016), U.rit is determined by subjecting fish to an exhaustive swimming test, where
swimming speeds incrementally increase at predefined intervals until the fish
fatigues.

Two major factors influence U.r: the physiological and physical condition of the fish.
Researchers primarily monitor the wunderlying physiological parameters
contributing to Ue, such as heart rate and oxygen consumption (Farrell, et al., 2003;
Altimiras, et al., 2002). The relation between physical condition and Ue; is usually
characterized by morphological traits such as body length and mass, although
muscle composition and structure also receive attention for their critical function in
cardio activity (Hachim, et al., 2021; Claireaux, et al., 2005; Rome, Choi, Lutz, &
Sosnicki, 1992; Farrell, Johansen, & Suarez, 1991). Even after adjusting U.i for body
length, there is a significant relationship with body mass (Cai, Chen, Johnson, Tu, &
Huang, 2020; Rubio-Gracia, Garcia-Berthou, Guasch, Zamora, & Vila-Gispert, 2020;
Cano-Barbacil, et al., 2020). Fish of the same length and weight can still exhibit
different swimming abilities and considerable diversity in their morphology such as
girth, volume, and shape (Svozil, Baumgartner, Fulton, Kopf, & Watts, 2020; Yan,
He, Cao, & Fu, 2013). Given that, research is required to thoroughly investigate and
quantify the relationship of U.; with finer-scale morphological units of fish.

Using conventional measurement techniques for morphology has two drawbacks.
First, these measurements are invasive, time-intensive, prone to errors, and may
require anatomical dissection (Moya, et al., 2019). 3D image analysis provides a
promising, non-lethal solution to extract morphological parameters. Trait extraction
using 3D imaging has demonstrated higher accuracy and reduced bias compared to
manual measurements (Gulzari B. , 2023), with success in livestock research for
assessing muscle depth, back fat (Fernandes, et al., 2020; Miller, et al., 2019;
McPhese, et al., 2017) and body condition score (Shi, et al., 2023), and in aquaculture
for body mass, length, and girth (Li & Du, 2022). The second drawback of the
conventional measurements is the difficulty identifying all relevant morphological
traits for Uy Although the number of measurable traits on fish is limited,
analyzing U.r in relation to morphology still requires iterative hypothesis formation
and testing, as Ug+is a complex trait influenced by many factors that may also
manifest as subtle morphological variation (Videler, 1993).
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To address these challenges a hypothesis-free approach, as part of the analytical
framework proposed in (Xue, Bastiaansen, Khan, & Komen, 2023), was employed in
an attempt to predict Uer by incorporating whole, unannotated fish images and
visualizing the most predictive image features through class activation maps (CAMs).
Deep learning is frequently criticized for being a ‘black box’, making it challenging to
interpret its results. Explainable artificial intelligence (xAI) is developed to increase
the transparency and interpretability of deep learning systems (Saranya &
Subhashini, 2023). Among various methods of xAI, CAMs are designed to visualize
regions in images that support the decision-making of deep learning models (Zhou,
Khosla, Lapedriza, Oliva, & Torralba, 2016). The 3D morphology can be efficiently
narrowed down to specific morphological traits that are most relevant to Us.z

While CAMs enhance model interpretability, their effectiveness relies on alignment
with domain knowledge, which requires further evaluation by the intended audience
and their expertise (Saeed & Omlin, 2023). To our knowledge, studies that utilized
CAMs in livestock research have only implied such practice (Garcia, 2022). The
relevance of CAM features to the prediction still needs to be tested through proper
quantitative evaluation methods (Nauta, et al., 2023). such as genetic analysis.

This study aims to dissect the genetic basis of swimming performance and
understand its subtle relationship with morphology in rainbow trout (Oncorhynchus
mykiss). We investigate the feasibility of using genetic analysis to assess CAM -
derived traits in enhancing the interpretability of image-based deep learning models
within the aquaculture domain. To achieve this, a novel approach of “data collection
- model construction - visualization - interpretation - definition - evaluation” is
introduced, aiming at unveiling finer-scale morphological traits that enhance our
comprehension of swimming performance.

3.2 Materials and methods

3.2.1 Ethical statement

The experiment was conducted at Troutlodge (Idaho, USA) under the farm's
established Veterinary Health Management Plan (VHMP) and in accordance with
RSPCA welfare standards. All procedures adhered to the local legislation regarding
animal welfare.

This study is structured as follows: two experiments were conducted to phenotype
individual fish for their morphology and swimming performance. A convolutional
neural network (CNN) was then constructed using 3D images to predict Ucrit.
Afterward, we used the gradient-weighted class activation map (GradCAM) to
visualize what the prediction model has learned and transformed the GradCAM
results into swim traits with clear definitions. Lastly, we estimated the genetic
properties of the swim traits and Ucrit. See the flowchart in Figure 3.1 for an overview.
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Figure 3.1 Overview of data collection and analysis. Arrows indicate the order in which the
methodologies were applied.

3.2.2. Materials

100 full-sib families of rainbow trout with full pedigree (15 generations) were
provided by Hendrix Genetics (Troutlodge, Idaho, USA). From each family, a group
of 12 fish was selected at random. The bulk of fish were between 10 and 14 cm, and
body length ranged from 8.4 ¢cm to 15.2 cm, measured from the tip of the upper lip
to the tip of the upper caudal lobe. The fish (n = 1200) were placed in a holding tank
within the same facility and left to acclimatize for 48 h prior to the experiment. Fish
were fed at the maintenance level once a day.

3.3 Methods
3.3.1 Swim test

For the swimming performance, fish were tested in groups of 50 with a Brett-type,
portable swim gutter (2420 mm length, 950 mm width) to measure Uy (Fig. 3.2A).
Water flow was generated by an electrically powered propeller. Minimum water
depths in the propeller chamber were held at 40 cm at low flows and 50 cm at high
flows, to prevent the suction of air into the propeller chamber which could cause
cavitation and irregular velocities. Swim tests consisted of fish swimming for exactly
30 min at a starting motor speed of 10 Hz and a flow speed of 45 cm s — 1. The motor
speed was then increased by 2 Hz every 30 min until reaching a maximum of 26 Hz

51

Chapter 3



Chapter 3

and a flow speed of 104 cm s — 1. Fish were immediately removed from the gutter
upon fatigue when they lay flat and still against the back fence of the swim chamber,
and the fatigue time was recorded individually. Fatigued fish were allowed to recover,
were lightly sedated, weighed, tissue sampled, measured for standard length (SL),
and PIT tagged before being placed in a recovery tank. Each day, 2 groups were tested.
It took 12 days for the swimming test to be completed. U.; was calculated as:

UCTif = U—l + (t/At) AU/ SL

where U_, is the highest velocity (cm/s) maintained for the prescribed period, t is
the time until fatigue from the start of the final velocity (min), At is the time
increment (min), and AU is the velocity increment (cm/s). The Ugi: (SL/s) is the
critical swimming speed (cm/s) divided by standard length (cm) (Brett, 1964).

___________ vmﬂler

Motor

444444444 > C:;( Swim

chamber

Figure 3.2 Illustration of experimental equipment in swim test and imaging session. A: Graphic top
view of the swim gutter. The dotted arrows show the direction of the water flow generated by the motor-
controlled propeller.; B: The imaging cabinet. The orange arrows indicate the directions in which a fish
was sent in and removed from the cabinet by the conveyor belt at the bottom; C: Graphic representation
of the inside of the imaging cabinet, with the camera mounted on top. Sedated fish was laid left lateral
side up with the direction of movement of the conveyor belt.

3.3.2 Imaging

14 days after the first swim test, all fish were subsequently imaged using a 50 cm high
imaging cabinet (Fig. 3.2B). The cabinet had white plastic walls and ceiling, and a
blue anti-reflective plastic conveyor belt that moves the fish into the imaging box.
LED strips (OSRAM GmbH, Munich, Germany) inside the cabinet provided
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consistent white light. The ceiling housed an intel® RealSense™ D435 Depth
Camera (Intel Corp., Santa Clara, California, USA), positioned to face the blue
bottom (Fig. 3.2C). Fish were placed individually with the left lateral side facing up
and captured simultaneously in two images: one RGB image and one depth image.
Both images had a resolution of 1280 x 720 pixels and were registered under the
same ID. PIT tag information for 163 fish out of the initial 1200 swim tested was lost
and their images were excluded. The final dataset contained 1037 rainbow trout,
each with a unique ID, two images (colored and depth), body length, body weight,
and a record of Ugcri.

3.3.3 Image preprocessing

All images underwent preprocessing for dimension reduction to improve computing

cost. Images were cropped into 400 x 200 pixels, with fish present around the center.

The colored image was combined with the depth image per fish. Colored images
consist of three channels: hue, saturation, and value, of which hue does not encode
any morphological information. Therefore, the hue channel was excluded and
replaced by depth in the merging of the two image sets. This resulted in a pseudo
image that retains the same level of information as a 3D image with only three
channels in a 2D format (Fig. 3.3).

Depth image

Saturation

s

Saturation

-

psuedo image

Figure 3.3 Dimension reduction. The hue channel of the colored image was replaced by depth
information, resulting in a pseudo image.

3.3.4 Convolutional neural network

Convolutional neural networks (CNNs) are a type of deep learning model that takes
images as input for prediction. The applied CNN in this study comprises 5
convolutional blocks, with 24, 36, 48, 64, and 64 layers per block, respectively. A
dropout rate of 0.3 follows each convolutional block. The dataset of 987 pseudo
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images was divided into training, validation, and test sets following a ratio of 3:1:1.
The training and validation of the CNN used the mean squared error (MSE) as the
loss function and the correlation coefficient (r) as metric. The input images were
multiplied by the weights in the convolutional layers and transformed into
information-dense features. To find the weights and features that minimize the loss
function, CNN uses backpropagation to compute the gradient of a loss function with
respect to the current weights per layer and to update the weights along the steepest
descent direction of the gradient. This optimization method is called gradient
descent.

The CNN was built under Python 3.8 (Van Rossum, Drake, & others, 1995) with
Tensorflow 2.3 (Abadi, et al., 2016). The training and validation were performed on
an HPC cluster with one GPU (NVIDIA V100 Tensor Core). The average training
time of NN was 6 to 8 h per 100 epochs, with the aforementioned structure and
configuration.

3.3.5 Class activation map

We employed the gradient-weighted class activation map (GradCAM) (Selvaraju, et
al., 2017) to visualize the learning process of the prediction model. GradCAM utilizes
gradients of predictions with respect to the weights and features in the final
convolutional layer to generate a heatmap. This heatmap localizes predictive features
to different regions of the input image with color coding. On a color scale from red
to blue, regions overlapping with features associated with a steeper descent in
gradient appeared redder (Fig. 3.4). A steeper descent in gradient signifies higher
predictive capability for Ucrit.

Figure 3.4 Left: visualization of an example of the original 3D image as a reference; Right:
visualization of GradCAM on the original 3D image. In this example, the red region in GradCAM on
the right corresponds to several regions in the original image on the left: the body outline, the head,
the caudal fin, and a region extending along the dorsal side, overlapping with the epaxial muscle region.

3.3.6 Definitions of swim traits

We associated the imaginal regions highlighted by GradCAM with morphological
regions that are physiologically related to U.+. Based on physiological interpretation,
the general red regions were refined into three specific regions: the head, caudal fin,
and epaxial muscle. Prior to annotation, we performed object segmentation to
remove the background of both colored and depth images (see Supplement). The
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regions of the head and caudal fin were then annotated on the colored image (Fig.
3.5A & B). To annotate epaxial muscle, the value of the pixels of the fish body in the
depth image was standardized between 0 and 255, resulting in a grayscale contour
map (Fig. 3.5C). The ventral edge of the epaxial muscle was identified by finding the
lowest gradient magnitude on the lateral side of the fish (Fig. 3.5D). We later
removed overlapping regions with the head and caudal fin based on annotations
from the colored image, resulting in an approximated region of the epaxial muscle

(Fig. 3.5E).
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Figure 3.5 Examples of the annotations of morphological regions. A: Head region; B: Caudal fin
region; C: Standardized grayscale depth image; D: Grayscale annotation that covers the area of the
epaxial muscle and part of the head region. E: Epaxial muscle region.

The regions were manually annotated using key points on images for all individuals
using CVAT.ai (Sekachev, et al., 2020). Visual inspection during the manual
annotation process guaranteed that all key points were annotated precisely. This was
needed because the small size of the fish resulted in low resolution in the depth
images. The annotation result was exported as an extensible markup language (XML)
file including for each fish their ID, and the coordinates of key points on each image.

To further interpret the prediction model based on fish physiology, we extracted in
total four phenotypes that are associated to U.:ir, which we call swim traits: head
volume, caudal fin volume, epaxial muscle volume and epaxial muscle shape. Head,
caudal fin, and muscle volume were calculated using the annotated regions and their
corresponding depth values from the depth image. The shape of the epaxial muscle
was described as the coefficient of variation (CV) of depth values in the epaxial
muscle region. The CV measures the relative variability of a distribution, calculated
as the standard deviation divided by the mean. A higher CV indicates greater
variability within the distribution, allowing for more extreme values and a faster
decline moving away from the maximum (Fig. 3.6). Therefore, a higher CV in the
depth values in the epaxial muscle region indicates a steeper transition from the
furthest lateral points to the dorsal side, resulting in a thicker epaxial muscle.
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Figure 3.6 Comparison of 2 different epaxial muscle shapes using coefficient of variation (CV) of
depth values. The blue lines indicate the depth measurements that each muscle region consists of. If
the muscle is laterally flatter, the blue lines are of similar values, indicating lower CV of all depth values
within this region. Therefore, a higher CV in depth results in a thicker muscle.

Besides the four swim traits, the volume of the region that was not highlighted in the
image was calculated by subtracting the volume of swim traits from the body volume
for each fish.

3.3.7 Animal model

We calculated the value of swim traits for all individuals (n = 1037) from the
annotated images using OpenCV (Bradski, Kaehler, & others, 2000) in Python 3.8
(Van Rossum, Drake, & others, 1995). 50 fish with body weights that were more than
4 standard deviations from the mean were removed as outliers, resulting in 987
individual records. All traits were standardized with a mean of 0 and a standard
deviation of 1. The outlier removal and standardization were performed using R 4.2.1
(R Core Team, 2019).

Genetic parameters were estimated using ASReml-R 4.2 (Butler, 2021). We used the
univariate linear mixed model:

y=Xp+Zv+e

to estimate the heritability of all traits, where y is a vector of phenotypes, f is the
vector of fixed effects with the mean and for the swim traits the covariate body
volume, v is the vector of random animal additive genetic effects ~ (0, Ag?2), where
A is the relationship matrix and ¢2 is the additive genetic variance of the trait, and e
is the vector of random residual effects ~ (0, I62), where I is an identity matrix and
ol is the residual variance of the trait. X and Z are design matrices that relate
observations to the fixed and additive genetic effect of animals, respectively. The
phenotypic (1) and genetic (ry) correlations of U with swim traits were estimated
using the bivariate model:

y=Xp+Zv+e
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where y is the concatenated vector of phenotypes of the two traits, v is the vector of

72,120a,20q,1

random additive genetic effects ~ ( [ ] AR [ ), where A

Ta, 12% 20a,1 Oa,2
is the genetic relationship matrix, 67, ,) is the additive genetic variance of trait 1(2),
74,12 is the genetic correlation between traits 1 and 2, and e is the vector of residual

0 021 Te,120¢,20e,1
effect ~ ( [ ] A ® ’ ), where I is an identity matrix, ¢ 1(2)18
0 Te,120¢,20¢,1 Ue 2

the residual variance of trait 1(2), , ;, is the residual correlation between traits 1 and
2. X and Z are design matrices that assign measurements to the fixed and random
additive genetic effects, respectively.

In the genetic analysis of U, we anticipated date or group as a significant fixed
effect. However, during the experiment, bigger fish were prioritized due to the risk
of exceeding the maximum body length for the swim test, causing a correlation
between groups, testing dates and body weight. As body weight was also correlated
with body volume (0.785), we therefore include only body volume as fixed effect for
both univariate and bivariate model. The same fixed effects were applied for the
genetic analysis of all swim traits.

3.4 Results

3.4.1 Prediction of U..i: from images

The CNN was applied to the dataset of 987 fish with their pseudo images and was
run for 100 epochs. The learning curve of the CNN shows no sign of overfitting as
the loss values on the training and validation set gradually decreased and then
stabilized (Fig. 3.7). The final evaluation of CNN on the test set resulted in a
correlation coefficient (r) of 0.12.
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Figure 3.7 The learning curve of CNN using 3D images for Ues+« prediction. The learning curve
represents the performance of the model by calculating the MSE between prediction and real Ut over
epochs of training and validation. The training curve is plotted in orange and the validation curve in
blue.

3.4.2 Genetic analysis of U.i: and swim traits

We derived swim traits from features identified by CNN and highlighted with
GradCAM, focusing on the head, caudal fin, and epaxial muscle in the red-coded
regions (Fig. 3.8).

Trait name Definition Region in image Region in GradCAN

Head volume Volume of the head

Caudal fin volume Volume of the tail

Epaxial muscle volume Volume of the epaxial muscle

Coefficient of variation (CV) of the
Epaxial muscle shape depth values of all pixels in the
epaxial muscle region

Figure 3.8 A graphic overview of all swim traits, their definitions and corresponding regions on the
RGB image and GradCAM.

The swim traits, together with U, were used to estimate their phenotypic and
genetic relationship (Tab. 3.1). Phenotypically, only body volume had a significant
(p < 0.05), negative correlation with U, Genetically, all swim traits showed low to
moderate heritability. Epaxial muscle volume had the highest negative genetic
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correlation with U, while caudal fin volume was the only swim trait that positively
correlated with Ueir. The genetic correlation between the volume of the not
highlighted region and U, was —0.26 + 0.19.

3.5 Discussion

To our knowledge, this is the first animal study that evaluates the results of CNN and
GradCAM by applying domain specific knowledge of physiology and a quantitative
genetic method. Based on our methods and findings, there are several interesting
points of discussion.

First, we examined the CNN model’s performance. The Pearson correlation (r)
between U, and the CNN- predicted values was 0.12. We attribute the low r to the
biological complexity of Ue., which is also influenced by multiple factors such as
temperature and handling. The variance in U is unlikely to be fully explained by
morphological variation alone. Consequently, an image-based model may not be
expected to achieve a high Pearson correlation with actual measurements. While
incorporating other factors in addition to the images could improve r, this study does
not aim to maximize prediction accuracy. Instead, our goal was to assess whether a
prediction model, visualized through GradCAM, could assist in forming hypotheses
on relevant morphological traits that affect U Despite the low Pearson r,
GradCAM provided meaningful validation, as the swim traits exhibited stronger
genetic correlations (absolute values between 0.38 and 0.48) with Uy than the not
highlighted region (ry = -0.26+0.19).

The interpretation of CNN model results requires domain knowledge. While
GradCAM efficiently identifies image regions associated with U, understanding
their biological mechanism required physiological interpretation, manual
annotation, and genetic analysis. These steps show that the highlighted regions may
be causally linked to U rather than coincidentally associated, eventually leading to
the definition of swim traits.
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Swim traits provide better understanding on the genetic basis of Uy, as they explain
additional genetic variation in Uer compared to body size alone. After adjusting for
body length, U.-: demonstrated a moderate heritability of 0.24+0.07, consistent with
findings in other aquacultural species like Nile Tilapia (Oreochromis niloticus)
(Mengistu, et al., 2021) and European sea bass (Dicentrarchus labrax) (Vandeputte,
et al., 2016). The strongest genetic correlation of -0.48+0.29 was observed between
Usie and epaxial muscle volume. Interestingly, all volume-related traits were
negatively correlated with Ue., except caudal fin volume which was positively
correlated.

Caudal fin volume has a positive genetic correlation of 0.38+0.21 with U After
correction for body volume, the caudal fin exhibits positive correlations with other
swim traits except head volume. We speculate that the positive correlation of caudal
fin volume with Ue is due to its biological relevance in swimming. Trout tails are
characterized roughly by a flat rectangular shape, which facilitates the generation of
propulsion through a pushing action that directs water obliquely backward (Videler,
1993). Consequently, a genetically larger caudal fin likely favors better swimming
performance.

