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Abstract

Background The allo-octoploid Fragaria x ananassa follows disomic inheritance, yet the high sequence similarity
among its subgenomes can lead to misalignment of short sequencing reads (150 bp). This misalignment results in

an increased number of erroneous variants during variant calling. To accurately associate traits with the appropriate
subgenome, it is essential to filter out these erroneous variants. By classifying variants into correct (type 1) and
erroneous types (homoeologous variants—type 2, and multi-locus variants—type 3), we can improve the reliability of
downstream analyses.

Results Our analysis reveals that while erroneous variant types often display skewed average allele balances (AAB)
for heterozygous calls, this measure alone is insufficient. To mitigate the erroneous variants further, we employed

a Linkage Disequilibrium (LD) based filtering method that correlates highly (99%) with an approach that utilizes a
genetic map from a biparental population. This combined filtering strategy—using both LD-based and average allele
balance methods—resulted in the lowest switch error rate (0.037). Notably, our best filtering approach decreased
phasing switch error rates by 44% and preserved 72% of the original dataset.

Conclusions The results indicate that identifying erroneous variants due to subgenome similarity can be effectively
achieved without extensive genotyping of mapping populations. By implementing the LD-based filtering method,
the phasing accuracy improved which improves the tracability of important alleles in the germplasm, paving the way
for better understanding of trait associations in £. x ananassa.
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Background

In the current era, molecular tools have become an
important part of commercial breeding. Using genomic
selection for making breeding decisions can acceler-
ate breeding success and therefore can give competitive
advantages to breeding companies [1]. As every breed-
ing program has its unique germplasm, it is important
to utilize genotyping techniques that can identify the
whole genetic diversity of the germplasm. Fortunately,
Whole Genome Sequencing (WGS) can do this, and as
technology improves and patents expire, it is becoming
affordable for individual breeding programs. For many
crops (like vegetable or staple crops) molecular breeding
and WGS are already utilized, however, less economi-
cally important crops and crops with more complicated
genetic structures are now also moving towards WGS-
based molecular breeding.

One of these crops is the garden strawberry: Fragaria
x ananassa Duchesne ex Rozier (2n=8x=56) [2].
Because of its polyploid nature, advancements in molec-
ular breeding for E x ananassa have consistently lagged
behind those for diploid organisms. E x ananassa consis-
tently follows a disomic inheritance in linkage mapping
studies which makes many bioinformatic tools devel-
oped for diploid crops compatible with E x ananassa [3].
Although the adoption of molecular tools was initially
rather slow in F x ananassa, it is now rapidly increas-
ing: for example, Single Nucleotide Polymorphism (SNP)
arrays were the first high-throughput genotyping plat-
forms (since 2015) available for E x ananassa [4—6]. Its
first genome was sequenced and assembled in 2019 and
multiple other genomes have been sequenced and assem-
bled since then, making WGS a viable genotyping strat-
egy for E x ananassa [7-10].

A typical WGS bioinformatic pipeline consists of align-
ments of the sequencing reads to a reference genome
followed by a variant calling step. However, the allopoly-
ploid nature of E x ananassa makes the alignment of
sequencing reads (WGS data) more challenging due to
the high similarity of its subgenomes. This can result in
partial misalignment of sequencing reads, which can give
problems when calling variants (variant discovery). As a
result, erroneous variants can be discovered, e.g., vari-
ants that may be wrongly attributed to a homoeologous
subgenome (i.e., all sequencing reads from subgenome A
align on subgenome B), or variants that seem to be poly-
morphic (because reads from two or more subgenomes
are aligning on the same subgenome). In summary, we
can classify variants that result from a diploid WGS
variant calling pipeline in E x ananassa into three main

types:

1. Accurate variants on the biologically correct
chromosome and subgenome: reads align on the
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same chromosome and subgenome as they originate
from (correct variants).

2. Erroneous variants from another subgenome: reads
align on a different subgenome than they originate
from (homoeologous variants).

3. Erroneous variants: resulting from reads with
multiple origins with varying read numbers (multi-
locus variants).

Genome-wide association studies (GWAS) are often used
to find associations between traits and genetic variants,
also in E x ananassa [11, 12]. The resulting Manhattan
plots are illustrative for different variant types, where in
a regular diploid situation only a single peak is expected
for a single Quantitative Trait Locus (QTL). However, in
allopolyploid E x ananassa, a single QTL typically results
in multiple other significant SNPs on homoeologous sub-
genomes. These may caused by type 2 variants, that are
wrongly assigned on homoeologous chromosomes which
subsequently can be misidentified as significant SNPs
for separate (or homoeo-) QTLs while they are in high
linkage disequilibrium (LD) with the SNPs in the main
peak on another subgenome and as such only represent
a single QTL. An example of this can be found in Saiga
et al. [11], where the Manhattan plot of a WGS-based
GWAS on the everbearing locus in F x ananassa shows
significant associations for SNPs on multiple homoeolo-
gous chromosomes. Here, the authors correctly did not
identify the other peaks as true QTLs on different Fvb4
homoeologes, as the main QTL on Fvb4-4 contained
5640 candidate SNPs compared to 59—-82 candidate SNPs
on the other homoeologs [11]. Another method to filter
out these false QTL signals is by fitting the main QTL as
a fixed effect in the GWAS model because false QTL sig-
nals will not explain additional variation in the trait [13].
Both methods are a way to identify true QTL signals, but
other additional filtering criteria are required to miti-
gate these issues in other genomic analyses. For instance,
these erroneous variants could potentially be a major
problem in allele phasing resulting in wrong haplotypes
and subsequently lower imputation accuracies because
wrong haplotypes are imputed [14].

