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Summary

By 2050 the world must feed about 9.4 billion people while many farms already struggle to

hire enough workers. Farmers need to raise yields with fewer hands and without degrading

soil health. For decades, they have searched to increase their yields using ever heavier

machines. These machines compact the soil, which blocks water flow and hinders root

growth. Such damage can be mitigated by adopting lighter robots and by rethinking how

machines move across the fields.

Controlled Traffic Farming keeps machinery on fixed lanes and limits compaction to narrow

strips. To use those lanes, a path has to be planned that follows them, and still covers

the whole field. This task defines the Agricultural Coverage Path Planning problem

(ACPP).

Most work on ACPP reduces path length or energy and covers only the inner field. The

headland coverage is usually overlooked, leaving that area uncovered. Furthermore, soil

compaction is typically approximated by the path length, without considering the soil

properties themselves. Moreover, researchers usually do not share their code or data,

slowing down progress and blocking fair comparison of methods.

The main objective of this study is to improve the transparency and efficiency of coverage

path planners by releasing an open-source library with the developed methods, and by

proposing new algorithms that include the soil compaction as a objective function and

achieving headland coverage. The thesis formulates and addresses four research objectives:

(1) Integrating coverage path planning algorithms into a unified framework; (2) Enhancing

the scientific transparency of coverage path planning research; (3) Improving headland

coverage and headland turning feasibility; (4) Reducing soil compaction through coverage

path planning optimization. After introducing the topic, the thesis contains four main

chapters, each dedicated to exploring one of the research objectives outlined above. These

chapters are followed by a synthesis focusing on the advances of the research addressed in

the thesis and their potential implications for addressing the agricultural coverage path

planning problem.

Chapter 2 introduces Fields2Cover, an open source library for the agricultural coverage

path planning problem. The first version of the library aimed to cover convex fields with
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straight swaths. The library groups the coverage path planning problem into four modules

that generate the headland, create the swaths, sort those swaths into a route, and smooth

the route into a path. This modularity allows researchers to swap methods and test ideas

without re-implementing the complete workflow. The library is available in C++, Python,

and as a ROS module, and it was tested in experiments with real robots. The Fields2Cover

library is provided with an open license in Github.

Chapter 3 develops and demonstrates a benchmark facilitating the comparison of new

ACPP algorithms. The chapter extends the modular structure from Chapter 2, dividing

methods into five modules and allowing flexibility in their execution order. It also enhances

the library to support non-convex fields with obstacles. The benchmark tool is released

with a dataset of fields geometries. Additionally, the library was extended to include a

configuration file that allows adapting to user needs. It is accompanied by three elaborate

use-case examples.

Chapter 4 presents a headland coverage path planner with three corner planners, designed

to cover both convex and concave corners on field boundaries. These planners consider the

dimensions of both the robot and a fixed implement, as well as maximum curvature and

curvature change rate constraints. The algorithm allows selecting the appropriate corner

planner based on whether the objective is to minimize path length or to maximize area

coverage. Finally, this chapter explains how to concatenate curves in corners to effectively

cover the headlands of a field.

Chapter 5 focuses on optimizing the coverage route to reduce soil compaction by inte-

grating the SoilFlex model into the objective function. To illustrate the difference between

this objective and that of simply minimizing path length, planning was conducted under

varying operational frequencies, from a single pass up to three passes. The model was also

tested in intercropping scenarios, where two crops share the same field and two vehicles

are used to cover the swaths while minimizing the overall soil compaction.

By releasing the Fields2Cover library and its benchmark data, this thesis opens coverage

path planning to all and makes its steps transparent. The library uses a modular workflow.

ACPP splits into many subproblems, and this modular approach allows third parties

implement a new method for one subproblem without rewriting the rest. Using the

Fields2Cover library as a baseline, the work refines ACPP by adding a soil compaction

objective function and a headland coverage planner. These advancements improve the

soil health by optimizing the paths followed by the machinery. This thesis contributes to

increasing trust in ACPP methods, helps other researchers conduct their research faster,

and reduce soil damage caused by machinery. Its open design also invites other teams to

integrate ACPP into larger systems, opening the door to new applications.
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Chapter 1

Introduction



2 Introduction

1.1 Labor shortage and soil degradation

In thirty years the global population will have grown substantially. Demographers expect

about 9.4 billion people by 2050 (Economic and Affairs, 2021). At the same time many

farms lack enough hands to collect harvest and to operate machines (Bousmah and Grenier,

2022). Farmers must produce more food with fewer workers while also keeping their soils

healthy (Ajibade et al., 2023).

Soil degradation is one of the main threats to that goal (Hossain et al., 2020). One

third of the world’s cropland shows signs of erosion, salt build-up, high acidity, loss of

organic matter, or compaction (Smith et al., 2024). Soil compaction deserves special

attention because tight pores hold little water and air, and they block the roots from

reaching nutrients (Nawaz et al., 2013). Heavy farm machines cause most of this soil

compaction (Calleja-Huerta et al., 2023).

Scientists see two chief ways to ease soil stress. First they suggest lighter field ma-

chines (Keller et al., 2019). Second they turn to Controlled Traffic Farming (CTF) which

keeps wheels on fixed lanes and leaves the rest of the field loose (Tamirat et al., 2022).

Both approaches need precise guidance that steers every pass along the planned lanes

while still treating the whole crop area. To guide those vehicles, a path that covers the

complete field is needed. Designing such guidance while ensuring full coverage forms the

core of the Coverage Path Planning problem (CPP) (Oksanen and Visala, 2009).

1.2 The agricultural coverage path planning prob-

lem

Coverage Path Planning, or CPP, has its origin in robotics applications that are quite

distinct from those in agriculture (Galceran and Carreras, 2013). As a first example,

vacuum cleaning robots use CPP to cover an area without prior knowledge of its geometry,

including any inside obstacles (Yasutomi et al., 1988). Secondly, demining robots move

within a predefined area, but in contrast to typical agricultural operations, they may

be allowed to revisit a previously covered zone if that shortens the path (Acar et al.,

2003). Thirdly, flying drones that need to cover an area with imagery may be allowed to

navigate outside the region-of-interest, if there are no obstacles that block the path of the

drone (Barrientos et al., 2011). In every domain, the planner must cover the target area

while minimizing the distance traveled (Galceran and Carreras, 2013).

In Agricultural Coverage Path Planning (ACPP) the problem is more complex. Zones

outside of the region of interest (beyond the field boundaries) cannot be trespassed due to

risk of collision (Plessen, 2025). Typical obstacles are trees, fences, and ditches. Moreover,

the coverage path must avoid double coverage because repeat passes may damage the

crop (Hameed et al., 2016). On the other hand, leaving an area uncovered implies less field
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yield or the possibility of having weeds inside the field (Jin and Tang, 2011). Lastly, the

field borders are known, or they can be measured, which allows us to plan the coverage

path before the operation (Versleijen and de Bruin, 2019).

Agricultural fields are usually divided into an area where most crop productivity is achieved,

called the inner field, and an outer area where turns are made, called the headlands (Pour

Arab et al., 2022). The inner field is typically covered by adjacent swaths. These swaths

can be arranged according to the farmer’s preferences, crop operational characteristics,

or by using an optimization algorithm (de Bruin et al., 2009). The agricultural CPP

problem has been primarily studied for non-holonomic vehicles, which are vehicles that

cannot rotate in place (He et al., 2023). Those vehicles are physically constrained in their

maximum curvature and maximum steering rate. Hence, they can only follow smooth

paths that abide the robot’s steering constraints. Turning maneuvers between the swaths

are done on the headlands, which are adjacent to the field boundaries and any in-field

obstacles (Guevara et al., 2020). As headlands are less productive, their size is minimized

without compromising the minimum space required for the turns (Spekken and de Bruin,

2013).

Comparison of coverage path alternatives requires an objective function, which captures

the goals and costs of field operations (Bostelmann-Arp et al., 2023). Common objective

functions include total path length, operation time, number of turns, a measure of soil

compaction, coverage completeness, overlapped area, and energy consumption (Höffmann

et al., 2024). There are many objective functions, but some of them are proxies of others.

For example, the number of turns is an indicator of total operational time, since turns

imply idle operation whilst speed is slower than that for swath coverage (Jin and Tang,

2010).

In convex, obstacle-free fields, swaths may be covered sequentially by alternating direction

until the entire area is treated (Bochtis and Vougioukas, 2008). In concave fields, such as

fields with obstacles, this sequence is typically inapplicable, necessitating route optimization

algorithms to determine the optimal order for covering the swaths (Hameed et al., 2011).

The agricultural operation itself imposes additional constraints to coverage planning. For

instance, when harvesting, it is crucial to cover the headlands first so that the standing

crop is not damaged prior to harvesting by the turning on the headlands (Wang et al.,

2025). Conversely, during seeding, the inner field is prioritized, leaving headland coverage

for later if required (Bochtis and Oksanen, 2009).

Other important aspects to be considered in coverage planning are the vehicle’s weight

and load capacity. Some operations require the robot to transport a load that changes

during the task (Spekken and de Bruin, 2013). For example, during fertilization the

robot’s tank gradually empties as it traverses the swaths, necessitating periodic stops for

refilling (Bochtis et al., 2010b). On the contrary, a combine harvester’s tank fills during

operation and must be emptied before its capacity is surpassed (Lu et al., 2020). The
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route planner must thus manage both the order of swath coverage and the logistics of

recharge points, which are essential for operational optimization (Hameed et al., 2013a).

This challenge is compounded when multiple robots are working simultaneously, as work

must be efficiently distributed to minimize the overall objective function (Bochtis et al.,

2010b).

An additional challenge in ACPP is the scarcity of publicly available informa-

tion (Chakraborty et al., 2022). Unlike other robotics fields, datasets and open-source

code in ACPP are limited, hindering reproducibility and the comparison of existing meth-

ods (Utamima and Djunaidy, 2022). This lack of accessible resources poses a significant

barrier for researchers, who often have to repeatedly collect data and implement algorithms,

which leads to a waste of resources.

1.3 Open science in the context of coverage path

planning

The Open Science movement seeks to open scientific progress to every researcher and

citizen, making work both accessible and reproducible (Collaboration, 2015). Three of the

movement pillars are open access, open data, and open-source software. Together they

bring clarity, invite collaboration, and let others confirm or refine earlier findings (Crüwell

et al., 2019). By easing the flow of information, open science speeds advances across many

fields (Munafò et al., 2017). In precision agriculture, these principles have the potential to

transform how we address the ACPP challenges, raising both efficiency and sustainability

in agricultural management.

Open access publishing shifts the cost of availability away from readers and removes pay-

walls that hinder knowledge transfer (Sitek and Bertelmann, 2014). Open-source software

reveals the exact methodology used so that others can adopt, adjust, or improve it (Fecher

and Friesike, 2014). This is particularly important in ACPP, where advanced solutions

must be adaptable and scalable across diverse agricultural environments. Open data

further supports the replication of research by providing the original datasets (Grossman

et al., 2010), thus ensuring result veracity (Ioannidis, 2005). These three ideas would

give ACPP projects the flexibility they need to suit multiple crops, fields, and machine

fleets.

Several active projects related to agriculture and robotics have already demonstrated the

scientific and social impact of open-source. For example, GODAN (Global Open Data for

Agriculture and Nutrition) shares agricultural and nutrition data on a global scale (Musker

and Schaap, 2018). Farmhack is a community dedicated to developing open-source tools

that allow farmers to share and refine agricultural technologies (Farm hack website n.d.).

In robotics, ROS (Robot Operating System) streamlines communication between robots

and fosters a broad developer base (Macenski et al., 2022). Nav2, built on ROS, provides
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open navigation tools for complex settings (Macenski et al., 2020). These projects not

only provide open code, but also publicly available documentation for anyone to use and

extend.

Nevertheless, resistance to open science in ACPP is not accidental. The high costs of field

trials and dataset curation encourage proprietary control (Mukherjee and Stern, 2009).

Furthermore, the diversity of fields, crops, and machines complicates standard protocols

for ACPP (Chakraborty et al., 2022). Path planners also optimize distinct goals such as

path length, soil compaction, or energy use, which makes fair comparison difficult and

slows down the adoption of shared benchmarks (Utamima and Djunaidy, 2022).

To overcome these obstacles, we need incentives that reward openness, standards that

reflect farm diversity, and testbeds that measure a variety of objectives. If these conditions

are met, open science can turn ACPP into a fast-moving, community driven field that

delivers practical tools for sustainable agriculture.

1.4 Problem statement and research objectives

Over recent decades, various individual efforts have been undertaken to solve the ACPP

problem, primarily focusing on finding the shortest path for covering the inner field of

monocultures (Höffmann et al., 2024). Although automation reduces the need for manual

labor, these approaches often overlook fundamental issues such as headland coverage (Pour

Arab et al., 2022) and minimizing soil compaction (Jin and Tang, 2011). Studies addressing

soil compaction often rely on overly simplistic linear models (Santos et al., 2018). Similarly,

when headlands are treated merely as transition zones between swaths, they are not

adequately covered (Nilsson and Zhou, 2020). Pour Arab et al. (2022) proposed several

methods for headland coverage, but the work fails to specify which criteria to use to select

a particular method. Moreover, the navigation of concave corners in headlands remains

largely unexplored in the literature.

In addition, knowledge on ACPP is fragmented across the literature, much of which is

behind paywalls. As previously mentioned, the software and datasets associated with

these studies are rarely shared, underscoring the need for a comprehensive solution that

compiles the state of the art with detailed documentation (Utamima and Djunaidy, 2022).

Such a solution must be generic enough to address any ACPP use case while remaining

flexible enough to adapt to specific situations.

The primary objectives of this thesis are to improve the open access in ACPP and to solve

the challenges associated with optimizing field coverage while minimizing soil compaction.

These objectives are explored through the following research objectives:

1. Integrating coverage path planning algorithms into a unified framework

2. Enhancing the scientific transparency of coverage path planning research
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3. Improving headland coverage and headland turning feasibility

4. Reducing soil compaction through coverage path planning optimization

1.5 Thesis outline

This thesis is organized in six chapters, beginning with this introduction. Chapters 2

through 5 address the research questions outlined above. The following is an overview of

the upcoming chapters:

• Chapter 2 introduces the open-source library Fields2Cover, which offers a modular

structure for ACPP focused on convex fields and straight swaths. The library divides

algorithms into four modules. Fields2Cover aims to provide a generic, publicly

accessible solution to stimulate interest and attract developers and researchers. The

library is available in C++, Python, and as a ROS module, and its generated paths

have been tested on a real field robot.

• Chapter 3 develops and demonstrates a benchmark facilitating the comparison of

new ACPP algorithms. The chapter extends the modular structure from Chapter 2,

dividing methods into five modules and allowing flexibility in their execution order. It

also enhances the library to support non-convex fields with obstacles. The benchmark

tool is released with a dataset of fields geometries. Additionally, the library was

extended to include a configuration file that allows adapting to user needs. It is

accompanied by three elaborated use-case examples.

• Chapter 4 presents a headland coverage path planner with three corner planners,

designed to cover both convex and concave corners on field boundaries. These

planners consider the dimensions of both the robot and a fixed implement, as well

as maximum curvature and curvature change rate constraints. The algorithm allows

selecting the appropriate corner planner based on whether the objective is to minimize

path length or to maximize area coverage. Finally, this chapter explains how to

concatenate curves in corners to effectively cover the headlands of a field.

• Chapter 5 focuses on optimizing the coverage route to reduce soil compaction by

integrating the SoilFlex model (Keller et al., 2007) into the objective function. To

illustrate the difference between this objective and that of simply minimizing path

length, planning was conducted under varying operational frequencies, from a single

pass up to three passes. The model was also tested in intercropping scenarios, where

two crops share the same field and two vehicles are used to cover the swaths while

minimizing the overall soil compaction.

• Chapter 6 concludes the thesis by summarizing the main findings and reflecting on

future challenges in ACPP.







Chapter 2

Fields2Cover: An open-source

coverage path planning library for

unmanned agricultural vehicles

This chapter is based on:

G. Mier, J. Valente, and S. de Bruin (2023b). “Fields2Cover: An open-source

coverage path planning library for unmanned agricultural vehicles”. IEEE Robotics and

Automation Letters 8.4, 2166–2172. doi: 10.1109/LRA.2023.3248439

https://doi.org/10.1109/LRA.2023.3248439
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Abstract

This chapter describes Fields2Cover1, a novel open source library for coverage path

planning (CPP) for agricultural vehicles. While there are several CPP solutions nowadays,

there have been limited efforts to unify them into an open source library and provide

benchmarking tools to compare their performance. Fields2Cover provides a framework for

planning coverage paths, developing novel techniques, and benchmarking state-of-the-art

algorithms. The library features a modular and extensible architecture that supports

various vehicles and can be used for a variety of applications, including farms. Its core

modules are: a headland generator, a swath generator, a route planner and a path planner.

An interface to the Robot Operating System (ROS) is also supplied as an add-on. In this

chapter, the functionalities of the library for planning a coverage path in agriculture are

demonstrated using 8 state-of-the-art methods and 7 objective functions in simulation and

field experiments.

1https://github.com/Fields2Cover/Fields2Cover
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2.1 Introduction

In developed countries, there is a shortage of skilled workers to operate agricultural ma-

chinery (Christiaensen et al., 2020). This shortage can be alleviated with the development

of autonomous machinery. Unlike manually operated machinery, autonomous vehicle

operations need meticulous planning beforehand. The problem of determining a path

to cover a field is known as coverage path planning (CPP). CPP is of high importance

for cleaning (Bormann et al., 2018), surveillance robots (Jensen-Nau et al., 2020), lawn

mowers (Hameed, 2017), and agricultural vehicles (Oksanen and Visala, 2009), where it

has been addressed in several works.

Whilst there have been many efforts, most of the (partial) CPP solutions have not been

released as open-source software, thus hindering more rapid advances in CPP by the

scientific community. The packages shown in Table 2.1 are the only open-source software

to the best of our knowledge. Note that the software packages listed in Table 2.1 solve

the CPP problem partially, but require several modifications in order to be customized to

different unmanned vehicles and applications.

This chapter aims to fill the above mentioned gap by proposing and releasing to the

community an open-source CPP library for field coverage. The library was designed

focusing in four modules that are the core of CPP solutions: a headland generator, a

swath generator, a route planner, and a path planner. Each module includes at least one

state-of-the-art method and one objective function. The library currently only supports

convex fields on arable farmland. Regardless, there is an urgent need for an open source

software solution to fill the existing gap in the CPP problem in agriculture. The ultimate

goal of the library is to ease the state of-the-art algorithm benchmark and to accelerate

CPP research and application.

2.1.1 Related work

Owing to the non-holonomous nature of agricultural vehicles, a region of the field known as

headlands must be reserved for turning the vehicle. The most basic approach is to allocate

a constant width area around the field. This strategy allocates a large amount of space to

a poor yield area. Depending on how the swaths are arranged, some headland areas are

parallel to the swaths and hence they are not needed for turning. By only constructing

headlands along the field edges where turns are made, the area reserved for them can be

minimized (Jin, 2009; Oksanen and Visala, 2009).

Swaths are generated in the inner field, which is the remaining region after subtracting

the headlands. In two-dimensional planar fields, a reference line can be applied as a

guide for the generation of swaths, where each parallel creates a swath (de Bruin et al.,

2014; Jin, 2009; Oksanen and Visala, 2009). This line can be chosen for convenience

or by an algorithm such as brute force or a meta-heuristic. Oksanen and Visala (2009)
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Table 2.1: Comparison between coverage path planning open-source software solutions.

Repositories (rows) are compared in terms of (1) available documentation (Docs); (2) Com-

putation of exact solutions rather than using a discretizing grids (No grid); (3) Support for

non-holonomous vehicles in turns; (4) The option to reserve maneuvering space at the field

boundaries (Headlands support); (5) The possibility to modify the objective function; (6)

Applicability for agricultural ground robots.

Package name Docs No grid

used

Non-

holonomous

Headlands

support

Customizable

objective

function

Terrestrial

agricultural

vehicles

RJJxp/CoveragePlanning ✗ ✔ ✗ ✗ ✗ ✗

Nobleo/full coverage path planner ✔ ✗ ✔ ✗ ✗ ✗

Ipa320/ipa coverage planning ✔ ✔ ✔ ✗ ✗ ✗

Ethz-asl/polygon coverage planning ✔ ✔ ✗ ✗ ✗ ✗

Irvingvasquez/ocpp ✗ ✔ ✗ ✗ ✗ ✗

Greenzie/boustrophedon planner ✗ ✔ ✔ ✔ ✗ ✗

Ipiano/coverage-planning ✔ ✔ ✗ ✗ ✔ ✗

Fields2Cover ✔ ✔ ✔ ✔ ✔ ✔

describes a driving angle search strategy that requires fewer iterations than brute force

search but it does not guarantee finding the global minimum. Objective functions such

as the number of turns or the sum of swath lengths are used to determine optimality in

swath generation (Jin, 2009).

The distance (Jin, 2009) and time (Meuth and Wunsch, 2008) required to cover the field

are affected by the order of the swaths. A route is the sequence of the swaths to cover.

The Boustrophedon order, which travels the swaths sequentially from one side of the field

to the other, and the snake order, which skips one swath at each turn and returns through

the uncovered swaths, are popular preset routing patterns (Zhou et al., 2015). Objective

functions such as distance, number of rotations, or time necessary to traverse the field (Jin,

2009; Meuth and Wunsch, 2008) are minimized by finding the optimal route through

meta-heuristics (Spekken et al., 2016).

A path is composed of the swaths of a route connected by turns, forming a continuous line

along which the vehicle will drive. Dubins’ or Reeds-Shepp’s curves are turns that minimize

the path length of the turns (Dubins, 1957; Reeds and Shepp, 1990). These curves are

made by either curve segments or straight lines. The main problem is that there is an

instantaneous change of curvature at the transition point between two segments. Techniques

such as numerical integrators (Backman et al., 2015) or clothoids (Sabelhaus et al., 2013)

are employed to smooth the turn to avoid the curvature discontinuity. Furthermore, to

navigate from a swath to the headlands, turns such as non-uniform rational B-spline

(NURBS) curves can be adopted (Höffmann et al., 2022).
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CPP problems are composed of numerous sub-problems, several of which have received

special attention in the literature. For example, Spekken et al. (2016) presents an approach

for calculating the coverage path in undulating terrain that however does not consider

turns between rows or headland creation. Nilsson and Zhou (2020) and Nørremark et al.

(2022) divide the CPP problem into two major modules: Field Partitioning/Representation,

where the distribution of headlands and swaths in the field is set up, and Route Planning,

which determines the optimal order of travelling the swaths within sub-fields. In the

latter framework, each module has more than one function, increasing the complexity of

comparing multiple variations of the module.

2.1.2 Existing open-source software

There have been web applications, such as GAOS (de Bruin et al., 2014), that allowed

farmers to design or adapt coverage paths with a user-friendly interface. Many of such web

applications, despite being a great help to the farming community, have been developed in

collaboration with companies, restricting the possibility to release the code to the public

domain.

The currently existing open source CPP repositories are listed in Table 2.1. Although

seven other projects were found, none of them can be adopted for farming purposes

with ground robots. As mentioned above, ground robots in agriculture are generally

non-holonomous, so turning maneuvers must be planned to move from one swath to

another. Unfortunately, some packages (Baehnemann et al., n.d.; Jiaping, n.d.; Stelter,

n.d.; Vasquez, n.d.) only compute the route to cover a region. These packages are designed

for quadrotors (Baehnemann et al., n.d.; Vasquez, n.d.) or for indoor robots (Jiaping, n.d.).

