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Abstract 
Marine biodiversity is increasingly threatened by human activities, 
necessitating robust monitoring to assess conservation and 
restoration efforts. Traditional methods, such as fisheries surveys and 
diver observations, are invasive, incomplete, and limited in scale. 
Deployable multi-sensor systems present a promising alternative for 
large-scale, long-term monitoring of marine animals, with passive 
acoustic monitoring (PAM) emerging as a particularly effective 
approach. Commonly applied to birds, PAM records animal sounds to 
monitor species presence. Since sound travels farther than light 
underwater and many marine species communicate acoustically, 
PAM is well-suited for marine environments. However, its application 
for fish and invertebrates remains restricted due to the lack of 
species-specific reference sounds and labour-intensive manual data 
analysis.  

This EngD thesis aims to enhance the efficiency of PAM and support 
its integration into autonomous multi-sensor monitoring systems. The 
work is structured into four work packages (WPs): WP1 focuses on 
collecting underwater acoustic data for species identification and 
training deep learning models; WP2 involves designing adaptable 
sound detection models capable of performing across diverse 
environments with minimal training data; in WP3  an embedded, 
autonomous underwater recorder is developed with onboard 
processing capabilities; and WP4 introduces a dashboard for real-
time visualisation and communication of acoustic data, supporting 
outreach activities such as stakeholder engagement and public 
participation. 

Data were collected through field deployments, collaborations, and 
open-access repositories to train automatic sound detectors. An 
active learning workflow, Agile Modelling, was adapted to rapidly 
develop fish sound detectors with minimal manual effort, proving 
effective across various marine environments and sound types. In a 



 

pilot study using North Sea recordings, a model trained for only one 
hour achieved a precision of 0.98 and a recall of 0.53 in detecting 
putative fish sounds. A prototype autonomous underwater sound and 
video recorder was also built and successfully deployed. A real-time 
dashboard was developed to display animal sound detections, using 
previously trained models. Further integration is needed in the audio-
video recorder to enable onboard data processing, including support 
for deep learning models and connectivity to dashboards, facilitating 
use by biological researchers. 

This work advances the feasibility of PAM for fish and invertebrates by 
addressing critical bottlenecks in data analysis and taking a step 
forward towards efficient collection of reference sounds. The 
developed tools and methods enhance marine biodiversity 
monitoring across broad spatial and temporal scales, supporting 
improved ecosystem assessments and conservation efforts. 
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1 Introduction 

1.1 Context 

Marine biodiversity not only deserves protection for its own right, but 
it also plays crucial roles in the existence and sustainable 
development of human society, as recognised in the Sustainable 
Development Goals1. Marine biodiversity supports food security, 
generates local income through tourism, enhances water quality, 
strengthens coastal protection, sequesters carbon, and provides 
cultural services (Palumbi et al., 2009; Rodrigues et al., 2017). 
However, marine biodiversity is declining globally due to human 
activities such as destructive and over-fishing, shipping, urbanisation 
of coastal areas and subsequent pollution, and global warming 
(O’Hara et al., 2024). The study and protection of marine fauna 
received less conservation effort than terrestrial biodiversity, due to a 
lack of visibility and subsequently public awareness, historical 
research focus bias, and logistic challenges associated with 
surveying underwater (Caldwell et al., 2024). Enhancing public 
awareness and accurately monitoring marine ecosystems are 
essential for effective conservation and restoration efforts. 

Unfortunately, monitoring marine environments presents significant 
challenges, primarily due to limited accessibility. Traditional 
methods, such as fisheries data collection and SCUBA-based visual 
surveys, are invasive, costly, dangerous, geographically restricted,  
incomplete, and difficult to scale (Suarez-Bregua et al., 2022). 
Developing new monitoring approaches is essential to overcoming 
these limitations. Sensor technologies offer promising solutions to 
monitor marine environments while minimising risks to researchers, 
reducing disturbances to marine ecosystems, providing access to 
remote or dangerous areas, and allowing for easy replication. 

 
1 https://sdgs.un.org/goals/goal14 

https://sdgs.un.org/goals/goal14
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Passive Acoustic Monitoring (PAM) involves listening and analysing 
ambient sounds, often using sound recorders, in various 
environments, including underwater. Sound travels about four times 
faster in water than air and typically farther than light, making it an 
effective communication medium for marine species.  As a result, 
numerous marine organisms rely on sound for communication, 
navigation, predation, and reproduction (Erbe et al., 2016; Ladich, 
2004; Solé et al., 2023). The study of these sounds is similar to the 
study of bird songs on land and is known as bioacoustics. Just as 
birds use vocalisations to communicate, marine species produce a 
wide range of sounds that provide valuable ecological insights 
(Mooney et al., 2020). Passive acoustic monitoring differs from active 
acoustic monitoring, which relies on sound emissions from tags or 
sonar. Instead, PAM uses microphones or hydrophones (underwater 
microphones) to passively capture ambient sounds, referred to as 
soundscapes. A soundscape is composed of multiple sounds that are 
typically categorised into three groups based on their source: biotic 
sounds (produced by non-human animals), abiotic sounds (resulting 
from environmental factors such as rain, waves, and wind), and 
anthropogenic sounds (made by human activities).  

For analysis, sound recordings are often converted by acousticians 
into spectrograms, visual representations of the spectrum of 
frequencies varying with time, and then annotated (Figure 1). 
Annotations are indications of the presence of a sound event in a 
recording and appear as rectangular boxes on spectrograms; a label 
can be added to each annotation (Figure 1). When possible, labels 
correspond to the source producing the sound, e.g. a species name 
(Figure 1). Label naming is typically study-specific as no standardised 
practices exist yet. 
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By analysing biotic sounds with autonomous recorders, PAM enables 
minimally invasive biodiversity monitoring across broad temporal and 
spatial scales, including in dark and dangerous conditions. This 
approach has been widely applied to study various taxonomic groups, 
including birds, bats, cetaceans, and anurans. (Gibb et al., 2019; 
Mooney et al., 2020; Sugai et al., 2019). Yet, the application of PAM to 
monitor non-mammal marine animals, such as fish and 
invertebrates, remains in its early stages. Recent studies suggest 
PAM’s untapped potential for monitoring fish in multiple contexts, 

including species presence assessment (Lindseth and Lobel, 2018), 
invasive species detection (Amorim et al., 2023), improved knowledge 
of red-listed species distribution (Bolgan et al., 2023), relative fish 
abundance in estuaries (Souza Jr et al., 2023), and the detection and 
characterisation of fish spawning sites (Chérubin et al., 2020; Wilson 
et al., 2019). A global inventory of underwater species based on their 
ability to produce sound suggests that PAM can effectively monitor a 
wide range of species (Figure 2). However, the effectiveness of PAM is 
currently limited by two major challenges: (i) the sheer volume of data 

Figure 1: Example of a spectrogram using a greyscale colourmap including two 
annotations of  sounds labelled as Epinephelus marginatus (dusky grouper) 
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generated by automatic recorders, which is impractical to analyse 
manually, and (ii) the scarcity of reference sound databases, which 
are essential for identifying sound sources.  

(i) Data volume & analysis 

Passive acoustic recordings can range from tens to thousands of 
hours, depending on deployment duration and the number of 
autonomous recorders used. Manually inspecting these recordings is 
time-consuming and therefore costly, limiting their use for long-term 
monitoring (Stowell, 2022). In terrestrial bioacoustics and marine 
mammal research, analysis has been successfully automated using 

supervised machine learning, for which detection models are trained 
on verified examples. More specifically, deep learning—neural 
network-based models—have outperformed traditional machine 
learning techniques in most bioacoustics applications (Stowell, 
2022). However, supervised deep learning requires extensive 
amounts of annotated training data, particularly for applications 
across diverse environments and for different sound types. Currently, 
no large, annotated datasets exist for fish or marine invertebrate 

Figure 2: Inventory of underwater species based on known sonifery. For 
marine invertebrates, only the species studied for sound production are 
displayed. Sourced from Looby et al., (2023b). 
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sounds, hindering the development of effective deep-learning models 
for automatic analysis. Although some fish sound detectors have 
been developed, these are limited to specific sounds or specific 
locations, reducing training data requirements, but limiting their 
applicability to other environments (Ibrahim et al., 2018; Laplante et 
al., 2022, 2021; Mouy et al., 2024; Urazghildiiev and Van Parijs, 2016; 
Waddell et al., 2021). 

(ii) Limited reference sound databases 

Passive acoustic monitoring for fish and marine invertebrates is 
impeded by the lack of reference sounds in reference databases. 
Phylogenetic analysis suggests that over 22,000 of the approximately 
34,000 actinopterygian (ray-finned fish) species are known or 
presumed to produce sound (Looby et al., 2023a; Rice et al., 2022). 
However, a literature review found that active sound production has 
been directly studied in only about 4% of these fish species (Looby et 
al., 2022). Marine invertebrates also produce sounds (Solé et al., 
2023), with reported active sound production in three groups: 
bivalves, echinoderms, and crustaceans. Among them, crustaceans 
have demonstrated evidence of using sound for communication (Solé 
et al., 2023). Sound production has been studied in approximately 50 
marine invertebrate species, with 35 confirmed or likely to produce 
sound. Based on the 211,367 species listed in the World Register of 
Marine Species as of the date of writing, it is estimated that the count 
of marine invertebrate species largely exceeds 100,000 (Costello et 
al., 2013). Thus, significant knowledge gaps remain in the study of 
sound production in both fish and marine invertebrates. 

Data collection initiatives emphasise the importance of gathering and 
classifying sounds from unidentified sources for future use (Looby et 
al., 2023a; Parsons et al., 2022). Sounds from unidentified sources 
can become valuable once linked to a reference sound and can be 
used to deduce the sound source species through cross-referencing 
(Vieira et al., 2024) or to estimate fish diversity and abundance in 
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certain environments (Jarriel et al., 2024a). Recently, the efforts to fill 
reference databases have increased, including recording animals in 
aquaria (Almunia et al., 2024), localising sound sources with 
microphone arrays (Pyć et al., 2021), and integrating techniques such 
as portable audio-video arrays (Mouy et al., 2023). 

The Marine Animal Ecology group at Wageningen University 
developed the Biodiversity Sensing Box (Figure 3), an autonomous 
monitoring system deployable in locations that are less applicable or 
accessible for other approaches. While currently focused on 
monitoring the North Sea, the system is adaptable for use elsewhere. 
Its modular design allows for easy replication with different sensor 
combinations, enhancing scalability and versatility. Currently, the 
Biodiversity Sensing Box integrates three monitoring techniques 
operating independently: sound and video recording, as well as 
environmental DNA (eDNA) collection (Yu et al., 2024). An 
autonomous sound recorder captures the soundscape continuously. 
Underwater cameras record video within a visibility range determined 
by water turbidity, allowing species identification under favourable 
conditions. Environmental DNA analysis detects species by 
comparing waterborne DNA fragments with a reference genome 
database. This method has been successfully applied to assess fish 
diversity, track temporal changes in fish communities, and monitor 
migration routes and has additional applications (Doorenspleet et al., 
2025). However, despite rapid advancements, eDNA analysis still 
requires extensive laboratory work after sample retrieval and is 
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susceptible to contamination in both field collection and analysis, 
limiting scalability and reliability. 