Head volume exhibited negative genetic correlations with U+ and with all other
swim traits, as smaller heads corresponded to better swimmers. As the fish head
enters the undisturbed water first, a more voluminous head creates increased drag
on the sides, perpendicular to the swimming direction. A faster swimmer would
therefore exhibit a flatter and smaller head.

Epaxial muscle volume and shape, which measure different aspects of the same
region, revealed interesting insights. Epaxial muscle shape showed a negative
genetic correlation of -0.42+0.19 with U This echoes the genetic correlation of
epaxial muscle volume (-0.48+0.29), suggesting that laterally thinner fish swim to a
higher U, This is contrary to the expectation that a relatively larger muscle mass
would convey higher swimming ability. The effects of increased drag may outweigh
the benefits of additional muscle mass, and additional muscle would only lead to
higher Ui if the volume-length relationship remains unchanged.

Notably, both epaxial muscle volume and shape demonstrate higher genetic
correlations with U, compared to body volume. This indicates that there is potential
value in investigating additional traits that capture different aspects of the epaxial
muscle. Trout utilizes various muscle types for different swimming performances,
categorized into prolonged swimming, sustained swimming, and burst swimming
(Beamish, 1978). U is the indicator of prolonged swimming involving both white
and red muscle. Sustained swimming refers to a long period of steady movement
powered by red skeletal muscle and aerobic metabolism, whereas burst swimming
involves short sprints at maximum speed, utilizing white skeletal muscle and
anaerobic metabolism (McKenzie, 2011; Plaut, 2001). The genetic relationships
between epaxial muscle traits and swimming speed may differ across these
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swimming types. Future studies could incorporate white-to-red muscle ratios to
capture more precise traits such as muscle composition, and explore alternative
forms of Uet, such as residual U..: (Palstra, Kals, Bchm, Bastiaansen, & Komen,
2020) to account for size-related effect in swimming performance, especially when
conducting experiments on fish of larger range of sizes.

Beyond their biological relevance, swim traits hold potential for various domain
applications. For aquacultural breeding, the genetic relationships between swim
traits and U provide new direction for selection. However, careful consideration is
required when including U, in the breeding objective. Breeding for increased Ueit
should proceed with caution due to its moderate negative genetic correlation with
epaxial muscle volume. Prioritizing higher U.-: may reduce epaxial muscle size and
overall body volume which contributes to body weight and fillet yield, both
important production traits. Conversely, direct selection on U+ would be more
effective for genetic improvement of swimming performance given its heritability of
0.24+0.07, which is relatively higher compared to the expected correlated response
from selection on swim traits.

More accurate assessment of the estimated breeding value (EBV) of U requires
more frequent measurements and might demand additional manual effort to ensure
accuracy. Additionally, swim tests are constrained by fish size and age. A higher
precision of swim trait measurements through non-invasive imaging techniques
could improve EBV accuracy. In this study, swim traits had to be annotated and
calculated manually due to the quality of depth image, which was used to annotate
epaxial muscle. As the fish were small in volume, the depth image has a low
resolution which is visible in Figure 3.5C. Using deep learning for annotation was too
risky to get an accurate measurement, which would sequentially be a problem for the
genetic analysis. However, with more time and effort to collect images, a subset of
manually annotated images could be used to train and fine-tune deep learning
models, such as YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016) for landmark
detection or region segmentation algorithms like SAM (Kirillov, et al., 2023), further
improving precision in swim trait measurements.

This study challenges the prevailing focus on prediction accuracy, where
aquacultural research often prioritizes collecting more data to improve models. In
recent years, deep phenotyping has emerged as a valuable approach for directly
measuring key physiological indicators, such as Ugiin swim tests. Beyond
physiology, deep phenotyping is increasingly used for comprehensive assessments
of metabolism and health, aided by sensor technologies and computer vision.
Machine learning, a form of predictive Al, has become a powerful statistical tool
capable of integrating diverse data sources to model metabolic and health traits.
While these Al-driven approaches show promise, they should not replace
conventional measurements such as swim tests, which, despite being labor-intensive,
remain essential for reliable metabolic assessments. Instead, AI should complement
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traditional methods, providing additional insights rather than substituting well-
established techniques.

Through our workflow of data collection, model construction, visualization,
interpretation, definition, and evaluation, we demonstrate how genetic analysis of
relevant traits can be independent from reliance on highly accurate prediction
models, with the help of GradCAM and domain knowledge. Shifting the focus from
predictive accuracy to genetic component estimation could also avoid the risk of
overfitting models to environmental variances.

3.6 Conclusion

Advancements in technology have enabled extensive data collection, while
traditional hypothesis-driven approaches risk overlooking important details and
may be influenced by experiential bias. This study demonstrates how an image-based
deep learning model can generate data-driven hypotheses and explain critical
swimming speed (Uecr) in relation to morphology. Genetic analysis not only unravels
the genetic links of U with fine-scale morphological traits but also validates the
physiological interpretations derived from Explainable AI results. The overall
interdisciplinary workflow highlights the potential of deep learning to discover novel
traits and enhance the understanding of complex traits in aquaculture.
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Supplement

Object segmentation - RGB (red, green, and blue) images were converted to HSV
(hue, saturation, and value) format to segment the fish from the blue background
using the following thresholds: lower: 10, 188, 83; upper: 179, 25, 255. for hue,
saturation, and value, respectively. Gaussian blur, dilation, and Canny edge
detection were applied to refine the segmentation and remove background noise.
The outlined fish region was copied from the colored image to a blank image of the
same dimensions where the value of all pixels was o (Fig. 3.9). The same
segmentation was performed on the depth image. The initial object segmentation
was performed on the colored images, and then the coordinates obtained from this
segmentation were used to locate and segment the fish in the corresponding depth
images. This approach works because both the colored and depth images share the
same dimensions. All preprocessing was done with OpenCV in Python 3.8.
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Figure 3.9 Overview of the image preprocessing using a single image as an example. 1. The original
colored image; 2. Transformation from RGB to HSV color space; 3. Removal of the background by
applying specific thresholds (lower: [10, 188, 83], upper: [179, 25, 255]) in the hue, saturation, and
value channels; 4. Setting the background value to 0 using a bit-wise transformation; 5. Enhancing the
main object’s edges and background noise through Gaussian blur and dilation; 6. Detecting all

contours using Canny edge detection; 7. Creating a mask with the largest contour; 8. Segmenting the
fish from the original colored image using the generated mask.
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Abstract

This study investigates whether image-based re-identification (re-ID) of Atlantic
salmon is feasible under realistic aquaculture breeding conditions using Siamese
network. Two images of ~1,500 fish were taken, five months apart. Images were
preprocessed and augmented, and three regions of interest (ROIs) were extracted.
Re-ID was performed using Siamese networks with InceptionV3 and EfficientNetB7y
architecture trained via triplet loss. Despite reproducing earlier models, top 1
accuracy reached only 26.2% using an image-level split, and performance fell to
near-random levels when using ID-level splits. We suggest that previous
benchmarks of 98% were overly optimistic for re-identification of large numbers of
fish and long intervals between images. Results identify environmental variance,
particularly lighting, and limited phenotypic stability as major challenges, and
highlight the need for standardized imaging protocols and phenotypic features with
longitudinal stability to enable effective image-based re-identification in aquaculture
systems.

Key words: Individual re-identification; Siamese network; Convolutional neural
network; Triplet loss; Triplet variation; image quality
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4.1 Introduction

In aquaculture, phenotypes are typically measured at the individual level for
breeding and sometimes also for production management. Accurately recording
multiple measurements for each individual enables essential practices such as
tracking growth, assessing maturation, and monitoring health and welfare
parameters. For selective breeding, individual identification is crucial for connecting
phenotypes to the pedigree, and for selection of candidates after breeding value
estimation (Rasal, Patnaik, Murmu, Sundaray, & Das Mahapatra, 2021).

Currently, re-identification is achieved through the use of Passive Integrated
Transponder (PIT) tags, which assign each fish a unique ID. Upon retrieval, PIT tags
are scanned to re-identify the same individual. While PIT tags are efficient and
widely used, their insertion and manual reading are labor-intensive and stressful for
the fish. Studies have also reported adverse effects such as increased mortality
(Macaulay, et al., 2021; Vollset, et al., 2020). Under challenging environmental
conditions, reading PIT tags can be difficult, and tag loss may occur (Thorstad,
Rikardsen, Alp, & @kland, 2013). Consequently, researchers are exploring less
invasive alternatives for re-identifying fish.

With the developments in computer vision, image-based individual re-identification
is becoming increasingly popular. Images have been used to measure morphological
traits (Yu, et al., 2021), and to predict invasive or complex trait based on fish’s
exterior features (Xue, et al., 2025; Prchal, et al., 2020; Vandeputte, et al., 2017).
Some exterior features, such as scale shape (Huntingford, Borcato, & Mesquita, 2013)
or melanin dots (Merz, et al., 2012), can exhibit subtle, individual differences that
can potentially be used for re-identification. Building on research in human re-
identification, which focuses on features such as facial structure, posture, and
appearance like body shape and clothing, animal sciences have started to adopt
vision-based technology in animal health and production systems (Schneider, 2020),
including aquaculture. This method has shown success in several marine species,
including giant sunfish (Mola mola) (Pedersen, Nyegaard, & Moeslund, 2023),
basking shark (Cetorhinus maximus) (Gore, Frey, Ormond, Allan, & Gilkes, 2016)
and undulate skate (Raja undulata) (G6bmez-Vargas, Alonso-Fernandez, Blanquero,
& Antelo, 2023).

Several studies have explored image-based re-identification in common aquaculture
species such as Atlantic salmon (Salmo salar), European seabass (Dicentrarchus
labrax), brown trout (Salmo trutta) and brook trout (Salvelinus fontinalis)
(Bekkozhayeva & Cisar, 2022; Zhou, Hitt, Letcher, Shi, & Li, 2022; Cisar,
Bekkozhayeva, Movchan, Saberioon, & Schraml, 2021; Pedersen & Mohammed,
2021; Zhao, Pedersen, Hardeberg, & Dervo, 2019). However, the applicability of
these methods to real-life scenarios remains limited due to either being successful
only when a small number of individuals is involved or when images are collected
frequently at short time intervals. To be useful, image-based re-identification must
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be successful when the application is aligned with common aquacultural practices.
For example, in breeding programs, images are typically captured during routine
phenotyping to minimize handling stress. These sessions occur with intervals of
several to many months, depending on species and age, and are applied in groups
consisting of thousands of fish.

This study investigates whether image-based re-identification is feasible in a real-life
aquaculture breeding scenario. To date, the FishNet model by Mathisen et al. (2020)
has achieved the highest reported accuracy (98%) for re-identification on 715
individuals taken at a short time interval (up to 9 minutes). The longest documented
interval between imaging sessions was 10 months, reported by Stien et al. (Stien, et
al., 2017) who achieved accuracy of 85% on 30 individuals. Both studies used images
of Atlantic salmon (Salmo salar). Building on these earlier efforts, our primary
objective is to investigate the accuracy of individual re-identification of over 1000
adult salmon using images taken five months apart.

4.2 Materials and methods
4.2.1 Ethical statement

Image data collection was conducted at Landcatch Natural Selection Ltd, Ormsary,
Scotland under the farm’s established Veterinary Health Management Plan (VHMP)
and in accordance with RSPCA welfare standards. All procedures adhered to the local
legislation regarding animal welfare.

4.2.2 Materials

Atlantic salmon (Salmo salar) (n = 1,485) were
kept in flow-through freshwater for 1 year, before
being transferred to seawater in land-based
tanks. Eggs were fertilized in December 2020
and grow until 12 months old when they were
individually handled for weight and length
measurements. Afterwards, they underwent 24
hours light regime for 6 weeks to induce
smoltification. =~ Once  smoltification  was
confirmed by blood chloride testing, fish were Figure 4.1 Ilustration of the
transferred to broodstock tanks and further Phenotyping device.

distributed into more tanks to reduce stocking

density. Two imaging sessions took place during such moments of redistribution: the
first time was 10 months after transfer to seawater, when also fin clipping was done
for genotyping, and the second time was after 15 months.

Salmon were imaged with a purpose-built portable device (Fig. 4.1). The exterior of
the device, both the bottom and top module, is made of high-density polyethylene to
provide a non-stick, low-friction surface that prevents injury to the fish. The top edge
of the surface also had a numerical scale to provide quick reading of the body length
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of the fish. The top module is equipped with a HQ camera (CAM) consisting of a 12
Megapixel sensor with fixed zooming and a vision module capturing the entire
bottom surface of the device with a field of view of 1.1 m. The bottom surface is a red,
curved tray to offer a contrasting background to the fish.

4.2.3 Methods

Imaging

Before the images were taken, fish were handled first into a sedation container with
Tricaine mesylate and, once in a much calmer docile state, placed onto the imaging
device and then into the non-crowded area of the tank to recover from anesthetic
effects until fully conscious. During the operation, each fish would have been
handled by 3 different people, for checking the anesthetic status, placing on and
removing from the imaging device, respectively. With the imaging device, fish were
out of water for only 12 seconds, and the crowding took less than 3 hours in total, in
accordance with the RSPCA standards. After imagining the fish were placed back
into clean seawater.

Images collected from the device were named after the PIT tag per fish and stored
per session. The dimension of images was 4056x3040 pixels. In total, 1,485 images
were collected in February session (10-month after transferred to seawater) and
1,478 in July session (15-month after the transfer).

Image preprocessing

Image preprocessing was performed using OpenCV (Bradski, Kaehler, & others,
2000), a computer vision library in Python 3.9, and included the following methods
(See also Table 4.1, row 1-3):

Cropping

In addition to the fish, the raw images included a screen display on the top of the
view. This part of the image was cropped out using a fixed ratio of the height of the
image.

Distortion correction

The camera lens introduced perspective distortion toward the edges of the images.
Since the lens parameters were not available, distortion was corrected using a
transformation matrix, with parameters empirically determined through iterative
experimentation and visualization. The numerical scale on the top edge of the image
was used as a reference. Correction was considered finished once the scale was
visually in parallel to the length of the image.

Segmentation

Fish were segmented from the background using the Segment Anything Model (SAM)
(Kirillov, et al., 2023), which generates regional masks by detecting differences in
color, texture, and other imaginal features. A bounding box was then derived from
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the mask of the fish, defined by x (longitude) and y (latitude) coordinates, with its
edges tightly enclosing the segmented fish. The segmented fish were then placed on
a 3600 x 1600-pixel black background, aligning the bounding box center with the
center of the new image. Segmentation failed in cases where fish were not visible due
to handling or extreme lighting conditions. These images were subsequently
removed after visual inspection.

The segmented images were also used to calculate the body size of each salmon in
pixel number as part of exploratory data analysis. Salmon were expected to exhibit
increased body size after five months of growth, except in cases of deformity or early
maturation. Individuals showing signs of either condition were excluded from the
dataset, as they can significantly alter external phenotypes.

Data quality assessment

The images were captured outdoors in two sessions separated by 5 months. As a
result, lighting conditions varied significantly between sessions. Also, within each
session conditions varied due to changes in natural daylight. To mitigate the impact
of these variations, we performed a quality assessment of each image using its color
properties. Specifically, we computed the average hue, saturation, and lightness
(HSL) values per image. Images who’s average HSL values deviated by more than
three standard deviations from the session mean were identified as outliers and
excluded from the dataset.

Data augmentation

We applied several data augmentation techniques (Shorten & Khoshgoftaar, 2019)
as each fish was only imaged twice.

Artificial background

The segmented fish image was merged with an underwater image, where the black
background was replaced with an underwater image. The underwater background
image was obtained from a public domain repository, with the original source no
longer accessible. Then the brightness of the image was adjusted by taking the
average brightness of the fish image and the background image (Tab. 4.1, row 4).

Linear combination

Two images of the same fish with random backgrounds were aligned using the left
edge of the bounding box. The bounding box of a fish image from July was resized to
match that of the February image. Both images were then divided into 100-pixel wide
vertical strips. Two linear combination augmented images were created in this
manner, by taking the odd number strips of one image and the even number strips
of the other to construct a new image, and vice versa (Tab. 4.1, row 5).

Taking average images
Two images of the same fish with random backgrounds were aligned using the center
of the bounding box of the fish and resized to match the larger bounding box. Then
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an average image was generated by taking the average value of the two images across
all pixels (Tab. 4.1, row 6).

After data augmentation, the number of images per fish increased from 2 to 9. This
includes 2 original images, 2 with artificial background and 2 with black
backgrounds, 2 images generated through linear combination and 1 average image.

Regions of interest

Three ROIs were extracted separately from all the images. While using the whole fish
image provides more information on the external pattern, the size of the image
increases computational cost, and resizing to smaller size compromises resolution.
Previous research (Cisar, Bekkozhayeva, Movchan, Saberioon, & Schraml, 2021;
Stien, et al., 2017) suggested that melanin dots patterns on the operculum and the
dorsal side were informative for re-identification. Therefore, we extracted the
following regions (Tab. 4.1): a) Anterior 50% of the whole fish, b) Anterior 10%,
including the head and part of the pectoral fin and ¢) Operculum region only. ROIs
were identified and cropped based on the bounding box coordinates and the total
fish length, which was measured by the length of the bounding box. Apart from
improving computational efficiency, the use of ROIs also helped the algorithm focus
on the more informative regions in the images.
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Table 4.1 Data augmentation with example images.

Original image (Left:
February; Right: July)

Cropping & distortion
correction

Segmentation

Artificial background

Linear combination

Average image

Table 4.2 Regions of interest identified and cropped.

a) Anterior 50% b) Anterior 10% ¢) Operculum region
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Siamese network

A Siamese network (Chopra, Hadsell, & LeCun, 2005) consists of two identical
neural networks with shared weights, designed to learn a similarity metric between
image pairs. Unlike traditional classification or regression models that make
predictions based on images, Siamese networks learn to distinguish between images
of different objects (individuals in this case). The images are mapped into a high-
dimensional embedding space, where the proximity of embeddings reflects their
image similarity.

To ensure the model generalizes well to new data, either a new image of an already
known fish or images of a new fish, we applied two different data splitting
approaches: image-level split and ID-level split. For image-level split, data
augmentation was performed first, followed by random splitting of all images into
training, validation and tests, similar to the approach in FishNet (Mathisen, Bach,
Meidell, Mélgy, & Sjeblom, 2020). For ID-level split, data was first split according to
the individual fish IDs before applying augmentation, so that no images of the same
fish appeared in both training/validation and test sets. For both methods, data was
divided into 60% training, 20% validation, and 20% test sets.

The training of Siamese networks requires image triplets. Each triplet contains: a
reference image of an individual fish (anchor), another image of the same fish
(positive), and an image of a different fish (negative). The Siamese network is trained
to minimize the distance between embeddings of the anchor and positive pair while
maximizing the distance between embeddings of the anchor and negative pair. This
forces the model to learn meaningful, discriminative features that remain consistent
across images of the same fish while differing between images of different fish. For
this, we used the triplet loss function, defined as:

N
Loss = Z max (d(4,P) —d(A,N) + a,0)

i=1

Where d(4, P) is the Euclidean distance between the anchor and the positive image
of the same fish, d(4,N) is the Euclidean distance between the anchor and the
negative image of a different fish, a is a margin value that ensures a sufficient
separation between positive and negative pairs, and was set to 0.2, a value commonly
used in re-identification tasks, and the max function ensures that the weights are
updated until d(4, P) remains smaller than d(4, N) by the margin. A well-trained
model should eventually produce embeddings where images of the same fish cluster
together, while those of different fish are well-separated in the high-dimensional
space (Fig. 4.2).
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Figure 4.2 Illustration of Siamese network and its function.

We tested two convolutional neural network (CNN) (LeCun, Bengio, & Hinton, 2015)
architectures to generate embeddings: Inception V3 (Xia, Xu, & Nan, 2017) and
EfficientNet B7 (Tan & Le, 2019). Inception V3 was selected based on the study of
FishNet and EfficientNetB7, an upgrade of Inception V3, was chosen because it is
one of the most advanced CNN architectures. Both models were initialized with pre-
trained ImageNet (Deng, et al., 2009) weights before continuing training on our
dataset. In both models, the final classification layer was replaced with a 128-
dimensional dense layer, representing the learned embedding vector. To further
ensure that embeddings learned by the Siamese network remain meaningful and
stable, we applied L2 normalization to the output embeddings by dividing the
embedding vector with their Euclidean norm.