Erroneous variants can be partially identified by geno-
typing mapping populations and subsequently verifying
the variant’s segregation [15]. For example, a linkage map
based on sequencing reads of the mapping population
Holiday x Korona was constructed for all chromosomes
except chromosome 7C, and type 2 variants were identi-
fied [16]. As such, this could give a valid indication of the
number of erroneous type 2 variants expected. However,
in a breeding setting such an approach will not be prac-
tical nor cost-effective and an alternative method needs
to be developed that could be validated using the linkage
map approach.
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A possible alternative route for identifying these erro-
neous variants could be investigating the Allele Balance
(AB) of heterozygous variants. The Allele Balance (AB) of
heterozygous variants is calculated as the ratio of refer-
ence reads to the total number of reads at a specific vari-
ant site [17]. A general estimate of AB for a single variant
can be obtained by averaging its AB values across all
individuals, resulting in an Average Allele Balance (AAB)
value for each variant. However, this may involve a vari-
able number of contributing individuals per variant as the
frequency of heterozygous individuals differs per vari-
ant. Yet it can provide a useful indication of the chances
that a variant is erroneous. Variants in regions that are
highly similar to regions in other subgenomes may show
a skewed allele balance, as reads can potentially align to
multiple subgenomes. This may lead to reads originating
from multiple homoeologous subgenomes aligning to a
single subgenome. The final AAB depends then on how
similar the reads are to each part of the different subge-
nomes, the reference genome quality, and its similarity to
the aligned genotype.

In addition, Linkage Disequilibrium (LD) among the
variants in a diversity panel is also able to position mark-
ers on a genome by utilizing markers that are anchored
on the genome [18]. A similar rationale can be followed
for identifying erroneous variants in allopolyploid straw-
berry. Strawberry shows disomic inheritance which
means for most cases that variants on different subge-
nomes are expected to have low LD values with each
other. On the other hand, variants that originate from the
same haplotype are physically linked and are expected to
show high LD values and a consistent decay with increas-
ing genetic distance. This means that correct variants
(type 1) are expected to show high LD values being vari-
ants from the same subgenome. On the other hand, vari-
ants from different subgenomes are expected to show
low LD values and can be identified as erroneous. Iden-
tification of the two erroneous variant types is possible
because type 2 variants (homoeologous variants) will
have higher LD values with variants on another homoeol-
ogous subgenome and type 3 variants (multi-locus vari-
ants) will have lower LD values and fewer variants that
are in LD with them. Type 3 variants will be the hardest
to detect because of the many different possibilities.

This study explored how many erroneous SNPs
occurred in allopolyploid E x ananassa by investigating
average allelic balance and LD-based filtering methods
in a mapping population and a diversity panel. Specific
filtering methods were proposed for identifying these
variants so these could be filtered out for downstream
analyses. In addition, it was investigated whether some
regions or subgenomes were more likely to have a higher
density of erroneous variants than others. The filtering
methods were subsequently validated by phasing the
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(filtered) SNP datasets and calculating the switch error
rate.

Methods

Genotypic data

A diversity panel (#=136) from the Fresh Forward B.V.
breeding population and a biparental mapping popu-
lation (Holiday x Korona, n=46) were resequenced
(Ilumina Paired-End 150 bp). DNA was isolated using
a modified CTAB procedure, then multiplexed and
sequenced by BGI Genomics (Shenzen, China). The indi-
viduals in the diversity panel had an average depth of
22x, where 124 had a mean depth>15x, 5 individuals had
a mean depth between 10x and 15x, and 7 individuals
had a mean depth below 5x. The H x K population had
an average depth of 27x (ranging from 8x to 56x). Vari-
ant Call Format (VCF) files were obtained by aligning the
150 bp paired-end Illumina resequencing reads to the
reference genome farrl (Royal Royce) by using minimap2
(v2.24) with the -ax sr preset (the short reads option).
Then sambamba (v1.0.0) was used to convert the SAM
output from minimap2 into BAM format, while simulta-
neously filtering out unmapped reads using the filter -F
“(not unmapped)’, the reads were then sorted by using
samtools sort (v1.9). Bcftools (v1.9) mpileup (using -B
option) and call (using the multiallelic caller: -mv ) were
used for variant calling to obtain the final VCF files [8, 19,
20]. In the variant calling step, also 321 other individuals
were included (for which sequencing data was available
from different breeding programs, all external material)
to increase the variant detection accuracy. Then, bial-
lelic SNPs were extracted from these VCF files and fil-
tered on strict quality criteria: INFO/QUAL>998, INFO/
MAPQ>55, INFO/DP>7000, INFO/DP<18,000, and
MAF>0.05. The 321 extra individuals for variant call-
ing and quality filtering were removed for downstream
analyses due to their genetic distance or overrepresented
genetic variation to the selected diversity panel (e.g.,
external material, mapping populations, or wild material)
resulting in the 136 individuals. Both, the variant and
individual filtering were done using bcftools (v1.16). The
genetic diversity of the diversity panel was assessed by
using a principal components analysis (using PCA from
the sklearn package in python) on 140,000 variants (5000
randomly selected SNPs per chromosome, 136 individu-
als), missing variant calls were imputed by the mean of all
variant calls to limit their influence on the analysis.

Exploring problematic SNPs in a biparental mapping
population

A valid question is how many variants are erroneous
when using resequencing data and a standard diploid
variant calling pipeline. This was explored by investigat-
ing the segregation patterns in a mapping population. To
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compare the validity of our approach we used an already
available genetic map for the Holiday x Korona (H x K)
population (chromosome 7 C is lacking). This genetic
map consisted of marker bins, where co-segregating
markers were put in the same bin, and bins with >40
markers were retained [16].

Then, we extracted all SNPs where at least Holiday or
Korona was heterozygous to obtain all segregating SNPs
for this population. Allele balance was computed per
heterozygous call for these SNPs and subsequently, the
average allele balance (AAB) of heterozygous calls was
calculated per SNP. Linkage Disequilibrium (LD) within
the H x K population was estimated as squared Pearson
correlation coefficients (r?) between each of the remain-
ing SNPs (5.5 M) and all marker bins (6478) from the
genetic map [16]. For each SNP, the marker bin with the
highest LD was kept and only SNPs where retained that
had an LD value>0.5 with a marker bin.