However, the code needs to be modified to support path generation for non-holonomous

robots. A special case of CPP is the Nobleo package (Clephas et al., n.d.) which, although

the vehicle used is non-holonomous, uses a grid to define the nodes that should be covered

at least once. In agriculture, it is important to reduce the damage caused by the wheels of

the vehicle, so it is not recommended to cover the same swath several times (Clephas et al.,

n.d.) or to cross through the main field (Baehnemann et al., n.d.; IPA, n.d.; Jiaping, n.d.).

On the other hand, Greenzie (n.d.), which was developed for lawn mowers, is the only

package that supports headlands, along with Fields2Cover. Unlike arable farming, mowers

are constrained to avoid repeated tracks for field traffic, thus the coverage path is created

with random sweep angles. For this reason, Greenzie does neither provide an optimizer nor

an objective function for planning the swaths. In contrast, Ipiano (Stelter, n.d.) provides

an interface to change the objective function used by its optimizer, but here no headland

support is offered. Fields2Cover is the only software solution that provides algorithms to

create a coverage path for terrestrial agricultural robots, including optimizers and objective

functions to generate the best path, headland support and turn planning.
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2.1.3 Contributions

The main contributions of this chapter and the Fields2Cover library are:

1. A publicly-available library (Fields2cover) providing connectable modules to address

CPP problems with unmanned agricultural vehicles. Those modules can be effortlessly

customized for other CPP problems.

2. Benchmark tools for quantitative comparison between the CPP algorithms and

approaches.

3. A quantitative comparison using 38 convex fields between eight state-of-the-art CPP

approaches/methods and seven objective functions.

4. Experiments with a commercial unmanned agricultural vehicle, demonstrating

Fields2Cover’s capability to provide real-world solutions.

5. Contribute to building a research community by providing an accessible platform for

discussing novel ideas, solving issues and sharing new variants of the problem.

2.2 Fields2Cover

Fields2Cover is designed in four modules (Fig. 2.1): 1) Headland Generator, 2) Swath

Generator, 3) Route Planner and 4) Path Planner. The inputs of the CPP problem are

the shape of the field and the vehicle specifications, while the output is the coverage path

of the field. Methods from the same module can be used interchangeably to compare their

solutions independently of the rest of the CPP problem.

2.2.1 Headland Generator module

The Headland Generator module currently implements a single method that buffers the

border of the field in the inward direction by a custom constant width (see Module 1 in

Fig. 2.1). The objective function of this module is the area of the remaining field after

removing the headlands.

Ar =
Ah̄l

Af

(2.1)

where Ah̄l is the area of the field without headlands (mainland), Af the area of the original

field, and Ar is the ratio of mainland to the original field.

2.2.2 Swath Generator module

The inner field (i.e., excluding the headlands) is the input of the Swath Generator module

(see Module 2 in Fig. 2.1). This region is divided into parallel swaths matching the



2.2 Fields2Cover 15

Start

Field 
border

Vehicle 
parameters

Headland Generator

Constant-Width Headland

Remaining Area

Swath Generator

Brute-force

Number of swaths
? swaths length
Field coverage

Route Planner

Boustrophedon pattern
Snake pattern
Spiral pattern
Custom pattern

? swaths length + ? turns (min r=0)
Path length made by chosen Path planner

Path Planner

Dubins' Curves
Reeds-Shepp's Curves

Path length

Field 
w/o headlands

Swaths w/o order

Route 
(Ordered swaths)

Path
(Swaths + Turns)

1.

2.

3.

4.

Figure 2.1: Diagram of the Fields2Cover library. The library contains four core modules:

1) Headland Generator, 2) Swath Generator, 3) Route Planner and 4) Path Planner. Each

of the modules is represented as a box with 3 slots: the name of the module, the methods

implemented, and the objective functions available. The output of a module is the input of

the next module.

operating width. In the current version, the library only supports parallel non-overlapping

swaths. Fields2Cover has a brute force algorithm to find the optimal sweep angle by trying

discretized angles using a given step size. If the computer running the library supports

multiple threads, several sweep angles are tried in parallel (Intel, n.d.).

This module currently implements 3 objective functions:

• Minimize the Number of Swaths. This objective function depends on the shape and

the area of the field, and the width of the robot. The number of swaths is limited by

the equation:

0 ≤ #Sα ≤
Ah̄l

Rw

, (2.2)

where #Sα is the number of swaths for a given sweep angle α, Ah̄l is the area of the

field without headland, and Rw is the operational width of the robot. The shape of

the field that maximizes the minimum number of swaths is the square field, which
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results in:

minα #S♢
α ≃

√
Ah̄l

Rw

, (2.3)

where #S♢
α is the number of swaths in a square field with a given sweep angle α.

Therefore, the optimal value of this objective function is less than the square root of

the area of the field.

• Maximize the Field Coverage:

Acov =
Ah̄l ∩ {∪i S

i})
Ah̄l

, (2.4)

where Acov is the fraction of area covered, Ah̄l is the field without headlands, Si

is the ith swath, ∩ is the intersection operator, and (∪i Si) is the union of all the

swaths.

• Minimize the Swaths Length:

N∑
i

length(Si) =
N∑
i

Si
p−1∑
j

||Si
p=j+1 − Si

p=j||2, (2.5)

where
∑

i length(Si) is the sum of the length of the swaths, N is the number of

swaths, Si
p is the number of points that the ith swath has, Si

p=j is the jth point of

the ith swath, and ||x||2 is the Euclidean norm.

2.2.3 Route Planner module

The Route Planner module uses the swaths created earlier to produce the route (see Module

3 in Fig. 2.1). Fields2Cover contains several predefined route patterns, which include the

boustrophedon pattern, the snake pattern, the spiral pattern and a custom pattern. The

Boustrophedon pattern covers the swaths sequentially, and the Snake pattern skips one

swath each time to traverse the field in one direction and returns through, covering the

uncovered swaths. The Spiral pattern is a variation of the Snake pattern, that sorts the

swaths in clusters of a fixed size with the snake pattern. The custom pattern requires

specification of the swath order by the user. To compare different routes, the library

provides as objective function the length of the path generated by the Path Planning

module. It also computes the path length with in-place turns, which correspond to zero

turning radius. The path length of in-place turns is computed as :

L0 =
N∑
i=1

length(Si) +
N∑
i=2

||Si
p=1 − Si−1

p=M ||2 (2.6)

where L0 is the path length with in-place turns,
∑N

i=1 length(Si) is the sum of the lengths

of the swaths, N is the number of swaths, Si
p=1 is the first point of the ith swath, Si

p=M is

the last point of the ith swath, and ||x||2 is the Euclidean norm.
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2.2.4 Path Planner module

The inputs of the Path Planner module (see Module 4 in Fig. 2.1) are the route (sorted

swaths) and the vehicle parameters. Once the route is known, the turns to complete the

path are computed. In the current version of the library, the path planner applies the

same type of curves for all the headland turns. Fields2Cover currently supports straight

curves, the Dubins’ curves (Dubins, 1957) and the Reeds-Shepp’s (Reeds and Shepp, 1990)

curves, using the path length as the single objective function.

2.2.5 ROS wrapper

Although the Fields2Cover library does not depend on ROS, an interface with ROS1

and ROS2 is provided as an add-on. The fields2cover ros2 package provides functions

that convert Fields2Cover data types into ROS messages. Services are created to execute

modules directly from ROS topics. Launch files are used to script examples of the package.

RVIZ-support is also provided to visualize the results of the modules. Methods, objective

functions and parameters can be modified in real time thanks to rqt reconfigure3.

2.2.6 Design & Implementation

Fields2Cover is implemented using C++17, with a Python interface using Swig (Beazley

et al., 1996), and released under BSD-3 license. The design of Fields2Cover aims to serve

both scientists and service providers, and is intended to be easily used.

The reason for making Fields2Cover an open-source library is that doing so encourages the

development of additional functionality by providing the code to the community. Likewise,

Fields2Cover widely employs open-source libraries from third parties to streamline the

development process of state-of-the-art algorithms. For scientists, priority is given to a

flexible design, which allows to extend or modify existing algorithms. Additionally, a

benchmark against which to compare new solutions is added. For service providers, utility

concerns the ability to plan the best coverage path for a given objective function in a

straightforward manner. The modularity of Fields2Cover is key to ensure its usefulness for

both cases. In addition, the library provides tests, tutorials, and extended documentation4

to reduce the learning curve.

2.3 Results

Several experiments were conducted to demonstrate the functionalities of Fields2Cover.

Firstly, coverage paths were created for convex fields from the Nilsson’s benchmark (Nilsson

and Zhou, 2020). In these simulations, the experiments focus on the optimization of the

2https://github.com/Fields2Cover/fields2cover ros
3http://wiki.ros.org/rqt reconfigure
4https://fields2cover.github.io/
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Figure 2.2: The AgBot 5.115T2, from the company Agreed B.V (The Netherlands), is a

differential robot with continuous treads. The weight of the robot is 7.8t, the total width of

the robot is 2.5 m, the minimum turning radius avoiding excessive soil damage is 2.1 m. For

the experiments, the operational width of the robot (width of the coupled tool) was assigned

the same value as the width of the robot. The AgBot 5.115T2 has 4-cylinder Deutz Diesel

Engine, stage 5 with 156hp, and an electric drive train with a maximum speed of 13.5 km/h.

Some onboard sensors are 2 cameras, a RTK-GNSS receiver and an IMU.

objective functions and the computation time of those methods. Secondly, real field

experiments were conducted in an agricultural field with a commercial robot (Fig. 2.2) of

the company AgXeed B.V (The Netherlands). The aim of the experiment was to program

the coverage trajectory of the robot using the Fields2Cover library and assess whether a

designed coverage path is efficiently traversed by the robot. The planned path is previously

transferred to the robot with Protobuf (Google, n.d.). The protobuf message defines the

path as timestamps, positions, velocities, and orientations. It also contains the geometry of

the field boundary to prevent the vehicle from leaving the field. The sensor data collected

during the coverage path, such as the GNSS position and the velocity, is returned from

the AgBot as a rosbag (Field et al., n.d.).

Experiments were done with a laptop MSI GF627RE with Intel(R) Core(TM) i7-7700HQ

CPU @ 2.80GHz (4 cores, 8 threads) with Ubuntu 20.04.5.
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Table 2.2: Comparison of swaths generated using brute force optimizing one of the three

objective functions: sum of swath lengths (minimization problem), number of swaths (mini-

mization problem) and field coverage (maximization problem). The parallel lines inside the

field are the centers of the generated swaths.

Field

Name

Swath

length

Number

Swaths

Field

Coverage

REC A

CIR B

SAL B

2.3.1 Simulation results

Three simulation experiments were performed. Firstly, the optimal route was computed for

three different fields to visually inspect the effects of the objective function. Secondly, the

coverage path was computed for 38 convex fields with every possible combination of the

algorithms provided by the library. The combination of algorithms for creating a coverage

path were compared using the path length as the objective function. Thirdly, the time

for computing coverage paths was recorded using several objective functions of the Swath

Generator module. The relationship between the area of the field and the computation

time was found.

The first decision for coverage path planning of a field is the objective function to be

optimized by the swath generator (Brute force algorithm). The optimal pitch angle of

the swaths may vary with the chosen objective function. Therefore, the first experiment

provides examples of optimal swaths for the fields REC A, CIR B and SAL B from the

Nilsson and Zhou (2020)’s benchmark, which are shown in table 2.2. The fields were

re-scaled to an area of 100m2. If the number of swaths is minimized, the number of turns

is also reduced. For instance, fields CIR B and SAL B are covered using a single turn. If

maximum field coverage is to be achieved, CIR B needs seven turns, while SAL B needs

five. Field coverage is typically achieved when swaths are parallel or perpendicular to one

of the edges. In contrast, the swath-length objective function may produce many short

swaths (bottom-left of CIR B with swath length), that reduce the total length of the

swaths.

The second experiment was conducted using 38 convex fields of the benchmark of Nilsson

and Zhou (2020), re-scalated to an area of 1 ha (Fig. 2.3). For each field, a headland of

7.5m (three times the operational width of the robot) was generated with the constant

width generator. Next, the brute force algorithm was used to generate the optimal swaths
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Figure 2.3: Coverage path length comparison. Columns refer to the objective function that

was optimized using the brute force algorithm, while each row refers to a particular route

planner pattern. Each subplot represents the optimized path length (y-axis) with respect to

the optimized path length for zero-radius turns (x-axis). A single dot represents a coverage

path length for a field with a chosen size from the benchmark of Nilsson and Zhou (2020). Red

dots correspond to paths using Dubins’ curves, blue dots are for Reeds-Shepp’s curves. The

black lines show the 1:1 relations.

for each objective function criterion shown in Table 2.2. The route planners sorted the

swaths with the boustrophedon, snake, or spiral (bulk of 6 swaths) pattern. Lastly, the

computed path length (LR) was used for comparing the coverage paths computed with

Dubins’ and Reeds-Shepp’s curves against the length of paths with in-place turns (L0),

which have the least possible path length for a holonomic vehicle. Each column of Fig. 2.3

refers to the objective function criterion that was optimized by the swath generator, and

each row denotes a particular route planner pattern. A subplot represents the optimized

path length (y-axis) with respect to the optimized path length for in-place turns (x-axis).

A single dot represents a computed coverage path, with position (Li
0, Li

R) for the ith

coverage path. The color of the dots denotes the type of curve (Dubins or Reed-Shepp),

while black lines represent the 1:1 relation. Greater values for L0 imply that the route

generated is longer and distance between swaths is larger. The difference between Li
R

and Li
0 manifests the length of the turns. This difference relates to the time that the

machinery is non-productive. Therefore, a substantial difference between the black line

and the colored dots denotes a path for which turning takes more time. As shown in Fig.

2.3, a percentage between 0.5% and 50% of the coverage path was spent on turns. When

the number of turns is reduced, the distance traveled is reduced accordingly. The distance

used for turning increases when the boustrophedon pattern is applied, since a shorter

width between swaths requires a larger turn to comply with the minimum turning radius

requirement. For instance, in the first column of the figure 2.3, the difference between the
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Figure 2.4: Time required to compute a path according to the objective function used.

Algorithms used are constant width headland generator, parallel brute force for swath generation,

Boustrophedon route order and Dubins’ curves.

path length using Dubins’ curves and in-place turns is smaller than in the other columns.

Field coverage and swath length behaved equally in terms of coverage path length. With

any of the objective functions presented, the boustrophedon pattern produced the shortest

pattern with in-place turns, the snake pattern was the second and the spiral pattern the

longest. The length of the boustrophedon pattern increases when the minimum turning

radius is required.

In the last simulated experiment, the computation time of planning a coverage path was

measured in relation to the area of the field and the objective function of the swath

generator (Fig. 2.4). The constant headland width was set to three times the width of the

robot. Next, the parallel brute force algorithm optimized the pitch angle of the swaths,

which were sorted using a boustrophedon pattern. Finally, the path planner used Dubins’

curves to create the coverage path. This experiment measures the computation time for

coverage paths according to the three swath generator’s objective functions in relation to

the area of the field. Fields2Cover computed a coverage path for a field of 1 ha in less than

3.5 seconds using Field coverage as the objective function, while only 0.5 seconds were

needed using the number of swaths or the swath length as the objective functions. Since

the computation of the number of swath and swath length is proportional to the number

of swaths and the number of swaths is proportional to the width of the field perpendicular

to the driving direction, the computational time grows proportional to the square root of

the area of the field. The computation time using the latter two objective functions can

be approximated by:

Tc = C0 ∗
√
Ah̄l

Rw

+ C1 (2.7)
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Figure 2.5: AgBot covering a narrow area (shape on green). The coverage path plan in red

and the position of the AgBot in blue. The AgBot is halfway the coverage task. The starting

point is near the left edge of the area.

where Tc is the computation time, C0 and C1 are constants, Ah̄l is the area of the field,

and Rw is the operational width of the robot. This relationship is only true when the field

is convex, so it can be covered with a single pattern.

The field coverage is computationally the most demanding objective function because

it computes the difference between the field and the union of the areas of each swath.

The computation time of this objective function grows linearly with the area of the field.

Geometrical operations such as ’difference’ and ’union’ are more expensive than returning

the number of swaths, which is the size of the vector of swaths.

Computational time analysis focused on the objective function of the brute force algorithm,

which consumes more than 80% of the total time of the coverage path planning.

2.3.2 Field experiment

A field experiment was conducted using the AgBot shown in (Fig. 2.2). In the extreme

case shown in Figure 2.5, the AgBot covered an elongated narrow area. Objective functions

like the minimum swath length or the number of turns would produce swaths parallel to

the longest edge of the field. However, here we show a coverage pattern given a custom

angle that allows observing the turns in the field. The produced swaths were sorted using

the Snake pattern and connected by Dubins’ curves. The difference between the planned

path and the recorded track in Figure 2.5 can be attributed to the planned minimum

turning radius being shorter than permissible for the AgBot. Therefore, the recorded

GNSS data show slightly wider turns than the planned path. Turns made with the snake

pattern always skip one swath, except for the turn at the rightmost part of the field where

the coverage direction changed. This turn is sharper, causing wider tracks on the ground,

greater soil slippage, and thus more soil damage (Janulevičius and Giedra, 2009). Despite

the slippage, the AgBot was capable of covering the field with the path designed by the

library routines.
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2.4 Conclusions & Future work

In this work, we introduced Fields2Cover, a Coverage Path Planning open-source library for

agricultural vehicles. Fields2Cover was implemented to bundle the research knowledge on

this topic and to help other developers to accelerate their projects. Currently, it supports

the creation of coverage paths for convex fields, with a flexible and simple structure

thanks to its modular design. The library has four modules, which are: the headlands

generator, with a constant width headlands generator; the swath generator, with a brute

force optimizer; the route planner, with three types of patterns; and the path planner,

with Dubins’ and Reed-Shepp’s curves. The last three modules have their own objective

functions specific to their domains. Fields2Cover was tested using simulation with a public

benchmark and in a real field.

Fields2Cover is an ongoing project, which means the functionality of the library will

be expanded in the coming years. Future developments are supported and maintained

by the first author of this thesis, with the collaboration of the open-source community.

Assumptions, such as flat topography, convex fields, enough maneuvering space in the

headlands, absence of capacity limits and planning for arable crops, were made to reduce

complexity for the first release. Non-convex fields with obstacles, sloping land, capacitated

vehicles and permanent crops such as orchards provide challenges for further research and

development, part of which are considered within the Fields2Cover project.

Since the release of this software library, a community has formed around the coverage

path planning problem. In less than 6 months since its release, many developers have

shown their support for this project through assigning 150 github stars, code contributions

and by providing suggestions for future versions. This community support shows the value

of the project, which emphasizes the relevance of addressing the coverage path planning

problem.
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Abstract

The agricultural coverage path planning problem focuses on optimizing coverage paths

for agricultural operations. Despite its importance, existing agricultural coverage path

planning solutions are highly application-specific, limiting their generalizability and repro-

ducibility. This chapter introduces Fields2Benchmark, an open-source, modular benchmark

designed to standardize the evaluation of agricultural coverage path planning algorithms.

Fields2Benchmark includes a dataset with 350 real-world fields, featuring non-convex

fields and in-field obstacles. The benchmark decomposes the agricultural coverage path

planning problem into five modules, i.e., headland generation, swath generation, route

planning, and path planning— allowing researchers to evaluate and compare algorithms

modularly. Each module supports interchangeable algorithms and objective functions,

enabling customization for diverse use cases. Fields2Benchmark extends the existing

Fields2Cover library by supporting capacitated operations, non-convex fields, and addi-

tional functionalities like headland width options and use case-specific swath adjustments.

Outputs are recorded as structured numerical data and visual representations to facilitate

detailed analysis. The capabilities of the benchmark were validated across three use cases

concerning field arrangement and route and path planning with and without capacity

constraints. Results demonstrate its ability to handle complex field geometries, compare

algorithms effectively, and evaluate computational performance. Fields2Benchmark is

computationally efficient, with planning times suitable for real-time applications. It is

supported by publicly available datasets and code. By standardizing agricultural coverage

path planning evaluation, Fields2Benchmark aims to improve the reproducibility in this

field, accelerating the research in agricultural robotics and field operations.
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3.1 Introduction

The Coverage Path Planning problem for agricultural environments (ACPP) aims to find

an optimal path that completely covers a field. Coverage is crucial for tasks such as seeding,

mowing, and crop protection, where efficiency and completeness determine crop yield and

cost. The ACPP problem is generally solved using application-specific solutions, making

them difficult to generalize (Chakraborty et al., 2022). Despite the need for comparability

and reproducibility between different methods, there is no standardized benchmark for

ACPP (Utamima and Djunaidy, 2022). This lack of benchmarking makes it difficult to

compare the performance of different ACPP approaches (Li et al., 2022).

A standardized benchmark requires open-source code for execution and a public dataset

for input (Kistowski et al., 2015). To our knowledge, there is no publicly available code to

run an ACPP benchmark. The only open-source software library available for ACPP is

Fields2Cover (Mier et al., 2023b), but its initial release lacked tools for solving non-convex

field geometries and did not consider a robot with capacity constraints. Additionally,

Fields2Cover did not include benchmark functionalities or provide a public data set for

comparative analysis. Today’s published datasets fail to capture the complexities of many

agricultural fields. For instance, Khosravani (Khosravani Moghadam et al., 2020) provides

a single convex field to compare route planners. Nilsson’s dataset (Nilsson and Zhou, 2020)

offers 54 manually-created geometries without in-field obstacles. Recently, Pour Arab

and Essert (2024) introduced a dataset of 30 French fields, but these also lack obstacles,

limiting their utility for evaluating ACPP algorithms on more complex problems.

To address these gaps, we developed Fields2Benchmark, an open-source benchmark for

ACPP. Fields2Benchmark standardizes ACPP evaluation by dividing the planning process

into five separate, replaceable modules: Field Decomposition, Headland Generation,

Swath Generation, Route Planning, and Path Planning. This modular framework ensures

reproducible comparisons and accelerates algorithm innovation in agricultural robotics.

Furthermore, the benchmark is integrated in Fields2Cover1 to encourage community

adoption.

3.2 Background agricultural coverage path plan-

ning

The aim of the Agricultural Coverage Path Planning problem is to generate a path to

cover an agricultural field. Those fields typically consist of headlands and the inner field.

Headlands provide space for machinery to turn (Guevara et al., 2020), and they are located

along the external boundaries and around large in-field obstacles (Fig. 3.1, arrow 5). The

inner field is covered using swaths (Bochtis et al., 2010a), which are parallel strips of

1https://github.com/Fields2Cover/Fields2Cover

https://github.com/Fields2Cover/Fields2Cover
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Figure 3.1: Scheme of a field being harvested. 1- Uncovered swaths. 2- Small obstacles (red

dots). 3- Already covered swath. 4- Large obstacle. 5- Headlands.

land that must be covered (Fig. 3.1, arrows 1 & 3). Similarly to swaths in the inner

field, headlands may also have swaths, which are called headland tracks. The goal of

ACPP is to plan an efficient route –the sequence in which swaths are traversed– and then

connect these swaths into a continuous path that the agricultural vehicle, or robot, can

follow (Linker and Blass, 2008). When the robot has a finite operational capacity, for

instance, in pesticide application or seeding, reload points become necessary to manage its

resource limits (Jensen et al., 2015).

The ACPP problem is commonly divided into distinct steps (Filip et al., 2020): Field

Decomposition, Headland Generation, Swath Generation, Route Planning, and Path

Planning. Field Decomposition divides fields into sub-cells, which is commonly achieved

by boustrophedon cellular decomposition, involving two stages: first splitting fields into

smaller cells, then merging these cells into larger units. The splitting usually follows a

predefined coverage direction (Bochtis and Oksanen, 2009) or extends edges from the field

boundary (Nielsen et al., 2019). Optimization algorithms merge the resulting sub-cells to

reduce their number while preserving navigability (Jin and Tang, 2010).