Integrating eDNA, video, and acoustic sensing can improve 

monitoring accuracy and coverage due to the complementarity of 
these techniques (Cabrito et al., 2024). In addition, combining these 
monitoring methods could enable synergistic applications, such as 
targeted eDNA sampling triggered by acoustic or visual detection of 
marine animals, thereby increasing the likelihood of capturing DNA 
fragments by confirming animal presence at the time of sampling. 
While the literature suggests combining eDNA and PAM  in a single 

Cameras 

 

eDNA filters 
 
 

Sound recorder 
 

Computing module 

Figure 3: The Biodiversity Sensing Box 
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system, which would mutually benefit both techniques, such 
integration has yet to be implemented (Miksis-Olds and Watts, 2019). 
To achieve sound event triggered eDNA sampling, an onboard, real-
time automatic analysis of acoustic signals is required. Such a smart 
sensor system, equipped with a computer running machine learning-
based acoustic detection models, will improve monitoring 
capabilities by enabling real-time insights into local biodiversity and 
the synergistic integration of eDNA sampling, video recording, and 
bioacoustics monitoring. 

1.2 Aim and objectives of the project 

This project aims to design and implement a novel, integrated PAM 
system designed for use within intelligent multi-sensor monitoring 
systems, such as the Biodiversity Sensing Box. The project will 
address key limitations currently hindering the broader application of 
PAM, specifically focusing on improving the accuracy, spatial and 
temporal coverage and system efficiency. To this end, a system 
capable of automated onboard processing and real-time 
communication will be developed. The project is structured around 
four interdependent work packages (WPs), each contributing to a 
specific aspect of system development and integration: 
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WP1: Collection of underwater bioacoustics data.  
Reference sounds are collected for species 
identification in recordings. In addition, datasets and 
annotations support the development of supervised 
deep-learning models. The data collection is designed 
for scalability and collaboration.  

WP2: Development of machine learning 
bioacoustics detectors.  
The models automatically detect sounds of interest in 
underwater recordings from files or data streamed by 
the hydrophone. The models provide, when possible, 
identification and confidence scoring. The method for 
developing detectors considers the lack of training data 
available and the possibility of being generalised to new 
sounds and environments. 

WP3: Building an embedded system for real-time 
monitoring.  
The embedded system includes a computer housed in 
a watertight enclosure and connected to a hydrophone 
for real-time data access and processing. The system 
runs machine learning models and has a dedicated 
power source. 

WP4: Development of a graphical user interface for 
bioacoustic monitoring. A dashboard (WP4a) displays 
sound acquisition and automatic detection in real time 
and enables user interaction. Additionally, an interface 
(WP4b) facilitates rapid training and the use of 
machine-learning models for detecting sounds in 
underwater recording files. 
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Figure 4 shows a system analysis of the project, including the 
different work packages. The database supports the training of 
automatic detection and classification models. Trained models are 
integrated into the embedded system for real-time detection. 
Detections are displayed on the dashboard and can be combined 
with other monitoring techniques, e.g. triggering eDNA sampling 
(Figure 4). In addition to real-time onboard detection, models enable 
faster analysis of recordings compared to manual processing. The 

Interface (WP4b, not shown in Figure 4) allows stakeholders to use 
pre-trained models without programming, addressing common 
accessibility and reusability challenges in machine learning methods 
for bioacoustics (see Section 2.2 for details).  

  

Figure 4: overview of the 4 interconnected work packages (WPs) to be developed in 
this project for developing an integrated PAM system for integration in a multi-
sensor monitoring approach. 
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2 State-of-the-art and prior attempts 
For each work package, an initial search for prior solutions was 
conducted at the beginning of the project, followed by regular 
updates to incorporate the latest developments. Analysing the state-
of-the-art research is needed to build further on existing knowledge, 
identify key challenges, and select the most suitable, up-to-date 
methodologies. This section provides an overview of the relevant 
knowledge per WP, it does not aim to be an exhaustive literature 
review on bioacoustics monitoring approaches. 

2.1 WP1. Availability of underwater bioacoustics data 

The availability and accessibility of different types of 
underwater bioacoustics data were examined to develop a 
novel PAM system. Passive acoustic monitoring based on 

machine learning models requires two types of data to be most 
effective. First, reference sounds to identify the animals producing 
the recorded sounds. A recording featuring only the sounds of a 
specific species, when shared in an accessible database, is called a 
reference sound. Unidentified reference sounds can also be shared 
when the sound source is unknown, until the species name can 
replace a descriptor(examples provided in section 2.1.3). Second, 
datasets of recordings from the field, preferably with annotations. 
Annotated recordings contain labelled sound events, whereas 
recordings without annotations are referred to as raw data. If the 
sound source is unknown, descriptive labels are used until future 
identification and the data are then classified as unidentified 
annotated data, with the sounds termed unidentified sounds.  

Annotations are essential for training deep learning models for 
automatic detection. For optimal performance, annotated data 
should be abundant and representative of the environment where the 
detector will be used. As the Biodiversity Sensing Box will primarily be 
deployed in the North Sea, this project will focus on recordings from 
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the North Sea, while aiming to make the developed approach 
transferable to other regions in the future. 

2.1.1 Existing reference sound databases 

The current state of sound reference databases for fish and marine 
invertebrates was examined, as well as the infrastructure used in bird 
acoustics for comparison and inspiration. The field of bird acoustics 
is more established and developed than that of fish and marine 
invertebrates, providing valuable insights for future development. 

The development and maintenance of reference databases is an 
active area of bioacoustics research. In a review listing existing 
underwater sound reference databases, (Jarriel et al., 2024b) found 
that of the 19 projects referenced, 14 focus on specific regions, such 
as the Ocean Biodiversity Listening Project in the western Pacific2The 
Australian Fish Chorus Catalogue3, and the San Francisco Maritime 
National Park Historic Naval Sound archive4(Jarriel et al., 2024b). One 
database, Animal Sound Archive5 from The Museum für Naturkunde 
Berlin is dedicated to European regions, the database covers many 
taxonomic groups, including fish, but currently only contains 
recordings from two Actinopterygii species.  

Five libraries have a global scope, e.g. FishSounds is dedicated to the 
collection of reference sounds of fish worldwide (Looby et al., 2023b). 
FishSounds.net is actively updated and compiles all reference fish 
sounds available in scientific literature and other sources (Cox et al., 
2023). However, all reference databases only include a fraction of 
sound-producing species. For instance, of the more than 160 fish 
species reported to occur in the North Sea, 124 species are predicted 

 
2 https://sites.google.com/view/marine-ecoacoustics/projects/biodiversity-

listening-project, 
3 https://doi.org/10.26198/qfj2-jj93 
4 https://maritime.org/sound/ 
5 https://www.museumfuernaturkunde.berlin/en/science/animal-sound-archive 

https://sites.google.com/view/marine-ecoacoustics/projects/biodiversity-listening-project
https://sites.google.com/view/marine-ecoacoustics/projects/biodiversity-listening-project
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdoi.org%2F10.26198%2Fqfj2-jj93&data=05%7C02%7Csierra.jarriel%40whoi.edu%7C7e595a76339a474a373308dc88780a11%7Cd44c5cc6d18c46cc8abd4fdf5b6e5944%7C0%7C0%7C638535296369787237%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=%2BugbrJLnY7JUzetyDNqxOyEC9ZeG623zkLeCCYVV5og%3D&reserved=0
https://maritime.org/sound/
https://www.museumfuernaturkunde.berlin/en/science/animal-sound-archive
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to actively produce sounds, while for only 16 species, recordings are 
available in reference databases (T. Maries, MSc thesis report, 2023). 

Currently, there are no dedicated databases exclusively for marine 
invertebrates; instead, these species are included only in a few 
region-specific sound libraries. Each of the five databases containing 
marine invertebrate recordings features sound from only one to five 
species, limited to shrimp, sea urchins, crabs and lobsters. 

In contrast, bird sound databases are already well-developed. The 
citizen-science platform Xeno-Canto enables global sharing and 
expert verification of bird recordings, currently covering 95% of all 
bird species (Vellinga and Planque, 2015). Recently, Xeno-Canto 
expanded to include sounds from grasshoppers, bats, and frogs. The 
database is widely used by researchers and companies to train 
machine learning models for biodiversity assessment. A key 
difference with FishSounds is the collaborative nature of Xeno-Canto, 
where citizens contribute recordings and species identifications, 
substantially accelerating data collection and expansion. 

The Xeno-Canto approach, however, cannot be directly applied to 
underwater bioacoustics due to unique challenges. Recording 
underwater is constrained by the limited accessibility to the 
ecosystems, the need for specialised equipment (e.g., waterproof 
cameras, underwater sound recorders), and lower public awareness 
and engagement. Additionally, humans cannot perceive the direction 
of sound underwater, making species identification by visual 
confirmation unreliable. Due to these limitations, there is currently no 
large community recording and sharing underwater sounds. 
Currently, FishSounds does not permit user uploads; instead, 
administrators curate sounds exclusively from scientific publications. 
While this approach improves the reliability of species identification, 
it also slows down data sharing, including the sharing of unidentified 
recordings. 
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2.1.2 Availability of annotated underwater recordings 

The use of annotated recordings is essential for training supervised 
deep-learning models. However, there is currently no preferred and 
widely adopted database dedicated to sharing large volumes of 
annotated underwater bioacoustics data, although several small 
initiatives exist. Jarriel et al. (2024b) catalogued thirty projects hosting 
underwater PAM data, detailing their status, data accessibility, and 
focus areas. The list includes repositories hosting raw or annotated 
datasets. Unfortunately, none of the reviewed databases contained 
datasets including annotations of fish sounds. 

In addition to exploring data hosting initiatives, field studies that 
share their datasets, including annotations of fish sounds, were also 
examined. Unfortunately, as supported by a literature review of 100 
publications concerning bioacoustics, in both terrestrial and marine 
studies, less than 20% of authors provide access to (part of) their raw 
data (Baker and Vincent, 2019). While several recent studies do 
discuss their manually annotated datasets of fish sounds, no access 
to the data is provided they do not provide access to the data 
(Monczak et al., 2019; Mouy et al., 2024; Picciulin et al., 2019; Watson 
et al., 2024). Personal exchanges with experienced researchers in 
underwater acoustics indicate that the substantial costs of field 
recording and manual data analysis discourage data sharing, 
favouring more restricted collaborations. 