Filtering method 1: average allele balance (diversity panel)
Segregation patterns in mapping populations can provide
useful information on erroneous variants but the trans-
lation to diversity panels is crucial to assert all variants
(i.e., the variants that are homozygous in / not segregat-
ing in selected mapping populations) for downstream
genomic analyses in breeding practices. Therefore, the
average allele balance (AAB) was computed for the diver-
sity panel. For each heterozygous call, the allele balance
was calculated as reference allele count divided by the
total allele count by a custom bash script (Supplemen-
tary Information, Scriptl_AAB.sh). Then, these allele bal-
ances were averaged per variant over all individuals in the
population to obtain a single average allele balance value
per variant. Due to the varying MAF of each variant, the
average allele balance for each SNP is based on a varying
number of heterozygous calls.

The high sequence similarity between subgenomes in
strawberry can cause misalignment of reads, where reads
originating from multiple homoeologous subgenomes
align to a single subgenome. This misalignment may
lead to deviations in the average allelic balance from the
expected 0.5 ratio (1:1, AB, 50% reference reads and 50%
alternative reads). Depending on the sequence similar-
ity among homoeologous chromosomes, various skewed
allelic balance (AAB) values can be expected, such as
0.875 (7:1, AAAAAAAB), 0.833 (5:1, AAAAAB), 0.75
(3:1, AAAB), and 0.667 (4:2, AAAABB).

Filtering method 2: LD-based subgenome prediction and
position estimation (diversity panel)

For computing LD values and estimating the best sub-
chromosome for each SNP, we developed a custom
Python pipeline (Supplementary Figure S1). It uses two
datasets as input: an “anchor” set of SNPs and a dataset
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with all SNPs that need checking (target set). A naive
approach is to compute pairwise LD estimates for all
SNPs available. However, to reduce the computational
complexity of this problem we defined an anchor set. The
SNPs in the anchor set are used to predict the chromo-
some and position of all SNPs in the target set. Therefore,
these need to be carefully selected or the number of SNPs
needs to be large enough so that the correct SNPs limit
the impact of erroneous SNPs on chromosome and posi-
tion predictions. In this study, we chose the latter option,
so we randomly selected 5000 SNPs per chromosome as
the anchor set, which resulted in a total of 140,000 SNPs
over the 28 chromosomes. Variant calls were extracted
for both the anchor set and the target set for all 28
chromosomes.

Before computing the LD values, the SNPs were filtered
on minor allele frequency (MAF>0.05, corresponding
to minor allele count (MAC)>13) because rare SNPs do
not provide enough information for accurate LD estima-
tion. LD values were then computed for each SNP with
all SNPs in the anchor set and subsequently filtered on
LD<0.3. The LD values were then squared to mitigate
the effect of large numbers of SNPs with low LD. The
squared LD values were summed per chromosome to
estimate the correct chromosome, e.g., the chromosome
with the highest sum of squared LD values (SSLD). For
type 1 (correct variants) and type 2 variants (homoeolo-
gous variants), the correct chromosome is expected to
have a much higher SSLD than the other chromosomes
because it should have high LD values for many SNPs.
Hence, the predicted chromosome for each SNP is the
chromosome with the highest SSLD. However, type 3
variants are expected to have lower LD values in gen-
eral but could also have LD values>0.3 with SNPs on
different homoeologous chromosomes or perhaps even
completely different chromosomes due to the over-
representation of heterozygous variant calls. So, type 3
variants are not only expected to not have a single chro-
mosome with a much higher SSLD than other chromo-
somes but also to have lower SSLD values in general. To
distinguish between type 1 and type 2 versus type 3 vari-
ants, the ratio of the SSLD for the best chromosome to
the total SSLD of all chromosomes was computed. SNPs
that have this ratio (>0.8) were retained for downstream
analyses, which means that the SSLD of the best chromo-
some is at least 4 times higher than the SSLD of all other
chromosomes combined. Most of the time variants will
be predicted on the same or a different subgenome, but
sometimes another chromosome will have the highest
SSLD ratio. Therefore, we preferred the term “predicted
chromosome” in this paper, which most of the time will
be a predicted subgenome.
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Effect of filtering methods on phasing the diversity panel
Filtering type 2 (homoeologous variants) and type 3
(multi-locus) variants out of the set of used variants is
crucial for downstream analyses. One way to assess the
effectiveness of different filtering options for type 2 and
3 variants could be assessed by phasing the variants and
subsequently computing the phasing accuracy. Four dif-
ferent datasets were obtained from the >9.2 M SNPs
(after quality filtering) from the diversity panel by the
following filtering combinations: no filtering (Standard),
filtering on average allele balance (AAB), LD-based filter-
ing (LD), and a combination of both methods (AAB+LD)
(Table 1). These were then phased with SHAPEIT5
(phase_common) in default settings, except for MAF
(filter-maf), to exclude rare variants with MAF <0.05, and
effective population size (hmm-ne) which was set to 50
[21].

In the context of phasing, the switch error rate (SER)
is often used as a measure of phasing accuracy [14].
Therefore, filtering methods that successfully filter for
type 2 and 3 variants are expected to show a lower SER
compared to when no filtering is applied. Vice versa, if
filtering methods are not successful in filtering for these
variant types, a similar SER to the scenario with no filter-
ing is expected. A total of 36 duos and trios were present
in the diversity set (n=136) and were used to assess phas-
ing accuracy by calculating the switch error rate of het-
erozygous variants by employing the SHAPEIT5_switch
command. Before phasing, parents of the duos and trios
were excluded from the dataset so that the offspring were
phased regardless of their parental genomes. Conse-
quently, 14 duos and trios were removed because some
offsprings of these duos and trios were parents of others,
resulting in 22 duos and trios for which the switch error
rate was computed.