The models were built under Python 3.9 with Tensorflow 2.3. Each model was
trained for 100 epochs, with a batch size of 32. The training and validation were
performed on a high-performance cluster (HPC) using one GPU (NVIDIA V100
Tensor Core).

After training, we evaluate the learned embedding by Euclidean distance using top 1
and top 5 accuracy. A top 1 match is considered correct if the nearest embedding
comes from a different image of the same fish. For top 5 accuracy, the result is
considered correct if at least one of the five closest embeddings corresponds to the
same fish.

Finally, to visualize the decision-making process of the trained model, we employed
Gradient-weighted Class Activation Mapping (GradCAM) (Selvaraju, et al., 2017).
GradCAM generates heatmaps by utilizing the gradients of predictions with respect
to the weights and features in the final convolutional layer. These heatmaps highlight
regions in the input image that contributed most to the model's decision. The color
coding follows a red-to-blue scale, where red regions indicate areas with the highest
importance in determining similarity and blue regions indicate less relevant regions.
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By applying Grad-CAM, we could visually inspect whether the model was focusing
on regions with biological features, such as the melanin patterns on the operculum
or dorsal side.

Triplet structure

One of the main challenges in this study was the limited number of two available
images per fish. We first assessed the structure of the dataset by analyzing Euclidean
distances between the embeddings of images before training the model. Specifically,
for each fish's July image, we computed its embedding using the pre-trained model
and visualized its Euclidean distance to the embeddings of all February images.

There were three types of triplets when training with triplet loss function: Easy
triplets, where the positive is already closer to the anchor than the negative by the
margin, i.e. d(A,P) + margin < d(A,N); Semi-hard triplets, where the negative is
closer than the positive pair but the difference is within the margin, i.e. d(A,P) <
d(A,N) < d(A,P) + margin; And hard triplets, where the negative pair is closer than
the positive pair. To explore the structure of the embeddings in the triplets before
training, we visualized the Euclidean distances between the two session images for
randomly selected fish. As there is only one positive pairs, we selected both semi-
hard and hard triplets for training simply by excluding all easy triplets.

Research strategy

A series of experiments were designed and conducted to investigate how regions of
interest (ROIs), convolutional neural network (CNN) architecture of the Siamese
network, data augmentation, and dataset splitting strategy affect the performance of
image-based re-identification. These experiments are summarized in Table 4.3.

Table 4.3 Summary of re-identification experiment using Siamese network.

EXPERIMENT | ROI CNN Augmentation  Data split ;)i’;:’
A Anterior 50% InceptionV3 No Image-level 1449
B Anterior 50% InceptionV3 Yes Image-level 1449
C Anterior 10% EfficientNetB7 Yes Image-level 1449
D Anterior 10% EfficientNetB7 Yes ID-level 1449
E Operculum EfficientNetB7y Yes ID-level 1449

Experiment A and B were based on the work of Mathisen et. al (2020), using the
same network architecture, InceptionV3. The key difference between these two
experiments is the use of data augmentation: Experiment A used the original 2
images per fish, while Experiment B increased the number of images to 9 through
augmentation. Both experiments used the anterior 50% as ROI, slightly broader than
the region proposed by Mathisen et. al (2020), to include additional informative
regions, such as dorsal patterns, suggested by Cisar et al. (2021).
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Experiment C introduced two changes: it replaced the CNN with the more
advanced EfficientNetB7 architecture and reduced the ROI to the anterior 10% of the
fish. The reduction of the ROI was emphasized in both Mathisen et al. (2020) and
Stien et al. (2017). Like A and B, Experiment C used an image-level data split.

Experiments D and E adopted an ID-level data split, where images of the same
individual are not allowed to appear in both training and test sets. Experiment D
used the same anterior 10% as Experiment C. In Experiment E we isolated the
operculum region.

4.3 Results
4.3.1 Exploratory data analysis

The biological development of salmon (n=1,485) in 5 months was assessed using
image-based measurements (Tab. 4.5). The number of pixels in each segmented fish
image was used as a proxy for body weight, given the expected strong correlation
between body size and weight (Balaban, Unal Sengér, Soriano, & Ruiz, 2010). While
most individuals showed an increase in body size over the five-month period, some
fish showed a reduction. Upon visual inspection, we identified three likely causes:
early maturation, lesions or bleeding indicating disease or injury, and deformities
(Tab. 4.5, Right). Among these, early maturation and severe deformities visibly
altered the fish’s morphology and was likely to affect re-identification performance.
Lesions and bleeding, on the other hand, did not noticeably affect the melanin
patterns on the head and operculum.
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Table 4.5 Summary of the exploratory data analysis on fish growth in 5 months. left: graph with the
growth trend where x-axis is the time point, and y axis is the size calculated by pixel numbers. right:
image example of likely causes of growth size decrease. From top to bottom, each row represents early
maturation, lesions and bleeding, and deformity, respectively.

GROWTH TREND Image example

February July

Size

Feb July

4.3.2 Triplet structure

In total, 36 images were removed as outliers that were overexposed and lacked
visible melanin patterns (Fig. 4.3). Afterwards, 1,449 individuals remained in the
dataset.

0c70

e

Figure 4.4 Euclidean distances between 7 randomly
selected individual images from July and all the images in
February. X-axis: image ID, y-axis: Euclidean distance. Black
dot: positive image.

Figure 4.3 Examples of four
outlier images that suffer from
overexposure.
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To explore the structure of the embeddings in the triplets before training, we
visualized the Euclidean distances between July and February images for seven
randomly selected fish (Fig. 4.4). In each panel, the y value of the black dot
represents the distance between the positive pair (i.e., the same individual in the
other session), while the boxplot illustrates the distribution of distances to images of
all other individuals in the other session (negative pairs).

4.3.3 Siamese network performance

The results are presented in the order of the experiments, with emphasis on how
changes in the experimental setup affected the outcomes.

In Experiment A, the network achieved a top 5 accuracy of 3% and a top 1 accuracy
below 1%, slightly above the expected random pairing accuracy of 0.35%. To better
understand the performance of the model, we generated GradCAM visualizations for
both a successful case, where the true match was among the top 5, and a failed case
(Fig. 4.5). The successful match appeared to focus on the head and dorsal melanin

pattern, whereas the failed case did not utilize the hypothesized regions of interest.
Input image Top 5 matches GradCAM

Figure 4.5 First row is a correct pairing example, where the correct match is indicated with the red
square and the GradCAM covering mainly the head and dorsal melanin pattern; Second row is an
example of failed pairing, no correct match was in the top 5 matches, and the GradCAM was
highlighting the background.

In Experiment B, after applying data augmentation, the top 5 accuracy increased
to 4%, while top 1 accuracy remained unchanged at 1%.

To provide the network with more focused visual input, Experiment C used only
the anterior 10% of the fish body, combined with data augmentation and a deeper
CNN architecture. This led to a substantial improvement, with top 5 accuracy
reaching 30.7% and top 1 accuracy 26.2%. GradCAM results highlighted two key
regions for successful re-

identification: the area surrounding the eye (including the operculum) and the
pectoral fin (Fig. 4.6).
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We suspected the results of Experiment
C might be artificially inflated due to
applying an image-level data split. Data
augmentation was applied before
splitting, potentially allowing images of
the same individual to appear in both
the training and test sets. To address
this, Experiment D used the same
setup as Experiment C but performed
an ID-level data split to avoid data
leakage. Accuracy dropped dramatically, with both top 5 and top 1 accuracy
approaching zero, comparable to the 0.5% random pairing level.

Figure 4.6 An example of the input anterior 10%
augmented image and its GradCAM where top 1
match was correct.

In Experiment E, we further constrained the input by using only the operculum
region, with the objective to reduce potentially irrelevant information other than
melanin spot pattern, but performance was not improved.

In summary, the Siamese network was able to re-identify fish when an image level
split was applied but was unable to re-identify fish when trained with an ID-level
data split. The model failed to exceed random performance across all experiments.

4.4 Discussion

To investigate whether image-based re-identification is feasible in a real-life
aquaculture breeding scenario, this study made a two-stage effort. The first stage
(Experiments A, B, and C) applied methods from previous successful studies using
image data collected in breeding facilities. The second stage (Experiments D and E)
aimed to mimic real-life application by testing whether the trained models could be
generalized to images of new fish.

Two key results emerged from our findings. First, based on Experiment A to C, we
find that the InceptionV3 architecture applied with an image level split of the data
may not be sufficient for long-term re-identification. While the same method showed
high accuracy before (Mathisen et al., 2020), this was in a dataset that was based on
short video clips of less than 9 minutes, while our experimental interval was 5
months. For our dataset, the same network architecture yielded only 4% top 5
accuracy (Experiment B). Upgrading to EfficientNetB7 in Experiment C improved
top 5 accuracy to 31% in our dataset spanning over 5 months, yet this remained far
below the 98% accuracy previously reported using short video.

Additionally, it is likely that results in experiments A to C and the results by Mathisen
et al. (2020) were inflated by data leakage, as an image level data split was performed
after data augmentation, not based on the fish ID. This allows near-duplicate
augmented images of the same fish to appear in both training and test sets, thus
boosting performance.
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In experiment D we applied ID level split which dramatically reduced accuracy to
near zero. This contrast between image-level and ID-level splits is the second key
result and illustrates the difficulty of identifying stable, time-invariant features
across individuals. In image-level training, the model can associate identity with
features that remain stable across different image conditions (e.g., lighting,
background). However, in ID-level training, the model is required to learn and rely
on features that are time-invariant across different individuals and imaging
conditions. Although Stien et al. (2017) demonstrated that operculum melanin spots
can remain stable for up to 10 months, we speculate that variation from uncontrolled
imaging conditions between sessions, particularly in lighting, can outweigh this
biological stability. As a result, the model may fail to prioritize biologically
meaningful features and therefore struggle to generalize to new individuals.

For a Siamese network to succeed, intra-class variation (same individual imaged at
different times) must be minimized while inter-class variation (differences between
individuals) remains distinct. Ideally, intra-class variation is low because unique
biological features should remain visually stable. However, imaging inconsistencies
such as angle, lighting, and zoom can inflate intra-class variation, sometimes to the
point where it overlaps with or exceeds inter-class variation. When this occurs, the
model cannot reliably separate individuals.

Triplet loss addresses this by encouraging positive pairs (same fish under different
conditions) to remain close in the embedding space while pushing negative pairs
(different individuals) apart (Fig. 4.2). Triplet mining improves this process by
selecting semi-hard or hard negatives, which are different individuals that appear
similar to the anchor. This forces the network to learn discriminative features under
challenging conditions (Lamping, Kootstra, & Derks, 2025). When natural intra-
class variation is minimal, as in study using short video sequences where highly
similar frames for each individual are produced (Mathisen, Bach, Meidell, Méiloy, &
Sjeblom, 2020), data augmentation is critical for simulating variation in lighting and
angle to improve model’s robustness on new data (Kumar, Asiamah, Jolaoso, &
Esiowu, 2025; Rebuffi, et al., 2021; Khosla & Saini, 2020).

By comparison, our dataset exhibited substantial intra-class variation (Fig. 4.4)
caused by uncontrolled imaging conditions, which likely obscured stable biological
features. With only one positive pair per individual, the network had limited
opportunity to learn consistent identity representations. Consequently, intra-class
variation caused by imaging noise overlapped with inter-class variation driven by
biological features, making them inseparable. For example, two different fish could
appear identical due to overexposure, while the same fish could appear different
across sessions due to lighting changes.

In addition to the stability of image conditions, the effectiveness of biological
features also matters. The melanin spot pattern on the operculum is informative for
humans to distinguish individuals and has been successfully used in both studies of
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Stien et al. (2017) and Mathisen et al. (2020). Given its stability and distinctiveness,
we hypothesized that narrowing the ROI to the operculum would enhance model
performance by focusing on this biologically relevant feature. Comparison of
Experiments A and C suggests a positive effect from focusing on the operculum, but
this could also be due to the deeper CNN architecture. We speculate that the model
in Experiment C also relied on positional information from nearby landmarks such
as the mouth and pectoral fin, as also highlighted in Figure 4.6.

This study combined two challenging factors: a high number of individuals and a
long interval between images. High accuracy of re-identification was reported when
these two factors were separated. Our results with data from a practical aquaculture
breeding environment revealed that image-based re-identification was not yet
feasible in this scenario. Nevertheless, our findings provide valuable insights into
both data quality and methodological requirements.

Future improvements ultimately center on managing intra- and inter-class variation.
A primary step is to enhance image quality by ensuring consistent lighting conditions
so that biological features contributing to inter-class variation remain visually stable
and unobscured. Increasing the frequency of imaging sessions or capturing multiple
images per fish can further reduce intra-class variation by providing a wider range
of biological features under varying conditions, potentially with higher longitudinal
stability. For this reason, image acquisition protocols are important, in particular
under standardized lighting, ideally within a closed imaging system. However,
repeated handling of fish for imaging raises ethical and logistical concerns. For re-
identification in the domain of marine conservation, at least 8—10 images per
individual were recommended for reliable model performance (Bouma, Pawley,
Hupman, & Gilman, 2018). Whether similar thresholds are applicable to aquaculture
species remains to be researched.

In salmonids, spatial shifts in operculum spot patterns are known (Stien, et al., 2017)
and may serve as dynamic biometric markers, provided they are properly quantified
and modeled over time. In human facial recognition, changes in identity-related
features are often accounted for using functional growth matrices (Ramanathan &
Chellappa, 2008). Growth curves and more sophisticated longitudinal patterns
could enable the modeling of intra-class variation as a continuous, predictable
biological development.

A promising development for the advancement of re-identification is the broader
integration of imaging technologies into aquaculture phenotyping. Images already
enable automated trait extraction and support longitudinal monitoring of growth
and early detection of abnormalities, including lesions and deformities, as illustrated
in Table 4.1. Incorporating imaging into routine phenotyping will lead to the
accumulation of datasets that are essential for training more robust re-identification
models. However, accumulating sufficient data takes time and knowledge on the
minimum image quality requirements.
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4.5 Conclusion

We remain optimistic that Siamese networks can serve as a reliable method for
aquaculture re-identification. Unlike traditional identification models that require
labeling for every new individual, Siamese networks learn the similarity between
image pairs, enabling them to recognize individuals based on comparative features
without then need for any fixed IDs. Therefore, Siamese network is well-suited for
aquaculture settings, where new fish are regularly introduced, and exhaustive
labeled datasets are difficult to obtain. Moreover, Siamese networks are capable of
leveraging a wide range of phenotypic features including visually subtle traits, which
means they may also be suitable for fish species that do not exhibit obvious
individual differences like spot patterns.
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Abstract

This chapter critically reviews the development of vision-based individual re-
identification technologies in aquaculture as a potential alternative to PIT tags.
While the non-invasive nature of vision-based methods is appealing, based on a
review of 23 studies, we identify multiple limitations and challenges in current
implementations regarding data acquisition, data analysis, and practical
implementation. To address these gaps, we recommended a new aquaculture-
centered flowchart emphasizing high-tech data acquisition, adapting multi-
dimensional data quality frameworks, and benchmarking. Importantly, we call for a
realistic view of technology’s potential: while vision-based methods hold long-term
promise, they are currently insufficient to replace PIT tags. Future advancements
depend on coordinated efforts in dataset standardization, methodological
refinement, and the alignment of model development with practical aquacultural
systems.

Key words: Machine vision; Fish re-identification; PIT tag replacement; Non-
invasive; Precision aquaculture
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5.1 Introduction

Individual re-identification is essential in many aspects of aquacultural research,
such as breeding and behavior studies. Different from identification, which often
refers to distinguishing between different species and classifying the individual in
the correct species, re-identification tracks the same individual over time with a
consistent ID. This process connects repeated observations on the same individual,
allowing researchers to monitor changes over time and detect deviations that may
signal stress or health issues (Weirup, Schulz, & Seibel, 2022). For example, the
growth curve derived from repeated measurements can predict expected body
weights. Reduced growth rate can result from stress (Sopinka, Donaldson, O’Connor,
Suski, & Cooke, 2016), and the variance of individual deviation from expected weight
serves as a key indicator for health and resilience (Mengistu, et al., 2022).

The most common method for individual re-identification involves the use of tags,
such as Passive Integrated Transponder (PIT) tags. Widely used for registering
individual records in aquacultural breeding, production, and management, PIT tags
are stable, recyclable, and available in large quantities. However, PIT tags also
present several challenges. Studies report higher mortality rates among tagged fish,
raising welfare concerns (Mahapatra, et al., 2001; Vollset, et al., 2020; Dheeran,
Varghese, & Salimkumar, 2022). Practically, re-identification with PIT tags requires
inserting a small chip into each fish, followed by manual handling and scanning each
time the fish ID needs to be retrieved. Tagging and re-identification, including
sedation and out-of-water transport during measurements, increase labor costs and
induce stress for fish.

With the developments in computer vision, image- and video-based individual re-
identification based on exterior features is becoming increasingly popular (Ye, et al.,
2022; Zahra, Perwaiz, Shahzad, & Fraz, 2023). Building on research in human re-
identification, which focuses on features such as facial structure, posture, and
appearance like body shape and clothing, animal sciences have started to adopt
vision-based technology in animal health and production systems (Schneider, 2020),
including aquaculture. Non-invasive, high-throughput vision data, such as images
and videos, enable real-time monitoring of individual and group phenotypes with
minimal disturbance to the animals. Several fish species have distinctive exterior
phenotypes such as pigment patterns or scale shapes (Stien, et al., 2017; Huntingford,
Borcato, & Mesquita, 2013; Merz, et al., 2012), which suggests the possibility to
replace PIT tags with vision-based re-identification if these distinctive phenotypes
would exhibit unique, identifiable features of individual fish.

Despite the widespread use of re-identification technologies in security and
surveillance of humans (Vezzani, Baltieri, & Cucchiara, 2013; Leng, Ye, & Tian, 2019),
their application in aquaculture lags behind. At this stage, it remains unclear whether
aquaculture is ready to replace PIT tags with non-invasive, vision-based re-
identification, as the related challenges have not yet been systematically identified,
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nor have potential solutions been fully explored. This review addresses these
questions by identifying the obstacles to vision-based re-identification and proposes
recommendations to improve its adoption in aquaculture.

5.2 Vision-based fish re-identification

We conducted a literature search via Google Scholar and Elsevier Scopus using
combinations of the following keywords: individual, recognition, (re-)identification,
aquaculture, fish, images, videos, and vision. A total of 23 studies were identified
that used images or videos for individual re-identification in both captive and wild,
for aquacultural, and ornamental species (Tab. 5.1).

Species were categorized according to their common usage, as well as the
descriptions provided in each study’s materials and methods section. For instance,
although Arctic charr (Salvelinus alpinus) is typically associated with aquaculture,
the individuals studied by Debicki (2021) were found in spring-fed lava caves,
suggesting a wild origin. Similarly, common carp (Cyprinus carpio) appeared in
both aquaculture and ornamental studies, depending on the specific research setup.
In several cases, the distinction between farmed and wild fish was unclear. For
instance, Pedersen (2021) used out-of-water images of 39 brown trout of unspecified
origin.

Given such ambiguities present in several reviewed studies, categorizing species by
their usage provides a structured basis to evaluate methods with the highest
potential for practical implementation. The following sections focus on the specific

challenges of individual fish re-identification in aquaculture, while drawing
comparative insights from wild, ornamental, and experimental setting.
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Table 5.1 Vision-based fish re-identification studies on common aquacultural species, wild,

ornamental, and experimental fish.