The Headland Generation step defines turning areas for agricultural machinery, either using

a constant width (de Bruin et al., 2009) or minimizing headland width individually for each

side to reduce wasted space (Spekken et al., 2015). Following this, Swath Generation covers

the internal field area with either straight or curved paths. Straight swath generation

involves selecting an optimal coverage angle, which can be identified through brute-force

search (Hameed et al., 2013a), optimization methods (Oksanen et al., 2007), or constrained

angle searches (Oksanen and Visala, 2009). In fields with elevation changes, curved swaths

may outperform straight swaths by saving energy and avoiding challenging coverage angles.
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Curved swaths can follow the longest curved field edge (Hameed et al., 2010) or they are a

compromise between the curves of opposing field edges (Spekken et al., 2016).

Next, Route Planning sorts generated swaths efficiently, often employing metaheuristic

optimization methods reviewed comprehensively by Filip et al. (2020). The final step,

Path Planning, connects sorted swaths into navigable routes, either swath-to-swath di-

rectly (Guevara et al., 2020) or via headlands (Höffmann et al., 2022), ensuring paths have

smooth, drivable turns suitable for robotic vehicles.

The above steps are executed sequentially. However, some methods (Höffmann et al., 2024;

Mier et al., 2025c) aim to simultaneously solve more than one step of the ACPP problem,

without following the sequential order. For example, to generate headlands (step 2) with

the minimum width on each border (Spekken and de Bruin, 2013), the coverage angle of

the swaths has to be calculated (step 3) before handling step 2.

3.3 The Fields2Benchmark open-source bench-

mark

Fields2Benchmark organizes the evaluation of ACPP in two interconnected blocks: Field

Arrangement and Route and Path Planning. The Field Arrangement block involves the

Field Decomposition, the Headland Generator, and the Swath Generator modules. The

Route and Path Planning block comprises the Route Planning and Path Planning modules.

As shown in Fig. 3.2, the framework operates as follows. First, the benchmark requires

the specification of input parameters, being physical parameters and use case decisions.

Next, for each module within the framework, a set of selected algorithms is initialized.

Simultaneously, objective functions are defined to assess the outputs of each module. The

benchmark then executes the modules sequentially, where the outputs of a preceding

module serve as the inputs for the subsequent module. The benchmark outputs are

recorded in a database and saved as images to ease further processing.

3.3.1 Input parameters

A wide range of applications are supported by means of a configuration step to define the

use case. The settings of this configuration are classified into physical parameters and use

case decisions.

Physical parameters

The physical parameters concern physical measures, such as the robot’s dimensions and

the geometry of the field to cover.

The robot is defined by its physical width, its coverage width –also called operational

width–, and its minimum turning radius. For some operations, such as fertilization and
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Figure 3.2: Fields2Benchmark workflow covering all processing steps from input configuration

to the final coverage path output. Colors denote different inputs and modules, where purple

represents the physical inputs of the robot and the field; blue indicates use case decisions; red,

green, and brown correspond to the Field Decomposition, Swath Generator and Headland

Generator modules in the Field Arrangement block; orange and yellow denote the Route

Planning and Path Planning modules, respectively.

harvesting, the robot has a capacity that is emptied or filled during operation. The capacity

is characterized by a rate, a maximum capacity, and a switch indicating whether it is used

continuously (e.g., fuel consumption), or only during swath coverage (e.g., fertilization).

Whenever planning a capacitated operation, the field representation also requires reloading

points, which are sites used to refill or empty the robot during the operation.

The field boundaries are defined as polygons; the outer ring delineates the field’s external

boundary while the inner rings indicate obstacles (Kottman, 2002). The field geometry

can be specified in any coordinate reference system, as Fields2Benchmark has functionality
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to transform global points to a local reference system. If the points are in geographic (lat.

long.) coordinates, they are first converted to UTM and then shifted to a local system

whose origin is at the first point of the field’s outer border. Once a coverage path is

computed, the results can be reverted to the original reference system. The field definition

further allows specification of the start and end locations of field operations.

Use case decisions

Apart from the specifications of machinery and field geometry, agricultural operations

have specific needs, which add constraints to a general ACPP problem. For example, a

lawnmower can arbitrarily cross the inner field to traverse between any two points, but a

harvester would damage the standing crop when doing so. The constraints are expressed

as use case decisions, which consist of:

• Are the swaths pre-established? In plantations such as orchards (Vélez et al., 2024),

the swaths have already been established so that the ACPP only concerns routing

and path planning. In scenarios such as orchards where swaths are pre-established,

predetermined swaths are utilized, thereby omitting the Field Arrangement block

from the evaluation.

• Coverage angle given or computed? When swaths are not provided but a preferred

direction is known, the coverage angle may be specified to generate the swaths

accordingly. Alternatively, if no coverage angle is specified, the Swath Generator

module employs optimization algorithms based on several objective functions to

determine an optimal angle.

• Headland width options. There are four possibilities to choose this width: 1) half of

the physical width of the robot, e.g. for holonomous vehicles; 2) the minimum width

required for turns; 3) the product of the robot’s coverage width and an integer, e.g.

to have non-overlapping headland tracks; 4) no headlands, for cases like Unmanned

Aerial Vehicles (UAV).

• Headland at decomposition lines. In order to mitigate in-field turning maneuvers,

headlands are generated along the decomposition lines that segment a non-convex

field into sub-cells; however, their generation is not always mandatory.

3.3.2 Field Arrangement block

The algorithms and objective functions implemented in the Field Arrangement block are

summarized in Table 3.1.

Decomposition module

Fields with concavities and obstacles may benefit from splitting into sub-cells, which

are covered separately. Although the decomposition of fields into sub-cells can enhance
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Table 3.1: List of algorithms and cost functions available in the Field Arrangement block of

Fields2Benchmark, for each of the different modules.

Algorithms Objective Functions

Decompositions

No decomposition (ND)

Trapezoidal (TD)

Boustrophedon (BD)

Min-Sum-Altitude (MSA)

Headland Generators
Constant Width (CW)

Required Width (RW)
Remaining mainland area (RMA)
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Swath Generators

Longest Edge (LE)

Curved Swaths (CS)

Brute Force (BF)

Oksanen search (OS)

Number of swaths (NS)

Sum of Swath Lengths (SL)

Field coverage (FC)

coverage performance, it remains an optional step in the benchmark framework. The

Decomposition module offers two algorithms: Trapezoidal cellular decomposition (Latombe,

1991) and boustrophedon cellular decomposition (Choset, 2000). The trapezoidal cellular

decomposition uses each vertex point of the field to generate split lines. The boustrophedon

cellular decomposition is similar to the trapezoidal decomposition, but only splits in specific

vertex points. Both algorithms rely on a split angle to make the decomposition. The

optimal split line is searched by evaluating all angles between 1 and 360 degrees with a

step of 1 degree, which can be adapted.

The objective function provided in this module is the Minimum Sum of Altitude

(MSA) (Huang, 2001). The altitude is defined as the widest width of a polygon, which is

proportional to the minimum number of swaths that covers it. The MSA returns the sum

of the altitude of each sub-cell.

Headland generator module

The Headland Generator module provides two algorithms: Constant width and required

width. The constant width algorithm (Hameed et al., 2010) inwardly buffers the field

borders by a value that is common for all the borders. In contrast, the required width

algorithm computes the offset by equation (Spekken and de Bruin, 2013):

Hi = rrob ∗ (sin(θ − γi) + 1) + wrob/2 (3.1)

where Hi is the headland width required to turn, θ is the coverage angle, γi is the angle of

the segment ith of the border, and wrob and rrob are the width and the minimum turning

radius of the robot, respectively. The required width algorithm requires that the coverage

angle be determined prior to the generation of the inner field; therefore, the angle must be

either specified directly or computed via the Swath Generator module.
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The headland width for the constant width algorithm is typically provided by the farmer. If

not entered, an automatic criterion is used. As a means of precaution, this implementation

picks the worst case scenario from Eq. 3.1:

Hi = rrob ∗ 2 + wrob/2 (3.2)

The distance between the first headland pass and the field borders is at least wrob/2, whilst

adjacent headland tracks are separated by the robot coverage width.

The objective function of the Headland Generator module is the relative inner-field area,

which is the ratio between the inner-field area and the total area. The optimization

function maximizes the relative inner-field area.

Swath generator module

Swaths are generated by offsetting a seed line at a distance equal to the coverage width of

the robot until the field is completely covered. For a straight seed line, its angle — the

coverage angle — determines the direction of all the swaths. As a rule of thumb, farmers

commonly select the direction of the longest edge of the field (Bochtis and Vougioukas,

2008). The coverage angle can also be searched using optimization methods. Two of those

optimizers are the brute force search over a discrete set of angles (de Bruin et al., 2009;

Hameed et al., 2013a; Spekken and de Bruin, 2013), and the Oksanen method (Oksanen

et al., 2007; Oksanen and Visala, 2009), which first identifies a set of angles, to then

proceed with a greedy search around the best angles of the first step. Both optimizers

require an objective function to evaluate the results. The objective functions provided by

Fields2Benchmark are:

• Number of swaths. In this work the Jin approximation (Jin and Tang, 2010) is used:

Ni = Li
|sin(θ−αi)|

2∗wrob
, where Ni is the number of turns, θ is the coverage angle, wrob is

the robot width, and Li and αi are the length and the direction of the edge of the

border, respectively. This function should be minimized.

• Sum of swath lengths. This function should be minimized.

• Field coverage, i.e., the ratio between the area covered by the swaths and the total

area of the field. This is a maximization objective function.

When the borders of the field are curved segments, the swaths can be generated following

a curved seed line (Hameed et al., 2010). Fields2Benchmark provides an algorithm to

generate swaths following the longest curved edge. A curved edge is defined as a sequence

of several straight segments in which the angle difference between the direction of two

consecutive segments is smaller than a threshold. A parallel swath is generated at a

distance s from a seed curve by first constructing bisectors for each pair of consecutive

segments. Subsequently, a point located at distance s along each bisector is selected; the

concatenation of these points yields the resulting curved swath.
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Table 3.2: List of algorithms and cost functions available in the Route and Path Planning

block of Fields2Benchmark, for each of the different modules.

Algorithms Objective Functions

Convex Fields:

Boustrophedon

Snake

Spiral

Any Fields:

Route Planners

B-Patterns w/o capacity

B-Patterns with capacity

Route Length

Path Length

R
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Path Planners
Dubins

Reeds-Shepp
Path Length

3.3.3 Route and Path Planning block

The Fields2Benchmark algorithms and objective function of the Route and Path Planning

block are listed in Table 3.2.

Route planning module

Generating a route given a set of swaths involves tasks: 1) sorting the coverage order of

the swaths, and 2) connecting the swaths with turns.

In a convex field, the swaths can be sorted following a predefined pattern (Zhou et al.,

2015). The patterns provided by Fields2Benchmark are: Boustrophedon, in which swaths

are covered sequentially; Snake pattern, in which at each end point one swath is skipped,

covering the field using the odd swaths first, followed by the even swaths in reversed

order; Spiral pattern, which covers blocks of n swaths each time from opposite sides of the

field towards the center. Another possibility is optimizing the coverage by minimizing an

objective function, which is referred to as B-patterns (Bochtis et al., 2013).

The patterns assume that adjacent swaths in the coverage order have opposite coverage

directions, so that the end of one swath and the start of the next swath are at the same

headland border. However, fields with concavities or obstacles do not follow that rule,

requiring optimization of the order of the swaths and their final direction. To achieve this,

Fields2Benchmark uses the or-tools library (Perron, 2011) to implement the B-patterns

method. This method receives the costs of driving between swaths extremes and to the

start and end point, and returns the coverage order of the swaths and their direction. Note

that the B-patterns algorithm relies on automated hyperparameter tuning as implemented

in the or-tools library.
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Minimization of the driving costs requires all possible connections between pairs of swaths

in the field. A graph is used to find the shortest path between the extremes of the swaths.

The headlands tracks are also included in the graph. As the extremes of the inner field

swaths are not placed directly on the headland tracks, the extremes of these swaths are

connected by snapping to the closest point in the headland tracks. The shortest path

to traverse the headlands from one point to the other is found by the Floyd-Warshall

algorithm (Floyd, 1962).

The B-patterns method has been extended to support capacitated robots. A robot capacity

is considered full at the start of the route if it empties along the path, or empty if it fills.

The capacity rate depends on its type; capacity may only concern operations on swaths,

e.g. fertilizing, or continuous operation, e.g. fuel consumption. For each capacity, at least

one reload point is required, which is a point at which the capacity returns to the state it

was at the start of the route. More than one reload point can be set at the same location

so as to serve multiple visits. Reload points are incorporated into the B-patterns method

as optional nodes, and are connected to the nearest points on the headland tracks within

the shortest path graph. Fields2Benchmark supports route planning for a robot with

multiple capacities, and with one or more reload points for each capacity.

The route planning module provides two objective functions: the route length and the path

length. The route length refers to the total distance of the planned route that connects

all swaths within the field. The path length, on the other hand, is the total distance of

the path generated by applying a path planning algorithm to the route. This includes

detailed movements, such as turns and transitions between swaths, as computed by the

path planning module. While the route length provides a higher-level measure, the path

length captures the movement details. Both objective functions are minimized.

Path planning module

Transforming a route into a complete path involves inserting smooth connections between

swaths, which take the holonomic constraints of the robot into account. When the

endpoints of two swaths are on the same headland border, the turn between them can

be computed using either Dubins’ curves (Dubins, 1957) or Reeds-Shepp’s curves (Reeds

and Shepp, 1990). Both algorithms generate the shortest path between two positions

using straight and circular segments with the robot’s minimum turning radius. The key

difference is that Dubins’ curves only allow forward movements, whereas Reeds-Shepp’s

curves also permit reverse movements.

For connections involving transitions between different headland borders, the problem

becomes more complex. Unlike turns between nearby swath endpoints, navigating along

headland tracks requires determining the start and end points of each turn along the

sequence. Here, the center point in each set of three consecutive points along the sequence

is considered a corner. The distance from the start and end points of the turn to the
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corner, dc, is approximated as the minimum turning radius of the robot. Points at a

distance dc from the corner are generated along the intersecting segments to serve as the

start and end points of the turn. Dubins or Reeds-Shepp curves are then used to compute

the shortest path between these points, ensuring that the turns respect the robot’s motion

constraints. If the required turning distance exceeds the length of a segment on either side

of the corner, the corresponding point is omitted. In cases where the turning distance for

two contiguous corners exceeds the shared segment length, the non-shared segments are

extended until they intersect, thereby producing a new corner. This process is iteratively

repeated to ensure feasible turns.

The objective function provided by Fields2Benchmark is the total path length, which

quantifies the overall distance traveled by the robot, including all turning maneuvers.

3.3.4 Benchmark outputs

The results generated by Fields2Benchmark are recorded in a structured database. Since

Fields2Benchmark supports multiple fields simultaneously, the outputs for each field are

saved in separate folders. These folders contain all relevant data, including both numerical

metrics and visual outputs.

The metrics, which are calculated by the previously defined objective functions are logged

in a file named after the experiment. Each entry includes the following information:

• Algorithm identifiers for each module in the workflow.

• Values of the objective functions.

• Processing times for each step in the workflow and for evaluating each objective

function (Tables 3.1 and 3.2).

• Metadata such as the field area, the number of points defining the outer border, and

the decisions applied.

Moreover, images are generated for each module, providing a graphical representation

of the module outputs. These images enable a visual comparison of results alongside

numerical data.

3.3.5 Benchmark implementation

The benchmark is implemented in C++17 with an object-oriented approach. Each

algorithm (see Tables 3.1 and 3.2) is encapsulated as a class that inherits from a module-

specific base class. This base class defines methods such as initialization, execution, and

result logging. This structure ensures consistency across the Field Arrangement and Route

and Path Planning blocks.
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Figure 3.3: Satellite images of the fields used in the use cases 1-3, from left to right respectively.

The first example features a non-convex border with an obstacle, the second shows a triangular

field with a curved border to demonstrate curved swath generation, and the third presents

an extremely challenging case with multiple obstacles and narrow corridors to challenge the

complete workflow, including capacity route planning. Imagery source: were created using

ESRI imagery (ESRI, 2025) available through the OpenStreetMap project (OpenStreetMap

contributors, 2025).

Objective functions follow a similar design. A general base class captures the core concept

of an objective function, and module-specific base classes extend this functionality. Each

module pairs with objective functions to evaluate its performance. For every module,

we maintain a collection of algorithm instances—each stored as a pointer to its base

class—along with its associated objective functions.

This design, implemented from scratch based on the literature, enhances modularity and

facilitates the integration of new methods.

3.4 Results

The results are organized along three use cases: 1) field arrangement; 2) route and

path planning without capacity constraints; 3) route and path planning with capacity

constraints. These use cases allow the analysis of each block separately, showing the

capabilities of the benchmark. Each use case is demonstrated using a different field to

showcase Fields2Benchmark’s ability to handle complex geometries while keeping the

number of figures in this work reasonable. The used fields are depicted in Fig. 3.3. These

examples serve as illustrative cases rather than statistically representative samples of the

350 fields.

To further evaluate the performance of the ACPP algorithms provided with the benchmark,

an experiment was carried out focusing on the processing time required for each method.

These results are shown per module to provide some insights in their relationship with the

inputs. This experiment was done on 350 fields, including the fields of the use cases.
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Table 3.3: Selection of results from the benchmark of the Field Arrangement block of use

case 1. Algorithms and objective functions complete names can be found in Table 3.1 3.

Algorithm MSA (m) RMA NS SL (m) FC

1) ND + CW + LE 202.8 0.867 79 1.76e4 0.867

2) ND + CW + CS 202.8 0.867 79 1.76e4 0.867

3) ND + RW + LE 202.8 0.900 79 1.83e4 0.900

4) ND + RW + (BF+NS) 202.8 0.900 79 1.81e4 0.890

5) ND + RW + (OS+NS) 202.8 0.900 79 1.83e4 0.901

6) BD + CW + (BF+NS) 238.5 0.764 64 1.50e4 0.741

7) TD + CW + (BF+SL) 241.3 0.480 36 8.23e3 0.406

Fields used for the experiments in this chapter were compiled into a publicly-available

dataset2. These fields were extracted and processed from the EuroCrops dataset (Schneider

et al., 2023), manually selecting fields from The Netherlands, Estonia, and Lithuania.

The robot employed was the same for all the experiments, except for the limited capacity in

the use case 3. This robot has a 3m coverage width, a 3m physical width, and a minimum

turning radius of 2m. The following use case decisions apply: 1) the swaths were generated

by the Swath Generator module; 2) the headland width is the minimum required, and 3)

headlands are created around the decomposition lines.

3.4.1 Use case 1: field arrangement

The first use case employed the benchmark to compare the modules of the Field Arrange-

ment block. All algorithms in Table 3.1 were provided to the benchmark, taking into

account that both brute force and Oksanen search were optimized against the number

of swaths and the sum of swath lengths. Accordingly, 36 combinations were tested in

this use case. In Table 3.3, seven of these combinations are shown, which were selected

because they provide the best values for the objective functions for this specific use case,

or because they used an algorithm not used for the better ranked combinations.

Fig. 3.4 portrays the combinations 2, 5, 6 and 7 from the Table 3.3. For this particular

field, curved swaths (Fig. 3.4a) do not provide any benefit in any of the objective functions

used (Table 3.1, row 2). The headlands in Fig. 3.4a and Fig. 3.4b can be visually compared,

as Fig. 3.4b uses the required width algorithm, requiring less headland area. The southern

border of the field benefits the most from the selection of the Required width algorithm in

Fig. 3.4b. Fig. 3.4c and Fig. 3.4d show the effects of the boustrophedon and trapezoidal

2Dataset can be found at: https://doi.org/10.5281/zenodo.14524735
3ND - No decomposition; BD - Boustrophedon decomposition; TD - Trapezoidal decomposition; CW -

Constant width; RW - Required width; LE - Longest edge; CS - Curved swaths; BF - Brute force; OS

- Oksanen search; MSA - Minimum sum altitude; RMA - Remaining mainland area; NS - Number of

swaths; SL - Sum of swath lengths; FC - Field coverage

https://doi.org/10.5281/zenodo.14524735
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Figure 3.4: Headland and swaths generated by a selection of the combinations of algorithms

from Table 3.3. The XY-axis are plotted in meters, using as origin a point in the field border.

The outer field border is shown in blue.

decompositions, respectively. Combination 7 in Table 3.3 (Fig. 3.4d) optimizes the number

of swaths and sum of swath lengths, but it provides the worst Remaining Mainland

Area value. This is because the trapezoidal decomposition generates a greater number of

sub-cells, each requiring a headland around it.

3.4.2 Use case 2: route and path planning without capacity constraints

The second use case plans the route and the path of a robot without capacities to test the

Route and Path Planning block. In this case, the swaths are given as generated using the

constant headland and the curved swath algorithm while skipping the decomposition step.

The field selected for this use case is nearly convex and without obstacles, which allows

using patterns for sorting the swaths. The compared algorithms for the route planning

module are the B-patterns, the boustrophedon pattern, the snake pattern and the spiral

pattern with n = 6 as block size, and for the path planning module, the Dubins’ and
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Table 3.4: Benchmark of the Route and Path Planning block for the use case 2.

Algorithm Route Length (m) Path Length (m)

1) B-Patterns + Dubins 4390.4 4336.2

2) B-Patterns + Reeds-Shepp 4390.4 4211.2

3) Boustrophedon + Dubins 4383.8 4336.7

4) Boustrophedon + Reeds-Shepp 4383.8 4205.4

5) Snake + Dubins 4548.3 4374.5

6) Snake + Reeds-Shepp 4548.3 4327.5

7) Spiral + Dubins 4660.4 4522.2

8) Spiral + Reeds-Shepp 4660.4 4471.0

the Reeds-Shepp’s curves. All the combinations concerning this use case are shown in

Table 3.4. Paths generated by the combinations 1, 4, 5 and 8 are illustrated in Fig. 3.5 to

provide further insights.

The boustrophedon pattern had the shortest route length for this specific field (Table 3.4).

This result makes sense as the parallel swaths are covered sequentially, which minimizes

the distance travelled through the headlands. The B-patterns algorithm should also have

discovered this pattern, but it encountered a local minimum during the optimization,

which prevented finding the optimal solution. The routes of the snake and spiral patterns

were longer than the boustrophedon and B-patterns.

In all the combinations, Reed-Shepp’s curves outperformed Dubins’, but this is because

the turns are partly inside the inner field. Turning in the inner field may damage the crop,

making it unsuitable for many agricultural operations. This finding reveals the relevance

of providing visual results by the benchmark. Simply adapting the algorithm by offsetting

the swaths by a fixed amount would avoid turns inside the inner field.

3.4.3 Use case 3: route and path planning with capacity constraints

The last use case aims to plan a coverage path for a capacitated robot in a complex field.

The swaths were generated using the same algorithms as for the previous use case, and

then connected using the B-patterns algorithm and Dubins’ curves with and without

capacity constraints.

The field used for this use case and the planned coverage paths are shown in Fig. 3.6. For

this experiment, the start and end points of the route and the reload point are located at

different points on the outer border of the field. With capacity constraints (Fig. 3.6b),

the robot has a single capacity, which is only deployed on the swaths and allows covering

3000m. Knowing that the total swath length is around 6302.2m, the robot has to reload

twice to complete the operation.



3.4 Results 41

0

20

40

60

80

100

120

140

160

-150 -100 -50 0

(a) Combination in row 1

0

20

40

60

80

100

120

140

160

-150 -100 -50 0

(b) Combination in row 4

0

20

40

60

80

100

120

140

160

-150 -100 -50 0

(c) Combination in row 5

0

20

40

60

80

100

120

140

160

-150 -100 -50 0

(d) Combination in row 8

Figure 3.5: Paths generated by a selection of the combinations of algorithms from Table 3.4.