LD decay patterns of different variant types

LD decay patterns can give insight into what type of vari-
ants the SNPs are. LD values are generally expected to
gradually decrease the further away linked variants are
located from the investigated variant (type 1 variants),
with the speed of this decay depending on linkage decay.
A set of four representative variants was chosen based
on LD-based prediction in both the mapping population

Table 1 Overview of the filtering methods that were used on
SNPs before phasing with SHAPEIT5

Filtering method Description

Standard No filtering

AAB AAB>0.35, AAB<0.65

LD Ratio of SSLD > 0.8, highest SSLD on the
same chromosome

AAB+LD AAB>0.35, AAB < 0.65, ratio of SSLD>0.8,

highest SSLD on the same chromosome
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(highest r* with best marker bin) and the diversity panel
(highest SSLD and minimum of 0.8 for the ratio SSLD
to the total SSLD). Four other variants were chosen to
showcase type 2 and 3 variants. The LD decay was then
computed using LD values of the SNPs with all SNPs in
the anchor set.

Results

Mapping population

Type 2 and 3 variants in a mapping population

To investigate type 2 and 3 variants in a mapping popu-
lation, all SNPs that segregated in the H x K population
and that complied with the quality filtering criteria were
selected. LD values were computed for all SNPs with rep-
resentative SNPs of all the marker bins from the genetic
map on all chromosomes except chr_7C [16]. The LD
could not be calculated for 10.1% of the variants which
are erroneous and could be type 3 variants, due to lack
of variation (e.g., all offspring genotypes are heterozy-
gous but also one of the parents is heterozygous which
means the SNP was marked as segregating SNP). Of the
remaining SNPs, 92% had the highest LD with a marker
bin on the same chromosome, where it was originally
discovered (type 1 variants). There were no chromo-
somes that deviated much from this percentage, except
for chr_1D or chr_7A (Fig. 3A) where the percentage of
SNPs with the highest LD with a marker bin on the same
chromosome was somewhat lower (around 80%). When
the SNPs were filtered more stringently on a minimum of
0.5 LD, the percentage of SNPs that had the highest LD
with a marker bin on the same chromosome increased
to 95.1% whereas the percentage of SNPs without a pre-
dicted marker bin increased to 18.6%.

The ratio of SNPs with the highest LD with a marker
bin on a homoeologous chromosome was computed
to investigate how many SNPs were type 2 variants and
therefore were assigned to a different (sub) chromo-
some. The mean of this ratio (over all chromosomes) was
0.032. This means that we could classify 3.2% of all the
SNPs that had an LD value>0.5 with a marker bin on a
homoeologous chromosome as type 2 variants (Fig. 3B).
Chr_1D, chr_4D, and chr_7A stood out because of their
high ratio but these had relatively low SNP numbers
which were due to stretches of homozygosity in the H
x K population [22]. Additionally, chr_6A also showed
an elevated ratio of type 2 variants and compared to the
other subgenomes of chromosome 6, it also had a lower
total SNP number.

Positions of variants that belong on homoeologous
chromosomes

To get an idea of whether some regions showed a higher
density of variants that belonged on other homoeolo-
gous chromosomes, the LD values for each SNP that
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had the highest LD value with a marker bin located on
a homoeologous chromosome were plotted against the
position where the variant was originally discovered.
Figure 1 shows the distribution of chromosome 1 A vari-
ants over the homoeologous chromosomes based on the
LD-based predictions, e.g., at the top of chr_1A many
variants had the highest LD values with a marker bin on
chr_1D whereas the rest of the chromosome did not have
many variants that seemed to belong on chr_1D. In gen-
eral, it seemed that type 2 variants clustered together in
regions, although large regions were observed where no
SNPs were predicted to homoeologous chromosomes.

Heterozygous calls and average allele balance

The segregation ratios in the mapping population may
provide insights into the quality of the variants. The
expected segregation ratios of unique SNPs in a diploid
mapping population are either 1:1 (0x1, 1x0, 1x2, and
2x1 SNPs) or 1:2:1 (1x1 SNPs), which means that in
both scenarios the heterozygous group should encom-
pass approximately 50% of the individuals. As can be
seen in Fig. 3D, the average number of heterozygous calls
fluctuated around the expected number of 24 (half of the
total population size). However, a small enrichment of
SNPs with >46 heterozygous calls is visible, which means
that almost all individuals had a heterozygous call for
these SNPs. The rest did not seem to deviate much from
the expected Gaussian distribution (Fig. 3D, All SNPs).
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Another measure that could give insights in potential
erroneous variants is the Average Allele Balance. There-
fore, these were also computed for all segregating SNPs
(heterozygous in at least one parent) in this mapping
population to investigate how this relates to the number
of heterozygous individuals per segregating SNP (Fig. 3E,
All SNPs). An average allele balance of around 0.5 is
expected for SNPs did not result from reads across dif-
ferent (highly similar) regions (e.g., from homoeologous
subgenomes). An enrichment was visible between 0.6
and 0.9, which means these SNPs have on average 1.5 to
9 times as many reference reads than alternative reads for
heterozygous calls.

The SNPs that deviate from expected segregation pat-
terns might also have skewed Average Allele Balance val-
ues. Squared Pearson’s correlation coefficient (r?) based
filtering on the marker bins was applied to investigate the
influence of the average allele balance filtering on SNPs
that segregated in the H X K population (149,270). From
these, 118,489 SNPs remained (79.4%) after filtering for
average allele balance (0.35<AAB<0.65). When the
SNPs were filtered on r?>>=0.5 (LD_filt, TABLE) 129,406
SNPs (86.7%) remained and 112,868 of these also had an
average allele balance between 0.35 and 0.65. If on top of
the r? filtering, the SNPs also are filtered on having the
highest r* with a marker bin on the same chromosome
(chr_1A), 120,873 SNPs (80.1%) are left, of which 111,181
also had an average allele balance between 0.35 and 0.65.

Mapping Population

SNPs from chr_1A to chr_1A
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Fig. 1 Occurrence of SNPs that are originally discovered on chr_1A and, based on the mapping population, have the highest r (> 0.5) to a marker bin
on chr_1A or a homoeologous chromosome (green vertical lines). Density is plotted as histogram in blue
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The same plot was made but now only for the SNPs
with an allele balance>0.35 and <0.65 to investigate the
effect of allele balance on the number of heterozygous
individuals (Supplementary Figure S2). It showed a slight
decrease in SNPs where the number of heterozygous
individuals deviated from the expected number (half of
the population, 24).