Species

Aquaculture

Atlantic Salmon (Salmo salar)

Brook trout (Salvelinus
Jontinalis)

European seabass
(Dicentrarchus labrax) and
common carp (Cyprinus carpio)

Chinook salmon (Oncorhynchus
tshawytscha)

Brown trout (Salmo trutta)

Aim

Large (c. 3kg) salmon individual re-identification in sea
cages 10 months later (Stien, et al., 2017)

Iris recognition as a long-term biometric method for
individual identification in salmon (Foldvik, Jakobsen, &
Ulvan, Individual recognition of Atlantic Salmon using iris
biometry, 2020)

Non-invasive fish identification using biometric
characteristics of fish iris (Schraml, et al., 2020)

Fully automatic long-term individual identification of
Atlantic salmon (Cisar, Bekkozhayeva, Movchan, Saberioon,
& Schraml, 2021)

Non-invasive individual identification to facilitate life-long
tracking and monitoring of salmon (Mathisen, Bach,
Meidell, Mélgy, & Sjgblom, 2020)

Chapter 5

Novel visual learning framework for individual
identification to improve identification accuracy (Zhou,
Hitt, Letcher, Shi, & Li, 2022)

Determine whether individual spot patterns are unique for
short duration mark-recapture re-identification (Haxton,
2021)

Show the possibility of automatic image-based ID based on
the pattern of the scale positions (Bekkozhayeva & Cisar,
2022)

Identify individual salmon during migration based on spots
pattern and development (Merz, et al., 2012)

Automatic image-based individual recognition of brown
trout (Salmo trutta) in the wild (Zhao, Pedersen,
Hardeberg, & Dervo, 2019)

To match the same brown trout in a set of other images
based on individual image for tag-free, non-invasive
recognition (Pedersen & Mohammed, 2021)
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wild

Undulate skate (Ragja undulata)

Giant sunfish (Mola
alexandrini)

Freckled hawkfish
(Paracirrhites forsteri)

Stingray (Megatrygon microps)

Basking Shark (Cetorhinus
maximus)

Freshwater armored catfish
(Rineloricaria aequalicuspis)

Arctic charr (Salvelinus
alpinus)

Corkwing wrasse (Crenilabrus
melops)

Non-invasive photo-identification via deep learning to
discriminate between individuals (G6mez-Vargas, Alonso-
Fernandez, Blanquero, & Antelo, 2023)

Refined automated pipeline to re-identify giant sunfish
(Pedersen, Nyegaard, & Moeslund, 2023)

To assess the efficacy and accuracy of computer-aided photo
identification of individual freckled hawkfish in the wild
(McInnes, et al., 2020)

To establish whether individuals could be reliably identified
using natural spot patterns (Keeping, et al., 2020)

Individual recognition over time from dorsal fin images for
population estimation for conservation (Gore, Frey,
Ormond, Allan, & Gilkes, 2016)

To test the feasibility of photo-identification for individual
recognition (Dala-Corte, Moschetta, & Becker, 2016)

Photographic individual re-identification method that uses
spot constellations in images (Debicki, et al., 2021)

To test the applicability of image-based re-ID as potential
tagging replacement (Olsen, et al., 2023)

Experiment, ornamental and other fish

Zebrafish (Danio rerio)

Medaka (Oryzias latipes)

Crucian carp (Carassius
carassius) and common carp
(Cyprinus carpio)
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Individual fish identification based on the HSV color model
(Al-Jubouri, Al-Azawi, Al-Taee, & Young, 2018)

Combine different tracklets through individual re-
identification (Bruslund Haurum, Karpova, Pedersen, Hein
Bengtson, & Moeslund, 2020)

Non-invasive and experimentally practical identification of
medaka to improve experiment design (Osada, Yasugi,
Yamamoto, Ito, & Fukamachi, 2024)

Robust and accurate multi-view fish re-identification
framework (Fan, Song, Feng, & Yu, 2024)
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5.3 Vision-based re-identification in aquaculture

The current challenges in re-identification in aquaculture are examined from three
perspectives: data acquisition, data analysis, and practical implementation.

5.3.1 Challenges in data acquisition

In the development of the concepts and practical guidelines for Precision Fish
Farming (PFF) (Fore & Alver, 2023), the setup of a vision-based re-identification
system should meet the criteria that address the specific requirements for
aquaculture, which include:

Operational compatibility

The re-identification system should consider how specialized equipment and
protocols can be integrated into real-world aquaculture environments that are built
for fish production.

Minimal intervention

The introduction of new technology should minimize the interventions in regular
farm operations. Possible difficulties come from increased time and labor
requirements, and a higher frequency of fish handling. Given that farms usually do
not have personnel dedicated to vision data collection, the technology setup should
prioritize autonomy, robustness, and automation.

Most studies employed unique setups to capture vision data.

Overall, capturing exterior traits such as skin or scale patterns appears more feasible
for practical implementation than imaging a biometric trait such as iris patterns.
Imaging devices, for example as proposed by Cisar (2021), and others referenced in
Chapters 1-3, could facilitate the collection of clear out-of-water images by stabilizing
fish against a fixed background. Another common approach is to isolate fish in
separate aquariums to ensure individual image capture. Both approaches, however,
may increase labor demands or require personnel training. Moreover, frequent
handling of fish raises welfare concerns due to the stress induced and can increase
production costs. Data acquisition requires more automated, economical and fish-
friendly design for data collection in aquaculture.

Among all approaches, using underwater cameras offers the least stressful and most
practical solution for image acquisition by comparison, particularly when
implemented as underwater video collection, although it may lead to higher costs
related to device maintenance, data transfer, storage and pre-processing.

5.3.2 Challenges in data analysis

Based on the reviewed studies, we attributed a repeatable re-identification result to
two aspects: data quality and applied methodologies.

89

Chapter 5



Chapter 5

Inadequate assessment of data quality

The reviewed studies used datasets of varying sizes, collected under different
conditions (e.g. natural vs. induced lighting, underwater vs. out-of-water). Most
studies acknowledged common image quality issues, such as low resolution, motion
blur, incomplete fish in the view, lighting variation, and proposed technical solutions.
However, their assessments were limited to the visual characteristics of individual
images, whereas a broader and more systematic assessment of data quality was
largely absent.

Although image quality is an important aspect for vision-based studies, data quality
consists of multiple dimensions (Miller, et al., 2024) that are crucial for re-
identification. This review highlights timeliness and volume as particularly relevant,
based on the data quality framework proposed by Black & Nederpelt (2020).

Timeliness refers to how well the data represents the biological state of the fish at a
specific point in time. In aquaculture, where many species (especially salmonids)
undergo significant morphological changes throughout development, the timing of
data collection is crucial. If datasets do not align with these changes, the
corresponding re-identification methods are also limited. Most reviewed studies did
not evaluate this aspect adequately. For instance, Mathisen (2020) used
approximately 9 minutes of video, while Pedersen (2021) used just 24 seconds.
Despite sufficient image resolution, it remains unclear whether such short
recordings are sufficient for tracking individuals over time or across developmental
transitions. Image datasets often focus on a single developmental stage, such as pre-
or post-smoltification. Without continuous coverage across development periods,
these methods may fail when applied to fish at different biological stages.

Volume refers to the number of fish included in the dataset and is critical for
assessing model scalability and practical feasibility. This issue is addressed in more
detail in the following section, which focuses on implementation challenges.

Lack of benchmarks in applied methodologies
Table 5.2 summarized the methods applied in reviewed studies.
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Table 5.2 Methods used in individual re-identification studies in aquaculture.

Methodologies

Feature extraction

Low-level features

Blob extraction

Key points annotation

Histogram of Oriented Gradients (HOG)
Local binary pattern (LBP)

Speeded Up Robust Features (SURF)
High-level features

Convolutional neural network (CNN)

Bidirectional feature pyramid networks
(BiFPN)

Siamese network
Matching

Cosine similarity
Euclidean distance

Angles between vectors
Coordinate matching
Support vector machine (SVM)

Loss function (i.e. triplet loss)

Reference

Merz (2012)

Stien (2017), Haxton (2021)

Cisar (2021), Bekkozhayeva (2022)
Pedersen (2021)

Zhao (2019)

Schraml (2020), Cisar (2021), Zhou (2022)
Pedersen (2021)

Mathisen (2020)

Schraml (2020), Pedersen (2021)

Cisar (2021), Bekkozhayeva (2022), Haxton
(2021)

Stien (2017)
Merz (2012)
Zhao (2019)

Pedersen (2021), Mathisen (2020)

Re-identification methods typically involve two steps: feature extraction and feature
matching. Feature extraction can be divided into low and high level. Low-level
features refer to basic image characteristics such as edges, color histograms, and
textures. These features are often pixel-based, relatively simple to compute, and
require minimal processing power. In some studies, these features were annotated
manually, as shown in the work by Stien (2017) , or extracted using semi-automated
systems like the Interactive Individual Identification System (I3S spot) (Van
Tienhoven, Den Hartog, Reijns, & Peddemors, 2007), which has been widely applied
in the re-identification of wild species (Table , section Wild). In addition, automated
image processing algorithms such as Histogram of Oriented Gradients (HOG) (Dalal
& Triggs, 2005), Local binary pattern (LBP) (Ojala, Pietikdinen, & Harwood, 1996),
Speeded Up Robust Features (SURF) (Bay, Tuytelaars, & Van Gool, 2006) are
commonly used to extract low-level features efficiently.
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High-level features, in contrast, are more abstract and often derived from deep
learning models. Convolutional neural networks (CNNs) (LeCun, Bengio, & Hinton,
2015) are the most common approach for extracting these features, and several
architectures, such as Faster R-CNN (Ren, He, Girshick, & Sun, 2015) and ResNet
(He, Zhang, Ren, & Sun, 2015), have been used in the studies reviewed, such as Zhou
(2022). Among the CNN-based approaches, two specific types of models were
particularly notable. Bidirectional feature pyramid networks (BiFPN) (Tan, Pang, &
Le, 2020) can fuse information in different layers of CNN to capture both low-level
features like edges and textures and high-level features like the contours. Siamese
network, or sometimes call twin neural network, transform the image into
embeddings that contain both similar and dissimilar features of the two images
simultaneously. Siamese networks (Chopra, Hadsell, & LeCun, 2005), also known as
twin neural networks, transform image pairs into high-dimensional vectors where
both similarity and dissimilarity can be evaluated to facilitate robust identity
comparisons.

Feature matching, the second step in the re-identification process, involves
comparing the extracted features to determine the likelihood that two images
represent the same individual. This comparison can be done through traditional
similarity metrics such as Euclidean or cosine distance (Malkauthekar, 2013), or
through classification techniques such as support vector machines (Hearst, Dumais,
Osuna, Platt, & Scholkopf, 1998). In studies where dot patterns served as identifying
features, similarity was evaluated by assessing the alignment of these dots
coordinates across images. In deep learning-based frameworks, matching is often
integrated into the learning process itself. For instance, Siamese networks frequently
use contrastive loss (Wang & Liu, 2021) or triplet loss (Schroff, Kalenichenko, &
Philbin, 2015) functions to optimize the feature space such that similar vectors are
drawn closer together while dissimilar ones are pushed further apart.

Evidence suggests that high-level, CNN-extracted features outperformed low-level
features extracted from simple algorithm (Pedersen & Mohammed, 2021) in terms
of re-identification accuracy. Furthermore, integrating multiple feature levels
through feature fusion strategies has also shown to enhance model performance
(Zhou, Hitt, Letcher, Shi, & Li, 2022). Another critical methodological advance is the
use of transfer learning, where networks are initialized with weights pre-trained on
large, general-purpose datasets and subsequently fine-tuned on species-specific data
(Zhou, Hitt, Letcher, Shi, & Li, 2022; Mathisen, Bach, Meidell, Malgy, & Sjoblom,
2020).

Despite the availability of state-of-the-art algorithms, methodological challenges
persist, primarily due to the absence of standardized benchmarks. As a result,
method selection is often empirical and lacks theoretical justification. For example,
Pedersen et al. (2023) and Zhao et al. (2019) both utilized the TROUT39 dataset.
However, their studies focused on entirely different regions of interest, making direct
comparison of results not feasible. The variation in datasets, in combination with
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inconsistent or insufficient data quality description, hinders the objective evaluation
of algorithm performance across reviewed studies. This issue extends beyond feature
extraction and also affects the matching. While feature extraction plays a dominant
role in determining performance, it would be naive to overlook the influence of the
chosen matching method on the overall accuracy of re-identification. For example,
although not yet evaluated in the context of fish re-identification, studies have shown
that cosine similarity between embeddings can produce inconsistent or arbitrary
results when assessing semantic similarity (Steck, Ekanadham, & Kallus, 2024;
Srivastava, 2023).

The absence of standardized benchmarks also leads to problematic analytical
practice, such as data leakage. While it does not necessarily lead to inaccurate results,
data leakage can inflate model performance by allowing the network to train on
information it should not have. For example, the study of Mathisen et al. (2020) on
salmon re-identification used a total of 225,000 images from 715 individuals, or
about 314 images per fish. The dataset was split into 90% for training and 10% for
testing, meaning that even in the test set, each salmon would occur more than 30
times. This raises serious concerns about the model’s ability to generalize to data
from fish that are not seen during training, as high accuracy may result from
memorizing melanin patterns rather than identifying distinctive individual features.

Another related issue is the possible inconsistency in the definition of accuracy
across studies. For example, Pedersen & Mohammed (2021) assessed accuracy using
a binary metric to determine whether a given image pair belongs to the same
individual. In datasets containing N individuals, this approach requires N(N-1)/2
pairwise comparisons to estimate re-identification success. In contrast, studies like
Mathisen et al. (2020) evaluated accuracy by directly matching predicted identities
to known individual IDs, where the final accuracy reflects the overall identification
performance. While the difference between these evaluation methods may seem
subtle, it introduces challenges for benchmarking, as the metrics are not directly
comparable and may reflect different aspects of model performance.

In summary, challenges in data analysis stem from both data quality and
methodological constraints. Data quality is oversimplified as image quality and not
sufficiently assessed within an aquacultural framework. Methodologies employed
are mainly developed for human re-identification without benchmarking in
aquacultural datasets, making it difficult to identify optimal strategies for combining
feature extraction and matching.

5.3.3 Challenges in practical implementation

Although vision-based re-identification always has the general aim to distinguish
individual fish based on images, its practical implementation in aquaculture is for
two purposes:
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Replacement of tagging

In systems where fish are currently tagged individually, such as breeding candidates,
the fish are manually handled for tag insertion and later for scanning to retrieve the
tag ID. Using image or video data reduces stress due to handling and labor costs in
this situation. Additionally, vision-based re-identification can help mitigate the risk
of tag loss over long periods.

Tag-free systems

In cases where tagging is impractical, such as for juvenile fish, vision-based re-
identification enables tracking of individuals. Application of tracking is seen in
experimental fish studies (Table 5.1, section Experiment, ornamental and other fish),
but its application in aquaculture would present additional challenges if there were
a need to scale up to track large populations over extended periods.

Table 5.3 summarizes the re-identification results of reviewed studies on
aquaculture species, based on three key factors: the number of individuals in the
study, the duration between initial imaging and re-identification, and accuracy.
Some studies report top i accuracy, where i represents the number of candidates
matches among which the correct individual is present. For example, top 1 accuracy
is the most practical for real-world deployment, top 5 accuracy can assist in
narrowing down potential matches if further refinement opportunities exist, such as
expert verification.

The reported accuracy in most of these studies is relatively high, however there are
some limitations. Traditional tagging is typically done for tracking individuals over
a timescale of weeks, months or even years. Most studies with high accuracy either
included a small number of fish or covered only short time intervals. The longest
time interval was 10 months (Stien, et al., 2017) with an 85% accuracy of re-id across
30 individuals. The largest number of fish was 715 (Mathisen, Bach, Meidell, Mélgy,
& Sjeblom, 2020) with a 96% accuracy of re-id over a 9-minute time interval. In
systems that aim to replace traditional tagging, such as selective breeding programs
or growth and feed conversion rate (FCR) assessment, nearly 100% accuracy is
required for up to thousands of individuals. For tag-free systems, even larger sample
sizes may be encountered.

While some studies describe the potential for upscaling by increasing image
frequency, extending video durations, or including more fish, there is no evidence in
the literature that accuracy of re-identification will remain high with a larger number
of fish over a longer time period. As a result, vision-based individual re-identification
in aquaculture remains challenging, and its feasibility as a replacement for tagging
is still doubtful.

To summarize, while all studies on fish re-identification use vision data aim to
develop non-invasive solutions, they approach the problem without fully integrating
an aquacultural perspective in data acquisition, analysis and practical
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implementation. For instance, description on the life stage and living condition of
the fish involved were overlooked in many studies; Another example is the study by
Pedersen & Mohammed (2021), which explored image-based recognition as an
alternative to tagging juvenile fish. However, the data analysis excluded video frames
containing these fish, likely due to low visibility. While this improved model
performance, it ultimately misaligned the study with its original purpose.

Chapter 5
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5.4 Recommendation on future work

Reviewed

Data collection for human application
(surveillance, security, etc. )

Methods
development
Data collection for
aquacultural application

No

Do the methods work
on aquacultural data?

Yes

'

Conclusion: vision-based re-ID
is feasible in aquaculture

Chapter 5

Recommendation

Data collection for

( Data collection for human application ]
aquacultural application

(surveillance, security, etc. )

3

Methods
Yes
development

Assessment of
data quality —
sufficient or not?

Do the methods work

N
° on aquacultural data?

Yes

'

Conclusion: vision-based re-ID
is feasible in aquaculture

Figure 5.1 Top: flowchart of the structure of reviewed studies. Bottom: flowchart of the recommended
steps with integrated aquacultural perspectives.

The current challenges in data acquisition, analysis and practical implementation
are interconnected. Therefore, as a potential solution, we recommend a fundamental
shift in how vision-based re-identification is approached in aquaculture. Figure 5.1
presents two flowcharts: one summarizing the structure of the reviewed studies and
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the other illustrating our recommended approach. In the following section, we
expand on these recommendations, using the flowchart as a guide for future research
directions.

5.4.1 Recommendation on data acquisition

The first and foremost consideration in data acquisition is the environment or setting
in which vision-based re-identification is intended to be conducted. Most
aquaculture takes place outdoors, in ponds, cages, lakes, etc., and some in controlled
facilities. Given such diversity in environments, we recommend two aspects of
improvement in data acquisition considering the specific challenges facing in
aquaculture.

First, increasing automation enhances operational compatibility. The
increasing adoption of automated phenotyping in aquacultural research (Fore &
Alver, 2023) is expected to drive the development of specialized imaging devices that
are more portable, user-friendly, and resistant to harsh conditions such as high
humidity and salinity. These devices can help optimize technical parameters of
images, for instance, by offering stable lighting conditions and auto-adjusting zoom
or focus, but their operation may still require active human involvement.

Second, passive vision enables minimal intervention. Passive vision (Jacobs,
Souvenir, & Pless, 2009) utilizes data from continuously operating camera networks.
Although such infrastructure is not yet widespread in aquaculture, it is feasible to
begin deploying fixed cameras in both indoor and outdoor facilities to passively
capture images over extended periods.

Cameras can be installed above the water to monitor surface behavior or underwater
to directly observe fish activity. Efficient data acquisition through passive vision
involves strategically placing cameras to take advantage of biological knowledge of
the aquaculture system. For instance, in sea cages, fish distribution and behavior
vary with depth (Banno, et al., 2025; Sauphar, Stolz, Tuene, Gansel, & Aas, 2024).
Combining camera data from different depths can increase the likelihood of
capturing identifiable individuals.

An effective example of passive vision is the study by Pedersen & Mohammed (2021)
on brown trout, where video data was recorded as fish migrated through a fish ladder.
Since all fish were guaranteed to pass through the ladder, this setup maximized the
chances of obtaining individual images without actively capturing and releasing. A
similar concept has also been applied in existing public camera systems, the Fish
Doorbell (Utrecht, HDSR, & van Heukelum, 2025), an interactive webcam to observe
fish migration. Such public sources could potentially be used to extract repeated
image data of individuals.

Nevertheless, while passive vision reduces intervention related to fish handling, it
may increase operational demands for device setup, maintenance, and data
management, along with associated costs.
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Setting up criteria for high quality data is the first step towards optimizing data
collection. The following section provides a detailed discussion of this process.

5.4.2 Recommendation on data analysis

Many of the reviewed studies recommend collecting and testing on larger image
datasets as a direction for future research. While we agree with this general approach,
we argue that simply increasing dataset size is not sufficient. To ensure meaningful
progress, we emphasize the need for more nuanced improvements, including the
implementation of systematic data quality assessments and the establishment of
standardized benchmarks for methodology evaluation.

Data quality assessment

In section 5.3.2, the assessment framework developed by Black & Nederpelt (2020)
was used to evaluate the quality of datasets in the reviewed studies. Currently, no
such framework has been applied to data quality in aquaculture. Accordingly, we
recommend adapting this well-established framework to the aquacultural context to
enable general data quality assessment.

Black & Nederpelt (2020) define a total of 65 dimensions of data quality. We
screened these dimensions and selected those most relevant to aquacultural
applications (see Table 5.4), along with practical examples specific to aquaculture.
We also recommend applying these criteria during data acquisition to ensure quality
control.