Sharing unidentified Annotated underwater recordings 

Recent studies emphasise the ecological value of analysing 
unidentified sounds (Jarriel et al., 2024a; Mouy et al., 2024; Parcerisas 
et al., 2024). For example, the abundance of manually annotated 
unidentified sounds, assumed to be from fish, proved to be predictors 
for reef health indicators, such as fish abundance and coral cover, 
suggesting their potential use in assessing coral reef health (Jarriel et 
al., 2024a). 
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However, sharing unidentified sounds presents additional challenges 
due to the lack of dedicated infrastructure (Parsons et al., 2022). 
Moreover, inconsistent terminology in the literature, where 
descriptors such as "grunt," "pulse," "tonal," "knock," "boat whistle," 
"click," and "croak" are used interchangeably, hinders effective 
communication and comparison between studies (Looby et al., 
2023a).  

In the North Sea area, data-sharing efforts in underwater bioacoustics 
are primarily driven by individual initiatives rather than institution-
wide databases. Recent studies that generated unidentified 
annotated data, including an overview of fish sounds in the Wadden 
Sea (Watson et al., 2024) and a soundscape analysis in the Belgian 
part of the North Sea (Parcerisas et al., 2023a, 2023b), have 
contributed to regional knowledge. However, these datasets 
remained inaccessible at that time, thereby limiting the possibility of 
benefiting from the latest research. 

2.1.3 Availability of Raw Data Underwater Recordings 

Raw acoustic data are more frequently shared, likely due to lower 
invested analytical costs. However, according to the latest 
inventories of openly accessible underwater acoustic data from the 
United Kingdom Acoustic Network6 and a recent review (Jarriel et al., 
2024b), no long-term acoustic datasets are currently available for the 
North Sea. Extending the geographical scope of the search, the 
SanctSound project, a three-year deployment of autonomous sound 
recording units across U.S. marine sanctuaries, has publicly released 
an extensive dataset (Hatch et al., 2024). Soundscapes recorded in 
the Grey Reef and Stellwagen Bank marine sanctuaries in the 
Northwest Atlantic are expected to share similarities with recordings 

 
6 List from the United Kingdom Acoustic Network: https://acoustics.ac.uk/open-
access-underwater-acoustics-data/ 

https://acoustics.ac.uk/open-access-underwater-acoustics-data/
https://acoustics.ac.uk/open-access-underwater-acoustics-data/
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from the North Sea and to contain fish sounds, although these remain 
unannotated. 

2.2 WP2. State of the art of machine learning bioacoustics 
detectors 

Existing initiatives, challenges, and potential solutions 
related to the automatic detection and classification of 

marine animals sounds were explored, with a particular focus on 
methods applicable to the North Sea region, when possible. 

The advent of Deep Learning in Bioacoustics 

Machine learning, signal processing, and data mining methods have 
been used for years to extract relevant ecological information from 
acoustic data faster. However, recent progress in deep learning, 
models based on deep neural networks, have demonstrated superior 
performance in bioacoustics applications compared to traditional 
machine learning methods (Mouy et al., 2024; Stowell, 2022). This 
improvement is largely attributed to the ability of deep learning 
models to identify complex patterns and representations from large 
datasets. 

The application of deep learning in bioacoustics primarily relies on 
supervised learning, which necessitates substantial amounts of 
annotated training data. A key challenge in this domain is the 
generalisation issue, wherein models struggle to perform well on 
tasks or data distributions that differ from those encountered during 
training. Generalisation is particularly crucial in bioacoustics, as 
target sounds and environmental soundscapes exhibit significant 
variability, often leading to suboptimal model performance (Hamer et 
al., 2023; van Merriënboer et al., 2024). The extent to which a model 
generalises effectively is largely influenced by the quantity and 
diversity of its training data, yet obtaining or producing well-annotated 
datasets remains costly and time-consuming. 
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The most straightforward strategy to address generalisation is training 
models across diverse environments, increasing the likelihood of 
recognising familiar patterns in novel soundscapes. For instance, 
BirdNET, trained on extensive bird datasets from Xeno-Canto, has 
demonstrated reliable performance across multiple geographic 
locations (Kahl et al., 2021). In contrast, generalisation in aquatic 
bioacoustics remains particularly challenging due to the scarcity of 
annotated datasets covering diverse environments and sound types. 
The vast number of vocalising species and the complexity of 
underwater soundscapes further hinder the development of a globally 
applicable model.  

Consequently, previous studies have largely focused on designing 
species-specific models tailored to particular locations (Guyot et al., 
2021; Ibrahim et al., 2018; Waddell et al., 2021). These specialised 
models require only a reasonable amount of training data to achieve 
satisfactory performance. However, each new application in a 
different environment or for detecting a different sound requires 
additional annotated data and retraining of the model. This need for 
continual data collection and manual annotation poses a significant 
challenge in the widespread and quick adoption of bioacoustic deep 
learning models. 

Navigating the fragmented landscape of computational bioacoustics 
tools 

Deep learning methods have been successfully applied for efficient 
analysis of bioacoustics data. Numerous tools have been developed 
to facilitate model training and reuse (Napier et al., 2024). However, 
the proliferation of approaches has resulted in a fragmented 
landscape of independent initiatives, each with specific advantages 
but also contributing to the redundancy of development efforts 
(Darras et al., 2023). The number of existing tools hampers the 
identification, adoptability, and standardisation of suitable methods 
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and tools, which becomes increasingly time-consuming and 
complex.   

To mitigate these challenges, the website of the Global Library of 
Underwater Biological Sounds initiative hosts a catalogue of current 
sound-processing applications and their respective purposes for 
underwater bioacoustics, currently encompassing 92 references 
(Jarriel et al., 2024b). The resource needs to be continuously updated 
with the latest developments in automatic sound detectors for 
marine animals, e.g. FishSound-Finder (Mouy et al., 2024), Surfperch 
(Williams et al., 2024) and FADAR (Ibrahim et al., 2024). The list 
provides a centralised overview of existing tools for sound 
visualisation, signal processing, and automated detection. However, 
the short description provided for each tool is often insufficient to 
fully comprehend the capabilities of an application and determine its 
suitability for specific purposes compared to other tools. 

Currently, 50 sound processing applications are reported to enable 
automatic sound classification or detection, according to Jarriel et al. 
(2024b). Most software does not allow for training custom models but 
instead provides pre-trained models for direct application to specific 
environments or species. Models trained on other taxonomic groups 
than fish or marine invertebrates will likely exhibit limited 
performance when transferred to such other applications or locations 
due to differences in sound types and background noise. Although 
some models have recently been developed for fish sound detection, 
their direct applicability also remains limited, as they were trained on 
specific species and within distinct environmental contexts (Ibrahim 
et al., 2024; Mouy et al., 2024; Williams et al., 2024). The most 
promising approach for application in the North Sea is to use software 
that allows training deep-learning models on personal data for 
dedicated applications7(Bergler et al., 2022). Unfortunately, the 

 
7 https://arbimon.org/ 

https://arbimon.org/
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limited availability of annotated fish and marine invertebrate sound 
data (as shown in Section 2.1) remains a major limitation for 
developing sound classification and detection models. 

Machine learning methods in data-deficient context 

Specific machine-learning methods have been developed to mitigate 
the challenge of limited annotated data. One of the most commonly 
applied methods in this context is transfer learning, where a model 
trained on one task is reused for another related task with minimal 
additional training, referred to as fine-tuning. Transfer learning has 
been shown to enhance model performance while significantly 
reducing the amount of training data required for various bioacoustic 
applications (Dufourq et al., 2022). It has proven effective in cross-
taxa applications; for example, Ghani et al. demonstrated that 
knowledge gained from bird vocalisations improved model 
performance for other taxonomic groups such as frogs, bats or 
marine mammals (Ghani et al., 2023). A follow-up study successfully 
fine-tuned the bird detection model Perch to classify underwater 
sounds, including fish sounds, in tropical coral reefs (Williams et al., 
2024). This promising approach has encouraged ongoing research 
into developing models capable of detecting and classifying sounds 
across multiple taxonomic groups and realms (Hagiwara, 2022; 
Nolasco et al., 2023; Robinson et al., 2024b, 2024a). 

Beyond transfer learning, various other techniques can improve 
model performance while minimising the need for large training 
datasets. The following methods hold potential for bioacoustics 
applications: 

• Simulation-to-reality (sim2real): Generates synthetic training 
data and enables models to learn from simulated 
environments (Li et al., 2020). 

• Few-shot learning: Trains models using only a minimal number 
of annotated examples (Nolasco et al., 2023). 
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• Data augmentation: Expands training datasets artificially 
through transformations such as pitch shifting, noise addition, 
and time stretching, increasing data diversity (Park et al., 
2019). 

• Active learning: Involves a "human-in-the-loop" approach, 
where experts iteratively refine model predictions, reducing 
the need for extensive manual annotations (Qian et al., 2017). 

• Self-supervised and semi-supervised learning: exploit partially 
annotated or even raw data to enhance model training, 
reducing dependence on fully annotated datasets  (Baevski et 
al., 2020; Hagiwara, 2022; Moummad et al., 2023). 

While many of these techniques have been successfully applied in 
terrestrial or marine mammal bioacoustics, their effectiveness in 
training models for other marine animal sound detection in temperate 
regions remains largely unexplored. Further research is needed to 
assess their potential in addressing data scarcity in this domain. 

2.3 WP3. Components and prior solutions of an embedded 
system for real-time monitoring 

This section examines the components and prior solutions 
for developing an autonomous sound recorder with real-
time monitoring and onboard data processing capabilities.   

Although a hydrophone is a sensor that converts underwater pressure 
levels into voltage, typically based on a piezoelectric component 
(Figure 5a), the term hydrophone is also commonly used to designate 
underwater sound recorders. Sound recorders are self-contained 
units comprising a pressure-sensing element, an analogue-to-digital 
converter, and a storage mechanism for the recorded signal (Figure 
5b). When a recorder has its own power supply, it is called an 
autonomous recorder or autonomous recording unit. From this point 
on, a (sound) recorder refers to an autonomous sound recording unit, 
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while a hydrophone is used to designate the pressure-sensing 
element without digitisation or storage capabilities.  

Currently, the Biodiversity Sensing Box is equipped with a recorder, 
SoundTrap ST600 HF (Figure 5b) from Ocean Instruments (New 
Zealand). The SoundTrap ST600 is widely used in research due to its 
high autonomy, sensitivity, large frequency range, and robustness in a 
range of deployment conditions. SoundTrap ST600 sound recorder is 
contained in a watertight enclosure to withstand high pressure up to 
50 bars (so up to 500m depth), therefore, the data from the 
SoundTrap ST600 recorder can only be accessed after deployment via 
retrieval of the SD cards. 