Diversity panel

To confirm if we can identify type 2 and type 3 variants
in a diversity panel as well, SNPs were extracted for 136
genotypes, and biallelic SNPs were filtered resulting in
>9.2 M SNPs. From these, 5000 SNPs were randomly
selected per chromosome and included in the anchor set,
resulting in a mostly homogeneously distributed data-
set across the genome (Supplementary Figure S3). A few
gaps existed, for example, a gap between 22 and 23 Mb
on subgenome 1B, which could be accounted for by a
possible assembly error as no high-quality SNPs were
discovered in that region and other reference genomes
(Camarosa v1, FaFB2) either miss this part of the genome
or have a largely different sequence at that region [7, 10].
In the principal components analysis, no obvious outli-
ers could be distinguished. The first axis likely reflects
the chilling requirement across the different individuals
(Supplementary Figure S4).
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Homoeologous SNPs in the diversity panel

Type 2 variants (homoeologous SNPs) were found in
the mapping population and to investigate whether
similar patterns can be found with LD analysis in the
diversity panel, SNPs that were originally discovered on
chr_1A and predicted to chr_1A or on a homoeologous
chromosome were plotted (Fig. 2). Similarly to results
in the mapping population, small continuous regions
were found where various SNPs were predicted on a
homoeologous chromosome, although in this diversity
panel, these regions seemed to be smaller and more frag-
mented. Interestingly, many SNPs at the start of chr_1A
were predicted on chr_1D, just as in the mapping popula-
tion. Therefore, it seemed that erroneous variants in the
mapping population were also marked as erroneous in
the diversity panel.

Erroneous SNPs identification: mapping population vs.
diversity panel

The LD-based subgenome prediction method in the
diversity panel was evaluated to determine whether it
correctly identified SNPs that were also flagged as erro-
neous in the mapping population. The SNPs from chr_1A
that occurred in both populations were extracted, all
SNPs predicted to the same chromosome in both meth-
ods and those predicted to different chromosomes were
counted (Table 2). This resulted in 122,510 SNPs pre-
dicted in both the mapping population and the diversity

Diversity panel
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Table 2 Matching chromosome predictions for SNPs by predicted marker bin in the mapping population and LD-based prediction in

a diversity panel (only including SNPs predicted by both methods)

Chromosome 1 A No filtering Mapping popula-  Diversity panel Combination of
tion prediction: prediction: ratio mapping popula-
marker binr?>0.5 SSLD>0.8 tion and diversity

panel prediction

Total Predicted SNPs 122510 (100%) 117736 (100%) 114420 (100%) 110459 (100%)

Total mismatching predicted SNPs 2896 (2.4%) 2147 (1.8%) 1262 (1.1%) 850 (0.8%)

Total matching predicted SNPs 119609 (97.6%) 115589 (98.2%) 113158 (98.9%) 109609 (99.2%)

SNPs predicted on 1A (match) 112433 (91.8%) 110781 (94.1%) 107115 (93.6%) 105531 (95.5%)

SNPs predicted on same homoeologous chromosome (match) 5338 (4.4%) 3976 (3.4%) 4515 (3.9%) 3397 (3.1%)

SNPs predicted on same nonhomoeologous chromosome (match) 1838 (1.5%) 832 (0.7%) 1528 (1.3%) 681 (0.6%)

Not Predicted (in both)* 4371 6170 6380 8987

Not Predicted (in one of the two)* 22389 25364 28470 29824

* The last two rows include the number of SNPs that were not predicted in both the mapping population and the diversity panel (Not Predicted (in both)) or not
predicted in one of the two: the mapping population or the diversity panel (Not Predicted (in one of the two))

panel. To further increase prediction accuracy by both
the mapping population and the diversity panel, SNPs in
the mapping population were filtered on r? with a marker
bin>0.5 and SNPs from the diversity panel were filtered
on the ratio of SSLD>0.8. This resulted in 117,736 and
114,420 remaining SNPs, respectively. In total, 110,459
SNPs remained when both filtering methods were
applied. After these filters, 99.2% of all SNPs had similar
predictions in the mapping population and the diversity
panel (Table 2).

Some SNPs could only be predicted in one of the two
populations (Not Predicted (in both)). This number of
SNPs increased with 7435 SNPs when the correspond-
ing quality filtering method was used for each of the two
populations (mapping population: marker bin r*>0.5 &
diversity panel: ratio SSLD >0.8).

Erroneous SNPs identification: average allele balance after
LD-based filtering

To investigate the agreement between LD-based and
Average Allele Balance (AAB) based filtering, the Aver-
age Allele Balance was computed for 9.0 M SNPs
(MAF>0.05) in the diversity panel (Fig. 4A). The LD-
based filtering method did not only filter out many SNPs
that have a skewed AAB (>0.65 or <0.35) but also SNPs
closer to an average allele balance of 0.5, resulting in
6.6 M SNPs that were predicted to be of type 1 (correct).

Validation by phasing switch error rate

To validate the efficiency of filtering out erroneous SNPs
of all four filtering methods, the SNPs were phased and
SER was computed by using 22 duos and trios for each
chromosome (Fig. 4C). Each filtering method improved
the SER for all chromosomes compared to the Standard
(no filtering), starting at an average SER of 0.066 for the
Standard, improving to 0.047 for AAB, 0.040 for LD, and
0.037 if both filtering methods were used (AAB+LD).
The switch error rate varied per subgenome and showed

the same pattern regardless of the filtering method. For
instance, chromosome 7B had the highest SER in all fil-
tering methods. Chromosomes 5B and 6 C were the
chromosomes with the lowest SER in all methods.

The optimal filtering method should maximize accu-
racy while retaining as many SNPs as possible. Although
both methods combined (AAB+LD) resulted in the low-
est switch error rate, they also resulted in the lowest
number of retained SNPs. In total, the standard filtering
contains 9.2 M SNPs. After AAB filtering, 7.9 M SNPs
were left (86%). After LD filtering, 6.9 M SNPs remained
(75%). If both filtering methods were applied, only 6.6 M
SNPs remained (72%) (Supplementary Figure S6).