Chapter 5
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Table 5.4 Adapted Data Quality Dimensions from Black & Nederpelt, (2020) for Aquaculture Data

quality assessment.
Dimensions

Accessibility

Accuracy

Appropriateness

Availability

Clarity

Coherence

Comparability
Completeness
Concurrency
Consistency

Equivalence

Homogeneity

Integrity

Metadata
Compliance

Precision
Relevance
Reproducibility
Timeliness
Traceability

Validity

Variety

100

Definition

Whether data can be obtained when
needed

Data correctly represents real-world
entities

Data volume/type is suitable for task

Whether authorized
users/applications can retrieve the
data

Data presentation is understandable

Logical consistency for combining
data

Cross-context matching potential

All relevant data is collected

Simultaneous or time-matched data
consistency

Absence of discrepancies across
repeated representations
Conceptual equality of data in
multiple places

Consistency in terminology and
scope across studies

Data is complete and without
missing components

Adherence to agreed definitions of
attributes

Degree of detail or granularity in
data

Applicability of data to the intended
purpose

Ability to replicate dataset with same
results

Data reflects the correct time frame

Data is well-documented, verifiable,
and linked to source

Data conforms to its intended use
domain

Data from multiple sources, formats,
or perspectives

Examples in aquaculture data
High accessibility for public datasets
like ImageNet; private farm data
may be restricted

High-resolution images capture fish
morphology accurately

Adult fish images may be
inappropriate for juvenile re-ID

Mathisen et al. (2020) dataset is no
longer accessible (expired hyperlink)

Clear fish images aid interpretation:
murky or dark images reduce clarity
ROIs from same fish should cohere
better than varied ROIs from same
image

Comparing melanin patterns across
individuals or over time

A dataset excluding early life stages
lacks completeness

Images of 10-month-old salmon
from multiple farms

Stable lighting and background
ensure image consistency

Adjacent frames in video may show
equivalent views of the same fish
Varying definitions of 'short-term'
re-ID in reviewed studies reduce
homogeneity

Uneven image counts across time
points lowers dataset integrity
Fork length measured consistently
across studies meets metadata
compliance

Age in months is more precise than
‘juvenile'/'adult' labels

Salmon data can be irrelevant for
seabass re-identification

Changing camera models may
reduce image reproducibility
Images taken 10 months apart may
not reflect current fish appearance
Dataset without timestamps or
locations has low traceability
Images of juveniles are valid only for
juvenile re-identification

Includes multiple angles, lighting
conditions, and devices
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Under such assessment criteria, what are the minimum requirements for a high-
quality dataset? We recommend that datasets systematically report and document
two key aspects: individual data and environmental data, as illustrated by the
example in Figure 5.2.

Individual fish image & info Environment & group info
o PIT tag (optional) = Time of collection #1
o Species System info:
o Image collection Date and time
ROI #1 —operculum System type
image #1: Device
Fish info: BW, BL, sex...
Image info: time of collection Fish group:
Image #2 Wild or captive
Estimated density
ROI #2 — Dorsal melanin pattern Purpose
o Video collection = Time of collection #2
Video ID, timestamp =

Figure 5.2 An example snip of what information should be included in the datasets
collected for individual re-identification for aquaculture.

At the individual level, vision data should be recorded in relation to continuous
biological indicators. Fish data is typically classified by species and sometimes broad
life stages. However, such classifications can be insufficient for covering the lifelong
biological variation relevant to individual re-identification. A potential solution is
offered in Merz’s study (Merz, et al., 2012) which uses fork length (FL) as a
quantitative indicator of growth.

Currently, most studies rely on melanin patterns for identification, as they offer a
promising balance between detectability, stability, and uniqueness but can be
influenced by fish health, life stage, and environmental conditions. Operculum
melanin spots, for example, have been shown to maintain stable locations and sizes
over ten months in adult salmon (Stien, et al., 2017). Body melanin and scale
patterns are less visible, particularly in underwater imaging. Additionally, skin spots
may change in response to stress (Kittilsen, et al., 2009).

To address these limitations, iris biometrics have been explored as a complementary
approach. Iris patterns are highly unique to each fish at certain life stage but show
lower stability over time compared to melanin-based features.

In human biometric datasets, features are categorized by type (e.g., fingerprints,
facial features, full-body images). A similar approach should be adopted for fish.
Since different ROIs exhibit different levels of changes at different biological
development, combining ROIs per individual could enhance success rates in re-
identification. For example, melanin patterns on Atlantic salmon’s body change pre-
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and post-smoltification, making exterior patterns less reliable for re-identification
across these stages. In such cases, iris biometrics may be a more reliable alternative,
albeit with its own drawbacks.

Therefore, vision data intended for developing re-identification methods should
include measurable, quantitative biological indicators to track developmental stages
and should categorize images by distinct ROIs along with the whole fish image.

Apart from individual information, data regarding the environment is also crucial.
This includes fish density at the time of data acquisition, descriptions of the
aquaculture system, and background information such as whether fish are wild-
origin or captive-bred, and their intended purpose (e.g., breeding, restocking, or
grow-out).

Methods benchmarks

Benchmarking re-identification methods becomes more feasible as the availability
of larger and public datasets increases. This includes implementing different
combinations of feature extraction and matching methods on the same datasets or
conducting replication studies using alternative datasets. For instance, in Chapter 3,
we applied the materials proposed by Stein et. al (2017) and the methodological
approach of Mathisen et al. (2020) to our own dataset, by combining two key factors
from each study: a high number of individuals and a long interval between images.
High accuracy of re-identification was reported when these two factors were
separated. Our results with data from a practical aquaculture breeding environment
revealed that image-based re-identification was not yet feasible in this scenario, with
re-identification accuracy approximated zero.

Based on our review, current studies focus only on features extracted from static
image or video frame. However, as more data annotated with biological development
become available, longitudinal features that capture growth and morphological
changes over time can potentially improve individual uniqueness. Fish re-
identification may not be based solely on still exterior patterns but could also
incorporate time-series features that reflect and predict how an individual’s
appearance changes with growth and development over time.

5.4.3 Recommendation on practical implementation

Challenges in practical implementation result from the uncertainty associated with
upscaling. While these challenges can be mitigated through standardized datasets
and benchmarked methods, additional considerations remain critical when
transitioning re-identification approaches from experimental development to real-
world application.

First, the intended purpose of re-identification must be clearly defined.

Forinstance, if the goal is to fully replace PIT tags, as may be the case in experimental
or ornamental fish tracking (Table , section Experiment, ornamental and other fish),
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the expected accuracy must be very high. Optionally, if the goal is to complement
existing PIT tag systems, such as providing backup identification when tags fall out
during growth or migration, a lower accuracy may still provide valuable utility.
Understanding this distinction allows for realistic expectations regarding
performance and acceptable error margins.

Second, practical deployment scenarios often diverge significantly from
the controlled conditions in which models are trained and evaluated.
Environmental variability, device limitations, and handling constraints may all
undermine the scientific validity and performance of a model. These real-world
uncertainties mean that, beyond a certain point, investing additional time and
resources to achieve marginal gains in accuracy may yield declining returns and
become economically inefficient. For instance, cameras installed in fish farms and
occasionally left unattended can experience blurred views due to water droplets from
splashes, while underwater cameras used for tracking algorithms may have reduced
lifespan in high-salinity environments. Addressing these challenges requires
iterative experimentation and rigorous testing under real-world conditions to refine
models and optimize their performance within practical constraints.

By taking these considerations into account early on, the implementation of re-
identification systems can be better aligned with operational needs and cost-benefit
strategies in aquaculture settings.

5.5 Conclusion

The non-invasive nature of vision-based data holds great value and potential in
individual re-identification. However, the practice of aquaculture can be humbling.
Facing many challenges regarding data acquisition, data analysis and practical
implementation, the development of vision-based individual re-identification is
currently too immature to be a replacement for the PIT tag. In response, we propose
a new framework for method development that places strong emphasis on data
quality and addresses these challenges from an aquaculture-centered perspective.
Our recommendations prioritize realistic, practical implementation to ensure that
vision-based individual re-identification can be meaningfully integrated into real-
world aquacultural systems.
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Abstract

Body shape is an economically and biologically important trait in aquaculture
breeding programs, yet it remains challenging to measure shape objectively. In this
study, we propose a novel method for quantifying body shape in gilthead seabream
(Sparus aurata) using image-derived traits. Expert-based visual scores were
collected on five morphological regions for 3,421 breeding candidates together with
images. Using elliptic Fourier descriptors and generalized Procrustes analysis, we
visualized both ideal and less desirable reference shapes as average best and worst
contours. Two quantitative traits, Distance to the Best (DtB) and Distance to the
Worst (DtW), were derived to measure how much each fish deviated from these
reference shapes. Genetic analyses showed moderate heritability for DtB (0.33 +
0.04), and lower heritability for DtW (0.23 + 0.03) and the score traits. The pattern
of phenotypic averages, and the genetic correlations indicated that a lower DtB is
associated with higher expert scores, while DtW captured a wider range of less
desirable shape variations. This approach provides an automated, objective, and
visually intuitive method for integrating preference on body shape into aquaculture
breeding programs, with potential for economic valuation.

Key words: Score traits; Objectivity; Body shape; Contour analysis; Elliptic Fourier
Descriptor

106



Heritability of shape trait improves through image analysis of seabream

6.1 Introduction

Body shape of fish is a critical trait in aquacultural breeding and management, as it
reflects the biological performance (Xue, et al., 2025) and influences the market
value (Morkere, et al., 2001). Fish of the same species can display substantial
variation in shape due to environmental factors (Smith, Costa, Kristjansson, &
Parsons, 2024; Ndiwa, Nyingi, & Claude, 2016; Collin & Fumagalli, 2011; Marcil,
Swain, & Hutchings, 2006; Wimberger, 1992), or due to domestication that further
alters shape through selection. For example, wild and domesticated fish can exhibit
different body forms (McMaster, 2023; Ahmet Dogdu & Turan, 2021). In fish species
that are sold whole such as sole and seabream, shape is a key commercial trait valued
by both breeding companies and consumers (Colihueque & Araneda, 2014).

Body shape is a complex trait. Although it can be simply defined as the external form
of the fish body, shape is not a single measurement but a collective expression of
various morphological attributes. In flatfish such as sole, shape can be approximated
with simple geometric measurements such as fitting an ellipse (Blonk, Komen,
Tenghe, Kamstra, & Van Arendonk, 2010). For round fish such as gilthead seabream,
measuring shape becomes more challenging and typical relies on multiple indicators
derived from landmarks, dimensions and their ratios (Freitas, et al., 2023;
Fragkoulis, Kerasovitis, Batargias, & Koumoundouros, 2021).

Selective breeding for shape can utilize indicator traits, but this is only effective when
genetic correlations are sufficiently strong. Landmark-derived indicators might only
capture part of the variance in shape, therefore exhibiting a low correlation with the
visually perceived shape. Another approach of measuring shape is an expert-based
grading system, where shape is scored visually according to pre-defined criteria
(Fragkoulis, et al., 2017). Compared to using indicator measurements, this method
directly reflects the desired shape, with higher scores indicating preference. However,
such approach is labor intensive, prone to subjectivity and bias. Moreover, scoring
systems result in categorical traits, which limits the coefficient of variation or has low
resolution in the collected data (Blonk, Komen, Tenghe, Kamstra, & Van Arendonk,
2010).

To answer the need for a better definition, measurement and quantification of shape
for selective breeding, we proposed an algorithm for automated, quantitative
analysis of body shape in gilthead seabream. Visual scores given to selection
candidates were used to derive two novel traits: Distance to the Best (DtB) and
Distance to the Worst (DtW). These traits quantify how closely each individual
resembles the ideal or less desirable shapes. Furthermore, we investigate the genetic
variance of both traits and the potential to integrate these automated measurements
into breeding programs for shape improvement.
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6.2 Materials & Methods
6.2.1 Materials

Images were collected for 3,792 harvest size gilthead seabream (Sparus aurata), all
of which were PIT-tagged breeding candidates with known pedigree information.
Data collection was conducted in sessions at 10 different times between 2018 and
2020. Prior to imaging, each seabream was sedated, weighted and placed in a
lighting cabinet with three LED panels positioned at the top, side, and bottom. The
top horizontal panel is equipped with a built-in RGB camera (Logitech HD Pro
Webcam Cg20). Each seabream was positioned with its right lateral side up on the
bottom panel, with a grid paper placed underneath as a reference scale (Tab. 6.1). All
images were taken with the same device, but at different times of the year. The
zooming setting, background and image scaling are the same within a batch but may
be different between batches.

6.2.2 Methods

To distinguish between visual scores used to describe preference in shape and traits
derived from image analysis, we refer to the former as score traits and the latter as
shape traits.

Definition of score traits

Using the corresponding image, each fish was visually scored by at least two breeding
experts on five morphological traits: head, dorsal side, caudal peduncle, caudal fin
and ventral side (Tab.6.1). Each trait was assessed on a scale from 1 to 3, where a
score of 3 indicates a favorable shape for selection and a score of 1 an unfavorable
shape. The score for each trait added up to total score.

Table 6.1 Score traits and their definitions, with fish image as reference.

Traits name Definition

Head Shape of the head

Dorsal side Curviness of the dorsal side

Caudal Width and length of the caudal
peduncle peduncle

Caudal fin f(“ir(;mpleteness and openness of caudal
Ventral side Curviness of the ventral side

Total score The sum score of all traits above

Definition of shape traits

All image analyses were conducted using Python 3.9 (Van Rossum, Drake, & others,
1995). To ensure consistency across images, a standardized image processing
workflow was implemented. See Algorithm 6.1 for the pseudo codes.

Segmentation

We applied the Segment Anything Model (SAM) (Kirillov, et al., 2023) to segment
the fish from their respective backgrounds. Following segmentation, each fish mask
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that contained the whole fish surface was centrally aligned and pasted onto a white
background of fixed dimensions (640 x 360 pixels) to create the segmented fish
images.

Contour detection

The segmented fish images were processed using OpenCV (Bradski, Kaehler, &
others, 2000) contour detection to extract the fish outline. The largest detected
contour was retained as the representation of the fish body shape, and its coordinates
were saved for subsequent analysis.

Elliptic Fourier descriptor

Using the elliptic Fourier descriptors (Kuhl & Giardina, 1982) analysis, the extracted
contours were decomposed into a series of ellipses where each captures a different
level of details of the contour.

Elliptic Fourier descriptors (EFDs) consist of harmonics and Fourier coefficients that
can be used to reconstruct the original curve. Each harmonic in the EFD framework
uses a pair of sine and cosine functions to describe the periodic changes in both the
x and y coordinates of the contour over time(t). Specifically, the parametric
equations are defined as:

x(t) = ag + Z(an cos(nwt) + b, sin(nwt))

n=1

y(t) = ¢y + Z(C" cos(nwt) + d, sin(nwt))

n=1

Where t is the normalized time parameter (t € [0, 1]) along the closed contour, w is
the fundamental angular frequency equal to 27, n is the harmonic number and an,
bn, cn, d are the corresponding coefficients. While a, and ¢, are the average x and y
position over t, these terms are often set to 0 to center the shape in the image. Besides,
the first harmonic is often standardized by rescaling all coefficients by its amplitude.
The first harmonic is then rotated to align the shape to a common orientation, and
its phase is adjusted to fix a consistent starting point along the contour. These steps
ensure EFDs invariance to scale, rotation, and starting point.

Contour reconstruction

The original fish contour can be reconstructed and visualized using harmonics (Fig.
6.1). While using more harmonics will capture more details in shape and better
resemble the original contour, it increases the risk of including noise, such as fin
protrusions.
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To balance these two aspects, we assess the proportion of shape variance captured
by a given number of harmonics in EFDs. The power or contribution of each
harmonic can be quantified as the sum of squares of its coefficients, reflecting the
harmonic's amplitude:

P, = ai + bi +ci +dj

The total harmonic power across all N harmonics considered is then:

N
Protar = § b,
n=1

To evaluate the cumulative proportion of variance explained by the first k harmonics,
the normalized cumulative power is computed as:

Zn=1 P

Ptotal

Explained Variance, =

For this study, 30 harmonics (IN = 30) were used in total and 7 (k = 7) were used for
reconstruction. This choice was based on the visual resemblance of the reconstructed
and original contour (Fig. 6.1). The first 7 harmonics explain 99% of the variance out
of 30 harmonics of the original contour.

Each reconstructed contour was resampled with 1,000 equally spaced points. Using
the same number and equal spacing of points allows comparison of corresponding
positions along the contours of different fish.

Original Contour 1 Harmonics 3 Harmonics 5 Harmonics 7 Harmonics 30 Harmonics

600
200 14 1 1 1 1
04

—200 +

-400 4

250 0 1 o -1 1 o -1 1 o -1 1 0 -1 1 0 -1
Figure 6.1 Original and reconstructed contours using 1, 3, 57 and 30 harmonics.

Python package pyefd (Blidh, 2021) was used to generate both EFDs and
reconstructed contours.

Contour alignment

To ensure directional consistency across all fish, each reconstructed contour was
aligned based on its principal axes using Principal Component Analysis (PCA) (Karl
Pearson, 1901). The directions of the first and second principal components of the
reconstructed contours were used to orient them, ensuring all fish appeared facing
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right, with the dorsal side upwards. The starting point of each contour was reindexed
to begin at the most anterior point of the fish and proceed clockwise along the
contour.

Python package scikit-learn (Pedregosa, et al., 2011) was used for principal
component analysis.

Generalized Procrustes analysis

We selected all fish that received the maximum value (3) for all score traits and used
their reconstructed contours to represent the ideal shape. Generalized Procrustes
analysis (GPA) (Gower, 1975) was used to calculate the average best contour. Same
was applied to fish that received low values for all score traits. Since there were only
3 fish with 1 for all traits, we included all fish with a total score smaller than 8, to
calculate the average worst contour. Both average contours served as geometric
references for the derivation of shape traits.

Calculation of shape traits

Procrustes distance (Mitteroecker & Gunz, 2009) refers to the minimized sum of
squared Euclidean distances between all corresponding points along the contour.
The Procrustes distances between each individual fish contour and the two average
contours derived from GPA were computed. These two distances, referred to as
Distance to the Best (DtB) and Distance to the Worst (DtW), quantify how far each
fish deviates from the two references. A lower DtB, or higher DtW, means that the
shape of this individual is closer to the ideal, or further from the less desired shape,
and therefore more favorable for selection. Python package Scipy (Virtanen, et al.,
2020) was used for both generalized Procrustes analysis and the calculation of
Procrustes distance.
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Algorithm 6.1 Computation of Distance to the Best (DtB) & Distance to the
Worst (DtW)

Input: Set of fish images I = {I1, I2, ..., I} with associated scores
Input: target total score
Initialize empty lists:

Contours <[ ]

Scores <[ ]
For image I;in I do:
Segment fish using SAM (Segment Anything Model)
Center segmented fish on a 640x360 white background
Detect contour using OpenCV
Compute Elliptic Fourier Descriptors (EFD)
Reconstruct contour using first 7 harmonics (1000 key points)
Align contour orientation using PCA
Append aligned contour to Contours
Append the sum of all associated scores to Scores
End for
BestSet <— {contour € Contours | score = 3 for all traits}
WorstSet < {contour € Contours | score = 1 for all traits}
BestContour «— GeneralizedProcrustesAnalysis(BestSet)
Average best contour <-Plot(BestContour)
WorstContour <—GeneralizedProcrustesAnalysis (WorstSet)
Average worst contour <-Plot(WorstContour)
Initialize empty lists:
DtB +[]
DtW <[]
For contour in Contours do:
d_Dbest < ProcrustesDistance(contour, BestContour)
d_worst < ProcrustesDistance(contour, WorstContour)
Append d_best to DtB
Append d_worst to DtW
End for
Return DtB and DtW

Agreement between score traits and shape traits

After calculating the Distance to the Best (DtB) and Distance to the Worst (DtW),
outlier removal and distribution transformation were performed. Most (99.0%) of
the DtB and DtW values were between 0 and 0.06. However, distance values were
disproportionately high for images where contour detection failed, ranging from
0.49 to 0.95, with a mean of 0.63. To ensure these failed detections were excluded,
an empirical threshold of 0.1 was applied, which effectively removed all such cases.
Subsequently, both DtB and DtW were transformed from a Gamma distribution to a
normal distribution using function gamma2norm in R package faux (DeBruine,

112



Heritability of shape trait improves through image analysis of seabream

2025). Both traits were also standardized with a mean of 0 and a standard deviation
of 1. The outlier removal, distribution transformation and standardization were
performed using R 4.2.1 (R Core Team, 2019).