The XY-axis are plotted in meters, using as origin a point in the field border. The outer field

border is shown in blue.

The headland paths shown in Fig. 3.6a and Fig. 3.6b approach the field boundary closer

than half the width of the robot. This problem is caused by the smoother used to simplify

the headland paths, which is applied without checking whether the final path is contained

within the field.

The optimized path lengths are 8359m and 8655m for the non-capacitated and capacitated

problem, respectively. The difference between both path lengths is due to the cost of

travelling to the reload points. The coverage order of the swaths is similar in both cases,

differing from each other in the reloading paths when needed, and the coverage order of

a sequence of four swaths. With capacity constraints, optimized route length is 8621m.

Contrary to the previous use case, the route length is shorter than the path length, because

of the complexity of the headland passes. These results demonstrate the benchmark’s

capability of optimizing coverage paths for robots with limited capacity.
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End point of the path

Start point of the path Early covered

Late covered

(a) Route without capacity constraints

Start point of the path  E a r ly covered

Late covered

Robot turns back to reload

Reload point

End point of the path

(b) Route with capacity constraints

Figure 3.6: Coverage paths obtained in use case 3, using B-patterns Dubins’ curves. These

paths are (a) without and (b) with capacity constraints. In (b), the robot has to reload twice

during the operation. The reload point is located at (0,0) and the red circles indicate where

the robot interrupts the swath coverage to reload. In both cases, the start point is represented

by a green triangle, and the end point with an orange star. The path is traversed from green

to black.

3.4.4 Processing time

In this last experiment, the computational performance of the benchmark was analyzed.

For this purpose, 350 fields were tested across all five modules. Running the benchmark

experiment with all fields took 12 hours, on an Intel(R) Xeon(R) E-2276M CPU.
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Figure 3.7: Time analysis experiments. Data bins along the x-axis represent input sizes, while

whiskers indicate the upper and lower quartile of processing times. Panels A - E correspond

to the Decomposition, Headland Generation, Swath Generator, Route Planning, and Path

Planning modules, respectively. Abbreviations in the panels A, B and C correspond to the

notation used in Table 3.1.

The observed relationships between the processing time and the inputs for each module

are shown in Fig. 3.7. Only the plots showing a clear trend are presented here:

• Decomposition module (Fig. 3.7.A): the processing time of the algorithm was linearly

related with the number of points in the outer border of the field. The trapezoidal

decomposition was slower than the boustrophedon decomposition because more sub-

cells were generated. Both decompositions also allowed skipping the Decomposition

module, which is shown as “No decomposition”. Interestingly, the processing time

of this module was not related to the area of the field. The maximum processing

time of this module for a field was 49.5 seconds by the trapezoidal decomposition,

and the mean processing time was of 2.24 seconds.

• Headland Generator module (Fig. 3.7.B): For this analysis, the Decomposition

module was skipped. Similarly to the Decomposition module, the processing time
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of this Headland generator related to the number of points in the outer border of

the field. The constant width headland generator grew linearly, while the required

width algorithm increased faster, owing to the need to consider each segment of the

border independently. The maximum processing time of this module for a field was

0.1 seconds by the required width algorithm, and the mean processing time was 2.5

milliseconds.

• Swath Generator module (Fig. 3.7.C): For this analysis, the decomposition was

skipped, and the headland was generated with constant width. The processing time

of this module increased with the inner field area. The longest edge algorithm was

the fastest method, as the coverage angle was computed using only the field border.

Moreover, Oksanen’s search was faster than brute force owing to fewer evaluations

of the objective function and the number of swaths objective function being faster

than summing swath lengths. The maximum processing time of this module for a

field was 5.77 seconds by the brute force optimizing the sum of swath lengths, and

the mean processing time was 0.20 seconds.

• Route Planning module (Fig. 3.7.D): For this analysis, the swaths were generated

with the brute force optimizer, minimizing the number of swaths from the previous

module. The route planning processing time increased with the number of swaths.

All algorithms, except that of the B-patterns, had similar processing times. This

similarity was because the algorithms spent most time on generating the shortest

path connections between swaths. In contrast, the B-patterns took more time because

it relied on an optimizer. The maximum processing time of this module was 2.28

minutes using the B-patterns and the mean processing time was 4.52 seconds.

• Path Planning module (Fig. 3.7.E): This analysis used all the routes from the previous

test. A trend was found between the number of route points and the processing

time of the Path Planning module. There was a small difference between the

processing times for Dubins and Reeds-Shepp, being Dubins a bit slower. Although

theoretically Dubins should compute faster than Reed–Shepp, the timing includes

the full execution of the module’s algorithms. Since the benchmark times complete

implementations, not just that of the core routines, Dubins’ extra discretization step

makes it slower than Reed–Shepp. The maximum processing time of this module

for a field was 9.64 seconds using Dubins, and the mean processing time was 0.28

seconds.

3.5 Discussion

The Fields2Benchmark provides a structured framework to assess ACPP methods over di-

verse agricultural operations, complementing existing datasets such as those by Nilsson and

Zhou (2020) and Pour Arab and Essert (2024). It offers fields of varying complexity, includ-
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ing obstacles and non-convex shapes, overcoming issues of comparability, generalizability,

and reproducibility identified in prior works (Utamima and Djunaidy, 2022).

Several unusual situations arose in our experiments that merit attention. In the first

use case (Table 3.3, Fig. 3.4), the trapezoidal decomposition led to notably poor results,

creating excessively small mainland areas despite optimizing for fewer swaths and shorter

swath lengths (Fig. 3.4d). This outcome highlights an inherent trade-off in decomposition

strategies previously noted but not explored deeply (Filip et al., 2020; Spekken and

de Bruin, 2013).

Another unexpected result emerged in the second use case (Table 3.4, Fig. 3.5), where

simpler heuristic approaches like boustrophedon surpassed more complex optimization

algorithms under nearly convex conditions. Particularly, the B-patterns algorithm failed

to achieve the expected global optimum. Sorting the swaths to find a coverage route is a

NP-hard problem, which means that the complexity time of the solvers grow exponentially

with its size. Even with a small convex field, finding the global optimum using brute-force

becomes a vastly time-consuming task (Khosravani Moghadam et al., 2020). Thus, when

the B-patterns optimizer stalls in a local minimum, it reflects inherent complexity of

the problem rather than a flaw in the implementation. This aligns with findings from

structured environment studies (Zhou et al., 2015).

In the third use case (Fig. 3.6), capacity constraints were introduced to compare how

resource limitations affect coverage routes. When the robot must reload, the total path

length increases. This behavior correlates with field complexity and resource layout. In

Fields2Benchmark, the capability to handle curved swaths (Figs. 3.4a, 3.5 and 3.6) is

shown for all the steps of the ACPP workflow, including the route planning with capacity

constraints.

Processing time analyses across 350 fields revealed that route planning, especially when opti-

mizing B-patterns, represents the primary computational bottleneck (Fig. 3.7.D). Although

the planning remains fast enough for practical use in autonomous workflows (Slaughter

et al., 2008), exhaustive angle searches and detailed connection computations currently

may limit scalability to larger or more intricate fields.

Nonetheless, challenges and limitations remain. The current benchmark does not handle

all ACPP variants, such as headland coverage or fields with undulating terrain. The

assumption that soil compaction is proportional to path length may simplify reality (Mier

et al., 2023a), and future comparisons could incorporate soil properties to further explore

methods that minimize the impact of machinery on soil. Moreover, the path planning

algorithms presented in this work –Dubins and Reeds-Shepp curves– ignore steering-rate

bounds. This was done for conciseness purposes and to focus on the workflow. Nevertheless,

it is noted that Fields2Cover includes functionality for the continuous versions of the here

demonstrated algorithms.
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The benchmark currently employs a limited set of evaluation metrics, primarily focused

on path length, number of swaths, and processing time. While these metrics provide

valuable insights, they overlook important practical considerations such as execution safety,

machine wear, and fuel consumption, which can have significant operational impacts. The

modular design of Fields2Benchmark supports future expansion, with the potential to

incorporate additional metrics and features, including dynamic re-planning, multi-robot

coordination, and energy consumption models, to further enhance its scope.

The proposed framework omits headland coverage. Although researchers commonly skip

it in ACPP (Höffmann et al., 2024; Oksanen and Visala, 2009), headland coverage has

gained recent interest. Pour Arab et al. (2022) handles headlands by performing turns with

Dubins and Reeds–Shepp curves, while Mier et al. (2025b) plans turns with continuous

curvature paths. Integrating headland coverage into the ACPP benchmark remains future

work.

In terms of computational scalability, the current approaches which employ exhaustive

angle search may not scale efficiently to larger or more complex fields. In these cases,

heuristic methods –such as choosing the direction of the field’s longest edge (Bochtis and

Vougioukas, 2008)– can produce effective solutions even for those fields. Additionally,

Fields2Benchmark functions as an offline planner and does not yet integrate real-time

sensor feedback or adaptive re-planning, limiting its immediate applicability in dynamic

environments where field conditions can change rapidly.

Furthermore, a wider support for other ACPP applications like orchard navigation (Guevara

et al., 2020) or UAV-based sensing (Vélez et al., 2024) by using grid-based methods

could further promote the adoption of the Fields2Benchmark. Although the current

implementation relies on classical algorithms, this choice was intentional to provide a

reliable baseline. The modular design of Fields2Benchmark permits the integration of new

state-of-the-art methods. Novel techniques which are currently being explored are planned

to be incorporated in future releases.

3.6 Conclusions

This work presents a standardized, open-source benchmark for ACPP, integrated with

Fields2Cover to support the research community. The benchmark facilitates the comparison

of algorithms across a wide range of conditions, including support for complex fields,

capacitated robots, and use case decisions, like the use of predefined swaths, the selection

of the coverage angle and different headland width options. By linking inputs, decisions,

algorithms, and outputs, it helps researchers understand not just which methods perform

best, but why.

Our benchmark further provides:
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• A general open-source ACPP benchmark tool: Fields2Benchmark provides a

documented codebase with ready-to-use tools for evaluating ACPP algorithms. It

includes a dataset of 350 real-world fields, including non-convex fields and fields with

obstacles. Results are recorded in database files and images to facilitate visual and

statistical analysis.

• Modular Framework: The benchmark includes 16 algorithms and 8 objective

functions, distributed across five independent modules, i.e., Field Decomposition,

Headland Generation, Swath Generation, Route Planning, and Path Planning. Each

module solves a single step of the ACPP problem, making its algorithms and

objective functions interchangeable. This modularity enables easy integration of new

algorithms and objective functions.

• Support for use case customization: This benchmark accommodates diverse

operational constraints by accepting use case decisions to modify the general ACPP.

It allows predefined or algorithmically generated swaths, adjustable coverage angles,

and multiple options to determine the headland widths.

• Integration with Fields2Cover: To encourage community adoption, the frame-

work of Fields2Benchmark extends the Fields2Cover library by adding support

for non-convex fields and capacitated operations while maintaining the modular

structure of Fields2Cover 4.

By openly releasing the code and datasets, this benchmark is expected to become a core

tool for consistent evaluation of ACPP algorithms, encouraging future contributions by

the research community.

4https://github.com/Fields2Cover/Fields2Cover

https://github.com/Fields2Cover/Fields2Cover
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Abstract

We introduce a methodology for headland coverage planning for autonomous agricultural

robot systems, which is a complex problem often overlooked in agricultural robotics. At the

corners of the headlands, a robot faces the risk to cross the border of a field while turning.

Though potentially dangerous, current papers about corner turns in headlands do not

tackle this issue. Moreover, they produce paths with curvature discontinuities, which are

not feasible by non-holonomic robots. This chapter presents an approach to strictly adhere

to field borders during the headland coverage, and three types of continuous curvature turn

planners for convex and concave corners. The turning planners are evaluated in terms of

path length and uncovered area to assess their effectiveness in headland corner navigation.

Through empirical validation, including extensive tests on a coverage path planning

benchmark as well as real-field experiments with an autonomous robot, the proposed

approach demonstrates its practical applicability and effectiveness. In simulations, the

mean coverage area of the fields went from 94.73%, using a constant offset around the

field, to 97.29% using the proposed approach. Besides providing a solution to the coverage

of headlands in agricultural automation, this chapter also extends the covered area on the

mainland, thus increasing the overall productivity of the field.
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4.1 Introduction

In recent years, the role of agricultural automation in transforming farming methodologies

has been crucial. The advent of autonomous agricultural robot systems (Fig. 4.1)

has marked a significant advancement in agriculture, facilitating the enhancement of

operational efficiency and crop yields (Oliveira et al., 2021). These systems autonomously

and precisely traverse agricultural fields, executing tasks like harvesting (Nørremark et al.,

2022; Rahman et al., 2019) and spraying (Spekken and de Bruin, 2013) as required by the

specific location.

Agricultural fields are generally categorized into two main sections: the mainland, i.e., the

primary area of operations, and the headlands, predominantly used for turning between

the swaths covering the mainland. The optimization of mainland coverage has been the

primary focus of many studies (Höffmann et al., 2023; Höffmann et al., 2024), whereas the

headland areas that are crucial for comprehensive field management, have been much less

studied.

Headlands are typically formed as concentric tracks, their number and dimensions vary-

ing according to the operational requirements and the space needed for tractor maneu-

vers (Paraforos et al., 2018). Research on headland management has mainly concentrated

on optimizing turns between swaths, employing various strategies like route planning to

minimize non-working time (Bochtis and Vougioukas, 2008), selecting headland turning

types to decrease expenses (Spekken et al., 2015), and path planners for turns in the

headland avoiding getting out of the field when the tractor is equipped with mounted

implements (Trendafilov et al., 2023). However, comprehensive approaches for effective

between-track maneuvers on the headlands and particularly maneuvers along corners

remain sparse.

To date, most turning planners rely on circular segments (Jeon et al., 2021; Nilsson

and Zhou, 2020), or non-continuous-curvature curves (Pour Arab et al., 2022), such

as Dubins (Dubins, 1957) or Reeds-Shepp (Reeds and Shepp, 1990) paths, comprising

sequences of circles and straight lines. These paths, however, are unsuitable for non-

holonomic robotic systems owing to sudden directional changes. To mitigate this issue,

Fraichard and Scheuer (2004) suggested an adaptation of Reeds-Shepp’s curve using

clothoids for smoother transitions. While this has been for swath-to-swath turns in

agricultural fields (Sabelhaus et al., 2013), it has not been used for within-headland

navigation. Also Non-Uniform Rational B-Splines (NURBs) have been proposed (Höffmann

et al., 2022) for smoother headland paths, focusing solely on forward movement. However,

these do not effectively cover the corners as the method focuses on path planning around

the headland rather than the coverage of it. For corner coverage in headlands, Jeon et al.

(2021) introduced a back-and-forth maneuver, neglecting physical constrains on speed of

curvature changes.
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While some studies go beyond simply considering maximum curvature and operational

width (e.g., Jeon et al. (2021)), they have so far disregarded the dimensions of both

the tractor and the implement for preventing overstepping field boundaries during turns.

Crossing field boundaries unexpectedly poses safety risks to machinery, external property,

and farmers. To our knowledge and as shown in Table 4.1, our work is the first that

ensures field borders not to be crossed, thanks to a more complete representation of the

robot and implement geometry. Additionally, our approach maximizes field coverage by

utilizing backward movements while maintaining continuous curvature along the paths.

As previously mentioned, non-continuous curvature paths are unfeasible for non-holonomic

vehicles, such as tractors, which may explain why Pour Arab et al. (2022) did not test their

algorithm in a real environment, and Jeon et al. (2021) experiments relied on a human

driver, instead of autonomous robots.

Table 4.1: Comparison between headland coverage path planning solutions. (*) Concave

corners are treated as convex corners, ignoring the field borders. (**) Using human driver.

Approaches Pour Arab

et al.

(2022)

Höffmann

et al.

(2022)

Jeon et al.

(2021)

Our

approach

1. Continuous curvature paths ✗ ✔ ✗ ✔

2. Allow reverse movement ✔ ✗ ✔ ✔

3. Support for concave corners ✗* ✔ ✗ ✔

4. Implement not in center of robot ✗ ✗ ✔ ✔

5. Coverage area ̸= Implement area ✗ ✗ ✗ ✔

6. Multiple cost functions ✗ ✗ ✗ ✔

7. Guarantee field borders are not crossed ✗ ✗ ✗ ✔

8. Tested autonomously on real experiment ✗ ✗ ✗** ✔

This study builds on existing non-curvature-continuous corner path planners (Jeon et al.,

2021), integrating solutions for continuous curvature turns to achieve headland coverage

using real-world robotic implementations. The proposed method employs clothoids for

generating smooth transitions between intersecting lines (Baykal et al., 1997), a technique

commonly used in road alignment, but scarcely in agricultural path planning. We introduce

a method for improving the coverage of the headland area while constraining the robot

and the attached implement to stay within the field borders. To do so, a minimal safety

offset for each border of the field is computed, considering the type of turn and the robot

geometry and three types of continuous curvature turns for headland corners. The selection

method for the corner turn planner employs two objective functions, i.e., path length and

the area uncovered.

This chapter substantially contributes to the field of headland coverage path planning in

agricultural operations, offering the following key advancements:

• Continuous curvature corner path planners: Three different types of corner

turn planners (C-type, B-type, and X-type corner turns) are presented. Those corner
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Figure 4.1: The AgBot 5.115T2 of the company AgXeed B.V (The Netherlands) with a

mounted Amazone Cenius 3000 Super cultivator combined with a seed drill.

turn planners are suitable for both convex and concave corners while generating

paths with continuous curvature.

• Method to constrain the agricultural robot to field borders: A thorough

analysis is presented, quantifying the degree to which agricultural implements exceed

field borders during corner maneuvers. Additionally, a strategy is provided to

mitigate instances of exiting the field borders by offsetting the edges of the border

the distance exceeded by the robotic system.

• Automatic turn selection: The study proposes dual objective functions – area

coverage and travel distance – for selecting among C-type, B-type, and X-type corner

turns. This systematic evaluation of each turn type against these objectives aims to

optimize field coverage and enhance navigation efficiency.

• Simulated and real field experiments: The methods have been tested in

simulation using the Nilsson and Zhou (2020) benchmark, and on a real field with an

autonomous robot. These experiments prove the validity of the proposed methods.

4.2 Methods

The proposed algorithm is represented in the block diagram of Fig. 4.2. The inputs of the

diagram are the robot data (Sec. 4.2.1), the number of headland tracks and the field shape.
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The first step to plan the headland coverage path is to collect the corners (Sec. 4.2.3)

and transform them to a local system (Sec. 4.2.4). For each corner, the path to cover the

corner is computed, depending if the corner is convex (Sec. 4.2.5) or concave (Sec. 4.2.6).

To avoid overpassing the corner edges, the central path is moved an offset inwards the field.

The computation of those offsets is explained on Sec. 4.2.7. This chapter proposes three

planners. Choosing the best planner for each corner requires to define a cost function. In

the case of headland coverage, the objective of the turns is to cover the maximum area

while driving the shortest path. This trade-off is handled using a sum of normalized cost

functions (Sec. 4.2.9). After selecting the planners for the corners, the offsets are used to

move inwards the field borders (Sec. 4.2.8). Finally, the turns are recomputed using the

new offsets, and the headland coverage path is obtained by concatenating the turns of

each corner (Sec. 4.2.8).

Figure 4.2: Block diagram of the proposed algorithm. Inputs are drawn in pink, geometric

transformations in yellow, corner planners in green, cost functions in blue and output in red.

4.2.1 Robot definitions

The geometric model of the robotic system is composed of two rectangular components

representing the robot and the implement fixed to it (see Fig. 4.3). The robotic system

design assumes symmetry in the motion direction, characterized by three widths: robot’s

(WR), implement’s (WI), and overall robotic system’s (WS), the latter being the larger

of the former two. The center of the implement is located a distance cI from the robot’s
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Figure 4.3: Autonomous robot, represented by a blue box, equipped with a mounted

implement, indicated by a green box. The coverage area of the implement is highlighted in

yellow. The centers of both the robot and the implement are marked with symbols ’R’ (for

robot) and ’I’ (for implement), respectively.

center. When the implement is positioned behind the robot, cI is negative. The center of

the robot also serves as the center of rotation of the robotic system.

The robot and implement lengths are denoted as LR and LI , respectively. The positions

of the implement front, If , and back, Ib, relative to the robot center are If = cI + LI

2
and

Ib = cI − LI

2
. The length of the robotic system is thus defined as LS = Sf − Sb, with

Sf = max(LR

2
, If ) and Sb = min(−LR

2
, Ib).

The implement operates in two states: ’on’ (active) and ’off’ (inactive), with state changes

involving a temporal transition. In its active state, the implement covers an area of width

WC and length LC , centered around the implement’s geometrical center. Coverage is

achieved when the full working length, LC , has passed a location. The center of the front

part of the implement’s coverage area is defined as Cf = cI + LC

2
, and the center of the

back part as Cb = cI − LC

2
.

The robot is non-holonomic, meaning that turning is subject to bounded, continuous

curvature (κ) and a bounded rate of curvature change (σ), reflecting operational and

physical constraints. The maximum curvature, according to the state of the implement, is

denoted as κon
max or κoff

max, while the greatest rate of curvature change is denoted as σmax.

When active, the implement requires smaller maximum curvature to prevent machinery

damage (κon
max < κoff

max).

This research involves testing on an AgBot robot equipped with an implement (cultivator

and seed drill). The dimensions and operational capabilities of the robot-implement

combinations are summarized in Table 4.2.
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Table 4.2: Dimensions and operational capabilities of the AgBot robot and the Amazone

implement (cultivator and seed drill).

Robot Width WR 3m

Robot Length LR 4m

Implement Width WI 3.15m

Implement Length LI 3.6m

Coverage Width of Implement WC 3m

Coverage Length of Implement LC 3m

Implement Center Offset CI -3.8m

Maximum Curvature with Implement Off κoff
max 0.5 m−1

Maximum Curvature with Implement On κon
max 0.05 m−1

Maximum Curvature Change Rate σmax 0.1 m−2

4.2.2 Smooth turns

A smooth turn (see Fig. 4.4) is a turn without curvature discontinuities. To transition

between two points with a smooth turn, clothoids are used. Clothoids, also known as

Euler spirals, are defined by linearly changing curvatures along their length, making

smooth transitions from straight to curved paths and vice versa, thus avoiding curvature

discontinuities. A clothoid is described by the following equations (Fraichard and Scheuer,

2004):

κη
t = t κmax (4.1)

θηt =
(t κmax)2

2 ∗ σ
(4.2)

xη
t =

√
π

σ
Cf (

√
(t κmax)2

π ∗ σ
) (4.3)

yηt =

√
π

σ
Sf (

√
(t κmax)2

π ∗ σ
) (4.4)

where Cf and Sf represent the Fresnel integrals, while κη
t , θ

η
t , xη

t , and yηt indicate the

curvature, angle, x-axis position, and y-axis position of the clothoid at a normalized

segment length t ∈ [0, 1], respectively.

A smooth turn starts and exits with transitions between straight lines and circular segments.

However, for a turn with an angular difference α, only when the angle of the clothoid

at maximum curvature (θmax) is less than half of α, a circular segment of α − 2θmax is

incorporated (Fig. 4.4a). Otherwise, the turn does not need a circular segment (Fig. 4.4b),

and both clothoids (Equations 4.1-4.4) have a t equal to:
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t =

√
α ∗ σ
κmax

(a) Smooth turns made by two clothoids and

one circular segment. Between points P2 and

P3, the circular segment has κmax curvature.