To access and process the sound data in real-time, it therefore is 
necessary to create a custom autonomous recorder with onboard 
computing capabilities,  including: a hydrophone, an analogue-to-
digital signal converter, a computing unit capable of running deep-

Figure 5: a. Example of a hydrophone, A5 Hydrophone from Aquarian hydrophones 
(U.S.A). b. Example of a sound recorder, SoundTrap ST600 from National 
Instruments. The scale is different between the pictures. 
Sources: https://www.aquarianaudio.com/a5-hydrophone.html; 
https://www.oceaninstruments.co.nz/product/soundtrap-st600-std-long-term-
recorder/  

a. b. 

https://www.aquarianaudio.com/a5-hydrophone.html
https://www.oceaninstruments.co.nz/product/soundtrap-st600-std-long-term-recorder/
https://www.oceaninstruments.co.nz/product/soundtrap-st600-std-long-term-recorder/
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learning models, a power supply, and a watertight enclosure (Sousa-
Lima et al., 2013). Two initiatives for self-made recorders were 
identified in the scientific literature. Caldas-Morgan et al. (2015) 
developed a custom sound recorder using a Raspberry Pi (a single-
board computer), a self-made hydrophone, and a custom signal-
conditioning board. Bagočius and Narščius (2021) alternatively 
integrated a professional audio digital recorder within a watertight 
enclosure, connected to a hydrophone, and successfully recorded 
sound at a depth of 50 meters. 

For the desired application in the embedded system, a suitable 
hydrophone needed to be selected. Unfortunately, no recent review 
exists comparing the different hydrophones available on the market. 
There is, however, a personal blog describing a list of hydrophones, 
including some of their characteristics8. While not a verified and 
comprehensive source, the table gives a quick overview of the main 
hydrophone manufacturers and was used as an entry point into the 
topic for discussion with experts. 

Following the selection of the hydrophone, the other technical 
choices can be made that will be described in the design process 
section of the WP3 (Section 3.3). 

2.4 WP4. Design of a graphical user interface for 
bioacoustic monitoring 

Graphical user interfaces enable system interaction and real-
time functionality checks, facilitate the visualisation of data 

insights, including during deployments, and offer an engaging way to 
connect researchers, stakeholders, and the public with remote and 
unfamiliar environments. 

Existing initiatives of sound analysis software that provide graphical 
user interfaces (GUIs) were first explored. In a general overview of 

 
8 https://zachpoff.com/resources/choosing-a-hydrophone-for-field-recording/ 

https://zachpoff.com/resources/choosing-a-hydrophone-for-field-recording/
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existing tools for sound analysis, Jarriel et al. (2024b) list 23 tools for 
data exploration (including listening, editing, and producing 
spectrograms) that offer GUIs. In addition to data exploration, these 
tools include additional functionalities for various stages of the 
bioacoustics workflow, such as tools for manual data annotation 
(e.g., Audacity, Raven Lite, Sonic Visualizer), automated detection 
and classification of acoustic events (e.g., Koe Bioacoustics, 
Luscinia, WASIS), or multiple functionalities (e.g., Avisoft-SASLab Pro, 
PAMGuard, RavenPro). Some initiatives are also developed to be used 
for sound analysis of specific taxonomic groups, such as AviaNZ, 
BatExplorer, Robots4Whales, or Sonobat. 

Among the existing tools, RavenPro or PAMGuard already provide the 
possibility to visualise sound data in real time. However, adding new 
functionalities to such existing software can be challenging, time-
consuming, and limited to open-source applications. In the future, 
the aim is to integrate video functionality into the dashboard and 
incorporate additional data from sensors that will be included in the 
Biodiversity Sensing Box. Creating a custom dashboard allows the 
provisioning of personalised data flow and different functionalities for 
user interaction, e.g. displaying highlights of automatic detection of 
unusual events. Given the specificity of the requirements of this 
project, programming libraries for the development of GUIs were 
investigated to create a custom solution.  

Python-based initiatives were prioritised for compatibility with the 
solution chosen in the development of the embedded system (section 
3.3). Having experience with the programming language also helps 
reduce development time. Prominent open-source libraries for GUI 
development include PyQt9, Tkinter10, Kivy11, and WxPython12. PyQt is 

 
9 https://doc.qt.io/qtforpython-6/  
10 https://docs.python.org/3/library/tkinter.html  
11 https://kivy.org/  
12 https://wxpython.org/  

https://doc.qt.io/qtforpython-6/
https://docs.python.org/3/library/tkinter.html
https://kivy.org/
https://wxpython.org/
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a well-established, continuously maintained, open-source library that 
is supported by extensive documentation and an active developer 
community, facilitating efficient development. 

More recently, a compelling alternative has emerged, Gradio13, a 
library specifically designed for finding prebuilt components to create 
interfaces for machine learning applications. The library also features 
an integrated web server to share the new application with users and 
supports integration in Hugging Face, a widely used platform for 
sharing machine learning models and applications. Thus, enabling 
the creation of both deployable, dedicated interfaces and accessible, 
permanent web applications. Gradio has been used in prominent 
projects, including BirdNET Analyzer (Kahl et al., 2021), an open-
source application for bird detection that shares several 
functionalities with the objectives of WP4, such as using a pre-trained 
model to analyse recordings, displaying recordings, and extracting 
results of automatic analysis of recordings. 

  

 
13 https://www.gradio.app/ 

https://www.gradio.app/


25 

3 Methodology 
The methodology chapter presents, for each work package and based 
on the research of prior solutions in the previous chapter, the design 
process, the current solution and the main challenges encountered. 

3.1 WP1. Collection of underwater bioacoustics data 

This section focuses on the collection of annotated data for 
developing deep-learning models and reference sounds for 
species identification in recordings (Figure 6). 

3.1.1 Design Process of the underwater bioacoustics data collection 

Data were sourced from initiatives allowing the sharing and reusing of 
their datasets and reference sounds. These were then aggregated into 
a local repository for model development. The aim was to gather 
underwater sound recordings, preferably annotated and preferably 
from the North Sea. To achieve this, data were collected through 
openly accessible repositories, prior scientific studies, data-sharing 
collaborations, and in situ hydrophone deployments. 

Search in repositories and prior studies 

The SanctSound project (Hatch et al., 2024) served as an initial 
source of long-duration recordings containing marine animal sounds, 
given the lack of North Sea recordings in repositories and prior 
studies at that time. The SanctSound cloud repository hosts 
thousands of hours of raw audio data from multiple locations, with 

Figure 6: Overview of the development of an integrated passive acoustic monitoring 
system, for onboard processing of sound in a multi-sensor system, the Biodiversity 
Sensing Box, with a focus on work package 1, the data collection. 
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three sound recorders per site. These data were used to get 
familiarised with acoustic datasets, including sound visualisation and 
manual annotations. While annotation methods have been described 
in previous studies, practical experience is essential for improving 
efficiency and accuracy. The annotated data provided valuable 
hands-on experience in processing, analysis, and machine learning 
applications. Ultimately, SanctSound served as a preliminary 
resource for skill development and was incorporated into a local data 
repository to support model training. 

Reference sounds were obtained from the comprehensive 
FishSounds.net database. Although the platform does not yet offer a 
simple querying mechanism for its reference database, it allows for 
the manual download of reference sound species by species. 

Collaboration and scientific meetings 

To facilitate data sharing and strengthen collaborations, contact with 
experts in the field of bioacoustics through various scientific events 
was initiated, including the ARISE Day at Naturalis, the annual 
Bioacoustics day, the 5th World Ecoacoustic Congress, and the 
interdisciplinary art & science project Voices of the North Sea. These 
events provided opportunities to directly and indirectly establish 
connections, exchange knowledge, and explore potential data-
sharing agreements. 

A key outcome was the formation of a temporary working group on 
underwater bioacoustics during the Bioacoustics Day 2023. Formed 
in collaborations with researchers from the Vlaams Instituut voor de 
Zee (VLIZ), the University of Groningen, and the Norwegian Institute of 
Marine Research, the group aims to address challenges in sharing 
underwater sound data. Its primary focus is on standardising the 
classification of unidentified fish sounds based on measurable 
acoustic characteristics and improving data-sharing infrastructure. 
To advance these goals, two dedicated workshops were held. An 
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additional agreement was settled with VLIZ, granting access to a 
subset of their data in exchange for involvement in model 
development, analytical insights, and annotations. 

Unfortunately, some meetings did not result in collaborations due to 
differences in research priorities, time and budget constraints, or 
hesitancy toward data sharing. Nonetheless, these scientific 
meetings played a crucial role in identifying collaboration 
opportunities, understanding challenges in data sharing, and 
fostering discussions on standardisation in underwater bioacoustics. 

Sound recorder deployments 

To collect underwater recordings of the soundscape in North Sea 
environments, multiple deployments were conducted at various 
locations, using the SoundTrap ST600 recorder alone or connected to 
the Biodiversity Sensing Box. Several challenges were encountered, 
as the recording of marine animal sounds underwater remains a 
complex field with a lack of standardised protocols. Insights gained 
from these experiences were used to enhance data collection 
through improvements in both software and hardware usage (Table 
1). Unfortunately, deployments are costly, particularly offshore, 
limiting the number of attempts. 
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Table 1: Overview of experiences from deployments of the underwater sound 
recorder 

Deployments Status Issues Learnings 

Artificial reef 

Data was 
accidentally 
deleted during 
extraction 

Mistake in 
software use 

Reading the 
documentation more 
carefully 

Artificial wave 
breakers blocks 

Only 30-second 
file recordings 

Software 
misfunctioning 

Temporary fix with 
functional settings 
Developer contacted for 
permanent solution 

Wind farm 

Boat motor masks 
all the sounds 

Sound 
recorder 
positioned 
under the boat 

The recorder should be 
deployed further from the 
boat, or the boat engine 
turned off. 

Bruine Bank 

Corrupted SD 
card, data 
inaccessible 

Incompatible 
hardware, only 
tried on a 
short test 

Only use SD cards 
recommended by the 
manufacturer. 

Bruine Bank 2 

Acoustic 
recordings from a 
360 camera 

Limited 
duration due 
to the 
camera’s 
autonomy 

Video soundtrack can 
also be used to gather 
recordings (uncalibrated, 
relatively short battery 
life, so short recording 
duration) 

Haringvliet dam 

Masking noise 
from waves and 
buoy 

Sound 
recorder 
positioning 

Sound recorders should 
be deep (>1m) and not 
attached to a surface 
buoy if there are a lot of 
waves 

Texel-
Oudeschild 

Successful 1-
week recording 

 Harbour can be suitable 
for recordings. Hanging 
from the floating structure 
set up, not too many 
boats 

Side projects 

Coral reef in 
Kenya 

Successful day-
long recordings 

 Annotation is difficult in 
an environment with a 
high sound event density 

Costal area in 
Krk (Croatia) 

Successful 
months-long 
recordings 

 The underwater buoy and 
bottom-anchored setup 
were validated 
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3.1.2 Current status of the underwater bioacoustics data collection 

A local data repository has been established to aggregate datasets, 
annotations, metadata, and reference sounds, serving as the central 
resource for model development. This repository is designed to be 
scalable and shared in the future, facilitating the collection, storage, 
and reuse of data. 