To assess how well the shape traits align with score traits, boxplots of DtB and DtW
values were plotted against the total scores to examine the relationship of distance
and score traits. This was performed in Python 3.9 using package Seaborn (Waskom,
2021).

Genetic analyses of all traits were conducted using ASReml-R 4.2 (Butler, 2021). A
univariate linear mixed model was fitted to estimate the heritability of all traits,
represented by the equation:

y=Xp+Zv+e

where y is a vector of phenotypes, [ is the vector of fixed effect batch number, v is
the vector of random animal additive genetic effects ~ N(o, Ag?), where A is the
relationship matrix and 62 is the additive genetic variance of the trait, and e is the
vector of random residual effects ~ N(0, I62), where I is an identity matrix and o2 is
the residual variance of the trait. X and Z are the design matrices that relate
observations to the fixed effects and additive genetic effects, respectively.
Heritability is calculated as the proportion of total phenotypic variance explained by
additive genetic variance:

2
2 _ 9a

" 02 +o0?
The phenotypic (r,) and genetic (1) correlations of shape traits with score traits were
estimated using the bivariate model:
y=XB+Zv+e

where y is the concatenated vector of phenotypes of the two traits, [ is the vector of
fixed effect batch number, v is the vector of random additive genetic effects ~
2
o, 73120420,
N( [0] A ® [ @t @1z ‘21'2 a'l] ), where A is the genetic relationship matrix,
0 74,120a,20a,1 Oa,2
012 is the additive genetic variance of trait 1(2), 7,1, is the genetic correlation

between traits 1 and 2, and e is the vector of residual effect ~ N( [g]l ®

2

[ Te1 Te,120;,20e,1] ), where I is an identity matrix, 67, is the residual
Te120¢,20¢,1 O¢.2 '

variance of trait 1(2), r, 1, is the residual correlation between traits 1 and 2. X and Z
are the design matrices that relate observations to the fixed effects and additive
genetic effects, respectively. The genetic correlation between trait 1 and 2 is

calculated as:
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Oa,12

iy
|

2 . ,.2
Oa1 " Oqa2

Where g, 1, is the genetic covariance between trait 1 and 2.

The founders of the population originated from 23 different sources, and their
genetic contributions to the offspring within each batch are uneven. Therefore, for
both the univariate and bivariate models, the genetic analysis was performed with
genetic groups to account for differences between the sources of founders. Batch
number was tested as fixed effect and was included for traits where this effect was
significant.

6.3 Results

6.3.1 Descriptive statistics

Table 6.2 For each trait, the number of fish per score, mean and standard deviation.

Number of fish Mean Standard
Traits (unit: deviation
Score 1 Score 2 Score 3 score) (unit: score)
Head 352 1957 1482 2.30 0.63
DS(;ZS:I 308 1288 2196 2.50 0.64
Caudal
o i o 301 2029 1461 2.31 0.61
Caudal
fin 220 1740 1832 2.43 0.60
Ventral
side 783 2059 950 2.04 0.67

Table 6.2 summarizes the basic statistics for each score trait. Overall, the distribution
of fish across scores was unbalanced, with fewer individuals receiving a score of 1. A
similar pattern was observed for the total score (Fig. 6.2), where most fish were
scored around the average. Only three fish received a score of 1 on all traits, while
129 fish achieved the maximum score of 3 on all traits.

In total, image analysis failed for 234 images, primarily due to issues with
segmentation, contour detection, or reconstruction, and no DtB/DtW values were
calculated for these cases. Figure 6.3 shows the Gamma and transformed normal
distribution of DtB and DtW. Subsequently, outliers exceeding four standard
deviations from the mean DtB and DtW were removed, resulting in a total of 3,452
fish included in the estimation of genetic parameters.
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Figure 6.2 The number of fish per total score, from 5 to 15.
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Figure 6.3 The distribution transformation of DtB and DtW. From top to bottom: Gamma
distribution of DtB; transformed normal distribution of DtB; Gamma distribution of DtW; transformed
normal distribution of DtW.

115



Chapter 6

6.3.2 The average best and average worst contour

Figure 6.4 Average best contour of the fish with score 3 (blue) and average worst contour of the fish
with score 1 (red). Both contours are standardized and center aligned.

Figure 6.4 shows the visualization of average best (N = 129) and average worst (N =
62) contours. The largest deviation between the two contours is observed at the
ventral side of the fish, indicating that a rounder ventral side is less favorable.
Additionally, the caudal peduncle of the fish with lower scores appears to have a
wider, or less straight, connection with the body. However, the width of this region,
when defined as the narrowest part of the peduncle, does not seem to differ between
low and high-scoring fish.

Low and high-scoring fish exhibit similar roundness on the dorsal side. Nevertheless,
the transition from the dorsal to the head region is more gradual in high-scoring fish.
In contrast, this transition is steeper in low-scoring fish.
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Figure 6.5 Top: the relationship between the total score scores and DtB. Bottom: the relationship
between the total score and DtW.

The phenotypic relation between Distance to the Best (DtB), Distance to the Worst
(DtW), and the score traits are visualized in Figure 6.5. For the mean value of DtB
across the total scores, a clear trend is evident: as the total score increases, DtB
decreases, indicating that the corresponding fish shape is closer to the average best
shape. However, such a trend is less clear for DtW. The differences in average DtW
are small across all the classes of total score and the minimum DtW is seen with
intermediate scores of 8 and 9. When the overall score is above 10, there is a tendency
for DtW to increase with higher scores, suggesting that the corresponding fish shape
is further from the average worst shape. Conversely, for scores ranging from 5 to 10,
DtW decreases as the score increases.
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Additionally, the variance of DtB decreases when the overall score increases.
However, such decrease in variance between scores is much smaller in DtW: the
variance is low for total score 5, higher for score 6 and 7, and similar for overall scores
between 8 and 15.

6.3.3 Genetic parameter estimates

Table 2 shows the results of the genetic analysis among all score traits, shape traits
DtB and DtW, and harvest weight. The analysis revealed that DtB exhibited
moderate heritability; 0.33+0.04. In contrast, all score traits, together with DtW,
showed low heritabilities between 0.14+0.03 and 0.25+0.04. The total score trait
also has a low heritability of 0.20+0.03. Harvest weight had the highest heritability
0.4740.04.
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6.4 Discussion

This study introduced a novel transformation of five subjective qualitative
measurements of fish shape into objective quantitative shape traits. The five score
traits collectively captured the preferred body shape in the breeding program, each
focusing on a different morphological region. In contrast, the image-derived shape
traits were based on visual representations that summarize either the ideal or the
less desired shapes of gilthead seabream.

Figure 6.5 shows the relationship between the total score and the two image-derived
traits, Distance to the Best (DtB) and Distance to the Worst (DtW). Both the average
of DtB and the variation in DtB trend to lower values when total score becomes
higher. This suggests that with a higher total score the fish shape converges to a clear
‘perfect’ shape. In contrast, the average of DtW and the variation in DtW does not
trend lower when total scores become smaller. Instead DtW showed similar values
across total scores between 8 and 15 and trended higher for the lowest scores of 5 to
7. Only three individuals had total score of 5, but total scores 6 and 7 clearly show
higher distance to DtW and higher variation.

These different patterns in average and variation between DtB and DtW suggest that
the ideal shape is uni-directional: there is a clear ‘perfect’ shape that individuals
converge toward when highly scored. The high and variable DtW for low scoring fish
suggests that strong deviations from the perfect shape occur in multiple directions.
In other words, while there may be one ideal way to have the ‘right’ shape, there are
many ways to have the ‘wrong’ shape. This interpretation is supported when plotting
the individual contours of the best and worst fish (Fig. 6.6). The best fish contours
are much closer to their average than the worst fish’ contours. Finally, the average
worst shape closely resembles the average best shape (as shown in Fig. 6.6). This
appears to be a result of the undesirable extremes cancelling each other out in the
averaging process for the average worst shape. The genetic correlation between DtB
and total score (-0.05+0.11) is smaller than that between DtW and total score
(0.35+0.11), suggesting that DtW captured more genetic variance in the total score
than DtB.
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— Mean Shape —— Mean Shape

Figure 6.6 Left panel: contours of fish with score 3 for all traits, and the average best contour in blue,
thick line. Right panel: contours of fish with score 1 for all traits, and the average worst contour in red,
thick line.

Although the manual scoring system is prone to subjectivity, the genetic analysis
revealed heritability for all score traits, indicating that the scores were consistent and
repeatable. Genetic correlations were stronger between neighboring traits (ranging
from —0.10 to 0.70, Tab. 6.2, green highlight) than between non-neighboring traits
(—0.15 to 0.17). These correlations could have a biological explanation. For instance,
a good ventral side often indicates low visceral fat content, so the caudal peduncle
may also tend to be leaner and receive a higher score. However, we cannot rule out
that the assessment of one region may also influence the scoring of adjacent regions.

Scores given to individual fish may become biased due to differences in the average
level between batches. Batch effect was significant for dorsal side, total score, harvest
weight, and both image-derived shape traits. In batches with a lower average quality,
scores could be biased upwards. Such bias may lead to unequal numbers of score 3
and score 1 fish per batch contributing to the average best and average worst contour,
respectively. Consequently, fish from certain batches might have lower DtB and
higher DtW as their batch score is on average higher.

Notably, the image-derived shape trait Distance to the Best (DtB) exhibited the
highest heritability among all score and shape traits. This suggests that DtB could
offer greater potential for genetic gain if used as an indicator trait for selection,
compared to individual score traits. However, in cases where the breeding goal
targets the shape of one specific body area, it may still be more effective to use the
corresponding regional score trait. Our results highlight an important point:
combining scores from different regions may not realistically represent the overall
shape evaluation and could lead to unfavorable selection consequences. For example,
the genetic correlation between total score and harvest weight was close to o,
suggesting little effect on harvest weight when selecting for overall shape based on
total score. In contrast, DtB shows a moderate positive genetic correlation (0.40 +
0.08) with harvest weight, unfavorable for improving production together with
shape.
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This study employed an innovative approach to visualize how image analysis derives
heritable, descriptive shape traits. Elliptic Fourier Descriptors (EFDs) are widely
used in shape analysis to extract and summarize high-dimensional contour features
(Valizadeh & Babapour Mofrad, 2022). While EFD coefficients can be visualized
through contour reconstruction, their biological meaning is often difficult to
interpret, as the coefficients describe abstract curvature frequencies rather than
discrete morphological structures, and their genetic relevance is also not
straightforward. Previous work has combined EFDs with principal component
analysis (PCA) to efficiently summarize overall shape variance in fish (Gayo, Berbel,
Korozi, Zerolo, & Manchado, 2023). By examining the effects of increasing
component numbers, PCA can describe shape changes associated with specific
morphological traits. However, traits derived from principal components are
orthogonal in phenotypic variance and therefore expected to show little or no genetic
correlation among them. In contrast, our contour-based approach integrates both
the definition and visualization of overall shape, rather than dissecting shape into
regional, or orthogonal indicators. Landmarks were also used to capture growth-
related shape changes (Fragkoulis, Kerasovitis, Batargias, & Koumoundouros, 2021).
While landmarks are interpretable and morphologically meaningful, they are limited
to separate and predefined regions of interest and may miss capturing visually subtle
shape variance. The increased heritability of DtB compared to that of score traits
highlight the advantages of shifting from categorical to continuous trait definitions,
which enhances data resolution. While total trait variance may be similar, low-
resolution traits carry higher measurement error at the individual record level,
leading to lower heritability estimates (Blonk, Komen, Tenghe, Kamstra, & Van
Arendonk, 2010). Continuous traits reduce this error and allow for greater selection
intensity (Smith, Potgieter, & Chapman, 2021; Crain, Reynolds, & Poland, 2017), as
each individual measurement is more distinctive.

Both traits open new avenues for shape-related breeding, especially in the areas of
automated phenotyping and economic evaluation.

In this study, DtB was derived from the average ideal shape calculated from the best
shapes present in the population, based on expert annotation. As more images are
collected, the algorithm could select new images based on the established preference
and update the reference contour based on similarity to the current average best.
This approach can reduce the need for iterative manual grading and annotation,
which is often required for every batch and generation. In other situations, the target
shape could be defined independently of the current population, for example, by
referencing the natural shape of wild fish or shapes preferred in ornamental species.

Currently, DtW is defined by the distance to a single average worst. As shown in
Figure 6.6, there is not a single undesirable shape, and this complicates the definition
of a trait like DtW. By applying clustering methods on the images of fish with a low
total score, we could potentially identify multiple subtypes of undesirable shapes,
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such as specific deformities or disproportions. If clear clusters exist then the
distances of individual fish to the respective cluster averaged contours could serve as
a quantitative measure of deformity or other undesirable aspect of shape, thereby
enabling selection against several distinct categories of poor morphology.

At present, the shape of fish lacks direct economic evaluation. Shape preferences
differ between markets and among farmers, retailers, processors, and consumers
(Mehar, Mekkawy, McDougall, & Benzie, 2020), making its economic value difficult
to quantify. In this study the shape traits were derived based on expert scores, but
the methodology can extend directly to applications that quantify shape differences
between populations; a target shape based on consumer preference scores; or a
target based on commercial data from product batches where shape or appearance
plays a role in pricing. The visualization of average best and worst shapes allows
breeders, as well as farmers and consumers, to perceive and understand the concept
of shape ideals and to express their preferences. This intuitive, image-based
approach can support surveys and other research into establishing economic values
for shape. Alternatively, with our algorithm, any price-relevant preference for shape
could be translated into quantitative traits, enabling estimation of genetic
parameters and breeding values for selection candidates. Quantifying the value of
shape differences would allow breeders to assign appropriate weights and formally
incorporate shape into their selection index.

6.5 Conclusion

This study demonstrates the potential of integrating automated image analysis into
aquaculture breeding by quantifying fish body shape into two novel traits, Distance
to the Best (DtB) and Distance to the Worst (DtW). By leveraging expert-defined
shape preferences and contour-based methods, we establish heritable, visually
intuitive, and continuous traits. This approach provides an automated and objective
method for integrating body shape into aquaculture breeding programs, with
potential for economic valuation. The proposed algorithm also allows for updating
target shapes, offering flexibility to incorporate alternatives, such as natural shape,
or differences in shape ideals from farmers and consumers. Overall, this study
represents a valuable step toward the data-driven definition of novel shape traits in
aquaculture breeding.
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Aquaculture is the world’s fastest growing food production sector with potential for
expansion (FAO, 2025). Selective breeding plays an important role in this
development, driving improvement in primarily production traits but also disease
resistance, environmental resilience, and other new traits of commercial importance
(Nguyen, Sonesson,, Houston, & Moghadam, 2022; Gjedrem & Rye, 2018; Janssen,
Chavanne, Berentsen, & Komen, 2017; Sae-Lim, Kause, Mulder, & Olesen, 2017;
Gjedrem & Robinson, 2014). Although aquaculture is trending towards greater
species diversity, a few dominant species continue to account for most production,
such as finfish species in the European Union (EU, 2025). This concentration in
species facilitates rapid innovation and improvement of techniques and efficiency
(Metian, Troell, Christensen, Steenbeek, & Pouil, 2020). Selective breeding itself has
also evolved in the past decades, transitioning from conventional, pedigree-based
methods to genomic prediction (Fu & Yuna, 2022). For both approaches, the
availability of accurate individual phenotypes and the associated phenotyping
techniques remain critical.

This general discussion reflects on the use of artificial intelligence (AI) in advancing
image-based automated phenotyping to support selective breeding in aquaculture.
While the thesis focused primarily on finfish species including gilthead seabream,
Atlantic salmon, and rainbow trout, this discussion also aims to provide broader
insights relevant to livestock breeding. To achieve this, I first highlight the main
challenges encountered in applying Al to image-based phenotyping and examine
their implications for selective breeding. Building on these challenges, I propose
potential solutions based on the results and knowledge gained from this thesis.
Finally, I will conclude with my perspective on the future of image-based automated
phenotyping, emphasizing emerging trends in Al and the key developments required
for Al-driven applications in animal breeding.

Section 1: Challenges in image-based automated phenotyping

With the advancement of computer vision, particularly through machine learning,
breeding programs are increasingly adopting image data to capture phenotypic
information.

Although automated phenotyping is often promoted for its non-invasive and high-
throughput potential, it is difficult for aquaculture to take advantage of such qualities.
Similar to traditional phenotyping methods, the application of automated
phenotyping in aquaculture still requires handling and sedating fish. The aquatic
environment poses technical challenges for underwater imaging, especially for
reliably individual identification of fish from images. As a result, out-of-water
imaging currently remains the most sensible practice, with ongoing development of
technical devices targeting this purpose.

This thesis employed three portable imaging devices for data collection. These
imaging devices were specifically designed for easy transport, installation, and
operation within breeding facilities. All imaging sessions were conducted during
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routine phenotyping events, when fish were already sedated for standard procedures,
such as weighing. The imaging devices can provide immediate phenotypic outputs,
including body length, size, and estimated weight. Based on hands-on experience
during data collection, the imaging process was significantly faster than manual
weighing. Weighing a sedated fish by hand typically takes twice as long as processing
the fish through an imaging device. Additionally, the imaging system requires only a
single handling event (placing the fish on the machine with a conveyor belt, Fig 7.1)
compared to the two steps needed for manual weighing (placing on and removing
from a scale). Although sedation and handling remain unavoidable for now and the
near future, the development of automated phenotyping systems offers the potential
to automate trait collection and reduce handling-related stress and injuries.

Furthermore, the collected images can be repurposed for research and development
that do not require real-time output, such as body shape analysis to find novel traits
for fish shape selection (Chapter 6), deformities and injuries detection, individual re-
identification (Chapter 4) and many more, thereby improving the overall utility of
the data.

Figure 7.1 Left: Phenotyping device operating in a breeding facility. The picture shows a fish sliding
out the machine after being imaged, while someone is waiting to enter a sedated fish into the machine.
Right: Schematic illustration of the phenotyping device, where the bottom blue background resembles
the conveyor belt that moves the fish in and out the devices.

While current technologies have made data collection increasingly practical and
efficient, image-based automated phenotyping has not yet realized its full potential
in contributing to selective breeding due to insufficient data quality, limiting
phenotyping capacity, and the performance of prediction models. These aspects will
be discussed in more detail in the following sections.

7.1.1 Data quality and quantity
Data quality can be assessed in terms of the images themselves and the associated
phenotypic information, including both breeding goal traits and indicator traits.

Compared to underwater imaging, out-of-water images can capture the full body of
the fish in high resolution and are of better quality. Still, the quality of these images
often suffers from variation in lighting conditions, reduced visibility due to water
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splashes, and blurring from unintended movement. These factors hinder the
extraction of basic morphological features such as body length, height, and volume,
as well as more detailed features like melanin patterns used for individual
identification (Fig. 7.2. See also Fig. 4.3). Some technical improvements, such as
enclosing the imaging device to provide stable lighting or capturing multiple frames
in quick succession, can help to reduce these sources of error.

Figure 7.2 Two examples of bad image quality. Left: a rainbow trout moved during the imaging
session. Instead of capturing its side lying flat, the image captures the above with a curved shape. Right:
s salmon moved during the imaging session. Staff intervened and was captured in the image, blocking
part of the fish body.