(b) Smooth turns made by two clothoids. P2

and P3 are the same, and the curvature on

that point is ≤ κmax, so no circular segment

is used.

Figure 4.4: Smooth turn and buffered turn. Clothoid are indicated in red; circular segments

in blue; magenta denotes buffered clothoids. The buffering distance between both turns is

always D. Both turns start with angle 0 and end the turn with angle α. From P1 to P2 the

curvature increases, and from P3 to P4 the curvature decreases. As the curve is symmetric,

α = β1 + β2

For a left turn, the first clothoid segment uses a positive rate of curvature change, σ = σmax,

while for a right turn the negative value is used, σ = −σmax. The sign of σ for the second

clothoid segment in a sequence is always the opposite of that of the first clothoid.

This study introduces a variation of the standard clothoid by introducing a buffering

distance D. This adjustment maintains the angle but alters the curvature and the x and y

coordinates as described in the following equations:

κζ
t =

t κmax

D tκmax + 1

xζ
t = xη

t + D sin(θηt )

yζt = yηt + D (1− cos(θηt ))

Buffered clothoids ensure parallel paths at a distance D, thus minimizing overlap between

swaths while maintaining continuity in curvature properties. These buffered clothoids can

replace standard clothoids in smooth turns, as calculated using the same method (Fig.

4.4).
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Henceforth, this chapter will refer to smooth turns as standard left/right turns if they use

standard clothoids, while those employing buffered clothoids being designated as buffered

left/right turns.

4.2.3 Covering field headlands

Headlands consist of N concentric headland tracks, where each track is represented by

a vector of points forming edges connected by direct lines, with the first and last points

identical. A headland track cannot contain any self-intersection. The outermost headland

track is the one nearest to the field border. Inner tracks are created by inwardly moving

the outermost track by a distance corresponding to the robot’s coverage width, WC .

Before creating the inner headland tracks, the computation of the outermost one involves

the inward displacement of each edge by a specific offset δj, being j the index of the edge.

It is presupposed that edges are sufficiently large to prevent reduction to zero due to this

displacement. The offset for each edge is calculated based on the maximum offsets at its

corners, incorporating both start and end offsets (δcs and δce). These offsets are subject to

the robotic system parameters and the planners selected for each corner.

Once the offsets for each edge are determined, corner turns are computed. This entails

considering the offsets and planner parameters to ensure the robot’s effective navigation of

each turn, thereby covering the headlands efficiently while keeping the robot and implement

within field borders.

4.2.4 Corner Path Planning

For each corner in the field, a corner turn is independently planned from the rest of the

field. Then, that corner turn depends only on the robot parameters and the geometry of

the corner. A corner in a field is delineated by two successive edges, and characterized by

three points on the xy-plane, C1, C2 and C3. The corner angle, α ∈ (−π, π], represents

the angular deviation between the two edges of the corner. A corner is deemed convex if

α > 0, and concave if α < 0. The turn planning strategy diverges based on the corner’s

nature - convex or concave.

For convenience, the corner points are transformed by xy-shifts and a rotation to a local

coordinates system where the middle point is located at (0, 0), and the first edge of the

corner is parallel to the X-axis. Note that this transformation ensures that distances and

angles between the points of the corner are maintained. The transformed points of the

corner are denoted as C ′
1, C

′
2 and C ′

3. The border of the field near the first edge of the

corner, after the transformation, is located at y′ = −δcs, parallel to the first edge, while

the second edge parallels the second border edge at δce distance. The computed path is

transformed back to the xy-plane coordinate system using the inverse transformation, first

rotating and then inverting the xy-shifts.
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(a) Convex C-type turn (b) Convex B-type turn (c) Convex X-type turn

(d) Concave C-type turn (e) Concave B-type turn (f) Concave X-type turn

Figure 4.5: Robot motions for corner convex turns, α = π/3 (a-c), and concave turns,

α = −π/3 (d-f), using each type of planner for three headland tracks. Green area is the area

covered. Yellow is the area traversed. Dark brown is the headland area, and light brown is the

field area.

4.2.5 Convex Corner Path Planning

Convex C-type and B-type corner turns

The Convex C-type corner turn (Fig. 4.5a) involves a single smooth left turn. Through

the turn, the implement is continuously being used. On one hand, the time required to

deactivate and activate the implement is saved. On the other hand, the turn has to be

smoother when the implement is on, to avoid damaging the machinery.

This method has potential disadvantages, such as the creation of uncovered areas between

swaths. To mitigate this, Jeon et al. (2021) suggested buffering the inner circular segment

for subsequent corner turns. This adjustment shifts the uncovered area outside the already

covered territory.

Following the approach of Jeon et al. (2021), a variation of the Convex C-type corner turn

is proposed: the B-type corner turn (Fig. 4.5b). In this variant, the left smooth turn is

replaced by a buffered one, using buffered clothoids (Fig. 4.4) with D = i ∗WC , where D

represents the buffered distance, and i is the number of headland swaths from the inner

corner to the planned corner.
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Convex X-type Corner

In the Convex X-type Corner strategy (Fig. 4.6), the robot initially advances forward

following the start headland swath a distance XA, to PA (Fig. 4.6a). Then the implement is

turned off and the robot continues moving backward until the start of the forward-moving

left turn. After the backward smooth turn (Fig. 4.6b), the robot go backwards on the end

headland swath a distance XB, to PB, turns on the implement, and ends in with forward

movement to continue covering the end headland swath.

(a) Position of the robot at the start of

the turn. The rear corner of the implement

touches Bs to guarantee complete coverage of

the start swath. At point PA the robot turns

off the implement.

(b) Position of the robot at the end of the turn.

The front corner of the implement touches Be.

At point PB the implement is turned on to

continue covering the end swath.

Figure 4.6: Convex X-type corner turn. The robot is represented in blue, and the implement

in orange. The green area represents the covered part of headland swaths; the brown is the

uncovered headland area; the striped green area is the mainland. α represents the angle

between both swaths, WI is the width of the implement, and δcs and δce are the offset of the

turn at the start and the end swaths.

The region where the headland swaths intersect is subject to overlapping due to the robot

traversing both paths. An area is only considered covered when the entire coverage area

of the implement has passed over it. To reduce this overlap, given that the implement is

mounted at the robot’s rear, the variable XA is selected to cover the start headland swath

excluding its intersection with the end headland swath. In contrast, XB is assigned to

completely cover the end headland swath, including the overlapping region. Therefore,

XA is determined by the rear of the coverage area, while XB is determined by its front

part.
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The values for XA and XB are calculated using the following equations:

XA = Cb −
WC

2
∗
(

1

| sinα|
− 1

| tanα|

)
(4.5)

XB = Cf −
WC

2
∗
(

1

| sinα|
+

1

| tanα|

)
(4.6)

While XA and XB depend on the coverage area of the implement, constrains using the

robot physical dimensions are applied to prevent the robot from leaving the operational

area (Fig. 4.7). Specifically, XA ≤ Xmax
A and XB ≥ Xmin

B , where:

Xmax
A = δce

sinα
−max

(
LR

2
+
∣∣ WR

2 tanα

∣∣ , If +
∣∣ WI

2 tanα

∣∣)
Xmin

B = − δcs

sinα
+ min

(−LR

2
+
∣∣ WR

2 tanα

∣∣ , Ib +
∣∣ WI

2 tanα

∣∣)
If Xmax

A < 0 or Xmin
B > 0, the turn causes the robot to exceed the field’s borders, requiring

an increase in either δcs or δce.

(a) The front of the robot touches the border

of the field (Pcs), which limits the implement

to completely cover the start swath.

(b) The back of the robot touches the bor-

der of the field (Pce), constraining the robot

movement.

Figure 4.7: Cases where the robot is physically constrained by the border of the field. The

robotic system is represented as a blue box for the robot, a black box for the implement, and

an orange box for the coverage area of the implement. α represents the angle between both

swaths, WC is the coverage width of the implement, and δcs and δce are the offset of the turn

at the start and the end swaths.
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4.2.6 Concave Corner Path Planning

Concave C-type and B-type corner turns

The Concave C-type corner turn (Fig. 4.5d and Fig. 4.8) is a sequence of three smooth

turns, that includes a left turn up to an inflection angle γs, a subsequent right turn through

an angle totaling α + γs + γe, and a final left turn by an inflection angle γe.

Figure 4.8: Concave C-type turn made by two left turns (red lines), and one right turn

(purple line). Green area is the area of the headland swaths, brown area is the area between

the border and the headland swath, and the green striped area is the mainland. The border

area has a width of δcs on the starting line, and δce on the ending line. PC is the corner of

turn. The dotted circle around PC , with radius WS/2, represents the collision region of the

corner with the robot. If the path enters into the dotted circle, the robot would collide with

the border of the field.

The inflexion angles, γs and γe, prevent the robot from colliding with the corner of the field.

To determine the inflexion angles that minimize the length of the planned corner turn, an

exhaustive search is employed, exploring angles within the range of [0, π
2
] in increments of

0.0125π radians. During this search, a planned path is only valid if:

• The robot does not cross a line at y = −δcs while executing a left turn of angle γs.

• Similarly, it avoids crossing a line at y = −δce during a left turn of angle γe, assuming

that the robot is going backwards during the turn.
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• The path maintains a minimum distance of half of the robotic system’s width from

the border corner.

As in the convex case, a variation of the Concave C-type corner turn is proposed, called

Concave B-type corner turns (Fig. 4.5e), using buffered turns instead.

Concave X-type corner turn

In a Concave X-type corner turn (Fig. 4.5f and Fig. 4.9), the robot initially advances with

its implement operational. This is followed by the deactivation (lifting) of the implement

at PA and moves towards point Prs (Fig. 4.9a), either forward or in reverse. Subsequently,

the robot performs a reverse left turn, proceeds to point Pre (Fig. 4.9b) in either direction,

reactivates the implement at PB, and resumes forward motion.

(a) Start position of the robot, where the rear

part of the implement touches Bs.

(b) End position of the robot, where the front

part of the implement touches Be.

Figure 4.9: Diagram of Concave X-type corner turn. The turn starts at PA, turning off the

implement. Then the robot continues until Prs, does a smooth turn backwards until Pre, and

follows forward to PB, where the implement is turned on again.

The calculations for XA and XB in this scenario follow the same formulas as in the Convex

X-type corner turn, specifically Equations 4.5 and 4.6. Unlike in the convex scenario, these

variables are not bounded due to the lack of collision risk with the edges of the field.

4.2.7 Computing edge offset

To analyze the robot’s required offsets during corner turns, a simplified path is used instead

of the complete one, to reduce computations. The simplified path starts at (0,0) with zero

angle, involving a left turn (can be buffered turn), and ends at angle τ . While in convex

turns τ = α, in concave turns τ has not the same value as α.
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For each corner of the robotic system along the simplified path, the minimum y-value is

computed. This minimum occurs when the robot’s angle ∈ [0, τ ]. As the y-value function

is convex for the defined range, employing the Bisection Method or any convex optimizer is

effective for finding this minimum. The minimum of all the corners of the robotic system

is used as the minimum offset required by the robot to prevent crossing the borders of the

field.

For the calculation of offsets δcs and δce on convex turns, a forward smooth turn is planned

from angle 0 to α. For X-type corner turns, the maximum curvature of the turn is κoff ,

while for C-type and B-type corner turns use κon as maximum curvature.

Offsets for Concave C-type & B-type corner turns are calculated using the same method

as the usual turn planner, an exhaustive search, with the path length as the cost function.

During each iteration, δcs and δce are computed for the respective combinations of γs and

γe.

Regarding the offsets for the Concave X-type turn, both the start and end offsets are

set to half the width of the robotic system, denoted as WS

2
. This ensures that the robot

maintains a safe distance from field edges, preventing any part of the robot from extending

beyond the field limits during the turning maneuver.

4.2.8 Corner turns on inner headland rings

On Sec. 4.2.4, turns are planned for the outer headland ring, which is closer to the border.

Usually, headlands have more than one headland rings. The computation of corner turns

on inner headland rings are equivalent to the turns on outer headland rings, using modified

start and end offsets, δcs and δce:

δcsi = (i− 1) ∗WC + δcs1

δcej = (j − 1) ∗WC + δce1

Being δcsi and δcej the offsets of the start and end edge on the ith and jth headland ring,

respectively. The values i and j ∈ [1, N ], being 1 the outer ring and N the total number

of headland rings. Whenever the corner is made within the same headland ring, i = j. To

change the headland ring on the corner, i ̸= j.

4.2.9 Cost functions

Following the nomenclature on Sec. 4.2.4, a corner is defined by three points, C1, C2 and

C3. Adapting it to a corner with more than one headland tracks (Fig. 4.10), the points of

a corner in the ith headland track are denoted as C
(i)
1 , C

(i)
2 and C

(i)
3 . Points C

(1)
1 , C

(1)
2 and

C
(1)
3 define the outer corner. The points on the border of the field are B1, B2 and B3. The
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distance from B1 to C
(i)
1 is δcsi , and δcei from B3 to C

(i)
3 . The border of the mainland is

defined by the points M1, M2 and M3. Those points are placed parallel to the corner points,−−−−→
C

(i)
1 C

(i)
2 ∥
−−−−→
M1M2 and

−−−−→
C

(i)
2 C

(i)
3 ∥
−−−−→
M2M3, and at a distance |

−−−−→
C

(i)
j Mj| = WC ∗ (N − i + 0.5),

for i ∈ [1, N ], j ∈ {1, 3}, being N the number of headland swaths.

Figure 4.10: Corner with three headland tracks. Points and distances are labeled following

the nomenclature used in this work. The striped green area represents the mainland and the

headland swaths are on green. Between the outer border and the headland swaths there is

light brown area, which is a not-covered headland area to prevent the robot crossing the field

borders. The blue and orange boxes are the robot and the implement, respectively.

Additionally, to simplify the following explanation some functions and variables are

used:

• Pathρ(C1, C2, C3): returns the path made by the robot to drive from point C1 to

C3, using the planner ρ ∈ c, b, x.

• Acov(Pathρ(C1, C2, C3)): returns the region covered by the robot during the path

Pathρ(C1, C2, C3).

• Area(a) returns the area of a polygon a.

• H: returns the region of the headland around the corner made by C1, C2 and C3.

This area is the polygon: (M1, M2, M3, B3, B2, B1, M1).

The choice of planner for each corner is dictated by the normalized sum of the cost

functions: the path length and the uncovered area.
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The path length cost function sums up the length of the turn path for each head-

land track corner, i.e. fL(ρ) =
∑N

i=1 |Pathρ(C
(i)
1 , C

(i)
2 , C

(i)
3 )|. Conversely, the cost

function for uncovered area calculates the area that remains unattended by the robot

after executing all the turns at the headland ring corners, i.e. fA(ρ) = Area(H −⋃N
i=1Acov(Pathρ(C

(i)
1 , C

(i)
2 , C

(i)
3 ))).

Pathρ(C1, C2, C3) is composed of a forward movement from C1 to C∗
1 , then a turn that

finishes at C∗
3 , and then another forward movement until C3. If C1 is closer to C2 than C∗

1

or C3 is closer to C2 than C∗
3 , then the turn is unfeasible because

−−−→
C1C

∗
1 or

−−−→
C∗

3C3 are not

forward moves. Moreover,
−−−−−−→
C

∗(1)
1 C

∗(i)
1 ⊥

−−−→
B1B2, and

−−−−−−→
C

∗(1)
3 C

∗(i)
3 ⊥

−−−→
B2B3.

Both cost functions depend on the length of the edges of the field, |
−−−→
B1B2| and |

−−−→
B2B3|.

The vectors
−−−−→
C

(i)
1 C

(i)
2 and

−−−−→
C

(i)
2 C

(i)
3 change according to the length of those edges. The

computation of the cost functions can be split between the cost of the forward movements

and the cost of the turn, f(ρ,B1, B2, B3) = fS(B1, B
∗
1) + fT (ρ,B∗

1 , B2, B
∗
3) + fS(B∗

3 , B3),

where f is the cost function, fT is the cost function on the turn, and fS on a straight

forward movement. Specifically, for the path length and the uncovered area:

fS
L (B1, B

∗
1) = N ∗ |

−−−→
B1B

∗
1 |

fS
L (B∗

3 , B3) = N ∗ |
−−−→
B∗

3B3|
fS
A(B1, B

∗
1) = (δcs1 −WC/2) ∗ |

−−−→
B1B

∗
1 |

fS
A(B∗

3 , B3) = (δce1 −WC/2) ∗ |
−−−→
B∗

3B3|

The function fT (ρ,B∗
1 , B2, B

∗
3) does not depend on the position of B∗

1 , B2 and B∗
3 , but

only requires the angle α between the subsequent line segments, simplifying notation to

fT (ρ, α). This function has to be computed for each planner and angle, and its results

can be cached to save computational resources.

To normalize the cost functions for all the angles and for a given pair of edges, the path

length is divided by the length of the corners (
∑N

i=1(|
−−−−→
C

(i)
1 C

(i)
2 | + |

−−−−→
C

(i)
2 C

(i)
3 |)), and the

uncovered area by the area of the headland, Area(H).

FL(ρ,B1, B2, B3) =
fL(ρ,B1, B2, B3)∑N

i=1(|
−−−−→
C

(i)
1 C

(i)
2 |+ |

−−−−→
C

(i)
2 C

(i)
3 |)

FA(ρ,B1, B2, B3) =
fA(ρ,B1, B2, B3)

Area(H)

Note that C
(i)
1 , C

(i)
2 , C

(i)
3 , and H depends on the edge lengths (|

−−−→
B1B2| and |

−−−→
B2B3|) and

the angle of the turn, α. A second normalization is made to scale both objective functions

between [0, 1] before adding them to the combined cost function, G(ρ, α).
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G(ρ, α) =
FA(ρ, α)−min(FA)

max(FA)−min(FA)
+

FL(ρ, α)−min(FL)

max(FL)−min(FL)

The optimal planner for a corner (given angle α and edge lengths) is the one that has the

smallest combined cost, while being feasible to execute.

4.3 Results

4.3.1 Experiments

Several experiments were conducted to test the algorithms developed in this chapter. The

objective was to verify whether the corner turn planners effectively plan the coverage of

the headlands without crossing the field borders.

Field experiments were conducted using the AgBot robot equipped with an Amazone

cultivator and seed drill (Fig. 4.1). The specifications of the robotic system are given in

Table 4.2. Computer code was implemented using C++ and the Fields2Cover library (Mier

et al., 2023b). Matlab R2023a was used for visualization purposes. The laptop used for

experiments was an MSI GF627RE with an Intel(R) Core(TM) i7-7700HQ CPU, running

Ubuntu 22.04.5.

The metrics used for evaluating the algorithms’ performance were:

• Absence of collision between the robotic system and the field borders: Collisions

cause the robot to exit the field area. The absence of collisions proved that the

planners could execute turns without crossing the field borders.

• Path length and uncovered headland area: As previously explained, these metrics

focused on maximizing headland coverage while minimizing operational time.

The tests involved three experiments:

• Simulated planning in single corners: This experiment evaluated each corner planner

presented in this work for individual corners. The tests concerned the influence of the

number of headland tracks, the angle of the corner and the length of the edges on the

election of the best corner planner. The experiment included three sub-experiments.

The first studied the effect of the corner angle on the normalization process of the

cost functions. The second compared the influence of edge lengths and number of

headland tracks on the combined cost function. The third identified the best corner

planner according to the number of headland tracks, the corner angle and the edge

lengths.

• Simulated headland coverage: In this experiment, 54 fields from the Nilsson and Zhou

(2020) benchmark were used to test the headland coverage path planners. Complete
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headland coverage was compared using a constant offset with the best planner for

each corner, a single corner planner with the minimum offsets, and the best planner

with minimum offset. The benefits of the proposed methods for headland coverage

were assessed.

• Real-Life Experimentation: A custom field was laid out for real-life testing, designed

to challenge navigation along convex and concave turns. The field, located near

Oirlo, in the province of Limburg, the Netherlands, was part of a larger test field.

The field borders were marked using tape, and the corners were identified using RTK

GNSS. During the experiment, the cultivator was partly lifted to have it just touch

the ground, leaving a visible trail while preventing equipment damage. The path

was recorded using the robot on-board RTK-GNSS. From this, the total path length

was derived. An Unmanned Aerial Vehicle (UAV), with a camera and a RTK-GNSS,

was used for tracking the worked area. The goal of this experiment was to assess the

methodology’s applicability, verifying that the robot can indeed follow the headland

coverage path without exiting the field.

In the second and third experiments, the mainland was assumed to be covered using

adjacent parallel straight swaths, which was not detailed in this study.

4.3.2 Simulated planning in single corners

In the first experiment, the influence of the corner angle was studied on the normalization

process of each cost function for each corner turn planner. Fixed values of three headland

tracks and 100 meters of length for both edges were used for this test. Those turns were

evaluated on two cost functions: path length and uncovered headland area. Both cost

functions were normalized using the method explained in Section 4.2.9.

Fig. 4.11 shows the costs for turns with corner angle ∈ (−π, π), and the normalization

impact on cost functions, particularly for extreme corner angles. The left side of the

figure illustrates the raw cost values, i.e., path length and uncovered area, as a function of

the corner angle. The right side demonstrates the effect of normalization on these cost

functions. Negative angles denote concave turns, and positive angles indicate convex turns.

Normalization significantly influences cost evaluation, particularly for angles substantially

different from zero. For extreme cases near −π, normalization makes the large values more

easily comparable.

As expected, in Fig. 4.11, X-type turns had the longest path lengths, which was due to

their complex maneuvering requirements. The uncovered area in concave X-type turns was

almost negligible, since the required offset equals half the difference between the coverage

width and the robot width. In this example, the convex B-type turns covered more

headland area than convex C-type turns for α ∈ [0, 0.46π]. Both outperformed convex X-

type turns by covering more area owing to their smaller maximum curvature, which implied
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Figure 4.11: Path length, uncovered area, and normalized cost functions comparison for

corner turns (X-type, C-type, B-type) with 100 m edge lengths and three headland tracks.

a smaller offset required for turning within the field limits. On the other hand, convex

X-type turns covered more area for α ∈ [0.52π, 0.96π). In the range α ∈ (0.46π, 0.52π),

C-type was the planner that left less area uncovered. Beyond this range, all three corner

turns became unfeasible. The optimization results of the concave B-type exhibited noise

due to optimization challenges. This can be particularly observed in the normalized cost

functions of Fig. 4.11 and suggests potential improvements to the optimizer for finding

the inflection angles.

In the second experiment, corner planners were compared using the combined cost function,

across different headland tracks, corner angles, and edge lengths. Moreover, this experiment

showed that for certain values corner turns cannot be planned due to space constrains.

This comparison was made for 1, 2, and 3 headland tracks and for 20, 60, and 200 m of

edge lengths.

Fig. 4.12 displays combined cost function values under these conditions, revealing pref-

erences for different turn types based on the corner angle, edge length, and headland

track count. The intersection points of cost function curves shifted with these parameters,

indicating optimal planner choices in diverse scenarios.

When only one headland track was used, B-type and C-type turns were similar, as clothoids

are not buffered. In the case where edges were 20 m, some angles were unfeasible to make

using the B/C-type turns due to the lack of space required. For convex turns, B-type was

preferred to C-type from angle 0 to a point where both lines intersected. For bigger angles

(after other line intersection between C-type and X-type), X-type was the best planner.
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Figure 4.12: Combined cost function evaluation across various corner angles, planners, edge

lengths, and headland tracks.

This behavior can also be seen in Fig. 4.11. These two inflexion points depend on the

number of headland tracks and the length of the edges. Longer edges or less headland

tracks moved the intersection point between C-type and X-type to bigger angles. For

concave angles, there was only one intersection point between C-type and X-type. This

intersection point was located near the angle 0, being preferred concave C-type only for

small angles.