Given the infrastructure required to host large datasets of recordings 
(and annotations), existing International and National initiatives for 
data hosting and sharing were explored. The most promising 
solutions currently include the WorldWide Soundscape Project 
(Darras et al., 2024), the OPUS portal14 by the International Quiet 
Ocean Experiment working group (Boyd et al., 2011), and the Global 
Library of Underwater Biological Sounds (Parsons et al., 2024). As 
these initiatives remain under development, their progress is being 
actively monitored, and opportunities to contribute the collected data 
have been explored. 

Reference fish sounds are sourced from FishSounds.net (Cox et al., 
2023), though identification of newly recorded fish sounds remains 
dependent on expert acousticians and the availability of verified 
reference datasets. New fish sounds yielded by the project can be 
added to FishSounds.net as well. 

For the exploration and annotation of recorded data, Raven Pro 1.6 
was used, a widely adopted bioacoustics software developed by the 
Cornell Lab of Ornithology. 

During the Bioacoustics Day 2023, an initiative was launched to 
create a shared database for unidentified underwater sounds. Hosted 
within the EUDAT Collaborative Data Infrastructure15, this database 
facilitates data exchange by categorising sounds based on 
measurable acoustic characteristics. To ensure consistency in 

 
14 https://opus.aq/index.html  
15 https://b2drop.eudat.eu/  

https://opus.aq/index.html
https://b2drop.eudat.eu/
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naming unidentified fish sounds, a decision tree was developed by a 
temporary working group during a dedicated workshop. The 
outcomes of this initiative will be published in an upcoming paper, 
currently in preparation. 

Given the success of several collaborative efforts, this will be further 
followed up by engaging in scientific discussions and participating in 
region-specific events and mutual site visits. Collaborations are 
crucial in overcoming challenges related to data collection, data 
sharing and standardisation in underwater bioacoustics. 

Building on previous deployment experiences, the collection of 
additional underwater recordings is planned across various North Sea 
environments. Optimal placement strategies involve positioning 
recorders above the seafloor or attaching them to floating structures, 
depending on environmental conditions. To reduce interference from 
anthropogenic noise, locations with minimal human activity will be 
prioritised unless anthropogenic noise is to be qualified and 
quantified as well. Promising sites include offshore shipwrecks and 
artificial structures, which provide biodiverse, sheltered 
environments well-suited for bioacoustic monitoring. 

3.1.3 Design challenges of the underwater bioacoustics data 
collection 

Establishing new collaborations is time-consuming and takes time, 
especially when it involves building a network in a field unfamiliar to 
the research group. Still, collaborations are crucial in bioacoustics, 
given the scarcity of available resources and the cost involved in 
obtaining recordings, particularly in marine environments. 
Dependency on data to share, that were lacking at the start of the 
project, posed an additional difficulty in successfully starting up 
collaborations.  

Also, generating annotated datasets proved to be difficult. As 
demonstrated in a study on marine mammal sounds, annotating 
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underwater bioacoustic data is a complex process prone to 
inconsistency and subjectivity (Nguyen Hong Duc et al., 2021). The 
decision to annotate a sound often requires interpretation, 
particularly when the signal is faint, barely visible, or similar to 
another sound. As a result, the annotation process may have weak 
reproducibility. 

Additionally, manual annotation is time-intensive and resource-
demanding, making it impractical and costly to have multiple experts 
validate each annotation. While inconsistencies can be partially 
mitigated by establishing clear annotation guidelines, as proposed by 
Parcerisas et al. (2023b), challenges remain. For example, a common 
approach is to require the annotator to be able to both see and hear 
the sound event for it to be annotated positively. However, 
visualisation depends on specific parameters used for the 
spectrogram computation and display, and sound detection ability 
varies between annotators, further complicating standardisation. 

Currently, there is no consensus within the scientific community on 
standardised annotation methods for bioacoustics, as approaches 
must be tailored to different recording conditions and research 
objectives. Further research and collaboration is needed to establish 
standardised, reproducible, and comparable annotation procedures 
in underwater bioacoustics.  
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3.2 WP2. Development of machine learning bioacoustics 
detectors 

The aim of WP2 was to develop a model capable of automatic 
sound detection across diverse environments and sound 

types in the North Sea (Figure 7).  

An overview of existing methods (see Section 2.2) revealed numerous 
potentially suitable approaches, each with distinct advantages. But 
the fundamental challenge in automatic marine animal sound 
detection remains the scarcity of annotated data required to train 
models. To address this limited availability of environment- and 
species-specific annotated datasets, the most recent machine-
learning techniques designed for data-scarce scenarios were 
explored. 

3.2.1 Design Process of machine learning bioacoustics detectors 

Initially, it was hypothesised that artificially generating more training 
data could compensate for the lack of annotated data, and the 
sim2real approach was considered. To increase the amount of 
annotated data available, various data augmentation techniques 
were also explored (Figure 8; Hwang et al., 2020; Park et al., 2019). 
Given the substantial time and effort required to implement and 
validate ideas, especially with limited experience in machine learning, 

Figure 7: Overview of the development of an integrated passive acoustic monitoring 
system, for onboard processing of sound in a multi-sensor system, the Biodiversity 
Sensing Box, with a focus on the work package 2, the machine learning model for 
automatic sound detection. 
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advice was sought from researchers experienced in applying machine 
learning to bioacoustics before conducting any experiments. 

Experienced data scientists stressed that high-quality training data 
are irreplaceable for model training. While generating annotated data 
can enhance performance, these improvements are generally minor. 
Artificially generated data often fail to fully represent real-world data, 
leading to limited performance in practical applications. 

Published models that exhibit state-of-the-art performance on test 
datasets sometimes remain largely ineffective on real-world data, 
due to specificities not captured in curated or limited training data 
(Schall et al., 2024). Experts' recommendations were to focus on 
acquiring real data to fine-tune large models, which are pre-trained 
with very large datasets containing multiple environments and types 
of sound data and extensive computational power.  

Figure 8: Examples of the effect of different data augmentation techniques on a mel-
spectrogram. On the left, the original mel-spectrogram and augmentation 
techniques proposed in SpecAugment (Park et al., 2019); on the right, 
augmentations techniques proposed in (Hwang et al., 2020), from which the image 
is sourced as well.   
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At the start of the project, transfer learning had not been applied to 
fish sounds, as this taxonomic group is understudied in bioacoustics. 
Using the AVES model (Hagiwara, 2022), experiments were done 
using transfer learning on fish sounds from the Grey Reef 
environment, sourced from the SanctSound project. The experiment 
demonstrated that transfer learning could be effective for detecting 
some fish sounds. However, performance dropped significantly when 
focusing on the detection of types of sounds containing only a few 
examples in the training set. Additionally, preliminary tests to detect 
similar sounds in different locations showed poor performance. 
Extracts from the results using AVES and a convolutional neural 
network to classify fish sounds are provided in Appendix A. 

Studies on bird sound detection and some pilot experiments suggest 
that automatic detection across different locations and target sounds 
is feasible if the training data adequately represent the model’s 
operating conditions, including similar calls and background noise. 
This implies that models must be trained with annotations specific to 
both the call type and the environment to achieve high performance. 
However, the choice of machine learning method impacts the 
required number of annotations, directly influencing the amount of 
manual effort needed. 
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Few-shot learning enables models to perform automatic detection or 
classification using only a limited number of examples. In 
bioacoustics, researchers have adapted this paradigm from 
computer vision approaches to detect animal sounds with as few as 
five examples (Nolasco et al., 2023). Figure 9 illustrates the few-shot 
learning workflow for bioacoustic detection. Few-shot learning for 
bioacoustics has the potential to facilitate sound detection with 

minimal annotation effort, but there is no consensus yet on the best-
performing approach (Morfi et al., 2021). A task dedicated to the 
development of few-shot learning approaches for various animal 
sounds was introduced in the yearly Detection and Classification of 
Acoustic Scenes and Events (DCASE) challenge (Mesaros et al., 
2017). While every year the challenge includes sounds from diverse 

Figure 9: Few-shot sound event detection. The first 5 sound events are given as 
examples, in standard supervised learning they would be considered the training 
set, and the remaining sounds  must then be detected. Adapted from (Nolasco et 
al., 2023). 
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taxonomic groups, it has never featured fish or marine invertebrate 
sounds.  

To assess the applicability of few-shot learning for fish sounds, a 
transfer learning approach based on the AVES model was developed 
and applied in the 2024 edition of the DCASE challenge, task 5 (Liang 
et al., 2024). The results were promising, demonstrating that few-shot 
learning could accelerate the discovery of new sound occurrences by 
a factor of 2 to 8, depending on the location and associated 
challenges. However, the detector’s recall score, measuring the 
proportion of detected sounds, often fell below 50%, meaning that 
more than half of the calls in the recordings were missed with this 
automated approach. While this approach could speed up the 
collection of annotated data, its performance was insufficient for use 
as a reliable detector in most monitoring contexts. Furthermore, each 
deployment in a new environment or for a different sound type would 
still require a time-consuming cycle of few-shot detection followed by 
manual verification to train high-quality detectors. 

Few-shot learning showed promising results in detecting rare sound 
events faster, but with limited precision and recall. Therefore, 
developing a reliable detector or multiple detectors suitable for 
various locations in the North Sea would remain prohibitively time-
consuming due to the verification step needed. During the project, an 
alternative approach called Agile Modeling was published (Williams 
et al., 2024). This method employs an active learning (human-in-the-
loop) strategy to quickly train reliable detectors for conditions where 
training data are limited. The method was considered promising for 
the purpose of this project, with the potential to improve 
performance, reduce manual effort and be adaptable to any 
environment. 
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3.2.2 Current solution: Agile Modelling 

Agile Modeling, further mentioned as Agile Modelling, combines 
transfer learning and active learning and was first developed for bird 
acoustics in December 202316. The approach was later adapted to 
detect biotic and anthropogenic sounds in multiple coral reef 
locations (Williams et al., 2024). Agile Modelling can quickly train 
models for the classification of specific types of sound in a given 
environment, with an iterative loop involving user feedback (Figure 
10). While the method applies to training multiclass classifiers, the 
focus here was on binary classification, distinguishing one target 
sound (positive class) from all other sounds and background noise 
(negative class). While this method can be used for training 
multiclass classifiers, where the goal is to predict the correct class 
among multiple ones, this work focuses on binary classification, 
identifying one target sound (positive class) against all other sounds 
and background noise (negative class). The approach is reproducible 
with different target sounds, enabling detection of various sound 
types. Given the expected low diversity and abundance of biotic 
sounds in North Sea environments, the primary challenge is not 
sound classification but the detection of sound events within 
potentially long recordings. From this point, binary classifiers trained 
using Agile Modelling will now be referred to as detectors. 