Another limitation lies in the lack of targeted phenotypic data linked to the images.
For supervised machine learning, data annotation is essential for the model to learn
the underlying patterns and predict the traits. However, two scenarios often hinder
this process. First, the targeted phenotypic data is available, but not the images. For
instance, measurements of metabolic traits such as visceral weight or muscle
composition typically rely on sibling data from post-slaughter lab analysis (Chapter
2). However, these siblings might not have image records. Similar situations also
happened in the experiment described in Chapter 3, where some fish were tested for
swimming speed but missed out on the imaging session. This reduces the number of
annotated images available to train the prediction model on the target traits. Second,
images are available, but their labels lack accuracy. This can happen due to technical
errors during data collection or transferring, which also occurred during this thesis,
and highlight the need for strict version control and backup in data collection
protocol. Besides, label quality can also suffer from subjectivity when based on
human annotation. In Chapter 6, shape scores were based on five defined indicators
for seabream, but further analysis (van den Berg, 2022) revealed bias: experts tended
to under-score in batches with mostly high scores and over-score in batches with
mostly low scores. Although these traits showed heritability’s up to 0.25, which
indicates repeatability in scoring, a convolutional neural network (CNN) trained on
such data would “inherit” this scoring bias by the experts. Although standardization
can adjust the data and mitigate the effect of bias, I also demonstrated in Chapter 6
that such bias in the scoring of shape was not consistent across batches or individuals.
The bias underlay in the definition of the scoring system, that there was a clear
standard for the ideal shape, but the less desirable shape varied and lacked clear
definitions.
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Data quantity can also become a challenge when using images to extract or predict
target traits. The amount of data needed to train a machine learning model depends
on the complexity of the prediction, but it can range from thousands to millions of
data points (Aung, Abdul Razak, & Rahiman Bin Md Nor, 2025). In Chapter 2, it was
noted that slaughter traits can vary seasonally and across years, demanding
continuous data collection and post-slaughter analysis throughout the breeding cycle
to capture such variation and include it in the model training. Optionally, retraining
of the model is needed for each season. Moreover, scaling up data collection is
sometimes not feasible. For instance, in Chapter 3, the swim tests to measure critical
swimming speed are strictly limited by the age and size of the fish. In the next section,
I will estimate the number of images needed to train a prediction model in detail.

7.1.2 From pixel information to phenotypes

Beyond data quality and quantity, prediction models also play a key role in extracting
phenotypic information from images.

The most intuitive approach to transforming pixel data into phenotypes is through
prediction models, for instance, estimating body length from pixel counts. Chapter
2 introduced an analytical framework for comparing different models based on
prediction accuracy. This comparison demonstrated that certain traits can be
predicted with high accuracy by leveraging their strong genetic correlation with other
image-derived traits, such as estimating visceral weight non-invasively using its
correlation with body weight, which itself can be derived from image-based size and
shape measurements. Besides, images may also reveal additional variation in
visceral weight that is independent of body weight, using feature extraction and
visualization methods in the analytical framework.

Given that data quantity can be limited, another strategy is to increase the amount
of data extracted per individual. This does not necessarily require new
measurements of target traits but focuses on decomposing the existing variance in
the images into additional, potentially informative indicators. Take the example of
shape analysis in Chapter 6, with the target trait being the score representing the
breeder’s preference. To collect more image data, therefore, it also requires new
experts scoring. When applying contour analysis, each contour is decomposed into
1,000 key points. Without acquiring new expert scoring, the key points and the
variance between their distance across individuals can be used to derive new shape
indicators.

However, a major limitation remains: the lack of defined and validated indicators.
Complex trait influenced by many factors may also manifest subtle morphological
variation. Identifying what traits are reliably reflected in external morphology, and
to what degree, is still a challenging and unresolved issue. Chapter 2 explored the
definition of such indicator traits by proposing a framework that uses images to
increase prediction accuracy and identify morphological features that are most
informative for predicting slaughter traits. Similarly, Chapter 3 applied this concept
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to reveal indicators from image data that explain variance in complex traits like
critical swimming speed.

Artificial intelligence can support this process of predicting both breeding goal traits
and indicator traits. One example is the widely used approach: key point detection.
Key point detection captures morphological indicators based on expert-defined
anatomical landmarks. These indicators are then used to predict traits such as body
weight (Holmes & Jeffres, 2021), slaughter yield (Prchal, et al., 2020), and growth
patterns (Fragkoulis, Kerasovitis, Batargias, & Koumoundouros, 2021). In videos,
key point detection enables the tracking of specific body parts over time to derive a
range of movement-related indicators. These have been applied in tasks like
lameness detection in dairy cattle (Russello, van der Tol, Holzhauer, van Henten, &
Kootstra, 2024), gait scoring in broilers (Fodor, et al., 2023; Doornweerd, et al.,
2021), and tail beat frequency in seabream (Arechavala-Lopez, Lankheet, Diaz-Gil,
Abbink, & Palstra, 2021) and Atlantic salmon (Agbeti, et al., 2025). As Al-based
tracking models become increasingly sophisticated (Hassan, Mujtaba, Rajput, &
Fatima, 2024), this line of research offers promising opportunities for identifying
new image-derived indicators (Taghavi, Russello, Ouweltjes, Kamphuis, & Adriaens,
2024; Russello, van der Tol, & Kootstra, 2022).

However, automated phenotyping risks becoming an Al-centered process, where the
goal shifts toward technical optimization rather than the delivery of traits aligned
with breeding goals. In the example of key points detection, adding more key points
or improving tracking resolution may yield a greater number of indicators, but these
indicators are not validated for their biological or genetical meaningfulness. Besides,
some research proposed new algorithms to increase prediction accuracy without
mentioning how such prediction can be used for aquaculture. For instance, a few
reviewed papers in Chapter 5 only reported re-identification accuracy of the
algorithms, but did not mention the number of individuals involved, nor the time
interval between re-identification, making it difficult to judge if these algorithms are
best suited for use in a commercial aquaculture setting.

Section 2: Integration of artificial intelligence (AI) for image-based
automated phenotyping

In addressing the current challenges in automated phenotyping, it is tempting to
view Al as a universal solution. Studies often demonstrate improved performance by
applying increasingly advanced algorithms to experimental datasets (Chapter 5),
fostering the impression that methodological sophistication alone will drive the field
of automated phenotyping forward. While this perspective is understandable given
the remarkable progress of Al over recent decades, I argue that such optimism is
misplaced. This section aims to critically examine why this belief is misleading and
to propose a more grounded perspective on how AI should be integrated into
automated phenotyping for selective breeding.
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7.2.1 Rationale

Automated phenotyping can be considered a technical design aimed at delivering
individual-level information for breeding purposes, currently facing substantial
challenges. For such design, philosopher Daniel Dennett proposed two metaphors
for problem-solving strategies: the skyhook and the crane (Dennett, 2013).

The skyhook is an explanation that relies on a miraculous, unsupported idea:

The skyhook concept is perhaps a descendant of the deus ex machina of
ancient Greek dramaturgy: when second-rate playwrights found their
heroes into inescapable difficulties, they were often tempted to crank down
a god onto the scene, like Superman, to save the situation supernaturally. ...
Skyhooks would be wonderful things to have, great for lifting unwieldy
objects out of difficult circumstances, and speeding up all sorts of
construction projects. Sad to say, they are impossible.

Dennett contrasted this with cranes—grounded, incremental mechanisms built
from existing structures:

Cranes can do the lifting work our imaginary skyhooks might do, and they
do it in an honest, non-question-begging fashion. ...They have to be
designed and built, from everyday parts already on hand, and they have
to be located on a firm base of existing ground.

Each step has been accomplished by brute, mechanical, algorithmic
climbing, from the base already built by the efforts of earlier climbing.

These metaphors map directly onto how Al is currently integrated in breeding
programs. Too often, models developed for other domains are applied with the hope
they will function similarly in aquaculture breeding programs, without fully
accounting for the breeding and aquaculture context. These risks bypassing the
necessary “climbing”, which is the slow, cumulative work of challenging AI with real-
world breeding program constraints. Phenotyping is not an isolated task but one
embedded in a structured hierarchy where data collection, trait definition, selection
decisions and many other steps are deeply interconnected.

Chapter 4 of this thesis illustrates the limitations of the skyhook approach. When
applying individual re-identification algorithms previously successful in
experimental settings to data from breeding facilities, model accuracy approximated
zero. Even with more advanced model structures, performance remained poor.
Chapter 5 further investigated this by reviewing past work on individual re-
identification. A common issue was that most studies avoided confronting practical
challenges like motion blur or inconsistent lighting by excluding such flawed images.
While this improves algorithmic performance, it comes at the cost of excluding
individuals, potentially affecting the impact of breeding decisions. Such approaches
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often follow the standards of computer vision research practice but fail to address
the approaches’ relevance for breeding programs.

Improving automated phenotyping, therefore, requires reflection on how Al fits into
the different steps of breeding programs. What are the prerequisites for Al to be
effective, and what impact do these tools have on selection outcomes?

As Chapter 4 demonstrated, confronting reality can yield disappointing results,
which can discourage publication or erode researcher motivation. However, as Pirsig
once wrote:

An experiment is never a failure solely because it fails to achieve predicted
results. And ...to design an experiment properly he has to think very rigidly
in terms of what directly causes what. This you know from hierarchy
(Pirsig, 2014).

Here, Pirsig’s “hierarchy” aligns closely with Dennett’s crane metaphor. In a
breeding program, this hierarchy includes all upstream and downstream steps of the
collection of information. The integration of Al in automated phenotyping, therefore,
must also align with the breeding program structure.

7.2.2 Opportunities to integrate AI in automated phenotyping for
selective breeding

~

Definition of
production system

!

Definition of

Phenotyping devices & environment
----------- » + Practicality (Chapter 4)
» Data quantity & quality (Chapter 4&5)

Breeding goal traits
-------------- » ¢ Direct measurements (Chapter 2)

Breeding breeding goal + Available indicators (Chapter 2, 3 & 6)
program l
Prediction model
Collection of information ===+ »> + Genetic validation (Chapter 3&6)
1 + Evaluation metrics (Chapter 6)
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------------- » 3 3 :
selection criteria Novel indicator traits (Chapter 3&6)

S

Figure 7.3 The integration of artificial intelligence in automated phenotyping in alignment with
different steps of a breeding program. The highlighted step, collection of information, is where
automated phenotyping conventionally focused on.

The integration of AI into automated phenotyping should not be limited to
improving information collection alone; it must also extend to other critical steps in
the breeding program regarding the production system, breeding goals and the
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selection criteria (Fig 7.3), which will be discussed in more detail in the following
sections.

Phenotyping devices and environment

To integrate Al into automated phenotyping, it is crucial to understand the practical
constraints and their consequences for data quantity and quality. Most Al algorithms,
particularly those in computer vision were originally developed for human-centered
applications such as facial recognition and autonomous driving. Accordingly, these
algorithms perform best in scenarios tailored to human subjects. It would be naive
to assume that tools trained on human datasets will transfer seamlessly to animal
data. While performance issues can be addressed through additional data collection
and repeated trials, these efforts require time, resources, and domain-specific
expertise, which are often limited in breeding facilities.

As previously discussed, phenotyping devices are helpful but remain in the early
stages of development. Image collection in animal breeding is also more complex.
For instance, while collecting a flower recognition dataset with contributions from
anyone may be easy, access to selection candidates is limited, and associated trait
data may be subject to ownership restrictions. Practical challenges in breeding
facilities such as camera blockages, variable daylight in livestock housing, or
humidity and salinity exposure in aquaculture, can further complicate image
acquisition. Moreover, annotation of image data often requires invasive lab analysis
or expert judgment, which contrasts with the relative ease of annotation in human-
focused applications (Fig 7.4).

Chapter 7
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Select all squares with

traffic lights

If there are none, click skip

Figure 7.4 Two examples of annotation. Left: A CAPTCHA, a type of challenge—response Turing test.
Often seen when accessing websites. The location of the traffic lights, annotated by websites users, are
fast and only require common knowledge. Right: Fish scoring, where two fish need to be given scores
(1-3) based on multiple shape indicators. Such assessment requires training to understand what the
indicators are, how shape can differ and what the distribution should be per fish batch. These two
examples, by contrast, show the differences in data annotation in human-centered application and
breeding practice.

Therefore, understanding the definition of a production system is not about
advancing imaging technologies or replicating algorithm development processes
from human applications. Instead, it is about acknowledging these differences and
making informed adjustments to the requirements for data quality and quantity, as
well as to the expectations on Al model performance, in subsequent steps.

As for breeders, it is important to distinguish between the production environment
and the phenotyping environment. The production environment refers to the actual
setting where animals are kept, whereas the phenotyping environment includes
more specific factors that influence the captured images rather than the phenotypes
themselves, such as lighting conditions, camera angles, and image distortion. This
distinction is discussed in more detail in a later section, on the genetic validation of
the prediction model.

Breeding goal

To integrate Al in automated phenotyping, it is essential to understand the breeding
goal clearly. While this might appear straightforward, the definition of breeding goal
directly determines several downstream factors in the breeding program. As
breeding goal is often not a single trait but a combination of traits, I divided this
section into breeding goal traits and indicator traits which can be included in the
selection index.
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Breeding goal traits

Automated phenotyping can change the scope of breeding goal traits with broader
possibilities of indicator traits. One major advantage of image-based phenotyping is
its non-invasive nature, which may open opportunities to directly predict breeding
goal traits that are traditionally invasive or expensive to measure. For instance, fillet
yield in seabream can be predicted on selection candidates using image data (Gulzari
B., 2023), instead of using data from siblings post slaughter.

Indicator traits

The main contribution of AI lies in identifying indicator traits through prediction.
Take the example in Chapter 3. Critical swimming speed (Brett, 1964), as one of the
most common estimates of swimming performance, could serve as an indicator for
health (Castro, et al., 2013; Tierney & Farrell, 2004). If selecting fish with higher
swimming speed for health improvement, it becomes relevant to also consider
morphological traits that physiologically influence swimming and are genetically
correlated to production traits. The combination of convolutional neural network
(CNN) and GradCAM can identify morphological features that explain swimming
performance but also related to production traits such as fillet yield. Such traits like
epaxial muscle volume can be a good indicator trait to include with swimming
performance, if to select for fillet yield.

The genetic parameters of Al predicted traits need to be estimated to assess their
value for selective breeding. This refers to the heritability of the AI predicted trait,
genetic correlations of the AI predicted traits with breeding goal traits, and with
indicator traits.

First, the predicted traits need to be heritable, otherwise their value as an
information source for breeding goal traits is limited. Sometimes predicted traits
exhibit higher heritability than the traditional indicators, increasing their value as
indicator traits. Second, predicted traits need to show sufficiently strong genetic
correlations with breeding goal traits to replace certain traits in the selection index
that are expensive or invasive to measure. For instance, in Chapter 6, image-derived
trait DB (Distance to the Best) showed higher heritability than total score for shape
measurements. Besides, with harvest weight, DiB also showed stronger, negative
genetic correlation than that of total score. Therefore, DtB captured better the
genetic consequence of shape if selected for harvest weight, and vice versa, and can
be more suitable than total scores as a shape indicator.

Besides sufficient genetic correlation with breeding goal traits, predicted traits with
clear economic benefits or technical accessibility can also be considered as indicator
traits. For example, the morphological indicator epaxial muscle volume in Chapter
3. It showed higher genetic correlation with swimming speed than body volume, and
it might also correlate with fillet yield, another important breeding goal trait.
Therefore, including epaxial muscle as indicator can capture more of the complex
relationship between breeding goal traits, and lead to better selection decisions.
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Due to the lack of defined and validated indicators to be predicted from images, it is
difficult to estimate the number of images needed to train a prediction model, as it
depends on the complexity of the target traits. If predicted traits are estimated on
their heritability and genetic correlation with breeding goal traits, the number of
individuals required imaging can be deducted from the different scenarios of the
genetic parameter estimation, to maximize the accuracy of subsequent breeding
value estimation of the predicted traits.

For the very first session, all selection candidates should be imaged. For target traits
that require invasive or post slaughter measurements, 20 full sibs per family are
needed, preferably 50/50 in sex ratio, assuming no common environmental effect.

The number of selection candidates can vary per breeding program, but it should
guarantee an accurate heritability estimation for breeding goal traits such as harvest
weight and is therefore essential to be included in phenotyping. Consequently, the
Al predicted traits will have records of own performance from all selection
candidates. A baseline seabream breeding program can include 2,125 selection
candidates (Janssen, Saatkamp, & Komen, 2018). The number of selection
candidates in Chapters 3 and 6 are 1,200 and 3,421, respectively. In this thesis, the
heritability was estimated at 0.24+0.07 for critical swimming speed (Chapter 3), and
at 0.32+0.040 for the shape indicator (Chapter 6), suggesting the available amount
of data was sufficient for accurate heritability estimation, with reasonably low
standard errors.

Some phenotypes, such as diseases resistance, cannot be measured directly on
selection candidates. Therefore, both the choice of which animals to image and the
number of animals imaged are critical. The EBV accuracy of the predicted traits
themselves can be used to assess the return on investment when phenotyping
individuals that are not themselves selection candidates.
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Figure 7.5 Accuracy of EBVs using full sibs and own performance under different heritability of the
predicted traits.

Figure 7.5 illustrates the effect of phenotyping full sibs on the accuracy of EBVs of
predicted traits with different heritability, compared to using animals’ own
performance. Including 20 full sibs in phenotyping gives the most improvement in
EBV accuracy, especially for predicted traits with low heritability.

To summarize, the integration of Al into automated phenotyping must align the Al
prediction output with breeding goal and the indicator traits. This is particularly
important for broader breeding goals such as those that include health and welfare
traits. Checking the heritability of predicted traits early on is advisable, as this may
determine the usefulness and cost-effectiveness of phenotyping.

Prediction model

As mentioned earlier, Al applied to images has largely been developed with a focus
on human applications. While automated phenotyping will continue to benefit from
advances in Al-powered tools, it is also important to evaluate and adapt these tools
within the context of animal breeding.

Previously, I discussed the output of prediction models and its utilization to describe
breeding goals. In this section, I will highlight two key aspects in more detail in the
following sections: the genetic validation of Al-based prediction models and the
importance of breeding-relevant evaluation metrics.

Genetic validation
Let the target trait be decomposed as

P=G+E+ ¢
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Where G is the genetic effect and E is the environmental effect. In the context of
breeding, E represents specific, systematic environmental contributions such as
geographical location and production system, and Var(E) is used to quantify the
variance.

Now we define X, representing all image features AI model used to predict the target
trait:

Pprd. = f(X)

These features can be as simple as raw pixel value, or actual measurable traits such
as body length and width. More importantly, part of X reflects genetic component,
through the genetic correlation between the predicted trait and the target trait, while
other parts of X may correlate with environmental effects:

Pprd. = Gina. T fXg) + ¢

Where g;,,4. represents the genetic effect captured by the AT model, typically through
indicator traits derived from image features, whilef(Xy) reflects variance attributable
to environmental factors, such as differences in production systems or imaging
artifacts (e.g., lighting conditions, camera angles), as there is no clear distinction
between the sources of information. Moreover, a fundamental difference lies
between a linear mixed model, also called animal model, and an AI model when it
comes to f(Xz). Animal models explicitly estimate environmental variance and
effects, and model gene-by-environment interactions (GxE), allowing a clearer
separation of genetic and environmental contributions. While in AT model, data
augmentation is often used to introduce variance in imaging artifacts to reduce
overfitting and force the model to focus on robust patterns, implicitly reducing the
environmental effects on the final prediction.

Model performance is often optimized by minimizing the difference between P and

Pprd.:

min (Pprq, = P) = min(gipa. — G) + min(f(Xg) — E)

However, reducing (f(Xg) — E) alone can improve model performance while
inadvertently increasing overfitting to specific environments. Therefore, the
heritability of the predicted trait should also be considered when optimizing and
validating prediction models, especially across different environments:

W2 = Var(gina.)
prd. —
Var (Pprd.)

Heritability indicates how much of the predicted variance comes from genetics. If
prediction accuracy improves but h;,, remains unchanged, it signals overfitting,

meaning the model will not benefit from further training or using a more complex
structure.

138



General discussion

Note that there may be covariance between the genetic effect of predicted indicator
Jina. and environmental variance captured by fX(e), like the GxE effect. Such
covariance would result in a portion of the genetic variance in predicted trait being
incorrectly attributed to measurement error, reducing the accuracy of genetic
parameter estimation. For example, Zhou et al. (2021) reported that genetic
variation explained 27-59% of the measurement error in image-derived sorghum
height, while Bi et al. (2025) found no such effect for pig body weight. These
contrasting findings suggest that the presence and impact of this covariance may
depend on the trait and species. It also may reflect systematic biases, such as certain
genotypes being over- or under-estimated using image-based automated
phenotyping.

Evaluation metrics

Metrics are a critical part of evaluating prediction model performance, especially for
traits extracted from image data. However, conventional computer vision metrics
may not always be optimal to assess the value of prediction models for making
progress towards the breeding objective. I argue that the development of additional,
breeding-specific metrics is essential for integrating Al into automated phenotyping.

Many computer vision metrics focus on technical accuracy. For example, if key
points are missing or misplaced when detecting body landmarks, it is often seen as a
failure. But in breeding, if the remaining points still produce reliable phenotypic
estimates, such errors may be acceptable. Considering that, the study of Liu et al.
(2024) proposed metrics which evaluate accuracy based on how well the phenotype
can still be estimated given the possible key point detection error, rather than on key
point detection alone.