The third experiment (Fig. 4.13) identified optimal planners based on corner angle and

edge lengths. The results corroborated with those from Fig. 4.11 and Fig. 4.12. X-type

was often the preferred planner for concave corners, except at small negative angles. For

convex corners, B-type was favored for smaller angles, while sharp convex corners suit

X-type turns. Between the regions where B-type and X-type were preferred, C-type turns

had a space in which it was the optimal planner. If the corner was too acute and edge

lengths were short, none of the planners generated feasible paths.

The computing time required by each planner is shown in Fig. 4.14. Each turn was

computed 5 times to obtain the average of time it takes to plan it. Due to C-type and

B-type turns produced similar results, the C-type planner is not represented to simplify

the plot. Moreover, the edges length did not modify the computing times of the planners.

As shown in Fig. 4.14, for the same planner, the number of headland swaths proportionally

increased the computing time, while for the same convexity, the corner angle did not affect

it. Comparing the planners, the concave B-type planner is 105 times slower than the other

turn planners because of its optimization process.
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Figure 4.13: Optimal planner selection based on corner angle and edge length, indicating

preferred turn types

Figure 4.14: Computing time required by the turn planners to compute a turn with swaths

length of 200m, according to the planner used and the number of headland swaths. Y-axis is

in logarithm scale.

4.3.3 Simulated headland coverage

Despite a corner path was planned using the geometric properties of the corner instead

of the whole field boundary, the yield of the field was affected by all the corner paths

planned.

Fig. 4.15 showcases a field from the benchmark (Nilsson and Zhou, 2020), illustrating

the impact of planner choice on each corner. The field on Fig. 4.15 was down-scaled

to 1 ha for visualization purposes. The path demonstrated various turn types, with the

coverage and uncovered areas distinctly marked. Starting at the bottom left corner, going

in clockwise order from in-to-out order, the path did three B-type turns, followed by
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Figure 4.15: Field ELE A from Nilsson and Zhou (2020), scaled to 1 ha, showing the coverage

path of the headlands with marked covered (brown) and uncovered areas (light blue). The

path color is light green at the beginning and gets darker in each new segment.

three X-type turns. This visualization aids in understanding the practical implications of

different planners.

In this experiment the covered area was compared for complete fields, for three different

cases:

• Constant offset. The best corner planner was chosen for each corner, but the border

offsets had a constant value equal to δj = IL. This value was used as a safety measure

to guarantee that the robot did not cross the borders.

• Single corner path planner (C-type, B-type and X-type). Only one corner planner

was used for all the corners. Border offsets were computed to be the minimum

required to adhere to field borders.

• Proposed approach. The best corner planners were used, computing the minimum

border offset required.

This comparison allowed to analyze the benefits of each improvement presented on this

work, according to the percentage of covered area of the field.

Results of this comparison are shown in Table 4.3. The approach with constant offsets

had the worst coverage values, as the constant safety distance left more area uncovered
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Table 4.3: Coverage area comparison on the Nilsson and Zhou (2020) benchmark with three

headland tracks. Values are expressed as a percentage of covered area divided by the total

area of the field.

Const offset C-type B-type X-type Proposed approach

Max 96.62% 98.71% 99.05% 97.98% 99.05%

Mean 94.73% 96.88% 97.01% 95.76% 97.29%

Min 92.89% 93.24% 92.80% 94.35% 95.21%

near the borders. When only one corner planner was used, coverage results depended on

the field geometry, being the B-type corner planner the one with best maximum and mean

coverage percentages. Note that the maximum coverage for the B-type planner was equal

to the maximum coverage for the proposed solution. This result was obtained for a square

field, on which the B-type turn allowed the robot to approach field borders smoothly,

requiring less extra space for the border offsets. Finally, our proposed approach obtained

the best maximum (99.05%), mean (97.29%) and minimum (95.21%) coverage over the

other approaches compared. In comparison, our approach was able to cover 2.56% more

field area than the constant offset approach.

These results confirmed the proposed approach behavior in simulations, maximizing the

total covered area of the agricultural fields while observing their borders.

4.3.4 Real-Life Experimentation

The third experiment was conducted to assess the proposed methodology’s applicability

in real life. The AgBot robot and the Amazone implement (Fig. 4.1) were instructed to

follow a headland coverage path plan. Owing to spatial limitations, the headland path

comprised only a single track. A visual comparison was performed between the reference

planned path and the path executed by the robot.

The experiment was conducted on June 26, 2023 under sunny and windy conditions.

Figure 4.16 illustrates the experiment’s outcomes. Due to the wind, the tape to mark

the borders of the field bent inward along some edges. Except for three segments, the

robot was able to follow the corner turns planned autonomously. Twice, the cultivator got

tangled with the inward bent tape (green path in Fig. 4.16). The third time, the human

operator manually steered the robot out of the field (yellow path in Fig. 4.16); this was

due to a miscommunication about the size of the complete experiment. All autonomous

maneuvers along the corners were successful, though. The robot successfully navigated a

total path of 506.6 m without exiting the field borders, as shown by the buffered path

representation in Fig. 4.16.
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Figure 4.16: Drone image of the field experiment, showing planned and actual robot paths.

The path of the robot was buffered by half of its width to verify that the robot remained inside

the field.

4.4 Conclusions and Future work

In this chapter, we have introduced a headland coverage path planning approach, focusing

on maneuvers along the field borders. First, three types of continuous curvature turn

planners were developed for convex and concave headland corners. These corner planners

employ clothoids for generating smooth transitions between intersecting lines, a technique

notably used in road alignment but rarely applied in agricultural path planning. Then,

a new method was presented to quantify and correct the distance that a robot requires

to perform a corner turn. The method stands out for its potential to ensure the robot’s

confinement within field borders, especially with larger implements, by calculating a

safety offset for each turn. This feature is critical in agricultural operations to prevent

damage to crops and borders. Moreover, a selection mechanism for turn planners was

explored, considering the area uncovered and the traveled distance as objective functions.

Tests conducted with a coverage path planning benchmark and real-field trials using an

autonomous robot demonstrated the efficacy of the proposed approach.

In contrast to previous literature, this work considered the dimensions of the robotic

system to compute where field limits were trespassed, and offered a method to correct it.

Though maximizing field coverage improves yield, some country regulations may promote

or require fixed offsets near certain obstacles, i.e. ditches, limiting the benefits of our

approach.
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The test to measure the planners performance indicates that field size does not modify

the computing time of the headland path, only the number of headland tracks and the

concave C-type and B-type turns. Despite C-type and B-type planners for concave corners

have a slow computing process -requiring seconds to compute-, it is still manageable on

real-time environments. Selecting faster optimizer for these planners is a challenge that

will be tackle in future works.

Field experiments show how the proposed offline path planning approach behaves in real-

world agricultural settings with a commercial robot and implement. Other components

from the robotic system, such as navigation and control, are out of the scope of this study.

Future research could assess the complete robotic system – combining path planning with

the robot control and navigation system. This would give the opportunity to address other

challenges such as wet soil, unexpected obstacles, and imprecise global localization.

The main limitation of the proposed approach applies to corners with short edges, where

the robot does not have enough space to turn safely. Future research involves research

on this topic, planning the headland coverage path for corners with short edges or fields

with smooth edges. Moreover, corner path planners presented in this chapter use a fixed

maximum curvature to plan the corner turns. Smaller maximum curvature produces

smoother turns, reducing the border offset required. An advanced approach would modify

the maximum curvature of sections of the turn dynamically, to further minimize the area

uncovered and the path length.

Following our commitment with the open-source community, the methods implemented

for this chapter will be provided on the next major release of the Fields2Cover library

(version 3.0.0) (Mier et al., 2023b).
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Abstract

Soil compaction caused by heavy agricultural machinery poses a significant challenge to

sustainable farming by degrading soil health, reducing crop productivity, and disrupting

environmental dynamics. Field traffic optimization can help abate compaction, yet con-

ventional algorithms have mostly focused on minimizing route length while overlooking

soil compaction dynamics in their cost function. This study introduces Soil2Cover, an

approach that combines controlled traffic farming principles with the SoilFlex model

to minimize soil compaction by optimizing machinery paths. Soil2Cover prioritizes the

frequency of machinery passes over specific areas, while integrating soil mechanical proper-

ties to quantify compaction impacts. Results from tests on 1000 fields demonstrate that

our approach achieves a reduction in route length of up to 4-6% while reducing the soil

compaction on headlands by up to 30% in both single-crop and intercropping scenarios.

The optimized routes improve crop yields whilst reducing operational costs, lowering fuel

consumption and decreasing the overall environmental footprint of agricultural production.

The implementation code will be released with the third version of Fields2Cover, an

open-source library for the coverage path planning problem in agricultural settings.
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5.1 Introduction

Soil compaction poses a major challenge to agricultural land management by degrading

soil health and reducing crop productivity. Heavy machinery traffic is the main cause of

both topsoil and subsoil compaction, affecting around 68 million hectares globally–half of

which lies in Europe (FAO, 2015). Compaction increases soil density and reduces porosity,

thereby impairing aeration, drainage, and root growth (Shah et al., 2017). It also disrupts

plant growth by altering enzyme activity (Wang et al., 2019). Moderate compaction has

been found to reduce crop yields by 5–40% (Nawaz et al., 2023; Van Orsouw et al., 2022).

Given the multitude of impacts, minimizing soil compaction is crucial for sustainable

farming and climate change mitigation (Machmuller et al., 2015).

Various techniques have been proposed to combat soil compaction. Deep tillage using chisel

plows or subsoilers, and practices that improve soil organic matter can temporarily relieve

compaction but often incur high costs and may further degrade soil structure (Shaheb

et al., 2021). In contrast, preventive strategies that limit compaction before it occurs

offer a more sustainable solution. A direct method to avoid compaction is to control the

movement of heavy machinery. Controlled Traffic Farming (CTF) confines machine traffic

to specific lanes, thereby protecting the bulk of the field from repeated passes (Gasso et al.,

2013). This practice not only protects soil structure but also enhances crop productivity

and sustainability. Successful CTF implementation requires optimized machine paths to

minimize soil disturbance.

Coverage Path Planning (CPP) aims to generate routes that ensure complete field coverage

with minimal overlap or missed areas (Ariza-Sent́ıs et al., 2024). Recent research has

introduced various CPP algorithms to address specific agricultural challenges. For instance,

Juman et al. (2017) improved autonomous navigation in oil palm plantations using D-lite

algorithms for real-time path planning to address labour shortages. Similarly, Jeon et al.

(2024) developed a polygonal path planner for unmanned tillage in paddy fields, achieving a

similar efficiency as manual operation. Bochtis et al. (2010b) explored algorithmic solutions

for in-field navigation to optimize paths for agricultural service units, improving efficiency

and reducing compaction in large-scale machinery operations. Although these approaches

have improved operational efficiency, most do not directly address soil compaction and

overlook the cumulative impact of machinery passes (Chatzisavvas et al., 2023).

A few studies have integrated soil characteristics directly into path planning models.

Bochtis et al. (2012) developed a decision support system (DSS) that uses electrical

conductivity maps to assess soil sensitivity to compaction, optimizing machinery routes to

reduce compaction risks. Similarly, Spekken et al. (2016) employed the RUSLE model to

assess erosion, considering factors such as soil type and topography to optimize machine

paths on steep terrains. However, these models do not explicitly account for the nonlinear

nature of soil responses under repeated mechanical stress.
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In contrast, the SoilFlex model (Keller et al., 2007) addresses this non-linear behaviour

by simulating soil compaction and stress distribution using analytical stress propagation

equations. It incorporates mechanical soil properties to predict displacement and rut

depth, offering a comprehensive view on soil behavior under machinery loads.

In this chapter, we describe Soil2Cover, an advanced coverage path planner that integrates

the SoilFlex model into a novel soil compaction cost function. Our contributions are

threefold:

• We design a cost function that captures the nonlinear behavior of soil compaction

using SoilFlex, modeling the effect of repeated machinery passes.

• We develop a dual-graph route planning strategy that minimizes both route length

and soil compaction, thereby reducing unnecessary re-tracing of field areas.

• We evaluate our approach on 1000 real-world fields under both single-crop and

intercropping scenarios.

This chapter quantifies the benefits of integrating the SoilFlex model by comparing routes

avoiding soil compaction against minimal path length routes, where the latter conform

to the most commonly used criterion in literature (Filip et al., 2020). The proposed

approach supports sustainable farming practices—such as intercropping—and the use of

autonomous agricultural machinery, thereby advancing precision farming and sustainable

soil management practices.

5.2 Materials and Methods

5.2.1 General overview

The flow diagram of Figure 5.1 shows the Soil2Cover method for solving an agricultural

route planning problem while minimizing soil compaction. Required input data includes

soil composition, robot load, crop distribution, field boundaries, and robot width. The

information is processed by the SoilFlex model to develop a cost function that minimizes

soil compaction and helps maintain soil health. A Headland Generator uses the field

boundary and robot width to distinguish between the inner field area and the headland.

Next, the Swath Generator creates swaths, accommodating different crop types in case

of strip cropping or intercropping. Subsequent steps involve computing the weights for

the path and coverage graphs that are essential for route planning. The coverage routing

directly affects the soil compaction component of the cost function. An optimizer repeatedly

assesses the cost function to compute the optimal route by continuously refining until the

most efficient path for field coverage is determined. The loop terminates when subsequent

iterations yield identical routes. Green and yellow blocks in the flowchart distinguish
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Figure 5.1: Flowchart of the Soil2Cover method. Block colours distinguish functionalities

(see Legend).

field area distribution from soil management, emphasizing the method’s integration with

precision agriculture.

5.2.2 Soil compaction under a single wheel

The path of agricultural vehicles directly affects soil disturbance. For a single wheel, a

direct relationship can be established between the area of soil disturbed, and the path

distance travelled over previously-undisturbed soil. Specifically, the disturbed area is

approximately equal to the product of the width of the tyre and the path length (Mier

et al., 2023a).

This relationship extends to soil compaction, stating that for a tyre producing constant

normal stress along a straight path, the bulk density change is proportional to the path

length and the bulk density change at a point within the disturbed area. This approximation

is only valid if soil properties are homogeneous over the disturbed area.

To compute the bulk density change, this work employs the SoilFlex model (Keller et

al., 2007). The SoilFlex model estimates soil stress and compaction by assessing the
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Table 5.1: Relevant measures of the AgBot robot

Specification Value

Total Weight 7800kg

Track Length 2.55m

Track Width 0.61m

Idlers Per Track 2

Idler Radius 0.55m

Rollers Per Track 4

Roller Radius 0.3m

distribution of vertical stress beneath agricultural machinery. Under repetitive passes with

the same load, the soil bulk density asymptotically approaches its saturation level using a

logarithmic expression. The equations of this model are developed in Appendix 1.

For the scope of this research, the soil compaction produced by a single tyre following a

path over homogeneous soil is approximated using the path length and the bulk density

change below the tyre centre at 20 cm depth. This simplifying assumption is consistent

with the SoilFlex model and our subsequent analyses and discussions.

5.2.3 Soil compaction cost function

Tractors are typically characterized by a quad-tyre configuration or caterpillar tracks

arranged in two lanes. Hence, the soil compaction affects twice the area compared to

a single wheel lane. For brevity, this chapter elaborates only on the case of caterpillar

tracks. Particularly, the AgBot (Fig. 5.2) of the AgXeed company is used as an example.

However, the methodology is equally applicable to any other type of wheeled or tracked

vehicle.

Each AgBot track is composed of two idlers and four rollers (Table 5.1). The compaction

made by a track on a traversed point is equal to the difference between the initial bulk

density and the bulk density after idlers and rollers have passed. Note that the order in

which each wheel stress is applied affects the final bulk density. An initial bulk density,

ρ0, is used to compute the bulk density after the first idler passed, ρ1. Next, ρ1 is the

initial bulk density for computing the bulk density after the first roller passed, ρ2. By

the same reasoning, roller 2, 3 and 4 produce ρ3, ρ4 and ρ5, respectively, and the second

idler produces ρ6. Consequently, the variation of bulk density made by the track is

∆ρt = ρ6 − ρ0.

Let Tρ(ρinit) be a function that –given an initial bulk density ρinit– returns the bulk density

after the track passes. The function Bρ(n) is then defined to return the bulk density

change made by a track after passing a point n times:
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Table 5.2: Load distribution values for each wheel in AgBot tracks. Each value is the fraction

of load applied to that wheel.

Load Distribution Type Idler 1 Roller 1 Roller 2 Roller 3 Roller 4 Idler 2

Uniform 0.167 0.167 0.167 0.167 0.167 0.167

Trapezoidal 0.016 0.086 0.139 0.192 0.245 0.319

Triangular 0.050 0.102 0.184 0.265 0.347 0.050

Figure 5.2: Load distribution on tracks according to Uniform, trapezoidal and triangular

distributions

Bρ(n) =

{
Bρ(n− 1) + Tρ(Bρ(n− 1)) , if n ≥ 1

Tρ(ρinit) , otherwise
(5.1)

Even when the load of the robot is evenly distributed across two tracks, the load distri-

bution within each track (Fig. 5.2) may be uneven. Uniform load distribution weights

for each wheel in a track were compared against trapezoidal (Wong et al., 2019) and

triangular (Keller and Arvidsson, 2016) load distributions of weight, using the AgBot data

listed in Table 5.2.

Figure 5.3 shows the comparative analysis of how the three load distributions modify the

bulk density values obtained, starting with a bulk density of Bρ(0) = [1g/cm3]. Each load

distribution is represented in a row. Each line in a plot represents a different total load

applied. In the columns, the plot shows the evaluated values of Bρ(n) and Tρ(Bρ(n)),

respectively. Note that the y-axis in the second-row plots has logarithm scale.

Even though an increase in stress produces greater soil compaction, the ratio between the

results from different loads is constant. Therefore, for a field with a soil with homogeneous

properties and assuming that the robot has constant weight, the weight of the robot has

no impact on the route that minimizes the soil compaction.

However, the load distribution model does produce different soil compaction results. In

contrast to the uniform load distribution, the triangular and trapezoidal load distributions

yield similar results. Since an uniform load distribution is unrealistic, this study adopts a

trapezoidal load distribution.



84 Soil2Cover: CPP minimizing soil compaction for sustainable agriculture

Figure 5.3: SoilFlex-computed bulk density after n passes with the robot. The number of

passes is represented by the x-axis. The columns refer to results using Uniform, Triangular

and Trapezoidal load distributions, respectively.

For each route segment, the soil compaction cost is computed as:

fc(n) = ΩL ∗Bρ(n) (5.2)

where ΩL is the effective travel length of the route segment, and Bρ(n) is the increase

in soil bulk density after n passes, i.e, it models the compaction resulting from repeated

machinery passes. Since the track width is constant, ΩL implicitly quantifies the area

compacted by the machine passes. The total soil compaction cost produced by a complete

route is the sum of the costs of all the route segments.

5.2.4 Headland generation

For several operations, revisiting a previously covered swath would damage the crop.

Therefore, manoeuvres between swaths occur in the headlands. A headland is an area

reserved to make turns from swath to swath or to travel around the field without damaging

the crop in the inner field.

Following common practice (Nilsson and Zhou, 2020), the headland is here generated by

inward buffering the borders of the field (including obstacles) by three times the width of
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the robot. Moreover, a linear ring between the inner and outer borders of each headland

is created. In this work, this line is called a headland ring, and is denoted by H i
p=j , where

i ∈ [1, I] is the index of the headland, with 1 referring to the outer border, and I to the

inner border, and j ∈ [1, Ji] the jth point in the ith headland ring, with Ji being the

number of points in the headland ring i.

5.2.5 Swaths planner

Swaths are used by the robot to cover the field while traversing the inner field during the

operation. Swaths are generated by intersecting parallel straight lines with the area of the

inner field, until the entire field is covered. The distance between consecutive lines equals

the width of a crop strip. The orientation of the swaths can be predetermined, for example

in the case of orchards or already cultivated land, or it can be optimized according to

an objective function (Mier et al., 2023b). The objective function used in Soil2Cover for

planning the swaths in the inner field is the sum of the lengths of the swaths. This is

consistent with the fact that for a single pass the soil compaction is proportional to the

length of the route. Swath angle optimization uses an exhaustive search with a step size

of π/180 (Mier et al., 2023b).

5.2.6 Single crop

In this section, the route planner for a single crop is explained following the pseudocode

presented in Algorithm 1. The initialization steps (#1) in this algorithm refer to the

Sections 5.2.3, 5.2.4 and 5.2.5, respectively.
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Algorithm 1 Soil2Cover Route Optimization

Require: Field geometry, crop distribution, soil properties, robot width, number max of

passes Pmax

1: Initialize:

• Pre-compute the soil compaction cost function Bρ

(
i
)
, for i ∈ [0, Pmax].

• Generate headland rings from the field boundary.

• Generate swaths using the swath planner ⇐ Find Swaths that minimize sum of

swath lengths.

2: Create both graphs:

• Construct the initial Path Graph GP with vertices from headland rings, and

swaths.

• Compute the distance ΩL(e) for all edges e ∈ GP .

• Set traversal count n(e) = 0 for all edges e ∈ GP .

• Construct the initial Coverage Graph GC with vertices from swaths.

3: for each edge e ∈ GP do

• Compute the Euclidean distance ΩL(e).

• Set traversal count n(e) = 0.

4: end for

5: repeat

6: for each edge e ∈ GP do

7: Update weight: w(e) = ΩL(e) ·Bρ

(
n(e)

)
.

8: end for

9: Compute all-pairs shortest paths in GP .

10: Update Coverage Graph GC :

11: for each pair of vertices vi, vj ∈ GC do

12: if vi and vj belong to the same swath then

13: Set w(vi, vj) = 0.

14: else

15: Set w(vi, vj) equal to the least cost from vi to vj in GP .

16: end if

17: end for

18: Solve the Travelling Salesman Problem (TSP) on GC to determine the optimal

swath coverage order.

19: Construct the complete route R by concatenating the least cost paths between

consecutive swath nodes from GP .

20: for each edge e do

21: Update the traversal count: n(e)← (number of passes on e in route R).

22: end for

23: until the stopping criterion is met (i.e., no significant reduction in bulk density between

iterations or Pmax is reached)

24: return Optimized route R
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Figure 5.4: Path Graph example. Nodes and edges of the Path Graph are shown in blue.

Green points with a blue border are part of both the Path Graph and the Coverage Graph.

Swaths are represented by green lines; these are not edges of the Path Graph. The headlands

are shown in light brown; the inner field is green.

Graph definition

A graph, defined by G = (V,E), is a structure that contains a set of nodes, called vertices

”V ”, and the relationship between pairs of vertices, called edges ”E”. Each edge has an

associated weight representing the cost to traverse it. If two vertices are not connected,

the weight between them is +∞

In Soil2Cover, a 2-bidirectional-graphs approach is used to solve the route planning

problem in agriculture. Those graphs are the Path Graph (GP ) and the Coverage Graph

(GC).

Path Graph

The Path Graph, GP = (V P , EP ), (Fig. 5.4) is used to find the shortest path to travel

through the headlands between swaths. Vertices of GP are points, and edges are line

segments. The Path Graph is populated with nodes and edges in three steps.

First, headland rings points (H i
p=j) are added to V P , and the connection between consecu-

tive points (H i
p=j ↔ H i

p=j+1) in the same headland ring are added to EP .

Second, for each swath, and for each point on it (sp), the closest point on the headland

rings is found (s′p). sp and s′p are added to V P and the connection between sp and s′p is

added to EP . This procedure also applies to the start and end points of the route.