 

 

 

 

 
16 https://nips.cc/virtual/2023/76893 

https://nips.cc/virtual/2023/76893
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The method can be divided into 6 steps as presented in Figure 10: 

1. Recordings from a given environment are divided into 5-
second segments, which is the sample size required for 
the pre-trained model, currently SurfPerch (Williams et 
al., 2024). The pre-trained model generates a 
mathematical representation (high-dimensional vector) 
of each sample, referred to as embeddings. 

Figure 10: Agile Modeling pipeline. 1. Recordings are cut in 5-second windows and 
projected in a high-dimensional embedding space by a pre-trained model 
(Surfperch ;Williams et al., 2024). 2. The target sound is projected in the embedding 
space (red cross). 3. The closest samples to the target sound in the embedding space 
(red circle area) are shown to the user for annotation. 4. After annotating some 
samples, a detector constituted of a single-layer neural network can be trained (the 
dimension of the input layer is reduced to four nodes for visualisation). 5. The detector 
attributes a prediction score to all points of the embedding space. 6. The user can 
request more samples around the logit score of their choice to annotate. The process 
is iterated to increase the number of annotated examples therefore improving the 
detector until reaching satisfactory performance. The final goal is to train a detector 
able to separate the target sound from the unknown sound samples in the embedding 
space (green area in 3). 
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2. The user provides one example of the target sound, 
which is also converted into an embedding (red cross in 
step 3). 

3. A similarity search is first used to select samples 
resembling the target sound in the embedding space 
(red area in step 3 ). 

4. Selected samples are suggested to the user for 
annotating as “target sound” or “Unknown” (sound). 

5. Annotated data are used to train a one-layer linear 
binary classifier, the detector. The goal of this approach 
is to train the detector to separate the target sounds 
from the unknown sounds in the embedding space 
(green area on step 3, assuming all target sound 
samples are within the green area, which is a simplified 
representation). 

6. The user can request more samples around a specific 
logit score given to them by the detector (red line on 
step 6). The score can be interpreted as a confidence 
level: if the score is high, the detector is confident that it 
is a target sound (which is not necessarily true), and a 
very low score indicates confidence that the sample is 
not the target sound. The user can continue to provide 
more annotated data to improve the detector by 
repeating steps 4, 5 and 6 until satisfactory 
performance (see Section 3.2.3 for details on 
performance measures). 

After training, the model can be used to inspect all recordings for 
target sound occurrences and create a table of detections, with 
indication of confidence, filename and starting time of each 
detection. 

Agile Modelling enables users to train a detector from a single 
example of a target sound, utilising already trained multi-species 
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models through transfer learning. The model is iteratively improved as 
the user annotates additional samples selected based on confidence 
scores from the current version of the detector, following an active 
learning approach. This process reduces the amount of training data 
required and facilitates finding additional target sounds, an especially 
time-consuming task when target sounds are rare, thereby 
accelerating the development of deep learning-based detectors.  

3.2.3 Pilot Experiment on Agile Modelling 

To confirm the applicability of detectors created using Agile 
Modelling, the performance of a model was evaluated on data from a 
deployment in the Harbour of Texel, Oudeschild. 

During the active learning process, the model iteratively assessed its 
performance using a subset of the user-provided annotations. A 
training and validation split was generated, with the detector trained 
on the former and evaluated on the latter. The original protocol 
recommends stopping the iterative training once a predefined 
performance threshold on the validation set is reached, with the 
threshold value based on prior experiments. However, there is a risk 
that performance metrics derived solely from the validation set do not 
reliably represent the quality of the detector. Preliminary experiments 
indicated that the limited number of samples in early iterations 
tended to result in an overestimation of detector performance. In 
addition, the evaluation, done on samples annotated by the user but 
chosen based on the results of the model, may introduce a biased 
representation of the selected sounds from the overall dataset. 
Therefore, a subsequent pilot experiment was conducted to assess 
the reliability of measuring performance on the validation set and to 
evaluate both the performance of a detector trained with Agile 
Modelling as well as the associated time efficiency in finding target 
sound occurrences compared to manual annotation. 
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A dataset from a one-week recording from the harbour of Texel-
Oudeschild was used, divided into a training pool and a test set 
(Figure 11). The test set was manually annotated by visual and aural 
inspection to be used as ground truth for evaluating the performance 
of the model. Due to the time-consuming nature of annotation, the 
test set was limited to 6% of the total dataset, representing 10 hours 
of recordings, randomly sampled in 60 ten-minute periods across the 
dataset. The active learning training was conducted on the remaining 
94% of the data, called the training pool, consisting of 156 hours of 
recording. 

Appendix B provides details on the performance metrics, 
experimental protocol, and parameter settings used. In each Agile 
Modelling iteration, newly annotated samples were added to 
progressively train and assess the detector (Figure 11). Performance 
was evaluated using Precision, Recall, F1-score, and AUC-ROC. 
Precision evaluates the proportion of correct detections, and Recall 
measures the proportion of target sounds missed by the detector. The 
F1-score balances Precision and Recall, offering a single measure 

Figure 11: Data splits for evaluation and during the iterative training. To facilitate 
visualisation, the size of the splits is not proportional to their real size. The test set 
is 6% of the dataset, fully manually annotated and only used for evaluation of the 
model at each iteration. The rest of the dataset, the training pool, is used for training 
a detector using Agile Modelling. The training set and validation set are samples 
annotated by the user during the iterative process. The training\validation split size 
is 80\20. The user can decide when to stop annotating new samples.  
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that accounts for both false positives and false negatives. The 
previous metrics depend on the minimal confidence score value for 
which the model considers an example positive or negative, usually 
referred to as the decision threshold. The best decision threshold is 
generally specific to the purpose of the detector and the specific task. 
The AUC-ROC score reflects the model’s ability to distinguish 
between classes across all decision thresholds, making it 
independent of any specific decision cutoff. To ensure a reliable 
assessment, results were averaged over a 5-fold cross-validation 
process, where the data was divided into five parts, each used once 
as a validation set while the others trained the model (Figure 1 of 
Appendix B). 

As anticipated, initial iterations revealed an overestimation of 
detector performance on the validation set across all evaluated 
metrics compared to the test set (Figure 12). However, with 
increasing annotated samples, performance metrics on both 
datasets demonstrated a trend toward convergence. The AUC-ROC 
exhibited the most consistent values between the validation and test 
sets (Figure 12D). Despite the general trend of increasing test set 
performance across most metrics (except the Recall) throughout the 
iterations, validation set performance mainly declined (Figure 12C). 
This divergence underscores the unreliability of validation set metrics 
as accurate indicators of the detector's true quality. Consequently, 
employing the validation set AUC-ROC score as a training termination 
criterion, as proposed by the original protocol (achieving a threshold 
of 0.95), may lead to misleading interpretations. 

At the final iteration, the detectors achieved an average Precision of 
0.978 (Figure 12A) and a Recall of 0.532 (Figure 12B). These directly 
interpretable metrics indicate that while the final detector exhibited 
an almost perfect rate of correct positive detections, it failed to 
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identify approximately half of the target sound events within the test 
set. The substantial disparity between Precision and Recall suggests 
that the performance of the detectors could be potentially improved 

by employing a different decision threshold (see Appendix B). 

Figure 12: Performances on different metrics of the detector on the validation set 
and the test set after each iteration during training with Agile Modelling: Precision 
(A), Recall (B),  F1 score (C) and AUC ROC score (D).  Performance scores for the 
validation set are represented in blue and for the test set in orange. The markers in 
transparency indicate the scores of each model during the 5-fold cross-validation. 
The plain markers connected by the line are the average of the five models. The 
different spacing between the iteration numbers is proportional to the number of 
annotated samples added at each iteration (450 samples were annotated at the 
end). 

( (

( (
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Adjusting this threshold may lead to a significant increase in Recall 
with a minimal reduction in Precision. However, the optimal threshold 
value is context-dependent  (e.g. class distribution, detector’s 
intended application, difference in soundscapes per environment), 
necessitating user adjustment of an additional parameter. The F1-
score for the test set reached its maximum at the final iteration with a 
score of 0.689 (Figure 12C). Similarly, the best AUC-ROC score on the 
test set was 0.92 at the final iteration (Figure 12D).  

The complete iterative process required 56 minutes by a user 
proficient in the data, Agile Modelling, and the associated script. 
During the training phase, 148 instances of the target sounds were 
annotated, corresponding to a detection rate of 2.64 sounds per 
minute. In contrast, six hours of manual annotation of the test set 
resulted in 40 annotations of target sounds, corresponding to a 
detection rate of 0.11 sounds per minute. Therefore, the application 
of Agile Modelling resulted in the detection of occurrences 24 times 
faster than manual annotation, considering only the iterative training 
phase. 

Following model training, automatic detection was performed on the 
166 hours of the dataset using the best-trained model. This analysis 
resulted in 485 detections in 90 minutes using GPU acceleration on 
an NVIDIA GeForce RTX 2080 Ti graphics card with 12GB of RAM. 
Given the model's precision score of 0.978 on the independent test 
set,  most of these detections are likely to represent true occurrences 
of the target sounds. Unfortunately, time constraints prevented 
manual verification of these results during this project. Considering 
that target sounds constitute less than 1% of the total dataset 
duration in the raw data, the identification of novel occurrences could 
be significantly increased if most of the detector's pre-detections are 
indeed accurate. While this pre-detection approach increases data 
anal valuable insights, it is important to recognise that, like any 
detection methodology, it may introduce some bias in the detected 
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sounds. The recall score of 0.54 (Figure 12B) indicates that nearly half 
of the target sounds in the test set were undetected. This could 
suggest a bias in the detector’s performance, for example, if sounds 
with short duration or low signal-to-noise ratio were systematically 
missed. Further analysis is needed to confirm whether this reflects a 
true sampling bias or limitations in the detection methodology itself. 

Nevertheless, the findings of this pilot experiment indicate a 
substantial gain in time efficiency of the proposed method in 
identifying novel sound occurrences compared to manual annotation, 
particularly for infrequent sounds. The results also suggest that 
performance evaluation based only on the validation set is 
insufficient to estimate the quality of the detector (precision, recall or 
F1) reliably, which poses a challenge for the straightforward 
application of Agile Modelling. As illustrated in Figures 12B, C, and D, 
increasing the training sample size seems to improve the reliability of 
performance estimation on the validation set, with results 
progressively converging toward test set performance. While the final 
detector's performance is not yet sufficient to entirely replace manual 
annotation of recordings, it could serve as a valuable tool for initial 
data exploration, rapid assessment of sound or species presence, 
and efficient collection of target sound instances for training more 
extensive models.  

Further investigation, with the inclusion of more annotated samples, 
is necessary to verify the potential for convergence between 
validation and test set performance across all metrics. Moreover, the 
generalisability of these findings requires additional experiments 
conducted on diverse environments and acoustic datasets. The 
observed results may reflect the unique characteristics and inherent 
complexities of this experiment, particularly the presence of multiple 
anthropogenic sound sources in the dataset. To assess the method's 
generalisability, future work should evaluate the pre-trained detector 
on recordings from different geographic locations. Research is in 
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progress in collaboration with De Vlaamze Instituut voor de Zee (VLIZ, 
Belgium) to further understand the advantages and limitations of 
Agile Modelling. 