Choosing breeding-related metrics is crucial. In Chapter 3, for example, image data
was used to predict critical swimming speed. While the prediction accuracy appeared
limited under standard metrics (e.g., Pearson correlation), the model was still able
to identify body regions with higher or lower genetic correlation to the target trait.
Therefore, even a “low accuracy” model by computer vision standards may still be
valuable for genetic applications. Optionally, models can be evaluated based on the
genetic correlation between the predicted traits and breeding goal traits, to maximize
the utilization of potential indicator traits.
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Figure 7.6 The meaning of ‘accuracy’ can differ at different stages of Al integration in breeding
program.

Further development in automated phenotyping should therefore promote the use
of breeding-oriented evaluation metrics. This also facilitates better interdisciplinary
communication. For example, ‘accuracy’ is a commonly used term, but it can mean
different things across disciplines. Breeders might expect a model to produce EBVs
directly, while computer vision researchers focus on how well the detected object
overlaps with the annotation (Fig. 7.6).

Some metrics are shared across the field, but ambiguity remains, particularly for
individual re-identification (Chapter 5). Many studies report accuracy as a key metric,
but definitions vary. One approach is to assess the percentage of individuals correctly
re-identified within a given image set. Another approach assesses the proportion of
image pairs correctly classified as belonging to the same individual. For breeding
applications, it is essential to assess these methods under realistic conditions, such
as longer time intervals between images or larger numbers of individuals to test
scalability. However, current accuracy metrics often fail to reflect these
considerations. As a result, some studies report re-identification accuracy without
specifying the total number of fish, limiting their practical implementation. Metrics
should therefore reward models that maintain performance over time or across
larger datasets, enabling comparisons between studies and ensuring practical
relevance for breeding. Compared to standard computer vision metrics, such
breeding-specific metrics are more explicit, as they directly address the operational
demands of breeding programs.

A critical metric that needs to be developed is the quantification of data leakage and
its impact on model evaluation. In supervised learning, models typically require a
training-validation-test split, often in a ratio of 3:1:1, with performance evaluated on
the test set. Data leakage occurs when the same data points are used in both training
and testing, leading to overly optimistic performance estimates. If this principle were
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strictly applied to breeding programs, it would imply that none of the selection
candidates’ image could be used for training, tripling the number of individuals
required for phenotyping. The impact of including predicted traits from both
training and test set for genetic analysis is currently unknown and requires more
investigation. Therefore, it is essential to develop metrics that quantify or model the
impact of data leakage, ideally incorporating pedigree relationships. The same
applies for genomic prediction, where data leakage in phenotypic prediction can
affect the determination of reference population size.

To summarize, integrating AI into automated phenotyping requires aligning
expectations across computer vision and selective breeding, and employing metrics
that are interpretable, useful, and explicit in both fields.

Novel indicator traits

The most exciting opportunity brought by Al-integrated automated phenotyping lies
in the definition and discovery of novel indicator traits. In this thesis, I explored this
possibility in three main directions: non-invasiveness, objectivity, and longitudinal.

First, AI can help identify morphological indicators for traits that are conventionally
measured invasively. Selecting indicators with high genetic correlation to the
breeding goal trait can contribute to the improvement of genetic gain. Chapter 2
introduced an analytical framework that uses image data to predict slaughter traits
in a non-invasive manner. Chapter 3 further developed a workflow to identify fine-
scale morphological traits with the highest genetic correlation to complex traits.

The second direction is in the refinement of subjective, qualitative traits into
objective, quantitative traits with higher heritability. In Chapter 6, I proposed two
image-derived shape traits: Distance to the Best (DtB) and Distance to the Worst
(DtW), through visualization of subtle variance in body shape based on five
categorical shape indicators traditionally used. Moreover, both DtB and DtW
demonstrated higher heritability than the original indicators, suggesting that the
image-based automated method not only increases measurement precision but also
the potential for genetic improvement.

The third direction regards longitudinal traits that are derived from repeated
measurements over time. Longitudinal traits capture dynamic changes and are
valuable for resilience and responses to environmental variation, such as recovery
from stress challenges (Spiliopoulos, Brown, Hilder, Tilbrook, & Descovich, 2025),.
Extracting these traits requires well-structured datasets. Chapter 5 outlines the
essential steps for building such datasets, including defining essential data content,

establishing robust data structures, and implementing thorough quality assessments.

Novel traits may further benefit breeding programs in two specific ways. First, they
can offer biological and genetic insight by creating a more direct link between
phenotypic variation and its genetic cause. Breeding goal traits such as growth rate,
survival, or product quality often represent the combined outcome of many
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underlying biological processes, each influenced by multiple loci and environmental
effects. This complexity makes it difficult to detect individual QTL, as a single QTL
only contributes a minor part of the total variation. Indicator traits, in contrast, are
designed to capture a specific component of the breeding goal traits, such as a
morphological feature, a physiological rate, or a behavioral pattern.

Second, novel traits can help translate phenotyping outcomes into economic value.
For optimizing breeding programes, it is needed to know the economic importance of
traits. For instance, the shape traits are currently defined by expert opinion on a scale
of 1 to 3, which is not yet assigned economic market values. Chapter 6 proposed a
visualization of the ideal shape for selection based on the expert scores, which could
be extended to include preferences from farmer, processors, retailers and consumers
(Mehar, Mekkawy, McDougall, & Benzie, 2020) and eventually translate these
preferences into quantitative traits. These traits should not be used to select for a
specific desirable shape, but rather to eliminate fish with extremely low market value
due to unfavorable body shape, which may also indicate subtle deformities. Similarly,
longitudinal traits facilitate market diversification. A good example is selective
harvest in aquaculture, where different fish sizes are preferred by different markets
and priced accordingly (Janssen, Berentsen, Besson, & Komen, 2017). Using
longitudinal phenotypes, such as daily weight gain, breeding programs can be
optimized to match multiple market strategies and improve economic return (Sun,
et al., 2022).

In summary, the successful integration of AI in automated phenotyping relies not
only on algorithmic performance but also on alignment with the broader breeding
program. This includes understanding the production system and breeding goals,
capturing accurate individual phenotypes through genetically validated and
evaluated models. Novel traits serve as an important bridge, further linking AT with
biological and economic perspective of the breeding goals.

Section 3: Towards smart observation of animals for genetic
improvement

The successful integration of Al into automated phenotyping has the potential to
support genetic improvement across various stages of the breeding program. To
realize this potential, this section explores how advanced Al can further enhance
selective breeding, particularly through smarter, more informative observations of
individual animals. These developments remain largely unexploited in current
phenotyping strategies and represent a promising frontier for future research. While
the focus of this thesis has been on image data, the same principles can be extended
to other data types such as sensor signals from movement detectors or other
automated monitoring technologies.

7.3.1 Generative artificial intelligence

Earlier I discussed both the limitations and opportunities in data collection, quality,
and quantity. Besides technical development of phenotyping devices, Chapter 2
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advocates routine image collection as a standard practice within breeding programs,
while Chapter 5 highlights the importance of data quality assessment and structured
data organization in aquaculture. These requirements apply not only to image data
but also to other data types used for animal breeding. Improving the description,
structure, and accessibility of such datasets would greatly benefit communication
and reuse across the research community. However, as most datasets are collected
as part of commercial breeding program, the improvement on description, structure
and accessibility should start with datasets that are already made available, for
instance, through scientific publication.

An emerging trend besides conventional data collection outside the field of animal
breeding is generative artificial intelligence (GAI), which can synthesize new data
based on existing datasets. This is particularly promising for underrepresented or
sensitive data, such as those related to certain behaviors or health, where labelled
data are often scarce. For instance, GAI is used to generate images of diseased plants
as training data for model to recognize and detect common diseases and their
progress for plant phenotyping (Lokesh, et al., 2024; Klair, Agrawal, & Kumar, 2024;
Liu B., Tan, Li, He, & Wang, 2020). A further advantage of GAI is its potential to
facilitate data anonymization. Much of the data related to automated phenotyping
remains privatized, whether owned by breeding companies or farmers, complicating
data sharing and aggregation across ownership boundaries. GAI offers a potential
workaround by synthesizing new data that preserves the statistical relationships and
structure of the original, without exposing the raw source data (Yoon, Drumright, &
Van Der Schaar, 2020).

Nonetheless, the use of GAI for generating phenotype data presents its own risks
(Pérez-Enciso, Zingaretti, & de Los Campos, 2025). A key concern is dataset bias,
which can propagate into synthetic outputs. For example, when generative image
models are asked to depict livestock farms, they may default to outdoor, pastoral
scenes (Sheng, Tuyttens, & von Keyserlingk, 2025). To some extent, GAI reflects
collective stereotypes of livestock and aquaculture (Fig. 7.7). Another concern is that
synthetic data often exhibits reduced variance compared to real-world data, which
can lead to overfitting and model collapse (Shumailov, et al., 2024).
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Figure 7.7 ChatGPT 4.0 generated image using prompt ‘salmon in a breeding facility’. While the
salmon appear realistic in form, they are depicted as motionless, floating in the water, and display
minimal visible phenotypic variation in traits such as size or body shape. The generated environment
places the farm on a lowland plain surrounded by hills, which does not match the typical coastal
landscapes where most salmon farms are located (Manolin, 2025).

7.3.2 Unsupervised learning

Currently, supervised learning remains the most applied machine learning approach.
However, there is considerable potential in exploring unsupervised learning
methods for automated phenotyping (Gladju & Kanagaraj, 2021).

One promising application of unsupervised learning is its ability to reveal hidden
patterns within datasets. This is valuable when identifying indicator traits for
behavior, based on continuously collected data on animal activity (McVey, Hsieh,
Manriquez, Pinedo, & Horback, 2023; Ahn, Kim, & Jeong, 2023). It is especially
relevant for detecting behaviors that are difficult to observe or annotate, such as
feather pecking in poultry (Rossi, et al., 2025; Subedi, Bist, Yang, & Chai, 2023), tail
biting in pigs (Paula, 2025; Wang Z. , 2025), grazing (Ditria, Jinks, & Connolly, 2021)
and reduced foraging behavior after stress exposure in fish (Martins, et al., 2012).
Developing algorithms for such behaviors often requires large datasets of the events
in question, which is difficult to collect and unethical to induce for problematic
behavior such as aggression. Moreover, behavior detection for management
demands low latency, enabling farmers to act immediately. However, this is less
critical for breeding purposes, where phenotypes only need to be available at the time
of selection. In addition, management typically needs cohort-level data, whereas
breeding requires phenotypes to be recorded at the individual level. For interactive
behaviors such as pecking, precise labelling is required to distinguish the performer
and the recipient for accurate trait assignment.
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An alternative approach is to analyze the activity pattern before and after specific
events at the individual level, using video analysis, location tracking, or the fusion of
multiple data sources such as locomotion sensors. Unsupervised learning can be
used to uncover latent sources of variance related to these behaviors. For example,
cattle showing a gradual decline in daily activity or movement could signal early
signs of lameness.

Unsupervised learning leverages the natural patterns within data and phenotypic
variance without relying solely on human annotation. In this sense, it enables a shift
from a human-centric to an animal-centric perspective: whereas supervised
approaches model variance within a definition, unsupervised methods reveal
sources of variance that then require biological or genetic interpretation. Large-scale
activity data can serve as a baseline to define normal behavior profiles, and any
deviations from these norms may represent indicators of health or welfare
disturbance. These deviations, when consistently measurable across individuals,
hold promise as source of variance for novel, unbiased phenotypic traits. A successful
example is the log-transformed variance (InVar) of daily deviation. LnVar measures
the variation of deviations of a trait from its expected value. It captures the stability
of an animal’s performance over time using the expected value as a baseline, and is
used as an indicator for resilience (Casto-Rebollo, Nufiez, Gol, Reixach, & Ibanez-
Escriche, 2025; Aththar, 2024; Poppe, 2022). However, deriving and defining traits
from such variance requires validation of their biological and physiological relevance,
as well as estimation of their heritability and genetic correlation with breeding goal
traits, before considering their inclusion in the selection index.

7.3.3 Explainable artificial intelligence

The concept of explainable artificial intelligence (XAI) is that it aims to improve the
interpretability and transparency of AI models, both in terms of how they function
and how they produce results. By opening the black box to some extent, explainable
Al can also help to build trust. This is, in many ways, like the development of selective
breeding. Take neural networks, one of the most applied AI methods as example.
Each neuron contains certain functions used to receive, process and pass
information from neighboring neuros. Neural networks are widely applied in
complex tasks such as object classification, facial recognition and self-driving
vehicles. However, the exact process where imaginal input is transferred into certain
decisions is numerically accessible but not transparent enough to interpret. Like that
of selective breeding. Genetic improvement is a complex output resulting from the
interaction of genes, many of whose functions remain undiscovered. However, the
design of breeding programs to achieve genetic gains does not require breeders to be
omniscient on every aspect of genes. By clarifying what information is collected,
processed, and used at each step of a breeding program, the process becomes
scientifically grounded and communicable to breeders in familiar terms, such as
genetic gain or economic return. Similarly, AT models generate results by capturing
variance patterns within the training data, with their reasoning encoded through
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adjustments to thousands of model parameters. XAI provides a means to trace these
learned patterns back to interpretable biological or morphological features, thereby
bridging the gap between statistical abstraction and practical breeding insight.

To effectively integrate artificial intelligence into automated phenotyping, a similar
level of transparency is essential. For instance, in Chapter 3, I used GradCAM, a
widely used visualization tool in XAlI, to identify the regions of the image that most
strongly influenced the model’s prediction of swimming performance. By annotating
these regions and calculating their genetic correlation with swimming speed, the
relevance of these image areas was transformed from abstract visual features in a
computer vision model to biologically meaningful morphological indicators.
Interestingly, these GradCAM-highlighted regions also showed stronger genetic
correlations with swimming speed than other areas, making the revealed indicators
more persuasive for breeding decisions. This process of translating both AI
reasoning and outputs into biologically interpretable terms is a critical step toward
a broader acceptance beyond the level of AI developers. It strengthens the credibility
of automated phenotyping tools and encourages their integration into real-world
breeding programs (Mallinger, et al., 2024; Hoxhallari, Purcell, & Neubauer, 2022).

All these AI advancements open new opportunities to extract complex, previously
inaccessible information from animals, particularly for traits related to behavior,
health, and welfare, which are still underrepresented in automated phenotyping or
as general breeding goals. However, as with the natural patterns identified through
unsupervised learning, such traits must be validated, both from a genetic perspective,
in relation to other traits within the breeding program, and from biological and
physiological perspectives, in relation to the overarching goals of improving health
and welfare. Achieving this requires thorough interdisciplinary examination,
involving expertise from genetics, physiology, ethology, artificial intelligence, and
ethics to ensure that the traits are both biologically meaningful and genetically
actionable.

Altogether, image-based automated phenotyping for selective breeding will continue
to connect phenotypic description with genetic insight, shifting our understanding
from animals as products to animals as cohabitants. From collective knowledge and
expert experience to artificial intelligence, technology continues to shape the
evolving relationship between animals and humans, and offers new possibilities for
how we observe, understand, and care for them.

Conclusion

In this thesis, I focused on the integration of artificial intelligence into image-based
automated phenotyping in aquaculture, addressing both breeding goal traits and
indicator traits.

Artificial intelligence holds great promise for advancing automated phenotyping and
expanding the scope of what can be recorded and understood about animals.
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However, its full integration requires a deeper understanding of the breeding
program. This includes considerations of the breeding system, the definition of
breeding goals, the implementation of advanced machine learning models, and the
genetic validation aligned with selection criteria. Other aspects of artificial
intelligence, such as generative Al, explainable Al, and unsupervised learning, can
further support key steps in the breeding program.

With such integration, automated phenotyping can become not only more accurate
and efficient but also more transparent, biologically grounded, and economically
justified. This will improve its credibility and facilitate its broader application across
aquaculture, livestock, and beyond.
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In this thesis, I explored the integration of artificial intelligence (AI) in image-based
automated phenotyping for selective breeding in aquaculture. Automated
phenotyping is a rapidly evolving, interdisciplinary field focused on advancing
phenotype collection, to support breeding and management decisions. High-
throughput, non-invasive imaging technologies create opportunities to expand the
range of measurable traits. The current scope of automated phenotyping primarily
targets production-related traits, leaving a gap in traits associated with metabolism,
health and physiological well-being. These traits are often complex and challenging
to measure, but advancements in Al-based prediction models combined with
imaging technologies offer a promising solution.

I used image data collected on selection candidates from multiple fish species in real-
world breeding facilities. The overarching objective was to broaden the scope of
phenotypes predicted from images using AI and to deliver diverse traits that
collectively contribute to the breeding goals for these species.

In Chapter 2, I introduced a structural framework to find the best strategy for using
images to predict invasive traits, with the example of gilthead seabream (Sparus
aurata). The framework can capture both simple, linear and complex, high-
dimensional relationship between the predictor and the target trait and generate the
best prediction model by prioritizing prediction accuracy. A detailed interpretation
of the model was provided by extracting and visualizing predictive imaginal features.
Besides the three cases I studied — fat percentage, visceral weight and visceral
percentage — the framework could be applied to many harvest or post-slaughter
traits. This chapter highlighted the benefits of incorporating imaging sessions in
routine phenotyping.

Indicator traits are commonly used to predict breeding goal traits with a complex
biological and physiological background, such as those related to metabolism and
health. In Chapter 3, I introduced a novel workflow to dissect the genetic basis of
swimming performance in rainbow trout (Oncorhynchus mykiss) using an image-
based deep learning model. I identified accessible and heritable morphological
indicators that explained more variance in critical swimming speed than whole-body
volume. Genetically heavier fish showed poorer swimming performance. Among fish
of the same weight, relatively larger and broader epaxial muscles, larger heads, and
smaller caudal fins lead to worse swimming performance. This study demonstrated
how the combination of images and AI can generate data-driven hypotheses by
explaining complex trait performance based on the fish morphology, which was
subsequently supported by physiological interpretation of the Explainable Al results.

Repeated individual measurements are required for longitudinal traits such as
growth rate, making individual re-identification essential for such traits. In Chapter
4, I investigated image-based re-identification of Atlantic salmon (Salmo salar)
under realistic aquacultural conditions and concluded that this is not yet feasible.
The results highlighted two major challenges: variation in the phenotyping
environment, particularly lighting, and limited phenotypic stability. The discussion

178



Summary

further emphasized the need for standardized imaging protocols, and the discovery
of biologically unique and stable phenotypic features in individual salmon.

Building on the conclusions of Chapter 4, I reviewed, in Chapter 5, the current state
of vision-based re-identification in aquaculture as a potential alternative to PIT tags.
Based on this review of 23 studies, multiple limitations and challenges in current
implementations were identified regarding data acquisition, data analysis, and
practical implementation. Recommendations to address these gaps were presented
in a new aquaculture-centered flowchart, emphasizing high-tech data acquisition,
multi-dimensional data quality frameworks, and benchmarking methods.
Importantly, in this chapter, I called for a realistic view that the development of
vision-based individual re-identification is currently too immature to be a
replacement for the PIT tag. In response, recommendations were made focusing
dataset standardization, methodological refinement, and the alignment of model
development with practical aquacultural systems.

In Chapter 6 I proposed a novel method for quantifying body shape using image-
derived traits in gilthead seabream (Sparus aurata). Two quantitative traits with
moderate heritability, “Distance to the Best” (DtB) and “Distance to the Worst”
(DtW), were derived from expert’s scores given to images to measure how much each
fish deviated from an ideal and less desirable shape, respectively. This approach is
automated, objective, and visually intuitive, and has the flexibility to update target
shapes. Alternative shapes could be the natural shape or based on the preferences
for ideal shape obtained from farmers and consumers.

Finally, in Chapter 7, I synthesized findings across all chapters, putting them within
the broader context of both aquaculture and livestock breeding. The discussion
began by addressing fundamental challenges in image-based automated
phenotyping, emphasizing that successful Al integration requires an understanding
of the entire breeding program, not just phenotypic data collection and analysis. The
chapter concluded with an outlook on emerging AI trends, highlighting
opportunities to improve animal health and welfare through advanced phenotyping
and other decision-support Al tools, across aquaculture, livestock, and beyond.
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