Third, redundant edges are removed. Since the soil compaction cost function requires

knowing how many times an edge has been traversed, every pair of overlapping edges

is transformed into non-overlapping segments. Then, for each node vPj ∈ V P and edge

ePik ∈ EP , with i ≠ j ̸= k, where vPj is the jth vertex and ePik is the edge connecting

vertices i and k. For each pair vPj and ePik, if the point corresponding to vPj is located on
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Figure 5.5: Coverage Graph represented over a field. Green lines are connections between

nodes, dotted green lines are edges with 0 cost, connecting nodes on the same swath. Every

pair of nodes on the same headland is connected.

the segment that joins the points vPi and vPk , the edge ePik is removed from EP , and the

edges eij and ejk are added to EP . We consider that vPj is on the segment (vPi , v
P
k ) if the

distance from the point to the segment is less than δtol.

The weight of an edge ePij ∈ EP is the Euclidean distance between vPi and vPj .

Coverage Graph

The Coverage Graph, GC = (V C , EC) (Fig. 5.5), is used to define the space of possible

routes.

Each swath is represented by its two endpoints. A swath is considered visited after both

endpoints are visited, with their order determining the traversal direction. V C contains

both endpoints of every swath and the field entry point. In addition, an important property

is that V C ⊂ V P , meaning the nodes on the Coverage Graph are also represented in the

Path Graph (Bochtis and Vougioukas, 2008).

The weight of the edge eCij ∈ EC , being vCi and vCj points of the same swath is 0. Otherwise,

the weight is the cost of the shortest path from vCi to vCj in the GP . The shortest path

between each pair of vertices in GP is computed using the Floyd-Warshall algorithm (Floyd,

1962). The Floyd-Warshall algorithm efficiently computes the shortest paths between all

pairs of vertices in a weighted graph. If two vertices are not connected in GP , they are

neither connected in GC .

Finding the shortest route

The Coverage Graph problem is equivalent to the Travelling Salesman Problem (TSP). The

TSP is the problem of finding, for a given graph, the shortest Hamiltonian path, which is a

path that visits all the vertices of the graph. This problem is NP-hard, as there is no known

method to find a solution in polynomial time. Fortunately, there are open-source solutions
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like Or-tools (Perron, 2011), which provide optimizers to find near-optimal solutions in

reasonable time.

Once the optimizer returns the coverage order of the swaths, the transition path between

swaths is searched in the GP .

5.2.7 Minimizing soil compaction for single crop

To find a route that minimizes soil compaction, Soil2Cover uses an iterative algorithm.

First, the function Bρ(n), previously defined, returns the difference of bulk density between

the initial bulk density and its value after the nth pass (Fig. 5.3). Next, GP and GC are

created following the same procedure as in Section 5.2.6. The weights of GP are replaced

by the cost of passing through each edge one more time. Equivalently, the cost of the edge

eij equals dij ∗Bρ(nij), being nij the number of passes between vertices i and j, and dij is

the Euclidean distance between vertex i and j. In the first iteration, the costs of GP to

minimize soil compaction are proportional to the costs of GP to minimize distance.

GP is used to compute the weights of GC , then find an initial coverage route, and generate

the complete route. Once the coverage route is generated, it is split between segments that

correspond to edges in EP . For each edge ePij, nij is updated with the number of times

that segment is traversed in the route, regardless of its direction. The latter numbers are

used to update the weights of GP . GP is again used to generate the new weights of GC

and to produce a new route.

This repeats until the obtained route remains unchanged for two consecutive cycles. The

method returns the route that has minimized the total soil compaction.

5.2.8 Minimizing soil compaction with strip cropping

In the case where multiple row crops are planted in alternating strips, M refers to the

number of crops in the field. Each crop has its own swaths Si, where 1 ≤ i ≤M , covered

either by different robots or by the same robot at different times. For this case, Soil2Cover

has a common Path Graph, GP , for all crops, while creating a unique Coverage Graph,

GC
i , for each crop (1 ≤ i ≤ M). Note that generating GP with points from all swaths

(regardless of crop) ensures V C
i ⊂ V P for all crops i. The algorithm followed is the same as

for a single crop, with the difference being that the route for all crops is generated before

updating the weights of GP . Consequently, nij is the number of times an edge eij in EP

has been traversed, regardless of which robot visited the edge. The rest of the steps and

the stopping condition remain similar.

5.2.9 Experiments

To select a representative set of fields, we retrieved boundary polygons from the https:

//github.com/Courseplay/CourseGenerator repository in .xml format. Each file in

https://github.com/Courseplay/CourseGenerator
https://github.com/Courseplay/CourseGenerator
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this repository contains multiple fields. We retained only fields with an area between 1

and 20 ha and exported them to .wkt (well-known text) format, yielding 1567 fields. We

retained the first 1000 fields to limit computation time while still capturing a broad range

of shapes and sizes for our experiments.

Both single crop with 3m row width (AgBot width) and strip cropping with two crops

in 6m width as in Campanelli et al. (2023) were considered. In both cases, the robot

operation concerned one, two and three passes over the crop cycle. As soil compaction

reduces by reusing previous paths, robots operations for the same crop were constrained

to follow the same route. To include this case in Soil2Cover, fc(nij) is replaced by∑2
k=1 fc(2 ∗ nij + k) or

∑3
k=1 fc(3 ∗ nij + k), for simulating repeating the operation two

and three times respectively.

All analyses and graphics were produced using C++, GDAL (GDAL/OGR contributors,

2022) and Or-tools (Perron, 2011), and with Matlab 2023b. The laptop used for experiments

was an MSI GF627RE with an Intel(R) Core(TM) i7-7700HQ CPU, running Ubuntu

22.04.5.

Experiments were done using the Fields2Cover library, a software tool specifically designed

to optimize coverage path planning (CPP) for agricultural machinery. It allows considering

various factors like soil properties, vehicle characteristics, and environmental constraints

to implement path planning algorithms (Mier et al., 2023b).

5.3 Results

5.3.1 Single crop

Figure 5.6 shows the ratios of soil compaction and route length between different routes.

Let RA be the baseline route obtained by optimizing solely for route length, with soil

compaction SA and route length LA. For any alternative route RB, with soil compaction

SB and route length LB, its ratio is defined as (SB/SA, LB/LA). Thus, a ratio of (1, 1)

implies that RB has identical soil compaction and route length to the baseline route RA. A

value below 1 for either component indicates an improvement (i.e., lower soil compaction

or shorter route) relative to the baseline.

After optimizing the route for 1000 fields with a single pass, 66 of them produced different

solutions depending on the cost function. Unexpectedly, for single crops, optimizing for

soil compaction produced better results in both soil compaction and route length compared

to route length optimization. This likely occurred because modifying the weights in GC

helped the optimizer escape local minima. The average soil compaction improvement for

the 66 fields with one, two, and three passes were [0.964, 0.971, 0.978], while route length

improvement were [0.994, 0.995, 0.996].
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Figure 5.6: Ratios of soil compaction and route length, between routes obtained optimizing

soil compaction and routes optimizing route length. Routes account for 1, 2 and 3 passes, for

a single crop at 3m width.

Figure 5.7 shows the obtained route for a field optimized for route length and for soil

compaction. On this field, when the route minimizes soil compaction, the bottom right

headlands are not travelled, to reduce the damage to the soil in that area.

5.3.2 Strip cropping of two crops in 6m wide strips

Figure 5.8 shows the route improvement ratios for a strip cropping scenario with two crops

grown in alternating 6m wide strips. For the one-pass case, 66 out of the 1000 fields yielded

a different route than the baseline (i.e., the route obtained when minimizing path length),

while for the three-pass case, 130 fields were assigned a different route. For the former

66 fields, we computed the average ratios of the soil compaction and route length values

(with the ratios defined as the metric for the soil compaction optimized route divided

by that for the baseline route, (SB/SA, LB/LA)). The average soil compaction ratios for

one, two, and three passes were [0.964, 0.966, 0.973], respectively, while the corresponding

average route length ratios were [0.991, 0.992, 0.995]. Recall that ratios below 1 indicate

improvements compared to the baseline.

Figure 5.9 shows the routes through three fields, for the two considered cost functions.

The first case concerns a small rectangular field; To minimize the soil compaction, the

optimizer produces a path without lateral headland passes. The second field contains two

large obstacles. In this case, the swath coverage order changes significantly: the first robot

begins in the northwest corner to minimize route length, but in the southeast corner to

minimize soil compaction. In the last field, Soil2Cover employs the same strategy as in

the first, avoiding the right edge to prevent additional soil compaction.
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Figure 5.7: Optimized routes for the same field according to two objectives. Left: minimal

length route. Right: minimal soil compaction route. The coordinates in both sub-figures are

in meters relative to the start and end point of the route.

5.4 Discussion

We have demonstrated that routing autonomous tractors along fixed paths can reduce

soil compaction risk, thereby preserving soil health and boosting crop yields (Fig. 5.6).

Our approach reduces deterioration of soil structure and improves efficiency by reducing

operational route length. Predictable traffic routes integrate seamlessly with precision

farming systems, enhancing input efficiency and supporting sustainable management.

Although farmers recognize the need for Controlled Traffic Farming (CTF) practices

that limit autonomous tractors circulation to permanent tracks (McPhee et al., 2020),

operational challenges often hinder their adoption (Tamirat et al., 2022). In this context,

an autonomous route planning algorithm that adheres to CTF principles represents a key

means for preserving soil health.

5.4.1 Novelty of the work

The integrated SoilFlex model (Keller et al., 2007) treats soil compaction as a complex,

nonlinear process. By accounting for soil properties, equipment weight, and pass frequency,

Soil2Cover offers a meticulous representation of field conditions and a deeper understanding

of machinery’s impact on soil. Unlike previous methods (Bochtis et al., 2012; Plessen,

2018; Spekken et al., 2016), it minimizes soil damage by evaluating changes in bulk

density from vehicle passes—focusing on the disproportionate impact of initial passes

on surface layers (Patel and Mani, 2011; Pulido-Moncada et al., 2019). Simulations on

1000 fields using a single 3-meter machine, Soil2Cover improved route efficiency by up to

4–6% and reduced compaction by up to 30% (Fig. 5.6). Even without explicit compaction

optimization, the algorithm consistently found efficient routes that reduce route length

and environmental impact.
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Figure 5.8: Ratios of soil compaction and route length, between routes obtained optimizing

soil compaction and routes optimizing route length. Routes account for 1, 2 and 3 passes, for

two crops at 6m width.

The algorithm also handles complex field shapes and obstacles, ensuring efficient land

coverage while protecting soil quality–a critical requirement for sustainable agriculture.

Its two-graph method, using the Floyd-Warshall algorithm, outperforms distance-only

approaches by directly minimizing soil damage. Moreover, by integrating the SoilFlex

model, Soil2Cover treats soil as a heterogeneous continuous system and offers route planners

a new strategy to mitigate soil compaction and preserve soil structure.

5.4.2 Intercropping and strip cropping

Soil2Cover also supports routes for intercropping. It customizes routes by accounting for

each crop’s machinery and compaction sensitivity. While intercropping (or mixed cropping)

and strip cropping are known to boost productivity and preserve soil fertility (Brooker

et al., 2015; Hernández-Ochoa et al., 2022), these practices demand tailored machinery to

meet each crop’s unique requirements. For example, perennial plants, such as fruit trees,

require distinct management compared to annual crops (Hauggaard-Nielsen et al., 2012;

Ma et al., 2007; Martin-Gorriz et al., 2022; Wei et al., 2024).

In our intercropping simulation—planting crops in 6m strips (Campanelli et al., 2023)—soil

compaction improvements matched those in single-machine trials, with path lengths varying

by up to 6% and compaction dropping by up to 30% (Fig. 5.6). These results further
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Figure 5.9: Optimized routes on three fields (rows) according to two cost functions (route

length, left; soil compaction, right). In these scenarios, two robots operate in the same field,

doing strip cropping. Swaths are assigned alternately: odd-numbered swaths to one robot,

even-numbered swaths to the other. Both robots start at the origin of the local coordinate

system. Axes are in meters.

validate Soil2Cover’s capacity to enhance machinery use while reducing operational time,

fuel consumption, and environmental impact.
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Additionally, the technique can integrate with low-pressure tyres, advanced tracks, and

gantry conveyors to further reduce compaction (Mileusnić et al., 2022). Adjusting SoilFlex

inputs enables more optimized paths. The algorithm’s flexibility also permits integration

with multi-robot soil mapping (Roberts-Elliott et al., 2022) and real-time wheel track

identification (Zhang, 2024), enabling dynamic path adaptation based on fresh field

data. Future versions may consider diverse agricultural vehicles, as some operations

permit tyres with lower inflation pressures to expand the tyre-soil contact area and cut

compaction (Shaheb et al., 2021). In this work, the approach was tested on straight swaths.

The method is expected to work on curved swaths as well, and this will be tested in future

research.

5.5 Conclusions

Soil2Cover provides a key tool for sustainable soil management. By integrating the SoilFlex

model and targeting machinery pass frequency rather than merely tyre load, it offers

a precise strategy to reduce soil compaction–a major threat to productivity and soil

health.

Simulations on 1000 fields showed that Soil2Cover improved route efficiency by 4–6% in

6–13% of the fields and reduced compaction by up to 30% in both single-machine and

intercropping scenarios. Its robust performance in complex fields demonstrates its capacity

to protect soil while guiding robotic tractors with high precision. Notably, its cost function

captures the nonlinear dynamics of soil compaction and the outsized impact of initial

passes, which is vital for planning routes that prioritize soil health over simple distance

minimization. Moreover, by customizing routes for intercropping, Soil2Cover optimizes

yield while safeguarding soil health.

Future work will test Soil2Cover across diverse field conditions and soil types to confirm its

robustness. A next step would be to relax the assumption of homogeneous soil properties

across the entire field. This advancement can be combined with real-time in-field sensing

of soil and weather conditions to further optimize operational timing, reduce compaction,

cut costs, and increase yields.



Appendix

5.A SoilFlex equations

The type of tractor wheel affects the pressure applied to the ground. In the case of wheels,

SoilFlex (Keller et al., 2007) describes the vertical stress as:

σ(y) =CA ∗
(
w(x)

2
− y

)
∗ e−γ∗((w(x)/2)−y) , if |y| ≤ w(x)

2
(5.3)

σ(x) =σx=0,y ∗ (1−
(

x

l(y)/2

)α

) , if |x| ≤ l(y)

2
(5.4)

while the vertical stress for caterpillar tracks are defined by Keller and Arvidsson (2016)

as:

σ(y) =σmax ∗
(

1 +
|y| −W/2

W/2
∗ (1− a)

)
/a , if |y| ≤ W

2
(5.5)

σ(x) =σx=0,y ∗ cos

(
2πx

L

)
/2 , if |x| ≤ L

2
(5.6)

where CA, γ, α and a are tyre parameters (Keller and Arvidsson, 2016; Keller et al., 2007),

σx=0,y is the stress under the centre of the tyre, l(y) and L are the length of the tyre, and

w(x) and W are the width of the tyre.

Vertical stress is distributed over the contact area, Acontact, discretized into i elements

with Ai area and σi normal stress (Söhne, 1953). The radial normal stress, σr,i at depth z,

assuming negligible horizontal stress, is

σr,i =
ξσiAi

2πr2i
cosξ−2 θi (5.7)

where ξ is concentration factor, ri is the distance from the centre of Ai to the desired

point, and θi is the angle between the normal load vector and the vector from the centre

of Ai to the desired point (Keller et al., 2007).
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Using the principal stresses and the first stress invariant (Koolen and Kuipers, 1983), the

mean normal stress, p, is:

p =
1

3

n∑
i=0

σr,i (5.8)

SoilFlex employs O’Sullivan and Robertson (1996) to model rebound and recompression

effects of the soil, based on the virgin compression line (VCL), recompression line (RCL),

and steeper recompression line (RCL’).

V CL : υ = N − λn ln p (5.9)

RCL : υ = υinit − κ ln p (5.10)

RCL′ : υ = υY L −
√

λnκ ln p (5.11)

where υ is the specific volume, υinit is the initial specific volume and υY L is the volume at

the intersection of the yield line and the recompression line. N is the specific volume at

p = 1kPa, λn is the compression index and κ is the recompression index (Keller et al.,

2007). Finally, the Bulk Density, ρ, is computed as

ρ =
ρs
υ

(5.12)

where ρs is the density of solids.

In SoilFlex, parameters such as the compression index λn, the recompression index κ, the

initial specific volume υinit, and the load distribution factors (CA, γ, α, etc.) are used to

compute bulk density changes. Greater values for compression or recompression indices

increase predicted soil deformation under load. Conversely, parameter sets indicating lower

soil susceptibility (e.g., smaller λn) yield smaller incremental bulk density changes, making

certain routes more favorable. Thus, adjusting these model parameters to represent the

local soil type and machinery characteristics directly influences route selection, allowing

Soil2Cover to prioritize or avoid certain zones based on their predicted compaction

risk.





Chapter 6

Synthesis
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6.1 Revisiting the Research Objectives

This thesis contributes to the development of the coverage path planning problems for

agricultural vehicles. It addresses four research objectives. The first objective unifies the

ACPP problem in a modular and generic framework (Chapters 2 and 3). The second

objective raises the scientific transparency of ACPP studies by releasing an open-source

library (Chapter 2) and an open-source benchmark (Chapter 3). The third research

objective (Chapter 4) increases field coverage by improving headland coverage, planning a

continuous-curvature path that keeps the robot inside the field area. Lastly, the fourth

research objective (Chapter 5) aims to reduce soil compaction caused by the robot’s

coverage route.

1. Integrating coverage path planning algorithms into a unified framework

2. Enhancing the scientific transparency of coverage path planning research

3. Improving headland coverage and headland turning feasibility

4. Reducing soil compaction through coverage path planning optimization

6.2 Main findings

6.2.1 Integrating coverage path planning algorithms into a unified frame-

work

The Agriculture Coverage Path Planning (ACPP) problem has been addressed using

many algorithms, yet historically the solutions have remained fragmented, sparse, and

difficult to integrate or compare (Utamima and Djunaidy, 2022). Cellular decomposition,

boustrophedon patterns, genetic optimizations, and other methods answer the same general

task, but relying on different inputs, outputs and objective functions (Höffmann et al.,

2024). Researchers propose algorithms that solve specific problem, which split the research

line into sub-problems. For instance, Hameed et al. (2013b) orient the swaths in the inner

field, Spekken and de Bruin (2013) optimize the headland area according to the orientation

of the swaths, and Bochtis et al. (2015) sort the generated swaths to find the shortest

route. Due to the sheer number of sub-problems, direct comparison between methods is

hard, and forces researchers to re-implement other algorithms beyond the original scope of

their work.

Chapter 2 breaks this pattern with Fields2Cover, an open-source library that splits

CPP into four modules: headland generation, swath generation, route planning, and

path planning. In Chapter 3, Fields2Cover is expanded with a new module, called field

decomposition. Each module aims to solve one of the sub-problems of ACPP, abstracting

the researcher from the complete problem and allowing them to make fair comparison
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between their methods and others. Every module exposes a common interface, so a new

algorithm can be plugged in without touching the rest. Fields2Cover also provides a general

workflow that executes the modules in order, and manages the inputs and outputs data.

Currently, the unified framework used by Fields2Cover supports: convex and non-convex

fields, straight and curved swaths, and robots with implements and limited capacity.

Chapters 4 and 5 were developed using the Fields2Cover framework from Chapter 2.

Additionally, Chapter 3 releases a benchmarking tool that compares algorithms in the

framework, integrating many state-of-the-art methods into a public solution. By giving

one baseline for data, metrics, and workflow, the framework now turns scattered ideas into

parts of a single, testable solution. Therefore, future work can now target scientific gaps

rather than rebuild algorithms that were already developed.

6.2.2 Enhancing the scientific transparency of coverage path planning re-

search

Coverage path planning research gains strength when readers can inspect every step

of the experimental pipeline. In science, many studies do not release the full source

code or the raw data that support their results (Elliott, 2022). This limited disclosure

prevents an independent researcher from repeating the experiments, checking intermediate

computations, or adapting the methods to new conditions (Finger et al., 2025). A

transparent workflow should facilitate replication by other researchers. Reproducibility

builds trust and speeds progress because later studies can start from a verified baseline

rather than rebuild earlier tools from scratch (Ambrósio et al., 2021).

Even though this thesis promotes transparency as one of its pillars, some practical hurdles

limits that complete openness. Chapters 2 and 4 use the public dataset made by Nilsson

and Zhou (2020). However, a researcher must request this dataset by email, which limits

its accessibility and transparency. Chapter 5 faced a different difficulty when it sourced

fields from the Courseplay repository. The files required format conversion before use, and

the license for the transformed data did not allow republication, so external teams cannot

inspect exactly the same inputs. Such cases show that even well-intended releases can leave

gaps that block strict replication. Different datasets, file formats, and hidden preprocessing

steps produce results that cannot be compared with confidence across publications.

Chapter 2 aims to improve the transparency in ACPP with the Fields2Cover library, which

contains every algorithm described in this thesis. Each routine includes full documentation

and unit tests, which guide other researchers through the code paths and clarify imple-

mentation details that often remain implicit. The public repository invites independent

review, bug reporting, and direct extensions.
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Chapter 3 extends my commitment to openness with a fully open-access benchmark of

fields that load directly in Fields2Cover, and a benchmarking tool to compare ACPP

algorithms under the same metrics.

Public input data, and well-maintained open-source code improve transparency and trust

on the published results. This clear and unified workflow sets a higher bar for evidence in

coverage path planning and pushes the community to adopt those transparency standards

on their own.

6.2.3 Improving headland coverage and headland turning feasibility

Most coverage path planners focus on the inner field because that zone produces the

highest yield (Höffmann et al., 2024). Usually, the headland is created by inward moving

the field border by a number of track widths multiplied by the coverage width of the

robot (Paraforos et al., 2018). The repeated offsets build a band of parallel tracks that

are quick to compute but have sharp corners (Jeon et al., 2021). Such corners exceed the

maximum curvature and their rate of change, so a non-holonomic robot cannot follow

them (Höffmann et al., 2022). To generate a feasible headland coverage path, the planner

should smooths the corners of the tracks, and respect the curvature and curvature rate

constraints.

Chapter 4 introduces three headland corner path planners that are able to plan smooth

paths for convex and concave corners, taking into account the curvature and curvature

rate constraints, and the robot and implement dimensions. A selection criteria is proposed

to pick the best headland corner path planner for each corner based on the area covered

and the path length.

Moreover, when a robot with a long implement fixed to its rear follows a corner on a

headland track, its tail swings far beyond the wheels (Ha et al., 2018). If the outermost

headland track is just half a coverage width away from the field borders, the robot following

the turn can push the tool beyond the border. This could cause collisions with posts, fences

or ditches. To avoid this risk, farmers often leave a constant offset between the outermost

headland track and the border to avoid such strikes. However, computing this safety offset

is not easy. Leaving too much clearance between the first headland track and the border

reduces the yield, whilst leaving too little leads to collisions with obstacles.

Chapter 4 contributes with a method for finding the minimal constant offset needed to

prevent the robot implement to swing outside the field. Using a constant offset tuned to

the smallest safe value, the mean covered area did not exceed 94.73%. To increase the

covered area, another approach is proposed. In the latter, the offset is optimized separately

for each field edge. Thanks to this approach, the mean of the fields area covered improved

to 97.29%, which marks a 2.56% gain of over the constant–offset baseline.
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This chapter demonstrates the value of optimizing the area reserved for the headlands. By

shaping them according to the machinery dimensions and constraints, the inner field area

can be increased, leading to higher yields.