3.2.4 Design challenges of machine learning bioacoustics detectors 

The primary challenge in the design process of developing automated 
sound models was the vast array of existing initiatives and 
unstandardised methods. The field is evolving exceptionally fast, 
necessitating continuous adaptation of the approach in response to 
frequent updates and the publication of new relevant methods. For 
instance, Agile Modelling applied to rare bird sounds with the model 
Perch (Ghani et al., 2023) was first communicated in a scientific 
meeting in December 2023 and was updated soon after, using a new 
pre-trained model, called SurfPerch, on sounds from Coral reefs and 
birds (Williams et al., 2024). 

Limited initial knowledge and experience with machine learning and 
bioacoustics further complicated the estimation of each method's 
potential and rendered experimentation to compare them all 
particularly time-consuming. Time was therefore invested in building 
a network of researchers working with various experiences in the 
same field, aiming for cooperation, and relying on the advice from 
these experts while developing skills and intuition through practice.  
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3.3 WP3. Building an embedded system for real-time 
monitoring 

An embedded system for real-time monitoring of 
underwater sound was designed in collaboration with 
partners engaged in the parallel development of an 

underwater video monitoring system with an interest in including an 
acoustic part. The contribution of this project focused on the sound 
acquisition and onboard processing, while also contributing general 
engineering support for the development of the embedded audio-
video monitoring system (Figure 13). 

3.3.1 Design Process of the embedded system for real-time 
monitoring 

Participation in the design of a combined audio-video monitoring 
embedded system was not initially part of the project’s proposal, but 
became necessary early in the project. The acoustic recorder used in 
the Biodiversity Sensing Box did not provide real-time data access, an 
essential feature for the onboard computing work planned for this 
project. 

Maria Sokolova from the Agricultural Biosystems Engineering group 
(Wageningen University) led the development, while Rick Hendriksen 
from Wageningen Technical Solutions (Wageningen University & 

Figure 13: Overview of the development of an integrated passive acoustic 
monitoring system, for onboard processing of sound in a multi-sensor system, the 
Biodiversity Sensing Box, with a focus on work package 3, the embedded system 
supporting data acquisition and processing. 
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Research) was responsible for designing, prototyping, and 
manufacturing the embedded video system that would now be 
extended with acoustic monitoring. Regular meetings were held with 
the team and the Biodiversity sensing box project leader, Reindert 
Nijland, to schedule important milestones such as tests and 
deployments. 

Prior to involvement in the project, several design decisions were 
made, including the selection of onboard computing hardware. An 
NVIDIA Jetson Nano was chosen for its integrated GPU, making it 
suitable for embedded machine learning applications. Additionally, a 
Raspberry Pi, a low-cost single-board computer frequently used for 
deployment purposes, was selected specifically for video data 
acquisition. 

The self-made recorder solutions described in prior studies were not 
replicated due to their development time requirements and lack of 
suitability. The recorder developed by Caldas-Morgan et al. (2015) 
included a custom-made signal-conditioning board but lacked design 
plans, making reproduction excessively time-consuming. 
Consequently, commercially available solutions, as used by Bagočius 
and Narščius (2021), were considered. However, because their 
recorder lacked a computer for real-time data access and processing, 
an essential requirement for the objectives of this project, a different 
solution was ultimately chosen. 

Considering factors such as price, compactness, and 
recommendations from acoustics experts, the A5 hydrophone 
(Aquarian Audio17, Anacortes, WA, USA) and the AMS-22 audio 
interface (Zoom Corporation18, Tokyo, Japan) were chosen for the 
underwater sound acquisition. The A5 hydrophone is suitable for 
targeting low-frequency sounds, with a linear frequency response 

 
17 https://www.aquarianaudio.com/  
18 https://www.zoom-europe.com/  

https://www.aquarianaudio.com/
https://www.zoom-europe.com/
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from 20 Hz to 10 kHz and omnidirectional directivity for sounds below 
20 kHz. It is functional at depths up to 100 meters, sufficient to cover 
the North Sea basin region. The AMS-22 is the most compact pre-
made audio interface on the market and includes phantom power, a 
specific type of power supply that improves the sensitivity of 
microphones. A great advantage was that the AMS-22 had already 
been tested for compatibility with the A5 hydrophone by the 
technicians at Aquarian. 

Next, the audio interface, hydrophone, computers, and watertight 
enclosure needed to be integrated. The watertight enclosure is a 
transparent acrylic cylinder of 50 cm length and 12 cm diameter (Blue 
Robotics19, Torrance, California). Software was required for acquiring 
signals from the audio interface and subsequently processing them 
on the computer. Python was chosen for software development 
because of its widespread use in machine learning and in 
computational bioacoustics research, where it also features robust 
libraries for sound acquisition and processing. Solutions considered 
had to be compatible with the Linux operating system used in the 
embedded system. Although Python is typically less performant than 
C in embedded systems, it offers faster development and access to 
well-established libraries for machine learning and audio processing. 

The initial design included both computers (the Raspberry Pi and the 
Jetson Nano), a video acquisition interface board (Shield), and the 
audio acquisition interface (AMS-22) inside the watertight enclosure 
(Figure 14). The 4 cameras and hydrophone outside the watertight 
enclosure are connected to the Shield and the AMS-22, respectively, 
via watertight cable passages. The power source was also connected 
to the watertight enclosure using a specialised underwater cable that 
includes Ethernet transmission and power. This cable can be plugged 

 
19 https://bluerobotics.com/  

https://bluerobotics.com/
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into a battery for autonomous deployment or into a socket and a 
computer for locations with access to the power grid. 

 

Figure 14: Connections of the components of the embedded system for real time 
monitoring. 

The Raspberry Pi was tasked with acquiring camera feeds via the 
Shield board and transferring the data to the Jetson Nano. The Jetson 
Nano was expected to handle the acquisition and storage of the 
hydrophone data and the onboard processing of both types of data, 
audio, and video. 

Based on this design, a Python application was developed to retrieve 
data from the AMS-22 on the Jetson Nano, save the data in files, and 
visualise them in a simple interface. This interface relied on a direct 
connection from the Jetson Nano to the internet source. 

Initially, the Raspberry Pi was intended to be powered directly by the 
Jetson Nano. However, the USB-C port intended for this use on the 
Jetson Nano was unable to supply the required current, as specified 
in the manufacturer’s datasheet for the computer. Consequently, a 
DC/DC converter was needed in the watertight enclosure to 
transform the 18V power from the external supply to the 5V power 
required for the Raspberry Pi. Additionally, the storage capacity of the 
computers was insufficient, necessitating the inclusion of an external 
SSD storage. Due to the unanticipated need to integrate a power 
converter and SSD storage, all the components could no longer fit 
within the original watertight enclosure. Obtaining a larger 

cameras 

hydrophone 

Watertight enclosure 
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replacement enclosure was not feasible due to budget constraints, 
particularly because of the costs required to modify the cylinder to be 
suitable for the project.  

External application of Jetson Nano 

To address the space constraints in the watertight enclosure, the 
development leader decided to remove the Jetson Nano. By 
connecting the AMS-22 to the Raspberry Pi, the system could still 
function as an autonomous recorder of sound and video. However, 
this solution removed most of the onboard processing capabilities.  
Figure 15 shows the hardware configuration before adding the DC/DC 
power converter and before integration in the watertight enclosure. 

The removal of the Jetson Nano from the watertight enclosure made it 
necessary to access data differently. Data from the Raspberry Pi were 
now accessed externally using the Secure Shell (SSH) protocol 
through the Jetson Nano, which has been relocated above water, 
outside the watertight enclosure and connected via an underwater 
cable (Figure 16). This modification required partial redevelopment of 
the sound acquisition software. Notably, real-time data visualisation 
on the interface was no longer possible without a direct connection to 
the onboard computer.  

Figure 15. Hardware for autonomous recording of sound and video in the 
embedded system before integration in the watertight enclosure. 
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Adapting the interface to run on the Raspberry Pi was estimated to 
require several days of work due to the difference in the way the data 
are accessed. Since the plan remains to use the Jetson Nano because 
its computational power is required for onboard data processing with 
machine learning models, the interface was not adapted for the 
Raspberry Pi. This decision was made to avoid additional 
development effort that would soon become obsolete. 

Pilot study on temperature 
An additional aspect of the embedded system's design was verifying 
the internal temperature of the watertight enclosure, as the lack of 
airflow could cause it to overheat during operation. The Raspberry Pi 
is natively equipped with a temperature sensor on its CPU. The 
temperature was observed during an hour of operation in the 
watertight enclosure, placed outside water, and showed a 
stabilisation after approximately 10 minutes, suggesting a state of 
thermal equilibrium. In ambient air, heat from the watertight 
enclosure dissipates more slowly than underwater due to the air’s 
lower thermal conductivity. Additionally, North Sea underwater 
temperatures typically range from 10–20°C, which is lower than the 
air temperatures during testing (around 22°C). As a result, the 
functioning was validated under more demanding conditions than 
those expected in actual use, ensuring safe operation. 
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3.3.2 Current solution of the embedded system for real-time 
monitoring 

The current iteration of the embedded system incorporates the 
elements shown in Figure 15 (the Rasberry Pi, the Shield, the SSD 
storage and the AMS-22) plus a power converter and is now housed 
within the cylindrical watertight enclosure (Figure 16). This system is 
equipped with a hydrophone and four industrial-grade cameras and 
can be mounted on the Biodiversity Sensing Box frame for 
deployment. The system operates autonomously when powered by a 
battery pack, but it can also use a socket as a power source when 
available. Underwater sound pressure levels are measured using an 
A5 Hydrophone, connected to the Raspberry Pi via an AMS-22 audio 
interface, which amplifies and digitises the acoustic signal. A Python 
application on the Raspberry Pi records audio at a sampling rate of 44 
kHz, storing the data in files of adjustable duration. Simultaneously, 
the system captures and stores video streams from the four cameras. 
All acoustic and video data are securely saved to an external SSD 
housed within the watertight enclosure. 

As a proof of concept, the embedded system was deployed both in a 
freshwater location using power from a socket and in the sea using a 
battery pack. 

Figure 16: The embedded system. An autonomous sound and video recorder for 
underwater environments. 

50 
cm 
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3.3.3 Design challenges of the embedded system for real-time 
monitoring 

The design process of the embedded system presented significant 
challenges due to the parallel development of the video and sound 
components, which were handled by different individuals with 
sometimes diverging priorities. 