To exclude the possibility that the switch error rate
improvement was only due to the lower number of
remaining SNPs, the dataset was down sampled to 6.2 M
random SNPs. These were then phased and the com-
puted switch error rate was on average 0.072 over all
chromosomes. Interestingly, the switch error rate for this
randomly down sampled dataset is consistently higher
than the standard (no extra filtering) method, for each
chromosome.

Linkage disequilibrium decay patterns of different variant
types

The LD-based filtering gave the best phasing results when
applied as the only filtering method. To understand why
certain SNPs were flagged as erroneous by the LD-based
filtering method, LD decay patterns were investigated for
various SNPs. The LD decay patterns differed for differ-
ent variant types. Type 1 (correct) variants showed grad-
ually decreasing LD decay patterns (SNP1, SNP2, SNP3,
and SNP4 in Fig. 4B). Erroneous variants (type 2 and 3
variants: SNP5, SNP6, SNP7, and SNP8 in Fig. 4B) did
not show gradually decreasing LD decay patterns. These
two types were difficult to distinguish from each other,
but it was expected that type 2 variants have high LD val-
ues with other SNPs in the same homoeologous region
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Fig. 3 Figures regarding the Holiday x Korona mapping population. (A) The ratio between all SNPs and the number of SNPs that have the highest LD
with a marker bin on the same chromosome (All LD), and the ratio of SNPs that have an LD value > 0.5 with the best marker bin on the same chromosome
(LD=0.5). (B) The ratio of the number of SNPs that have the highest r? (=0.5) with a marker bin on a homoeologous chromosome to the total number of
SNPs per chromosome. The dashed brown line represents the mean of this ratio over all chromosomes. (C) The total number of segregating SNPs in the
H x K population per chromosome. D, E) Histograms of the number of SNPs that are heterozygous in at least Holiday (P1) or Korona (P2) plotted against
the number of heterozygous calls per SNP (figure D) and their Average Allele Balance (figure E). All SNPs assessed without selection are in blue (no filter),
from these, all SNPs that have r?>0.5 with a marker bin (on any chromosome) are in orange. From these SNPs in orange, the SNPs that have ?>0.5 with

a marker bin on chr_1A are depicted in green

because homoeologous SNPs seemed to group in regions
(e.g., SNP5 and SNP8). In addition, they were also bro-
ken up by smaller regions where no homoeologous SNPs
were present. Consequently, it was expected that type 2
variants would have higher LD values with multiple SNPs
but these were concentrated in several (or one) small
region(s). On the contrary, type 3 variants were expected
to have lower LD values in general (e.g., SNP6 and SNP7).

Discussion

Allo-octoploid strawberry can be treated as a diploid
in most genetic analyses due to its disomic inheritance.
However, allopolyploidy causes issues in genomics due to
the high sequence similarities across its subgenomes. The
partial misalignment of sequencing reads could result in
erroneous variants (type 2: homoeologous variants; and
type 3: multi-locus variants) which are not filtered out
by common filtering criteria such as read depth or map-
ping quality. These erroneous variants cause problems
in downstream analyses such as difficult interpretation
of GWAS results and lower phasing accuracy [11, 14].
Therefore, it is crucial to develop filtering strategies that
can tag these erroneous variant types.

Mapping population illustrates the need for filtering

From the segregating SNPs in the biparental mapping
population for which Pearson’s correlation coefficient
could be computed with marker bins (r?>0.5), most
SNPs were assigned to the correct (same) chromosome,
but a small number was assigned to a different chromo-
some. The percentage of SNPs going to a homoeologous
chromosome (3.2%) after filtering on r* was like what has
been found in another study (5%) for the same popula-
tion, which assigned SNPs to subgenomes based on the
consensus chromosome and position of the marker bin
[16]. One major difference was that this study used an
older reference genome (Camarosa v1) while in our study
a reference genome of better quality (FaRR1) has been
used [7, 8]. Although these percentages could not be
directly compared due to the different filtering methods,
SNPs that belong to other homoeologous chromosomes
were prevalent in both studies, and most likely due to
similarities in DNA sequence between subgenomes. An
improved reference genome might improve this issue in
case of misassemblies, deletions, and missing parts of the
assembly. The use of pangenomes could further mitigate

these issues because there is more diversity in the pange-
nome than a single reference genome which means that
chances are higher that the correct subgenome (of any
reference genome in the pangenome) is more similar to
the read than homoeologous subgenomes. However, a
pangenome alone will never completely solve these issues
because it is still limited to the reference genomes repre-
sented in the pangenome. An alternative could be longer
reads (>150 bp) which are more likely to align uniquely
in a single subgenome.

The above analysis only considers SNPs that have an
?>0.5, so those that are wrongly assigned are mainly
erroneous SNPs that are of type 2 (homoeologous SNPs).
Most SNPs of type 3 (erroneous SNPs due to reads origi-
nating from several chromosomes) would have been
excluded already in the filtering step. These type 3 SNPs
fall in the category “Not Predicted” (Table 2), ie., the
SNPs for which either no Pearson’s correlation coefficient
could be computed (due to too little variation) or the
SNPs that are filtered out by r*>0.5. There are more SNPs
in this “Not Predicted” category than the type 2 SNPs.
The “Not Predicted” category reaches 18.6% of the total
number of SNPs if r? filtering (>0.5) is applied. How-
ever, this category does not only consist of type 3 vari-
ants because also sequencing errors will dedicate SNPs to
this category, especially because of errors in a relatively
small mapping population. Therefore, the real percentage
of type 3 variants will be lower than 18.6%. Nonetheless,
this is a large proportion of the total number of SNPs,
larger than the type 2 erroneous variants (4.5%). This
emphasizes the importance of adequate filtering methods
in allo-octopoid strawberry even more.