6.2.4 Reducing soil compaction through coverage path planning optimiza-

tion

Most soil compaction comes from repeated passes by heavy farm machines (Calleja-Huerta

et al., 2023). The compacted layer blocks root growth, hinders water infiltration, lowers

yields, and increases runoff and gas emissions (Shah et al., 2017). Despite these well-known

impacts on soil health and productivity, classical coverage path planners often ignore

this harm. They simply assume that soil compaction can be addressed by an objective

function proportional to the path length. This assumption was also adopted in Chapters 2

and 3.

However, the shortest path is not necessarily the least damaging path. Soil responds in

a nonlinear way to repeated loads (O’Sullivan and Robertson, 1996). Its reaction also

shifts with composition and with the bulk density caused by earlier passes (Larson et al.,

1980). To reduce the soil compaction owing to coverage operations, the route planner has

to integrate a soil model that predicts the compaction.

Chapter 5 introduces Soil2Cover, a route planner that integrates the SoilFlex model (Keller

et al., 2007). SoilFlex gives a physically-based estimate of how each pass increases the soil

bulk density. Soil2Cover converts that estimate into a compaction cost for every headland

segment. It starts with the shortest coverage route, for which the soil compaction objective

function is computed over the entire route. Next, it repeats the search to find a new cost.

The loop stops when the soil compaction objective functions of two consecutive iterations

are very similar.

This iterative procedure guarantees a good result. If the compaction based search cannot

reduce the soil damage, the algorithm still returns the length-optimal path. Experiments

in Chapter 5 show that Soil2Cover can reduce the overall soil compaction caused during an

operation. The benefit appears in both monoculture and intercropping layouts. Consistent

with controlled traffic farming, the main finding of Chapter 5 is to minimize the disturbed

soil area because the first pass compacts the soil the most.

6.3 Reflections and outlook

6.3.1 Open-source as a dissemination-driven strategy

This thesis research was done in collaboration with AgXeed (AgXeed website n.d.). The

company needed robust coverage path planning for autonomous robots. By agreement,

every paper, dataset, and line of code had to appear under open access and an open source



104 Synthesis

license. As a researcher, my aim was not only to release the material without cost, but

also to persuade others to adopt it. To reconcile both aims, a one-year embargo on the

code was initially imposed before its public release.

I chose GitHub as the main platform to promote transparency and collaboration (Dabbish

et al., 2012). Popularity on this platform is indicated by stars that developers grant to

projects they value (Borges and Valente, 2018). Figure 6.3.1 presents the evolution of the

Fields2Cover star count.

To help newcomers, I prepared a detailed README1 and a documentation site2 that describe

the purpose of the library and its installation, use, and citation. Clear guidance lowers the

access barrier and raises visibility (Wang et al., 2023). I then announced the release on

LinkedIn (Mier, 2022b), Reddit (Mier, 2022c), and developer blogs (Mier, 2022d). In one

Reddit thread I invited the community to “roast my project” (Mier, 2022a), expecting

that critical debate about best practices would spark lively feedback, a pattern noted

by Chen et al. (2020). The ensuing discussion served as an informal peer review, guided

improvements in the first release, and reinforced confidence in the code while boosting its

profile.

The work on the code and the clear guides soon started attracting others to use the

Fields2Cover library. Under direct supervision, six master students completed their thesis

using Fields2Cover as a baseline. One of those student thesis led to the paper Mier et al.

(2025b) about headland coverage path planning (Chapter 4). External teams also followed

the online guides. Burro.ai integrated Fields2Cover into its mowing robot, and its Chief

Technology Officer reported a significant reduction in development time, stating “Working

with Fields2Cover was great! It is easy to use and very performant, the gain of time for

our team was very considerable as we developed Cortador!” (Pita, 2024). Students at

Osnabrück University of Applied Sciences likewise employed the library to build a stone

collecting robot (Feldmann et al., 2024).

Interest soon extended beyond ground robots. Teams equipped unmanned aerial vehicles

with Fields2Cover for tasks that range from inspecting farmland (Vélez et al., 2024)

to searching from small objects in crop fields (Essen et al., 2025) to locating missing

vessels (Alejo, 2024). Unmanned surface vehicles have used the library for bathymetric

surveys (Zhao et al., 2024), and even tourists benefit when scenic spot tours are optimised

through Fields2Cover (Song, 2024). All these examples show how Fields2Cover can inspire

ideas far beyond its original scope.

Researchers often choose Fields2Cover as a benchmark for novel planners (Cai et al., 2024;

Song, 2024). Few, however, contribute their implementations to the main repository. Two

reasons stand out. The core is written in C++ with a Python interface, so many authors

1https://github.com/Fields2Cover/Fields2Cover/blob/main/README.rst
2https://fields2cover.github.io/

https://github.com/Fields2Cover/Fields2Cover/blob/main/README.rst
https://fields2cover.github.io/
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Figure 6.3.1: Star count of the Fields2Cover project over time. Graph generated with

Star-history.com3

prototype in Python yet they lack the resources to port their code into C++. Furthermore,

the current documentation cites only my own work, which may let other researchers think

that new contributions will not gain credit. Weak community norms also surfaced when

another team plagiarized large parts of the Fields2Cover paper (Mier et al., 2023b). After

contacting the journal editor this was solved; for privacy reasons I do not reveal the specific

work here. The project is thus often used, but has not yet formed a strong developer

community around it.

Fields2Cover version 3 concludes the major releases prepared by the founding team.

Limited updates may lead to a period of reduced activity (Aggarwal et al., 2014). The

repository will continue to receive bug fixes, yet substantive progress must now arise from

new maintainers or from a successor project that satisfies emerging requirements while

still supporting research on agricultural coverage path planning.

The Fields2Cover project was designed as a tool to optimize path for agricultural robots.

The interest generated through open dissemination library may show the agricultural

sector’s demand for automated solutions.

6.3.2 Agricultural robotics and automated farming

Traditionally, farmers have relied heavily on intuition and personal experience to manage

their fields and make day-to-day operational choices (Nuthall, 2012). However, this method

carries risks of subjective judgments and inconsistent outcomes due to varying individual

skills and experience levels (Nuthall and Old, 2018).

To overcome these limitations, authors like Bochtis et al. (2012) and Zhai et al. (2020)

have proposed Decision Support Systems (DSS) to help managing farms. Kukar et al.

(2019) compared thirteen DSS surveying their water resources management, climate change

3Source: https://www.star-history.com/#fields2cover/fields2cover&Date

https://www.star-history.com/#fields2cover/fields2cover&Date
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adaptation, food waste control and applications for agricultural mission planning. These

DSS usually rely on another systems to perform the tasks when required, specially in cases

where machinery is employed. Those machines need a tool to plan the coverage path,

taking into account the data provided by the DSS.

Thanks to the release of open-source tools like Fields2Cover, ROS (Stanford Artificial

Intelligence Laboratory et al., 2018), and Nav2 (Macenski et al., 2020), the machinery

can be automated at less cost and faster. Although Fields2Cover already provides a

ROS 1 interface, Macenski contacted me to work on the integration of Fields2Cover

with Nav2 and ROS 2. As Nav2 is a well-recognized project dedicated to integrate

path planners into a common package, the inclusion of Fields2Cover was a natural

step. Nav2 also provides access to the BehaviorTree.CPP library (Faconti et al., n.d.),

which allows to implement logic rules that execute routine according to triggers. This

library is perfect for implementing a DSS that launches Fields2Cover when needed. The

integration of Fields2Cover in Nav2 is still work in process, and it is being developed in

the opennav coverage repository (Macenski et al., n.d.).

ROS (Stanford Artificial Intelligence Laboratory et al., 2018) is the standard in robotics.

Tt provides many drivers to use sensors and actuators out-of-the-box, and allows com-

municating those messages with other routines. This connection between hardware and

software is key, as many companies like AgXeed (AgXeed website n.d.), John Deere (John

Deere website n.d.), and Naio (Naio technologies website n.d.), are producing self-driving

tractors. Those vehicles have to read their sensors and actuate devices appropriately,

whilst operating without human drivers and executing complex field operations based

on pre-defined, data-driven plans. The ROS interface of Fields2Cover provides a com-

munication link between the robots and the Fields2Cover library to configure generate

coverage paths according to the current status of the field. Automated machinery then

follows optimized paths, drastically reducing labor demands and freeing farmers to focus

on higher-level farm management and strategic decision-making tasks (Ghobadpour et al.,

2022).

It is important to note that farmers tend to be risk-averse when confronted with uncer-

tainty (Yan, Yan, et al., 2023). To adopt new technologies, they need to be confident

that an autonomous tractor will not destroy their crop, miss a swath or waste energy

by zigzagging inefficiently. Real-world demonstrations, field days, and peer testimonials

are important to show that new technology works reliably (Mgendi et al., 2022). Early

adopters play a role in proving the concept. Over time, as more users come on board, the

technology can become standard practice (DeLay et al., 2022). In fact, adoption of other

guidance technologies like auto-steering grew steadily once farmers saw the clear benefits

of reduced overlap (McFadden and Rosburg, 2025). The hope is that as autonomous

capabilities and coverage path planning software prove themselves, acceptance will follow

a similar trajectory. To reduce uncertainty concerned with the adoption of agricultural
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robots, the process has to be evidence-driven. For automated systems and DSS to be

effective, timely and dynamic data from the field are essential.

6.3.3 Remote sensing for dynamic coverage path planning

Most agricultural coverage paths are planned long before machines reach the field and they

rely on geometry and crop data that can be months old (Oksanen and Visala, 2009). By

the time the robots start their work, the recorded field geometry may differ from the actual

situation, and the crop may have grown. Up-to-date information is therefore essential.

Remote sensing can supply such information (Barrientos et al., 2011).

Future developments should enable up-to-date data from different sources to be processed

by a Decision Support System (DSS) compliant with Fields2Cover. The DSS comes before

the coverage path planner, listens to remote-sensing feeds, schedules each operation and

reconfigures the planner with the new information (Fountas et al., 2006). Satellites, aerial

drones, in-field probes and on-board sensors deliver live outlines, hazards and crop traits,

keeping every mission safe, and grounded in farm practices (Mulla, 2013). Before the

operation starts, the DSS checks the latest satellite scenes (Georgi et al., 2018) and aerial

imagery (Cyclomedia, 2025). These images reveal border shifts caused by erosion, or

earthworks. Field geometry strongly influences cultivation cost, thus precise outlines cut

that cost and prevents the path to be planned outside the field (Ptacek et al., 2024).

Not every hazard is visible ahead of time. While the operation runs, lidar and cameras

mounted on the robot must recognize unexpected threats and trigger local avoidance (Han

et al., 2023). A deer that freezes in the lights (DeVault et al., 2020) forces the robot

to pause until the path clears. In a multi-robot fleet a disabled teammate makes the

others to split the uncovered area between the remaining robots (Soitinaho et al., 2024).

Ground-nesting birds need gentle treatment. Drones mark the nests first (Scholten et al.,

2019), then the planner lifts the implement while crossing those points or shifts the path to

stay clear. Additional bird-friendly practices mow from the center outward, so wildlife can

escape and leave strips of uncultivated land between headlands and the field edge (Hyde

and Campbell, 2012).

Remote and in-situ sensors can also support agronomic decisions making. On-the-go probes

measure organic matter, main nutrients and volume of water on the ground (Adamchuk

et al., 2004). These values can be used by the route planner presented in Chapter 5 to

generate coverage path that compact less the soil. This information can also be used to

trigger certain operations. For example, soil organic matter is a proxy of nitrogen (Chiriac

et al., 2025). When low nitrogen is sensed, a fertilization event can be launched (Olt et al.,

2024).

Satellite and UAV imagery can be used to derive yield maps (Mathivanan and Jayagopal,

2022). For example, using satellite images Gaso et al. (2019) predict the wheat grain
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yield, and Gaso et al. (2021) predict soybean yield. These predictions can be done using

only UAV data (Nevavuori et al., 2020), or combine the data from satellites and UAV to

achieve better precision (Maimaitijiang et al., 2021). Managers use these maps to choose

fleet size, fix rental dates and place unloading or refueling points when several days and

several machines are required on a large farm (Papadopoulos et al., 2024). This planning

saves money and optimizes the use of the available resources.

The yield maps can also be used to inform the capacitated route planning problem.

Chapter 3 presents a route planner for capacitated operations, but here the yields of

the swaths were assumed to known before the planning process. Yields are usually not

known before hand, so the route planner should rely on yield estimates provided by a

yield map. Yield estimates are stochastic; each cell on the map may be characterized by

both a mean and a standard deviation. Underestimation can fill the capacity halfway

a swath, whereas overestimation can send the robot half empty to an unloading depot.

Repeated replanning may avoid such situation. The machine should measure the real mass

flow, communicate with the DSS to update the yield map with the measured data, and

recompute the coverage path with Fields2Cover for the remaining area. Such a feedback

loop can also be used to improve the prediction model during the operation.

Merging real-time sensing with adaptive planning turns a static coverage task into a living

workflow. The system follows current geometry, protects wildlife and deploys inputs with

precision. This dynamic responsiveness not only improves efficiency but also leads directly

to tangible environmental and economic benefits.

6.3.4 Environmental and economic benefits of agricultural automation

Being the CPP problem a core element of agricultural automation, it brings direct benefits

for sustainable agriculture. First, optimizing the path length implies that robots burn

less fuel and cut engine hours, which reduces emissions (Guo et al., 2019). At the

same time, coverage planning can also help to reduce the skipped and overlapped areas.

Skipped/overlapped areas is a huge problem in fields with undulating topography, in which

parallel swaths do not fully cover the complete area owing to the commonly used planar

projection of the swaths (Hameed et al., 2016). A skipped area means that it is not treated,

reducing yield owing to unused space. On the other hand, overlapping area means an area

is covered twice or more often, which leads to spending extra resources.

Once the machine follows an efficient path, on-board sensors and farm records reveal where

the crop actually needs help. Variable Rate Technology (VRT) uses these data to vary the

application of seed, fertilizer, or pesticide on the move (Pawase et al., 2023). Inputs fall

only on patches where they are needed, so far less chemicals are left unused. Avoiding

surplus chemical to reach the soil surface implies that nutrient runoff into nearby streams

or groundwater is also reduced (Getahun et al., 2024). The field grows healthier plants

and the farmer pays lower invoices for the used agrochemicals.
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Controlled Traffic Farming fixes traffic lanes that are reused season after season (Bochtis

et al., 2010a). Concentrating traffic in this way means the bulk of the field is not disturbed

by the machinery (Antille et al., 2019). Untouched soil remains loose and porous, which

lets rainwater soak in and slows erosion. Better aeration also reduces anaerobic pockets

where nitrous oxide tends to form, so greenhouse gas release drops (Pulido-Moncada et al.,

2022). In the long term a field with stable structure supports stronger roots and higher

biological activity.

The environmental gains translate into solid economic returns. Lower resources use

reduce operating costs while precise agronomy holds yields steady. Controlled studies

on commercial farms report substantial annual savings that more than cover the cost of

agricultural robots (Vahdanjoo et al., 2023). Because profit and environmental stewardship

rise together, farmers have a clear incentive to adopt automated coverage planning.

6.3.5 Social and ethical dimensions

The shift to robotic and optimized field operations has broad social implications for

farming communities. On one hand, reducing labor burdens by automating coverage tasks

can alleviate the strain on farmers and farm workers (Bogue, 2024). Many agricultural

regions face labor shortages or an aging farmer population (Bousmah and Grenier, 2022).

Automation can help ensure that tasks like spraying and mowing get done within available

time windows even with limited labor. This can improve the work-life balance of farmers,

who might otherwise spend long days driving machinery. It also enhances safety, reducing

human exposure to dangers like pesticide spray (Damalas and Koutroubas, 2016) or

equipment rollovers (Irwin et al., 2019). In this sense, the technology contributes to the

social sustainability of farming, making the occupation more attractive to a younger,

tech-oriented generation. Indeed, the automation of the field might draw new talent into

agriculture, seeing it as a high-tech industry (Sahoo et al., 2022).

On the other hand, there could be concerns about job displacement for equipment op-

erators (Marinoudi et al., 2019). In the short term, the more likely scenario is that

those roles are replaced by skilled technicians maintaining the systems. Training and

re-skilling programs might be needed so that the existing agricultural workforce can take

on these new roles (McLandsborough, 2023). Moreover, Samuels and Thomson (2021) find

a positive relationship between agricultural mechanization and democracy, stating that

this technological revolution may improve people’s power on the decision-making process

of their communities.

It is also important to consider the equitable access to these advancements. Carolan

(2020) predicts that when farm owners consider human labor expensive and scarce, they

would want to automate their farms, making farm work underpaid and undesirable. If

only large, wealthy farms adopt autonomous equipment, smaller farms could be left at a

competitive disadvantage, potentially exacerbating social inequalities in rural areas (Rotz
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et al., 2019). Policymakers and cooperatives might consider models to make technology

accessible, for example, robot-as-a-service contracting, where a service provider uses these

tools on smaller farms for a fee (Milella et al., 2024).

I launched Fields2Cover convinced of its social value. Automating field work, I aimed to

lighten farmers’ loads and increase food production. However, despite the software being

open, the robots that run its coverage paths remain costly. This price wall reduces adoption

in low-income regions, while wealthier nations may gain extra market power and widen the

global gap. Open-hardware efforts such as Acorn (Fields, 2025), which publishes full build

instructions for precision-farming robots, offer a way forward. Partnering Fields2Cover

with such projects would reduce entry costs and let farmers everywhere benefits from the

project.

After addressing these ethical and social aspects of the agricultural automation, I want to

make a final statement in this thesis: Automation will improve people’s lives only when

we shape it for open reach and steer it by human needs.
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Bormann, R., F. Jordan, J. Hampp, and M. Hägele (2018). “Indoor coverage path planning:

Survey, implementation, analysis”. In: 2018 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 1718–1725. doi: 10.1109/ICRA.2018.8460566.

Bostelmann-Arp, L., C. Steup, and S. Mostaghim (2023). “Multi-objective seed curve

optimization for coverage path planning in precision farming”. In: Proceedings of the

Genetic and Evolutionary Computation Conference, 1312–1320. doi: 10.1145/3583131.

3590490.

Bousmah, I. and G. Grenier (2022). “Labor shortages and immigration: The case of the

Canadian agriculture sector”. Agribusiness 38.1, 220–235. doi: 10.1002/agr.21719.

Brooker, R. W., A. E. Bennett, W.-F. Cong, T. J. Daniell, T. S. George, P. D. Hallett, C.

Hawes, P. P. Iannetta, H. G. Jones, A. J. Karley, et al. (2015). “Improving intercropping:

a synthesis of research in agronomy, plant physiology and ecology”. New Phytologist

206.1, 107–117. doi: 10.1111/nph.13132.

Cai, Z., C. R. Cardenas, K. Leo, C. Zhang, K. Backman, H. Li, B. Li, M. Ghorbanali, S.

Datta, L. Qu, et al. (2024). “NEUSIS: A Compositional Neuro-Symbolic Framework for

Autonomous Perception, Reasoning, and Planning in Complex UAV Search Missions”.

arXiv preprint arXiv:2409.10196. doi: 10.48550/arXiv.2409.10196.
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Clephas, T., C. López, and Nobleo (n.d.). Nobleo/full coverage path planner GitHub.

https://github.com/nobleo/full_coverage_path_planner. Accessed: January 9,

2026.

Collaboration, O. S. (2015). “Estimating the reproducibility of psychological science”.

Science 349.6251, aac4716. doi: 10.1126/science.aac4716.

Crüwell, S., J. van Doorn, A. Etz, M. C. Makel, H. Moshontz, J. C. Niebaum, A. Orben,

S. Parsons, and M. Schulte-Mecklenbeck (2019). “Seven easy steps to open science”.

Zeitschrift für Psychologie. doi: 10.1027/2151-2604/a000387.

Cyclomedia (2025). Ortho Aerial data. https://www.cyclomedia.com/en/producten/

data-visualisatie/aerial-data.

Dabbish, L., C. Stuart, J. Tsay, and J. Herbsleb (2012). “Social coding in GitHub:

transparency and collaboration in an open software repository”. In: Proceedings of

the ACM 2012 conference on computer supported cooperative work, 1277–1286. doi:

10.1145/2145204.2145396.

Damalas, C. A. and S. D. Koutroubas (2016). Farmers’ exposure to pesticides: toxicity

types and ways of prevention. doi: 10.3390/toxics4010001.

de Bruin, S., P. Lerink, A. Klompe, T. van der Wal, and S. Heijting (2009). “Spatial

optimisation of cropped swaths and field margins using GIS”. Computers and Electronics

in Agriculture 68.2, 185–190. doi: 10.1016/j.compag.2009.06.001.

de Bruin, S., P. Lerink, I. J. La Riviere, and B. Vanmeulebrouk (2014). “Systematic planning

and cultivation of agricultural fields using a geo-spatial arable field optimization service:

Opportunities and obstacles”. Biosystems Engineering 120, 15–24. doi: 10.1016/j.

biosystemseng.2013.07.009.

DeLay, N. D., N. M. Thompson, and J. R. Mintert (2022). “Precision agriculture technology

adoption and technical efficiency”. Journal of Agricultural Economics 73.1, 195–219.

doi: 10.1111/1477-9552.12440.

https://doi.org/10.1016/j.compedu.2020.103938
https://doi.org/10.1016/j.agee.2024.109444
https://doi.org/10.1016/j.agee.2024.109444
https://doi.org/10.1023/A:1008958800904
https://github.com/nobleo/full_coverage_path_planner
https://doi.org/10.1126/science.aac4716
https://doi.org/10.1027/2151-2604/a000387
https://www.cyclomedia.com/en/producten/data-visualisatie/aerial-data
https://www.cyclomedia.com/en/producten/data-visualisatie/aerial-data
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.3390/toxics4010001
https://doi.org/10.1016/j.compag.2009.06.001
https://doi.org/10.1016/j.biosystemseng.2013.07.009
https://doi.org/10.1016/j.biosystemseng.2013.07.009
https://doi.org/10.1111/1477-9552.12440


References 117

DeVault, T. L., T. W. Seamans, and B. F. Blackwell (2020). “Frontal vehicle illumination

via rear-facing lighting reduces potential for collisions with white-tailed deer”. Ecosphere

11.7, e03187. doi: 10.1002/ecs2.3187.

Dubins, L. E. (1957). “On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents”. American Journal of

mathematics 79.3, 497–516. doi: 10.2307/2372560.

Economic, U. N. D. of and S. Affairs (2021). World Population Prospects 2017 - Volume I:

Comprehensive Tables. United Nations. doi: 10.18356/9789210001014.

Elliott, K. C. (2022). “A taxonomy of transparency in science”. Canadian Journal of

Philosophy 52.3, 342–355. doi: 10.1017/can.2020.21.

ESRI (2025). ESRI Imagery. https://www.esri.com/en-us/home. Accessed: 2025-03-06.

Essen, R. van, E. van Henten, L. Kooistra, and G. Kootstra (2025). “Adaptive path

planning for efficient object search by UAVs in agricultural fields”. Smart Agricultural

Technology, 101075. doi: 10.1016/j.atech.2025.101075.

Faconti, D., M. Colledanchise, E. de Oliveira, and A. Sasine (n.d.). BehaviorTree.CPP

GitHub. https://github.com/BehaviorTree/BehaviorTree.CPP. Accessed: January

9, 2026.

FAO, I. (2015). “Food and Agricultural Organization of the United Nations and Intergov-

ernmental Technical Panel on Soils, Rome, Italy”. Status of the World’s Soil Resources

(SWSR)–Main Report.

Farm hack website (n.d.). https://farmhack.org. Accessed: 11-06-2025.

Fecher, B. and S. Friesike (2014). Open science: one term, five schools of thought. Springer

International Publishing, 17–47. doi: 10.1007/978-3-319-00026-8_2.

Feldmann, J., S. Dickebohm, and F. Tepe (2024). Steinesammler-Roboter – Interdiszi-
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