Average allele balance only partly tags type 2 and 3
variants

Mapping populations are useful in many genetic studies
due to the simple inheritance patterns, the H X K popu-
lation gave us insight into the type 2 and 3 variants and
the effectiveness of subsequent filtering strategies. We
found a Gaussian distribution of heterozygous individu-
als per SNP around 50% of the population size (which
in our study is 24) but we also found a small enrichment
of SNPs that deviated from 50% heterozygosity with
almost 100% heterozygosity (Fig. 3D). The best filter-
ing method in this mapping population is by comparing
the SNPs with the “ground truth”: the marker bins of the
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genetic map. Sufficient r? (>0.5) with one of these marker
bins shows that these SNPs are either type 1 or type 2
because their segregation pattern is similar to a segregat-
ing marker bin. If this marker bin is located on the same
chromosome (chr_1A), the SNP can be considered as a
type 1 variant, otherwise it is a type 2 variant. These type
2 variants are mainly composed of variants that have
high r* with marker bins on homoeologous chromo-
somes (4.5%, Fig. 3B). The remaining SNPs (13.3%) do
not have a segregation pattern that is expected so these
can be considered as type 3 variants or as variants with
too many errors. The average allele balance (Fig. 3E)
seems to have skewed values that might be attributed to
reference bias. The average allele balance of the different
variant types does seem to have different values, type 1
variants, in green, mainly have an AAB of around 0.5 but
have tails extending to 0.2 and 0.8. Type 2 variants, in
orange, mainly have AAB values between 0.6 and 0.8 just
as the variants in blue which are either type 3 variants or
just variants with too many errors. This means that false
variants tend to have inflated AAB values which explain
most of the skewed AAB values (shoulder pattern). On
top of this, filtering only on average allele balance (e.g.,
0.35<AAB<0.65) is not sufficient as it filters out some
type 1 variants (Fig. 3E).

Interestingly, some variants had r*<0.5 with a marker
bin and did have average allele balances around 0.5.
Possible causes are e.g., misassembly of the reference
genome or an inaccurate AAB due to a limited number
of heterozygous calls. These variants cannot be filtered
out by filtering on average allele balance. In addition,
when 0.35<AAB<0.65 is used as filtering criteria, the
enrichment of SNPs with almost 100% heterozygos-
ity did not decrease much (Supplementary Figure S2A).
This indicates that these SNPs do not have an obvious
skewed AAB, which could be caused by two reasons.
First, the segregating SNPs are selected based on the
parental variant calls. So if one of the parents is scored
as heterozygote whereas biologically it is homozygous,
there is no segregation in the offspring. Second, if these
variants are subgenome-specific variants, where reads
from a homoeologous chromosome align then a variant
is almost always scored as heterozygous, i.e., half of the
aligned reads originate from the original chromosome
but the other half of the aligned reads (including a differ-
ent nucleotide: a subgenome specific SNP) comes from a
homoeologous chromosome. These SNPs will not segre-
gate in a mapping population and are expected to show
an average allele balance of approximately 0.5.

Diversity panel LD-based predictions match mapping
population predictions

To investigate whether similar results can be achieved
in a diversity panel without the use of marker bins from
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a genetic map, an LD-based approach for the diversity
panel was investigated. If the specific quality filtering
criteria are applied for each population (r* with marker
bin>0.5 and ratio SSLD>0.8) and only predicted SNPs
are considered, 99.2% accuracy is achieved on chr_1A for
110,459 SNPs in total (Table 2). This means that the LD-
based filtering in a diversity panel is a good solution to
find type 1 and 2 variants, therefore avoiding the need for
setting up and genotyping many mapping populations.

On the other hand, type 3 variants are difficult to com-
pare between the two populations. In the mapping popu-
lation, the group of SNPs that were of type 3 or that had
too many errors was 13.3% of the total number of SNPs.
In the diversity panel, the “Not Predicted” group, i.e., the
group of SNPs that do not fulfill the filtering criteria, is
composed of type 3 SNPs, SNPs with too many errors but
also SNPs with MAF<0.05 (MAC<13). However, similar
numbers of SNPs (8987 in total) were not predicted with
LD-based (r?) analysis in both the mapping population
and the diversity panel. This indicates that these SNPs are
probably type 3 variants because they have neither a clear
linkage with marker bins in the mapping population nor
with SNPs in the LD anchor set from the diversity panel.

As shown in Table 2, the majority of the predicted SNPs
were predicted on the same subgenome in both popula-
tions. A smaller proportion of SNPs was not predicted
in one of the two methods which is mainly caused by
the MAF <0.05 filtering in the diversity panel and by the
SNPs for which no Pearsons correlation coefficient could
be computed. However, when the SNPs were filtered in
both populations (marker bin r*>0.5 & ratio SSLD>0.8,)
the number of SNPs in the “Not Predicted (in one of the
two)” group increased with 7435 SNPs, which means that
these were filtered out on the quality filtering criteria.
This means that the subgenomes of these SNPs could be
predicted in one population (classified as type 1 or 2 vari-
ants) but not in the other (classified as type 3 variants). A
reason why some variants could be considered as type 1
or 2 in one population but as type 3 in another popula-
tion could be that the accuracy of a variant classification
is not consistent for all individuals. It could be that reads
from certain genotypes align to a wrong subgenome, but
reads from the same location but from different geno-
types align to the correct subgenome. As a result, these
variants can behave as type 1 (correct) variants in one
genetic background but as type 2 or 3 variants in other
genetic backgrounds. In the LD analysis in the diversity
panel, this could give consistent segregation patterns for
multiple variants if this phenomenon occurs for a larger
region.

In comparison with the method for placing unposi-
tioned variants introduced by Yadav et al. [18], we fol-
lowed a similar rationale but because of the different
purpose we needed a different method. Their method
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predicts the position of target variants if the top 2 vari-
ants with the highest LD are anchored on the same
chromosome. This is disadvantageous for identifying
erroneous variants in strawberry because erroneous vari-
ants (type 2 and 3) could have 2 variants with the high-
est LD on the same subgenome but are still erroneous.
This is because the alignment of reads to the wrong sub-
genome may extend to small regions as has been shown
in the results for chromosome 1. In addition, one of the
variants with the highest LD could be a homoeologous
variants (type 2) causing disconcordance between the
subgenomes of the two anchored variants with the high-
est LD. As a result, some correct type 1 variants could
remain unpredicted. This could be mitigated by extend-
ing the number of variants in the anchor set. In addition,
the accuracy of both the method from Yadav et al. [18]
and our LD-based identification of erroneous variants
will improve by extending the diversity panel with extra
genotypes, thereby increasing allele counts and distinc-
tiveness of variant segregation patterns.

Colocalization of type 2 variants

In the mapping population regions with type 2 variants
of varying lengths could be identified (Fig. 1). In gen-
eral, these regions were fragmented. The same graph was
made based on chromosome predictions of the LD-based
filtering in the diversity panel and similar patterns could
be observed, only the fragmentation increased (Fig. 2).
This means that indeed SNPs are colocalizing, but the
regions with these type 2 variants were small and frag-
mented. This is also what could be seen in LD decay
plots, where SNPs that were predicted on a homoeolo-
gous chromosome were in LD with SNPs on the origi-
nal chromosome, but these SNPs clustered together in a
small region (SNP5 and SNP8 in Fig. 4B). Interestingly, in
the mapping population, there was a tendency for SNPs
at the top of chromosome 1 A to have high LD values
with marker bins on chr_1D (Fig. 1) and in the diversity
panel, this 1 A region also has SNPs predicted on chr_1D
(Fig. 2). This was expected due to the high percentage of
overlapping predictions by the mapping population and
the diversity panel.

LD-based SNP filtering in a diversity panel successfully
filters out erroneous variants

The effect of the filtering methods was tested on down-
stream phasing by computing switch error rates (SER)
after phasing the different filtered SNP datasets. The
assumption was that if more erroneous SNPs are present
in the dataset the switch error rate will increase. From
the results, LD-based SNP filtering in a diversity panel
proved to result in better results than filtering on aver-
age allele balance. However, if average allele balance fil-
tering was added on top of the LD-based filtering, the
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switch error rate improved slightly. This indicated that
most but not all erroneous variant types (types 2 and
3) were already filtered out by LD-based filtering alone,
leaving room for slight improvement. To further improve
the phasing accuracy, for example, the ratio of SSLD filter
could be set more stringent, or the anchor set could be
extended or improved.

Interestingly, the switch error rate varied across the dif-
ferent chromosomes, e.g., chr_7B had a higher SER after
filtering than chr_5B, chr_6C, or chr_6D had before fil-
tering. However, this was probably due to phasing char-
acteristics and not by different filtering success across
chromosomes because the switch error rate pattern
seemed to be consistent among different filtering meth-
ods. For example, this could be due to runs of homozy-
gosity, then only erroneous type 2 and 3 variants are
used for SER estimation in these regions resulting in
higher SER. Regions of selection could also influence the
SER per chromosome, suggesting that selective pressure
results in higher allele counts for variants linked to this
allele, thereby decreasing allele counts of variants linked
to other alleles at that location. These rare variants com-
plicate phasing efforts [21]. This could be the case for
chr_7B because a major gene for resistance to Phytoph-
tora cactorum (FaRPc-2) is located on this chromosome
[23]. To mitigate this, a larger diversity panel could be
utilized, focusing on adding rare genetic variation instead
of genetic variation already represented well in the origi-
nal panel, for example by constructing a breeding core
collection [24].

LD decay plots illustrate why LD-based filtering works

The LD decay analysis gave insight into why LD-based
SNP filtering works in a diversity panel. The plots in
Fig. 4B showed typical LD patterns of SNPs that were
predicted to be type 1 (SNP1, SNP2, SNP3, SNP4). These
patterns differed from the SNPs that were predicted to
be located on another chromosome (type 2) or SNPs that
had a low ratio of SSLD (SNP5, SNP6, SNP7, SNP8). The
LD decay of the latter types was not as that of the type
1 SNPs because it was either fragmented (SNP5, SNP8)
or not systematically declining with physical distance
(SNP6, SNP7). Fragmentation could be expected because
several small regions of homoeologous chromosomes
will interfere, but not all, resulting in fragmented LD pat-
terns. A systematic decline is not expected for SNPs that
are type 3 variants, where reads from multiple origins
combine into a single SNP resulting in a specific variant
calls pattern with many heterozygous variant calls. There-
fore, the SNP has a low chance of being in high LD with
SNPs from the anchor set but there will be several SNPs
that also have many heterozygous variant calls resulting
in moderate LD values with SNPs scattered throughout
the genome (SNP6, SNP7).
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Genetic structure in populations

When using the LD-based SNP filtering in other popu-
lations one should be aware of the genetic structure of
the population because it could influence the outcome
of LD-based SNP filtering. The assumption for using the
LD-based filtering method is the following: for any true
variant multiple other variants show a similar segregation
pattern on the same subgenome. If, for any reason, this
assumption is violated in a certain population or for cer-
tain variants, this method should be used with caution.
For example, for recent mutations in the genome which
are rare but true variants, there are not many other simi-
lar variants. Second, true variants that are in high LD but
on different chromosomes cannot be distinguished from
false variants and will subsequently be filtered out by this
analysis. This can occur if there has been strong selection
pressure in the population for multiple alleles at the same
time.

Conclusions

In conclusion, this paper shows that LD-based filter-
ing can tag erroneous variants that are the result of high
sequence similarity among subgenomes in allopolyploid
strawberry. Type 2 and 3 variants can be identified and
filtered out which improves downstream genomic analy-
ses, in this case, it decreased the phasing error by 44%.
It is important to know which subgenome is important
for a desired phenotypic value of a particular trait and fil-
tering out these erroneous variants decreases the chance
that a wrong subgenome is associated with such a trait.
In addition, it improves phasing accuracy which ensures
that important alleles are easier to trace through the
germplasm.
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