Late-stage design changes often have substantial consequences, 
particularly when earlier development work is rendered incompatible 
with new decisions. In this project, critical factors such as space 
constraints in the watertight enclosure and power limitations were 
recognised early as key considerations. However, time pressure, 
including shipping time and the annual budget deadline, forced 
accelerated decision-making. The lack of thorough research and 
planning on these critical characteristics ultimately led to issues that 
could have been anticipated in an ideal situation. 

The discussion that resulted in the decision to exclude the Jetson 
Nano from the watertight enclosure highlights divergent design 
priorities and strategies within the team. One approach prioritised 
iterative development through functional proof-of-concept stages, 
minimising risk and allowing for easier stakeholder demonstrations. 
The other emphasised aligning the design with long-term goals during 
development. Although hierarchical decision-making within the team 
facilitated quick resolutions, it often prioritised short-term 
convenience over balanced, collaborative solutions. In this case, a 
competitive or accommodative approach was taken, favouring the 
lead developer’s perspective, rather than a compromising or 
collaborative strategy. This is a consequence of joining an already 
started project. 

Within more regular project developments, such challenges can be 
mitigated through thorough risk analyses when making critical design 
decisions, particularly for prototypes and during early-stage 
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development. Effective communication and collaborative decision-
making processes should then be prioritised, ensuring that the 
interests of all team members are considered. In this case, the 
acoustic aspects were considered of minor importance. In situations 
where interests are more balanced, involving the project leader can 
help facilitate decisions that serve the overall best interest of the 
project. 

3.4 WP4. Design of a graphical user interface for 
bioacoustic monitoring 

The development of a graphical user interface (GUI) aimed to 
create an interactive dashboard for real-time visualisation of 
sound data, with plans to incorporate video in the future, 

while enabling interaction with the embedded system (Figure 17). 
Interfaces provide users with an intuitive way to interact with 
embedded systems and serve as tools for visualising progress, 
benefiting stakeholders and fostering public engagement. This is 
particularly valuable for raising awareness about lesser-known 
environments, such as the underwater ecosystems of the North Sea. 

Figure 17: Overview of the development of an integrated passive acoustic 
monitoring system, for onboard processing of sound in a multi-sensor system, the 
Biodiversity Sensing Box, with a focus on work package 4, the dashboard for 
displaying sound and detection in real time. 
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3.4.1 Design Process of the graphical user interface for acoustic 
monitoring 

Developing a dashboard for an embedded system often provides 
greater flexibility for functionalities than existing applications. 
Custom GUI development enables the integration of specialised data 
and allows for personalisation to address both project-specific needs 
and stakeholder expectations. In this project, the future wish to 
integrate diverse data types, including video and DNA, with the 
acoustics, along with potential future user interaction capabilities, 
justified the development of a custom graphical interface. 

The first interface was designed to display real-time sound data from 
the Jetson Nano inside the embedded system and was developed 
using the Python PyQt library. The interface offered limited 
functionalities: selecting the duration of the files containing the 
recording, visualising the input acoustic signal as a waveform, 
displaying status messages, and starting and stopping to record 
(Figure 18). 

Figure 18: First iteration of an interface to record and display sound 
acquisition in real time. 
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As outlined in section 3.3.1, the development of this interface was 
discontinued due to changes in the embedded system design, which 
restricted direct data access and, consequently, visualisation of the 
recorded sound. Nonetheless, this initial development provided 
valuable insights into the challenges and opportunities of sound 
visualisation and laid the groundwork for future advancements. 

Meeting developers from the BirdNET team during an eco-acoustics 
conference provided an excellent opportunity to discuss interface 
solutions. Gradio, a library dedicated to creating interfaces for 
machine learning applications, was identified as a promising solution. 
The development of an application based on Gradio was initiated, 
following a design process inspired by agile software development 
methodologies. (“Manifesto for Agile Software Development,” 2001). 

Agile-inspired methods have become predominant in software 
development as they are suggested to improve development 
processes. These approaches are particularly well-suited for software 
development with rapid iteration, low-stakes decision-making, and 
enhanced stakeholder engagement and adaptability. A review of agile 
software development practices concluded that a development 
method is called agile when it is incremental, cooperative, 
straightforward, and adaptive (Abrahamsson et al., 2002). One of the 
practices in agile software development is to produce a minimum 
viable product quickly and improve it iteratively based on regular 
discussions with users or customers, rather than adhering to a fixed 
set of requirements. In this framework, tasks are typically divided 
among team members, who use tracking tools to manage progress 
effectively. 
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While the project did not involve collaborative development, an 
iterative design approach driven by user feedback was pursued. In 
total, 11 researchers and users with diverse profiles were observed 
and interviewed while testing the prototype of the interface, enabling 
improvements informed by their suggestions. Observations were 
particularly valuable for enhancing the intuitive use of the interface. 
Through iterative refinement, the interface quality improved to reach a 
usable and distributable version. Figure 19 illustrates two iterations of 
a specific interface component during the development process. 

Initially, the plan was to include all functionalities in a single GUI. The 
existing interface supported the use of pre-trained models for 
detecting specific sounds across various environments, displaying 
spectrograms, and playing back both recordings and sounds 
automatically detected. The future additions will include real-time 
sound display from an acquisition device connected to the computer 
hosting the dashboard, and later, integrating a video stream and 
enabling user interaction with the embedded system. 

Two distinct use cases for the GUI, with different future development 
trajectories, were identified: 

1. A deployment-focused dashboard: As originally envisioned, 
this version would display real-time sound detections from the 
embedded system during field deployments. Designed to work 

Figure 19: Partial visualisation of the interface at different time of the 
development. The version on the left is older than the one on the right. 
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exclusively with the embedded system, it will later incorporate 
the video stream and enable interactions with the embedded 
system. 

2. A Standalone analysis tool: Aimed at a broader audience, this 
application enables offline analysis of recordings using pre-
trained models and does not require a connection to the 
embedded system. Future enhancements should expand its 
capabilities to include custom model training and support for 
additional environments. 

Therefore, to streamline development and usability, the GUI was split 
into two separate applications: 

• The Dashboard (WP4a): Tailored for real-time sound and 
detection monitoring from the WP3 embedded system, with 
planned support for video and eDNA data. 

• The Interface (WP4b): Designed for users analysing recordings 
with pre-trained models, independent of embedded hardware. 

This separation reduced complexity, simplifying both development 
and end-user interaction. 

3.4.2 Current Solutions: Dashboard and Interface  

Two GUIs were developed, the Dashboard (WP4a) and the Interface 
(WP4b).  
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The Dashboard 

The Dashboard displays in real-time the recorded sound as a 
spectrogram, and a history of the detections in a table (Figure 20). 
Automatic detection, done by pre-trained models, runs every 5 
seconds during recording. Every 10 minutes, the recorded sound data 
and the detection are saved to local storage. The dashboard is 
designed to be coupled with the embedded system (WP3). 

 

 

 

 

 

 

Figure 20: Dashboard for real time monitoring and detection of sounds 
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The Interface 

The Interface is meant for researchers and bio-acousticians to 
automatically detect sound events in underwater recordings, thanks 
to pre-trained deep-learning models (WP2). Pretrained detectors for 
different sound types and different locations can be used to analyse 
recordings provided by the user. The results can be downloaded as 
annotation files in a format compatible with the software Raven Pro 
1.6 or as a table. The most recent version of the Interface is displayed 
in Figure 21. 

3.4.3 Design challenges of the graphical user interface for acoustic 
monitoring 

Implementing an iterative development method based on user 
feedback was more challenging than anticipated for several reasons: 

- The first time a user tries the interface is the most informative 
regarding intuitiveness, but this can only be tested once per 
person; after that, a new user is required. 

Figure 21: The Interface for automatic sound detection using pre-
trained deep learning models (version December 2024). 
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- While it was easy to see what users did not understand, they 
were often not able to suggest what could be improved and 
how, or what they would prefer. 

- Some requests for improvement were technically infeasible 
due to the limitations of the library (high-level programming) or 
would be too time-consuming. In such cases, a workaround 
solution was looked for to satisfy the requests. 

- Suggesting different ideas was unexpectedly difficult. Some 
ideas can be difficult for a user to visualise based on simple 
explanations, making it difficult to gauge their interest. Doing a 
test implementation is often more effective in obtaining 
feedback, but it can be time-consuming. 

Overall, the iterative process facilitated rapid and flexible 
development, proving more effective than striving for a final product 
from the outset. However, the frequent release of minor updates 
(several versions per week) posed challenges for systematic 
evaluation. Moreover, qualitative attributes of the interface, such as 
intuitiveness and aesthetics, are inherently difficult to quantify. While 
subjective user assessments can provide valuable insights, 
conducting such evaluations for every iteration is tedious and time-
consuming. Given the objective of producing a functional prototype, 
the development of core functionalities and the qualitative analysis of 
user feedback and satisfaction were prioritised within the time 
constraints of the project. Future feedback from external users will 
offer valuable insights to guide further development after sharing the 
project in open-access platforms such as GitHub20 and Hugging 
Face21. 

 
20 https://github.com/ 
21 https://huggingface.co/ 

https://github.com/
https://huggingface.co/
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4 Summary of deliverables 
This project aimed to design and implement an innovative, efficient 
passive acoustic monitoring (PAM) system for integration into 
intelligent multi-sensor systems. The developed system aims to 
enable real-time communication and automated onboard processing 
of acoustic data, based on four work packages (WPs): WP1 focused 
on bioacoustics data collection and annotation to support species 
identification and model training; WP2 advanced automatic 
underwater animal sounds detection, particularly when training data 
are limited; WP3 contributed to the design of an embedded system 
for real-time sound acquisition and processing; and WP4 initially 
focused on developing a user interface for real-time monitoring with 
visualisation of automatic sound detections, which later evolved into 
two separate interfaces: one for integration with the embedded 
system and a standalone tool for data analysis. The following 
sections detail the key deliverables achieved within each WP. 

4.1 WP1. Collection of underwater bioacoustics data 

Recordings from eight locations, including two in the North 
Sea, one of which originated from a deployment within this 
project, were successfully collected and stored in a local 

data repository. Due to the lack of annotated data available, several 
hours of recordings from different datasets were manually annotated 
with the assistance of two students. These annotations support 
model validation and ecological analysis and are also included in the 
repository. 

As part of this effort, a protocol for annotating underwater sounds 
was developed based on the work of a student supervised during the 
project. This protocol includes the creation of a standardised sound 
dictionary, improving the consistency of the annotation process, and 
facilitating data analysis. Having a dictionary of sounds also enables 
the comparison of sounds between locations (Vieira et al., 2024). 
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For future monitoring purposes, a list of soniferous fish species 
known in the Wadden Sea and for which reference sounds are 
available was made (Appendix D). This list was created by crossing 
the references of species detected in the Wadden Sea by any 
monitoring method22 with those catalogued on the FishSounds 
database (Cox et al., 2023). The list was created to identify the fish 
species responsible for the sounds recorded in Texel-Ouderschild 
Harbour (see Section 3.2). However, due to the lack of acoustic 
references for most fish species, reliably determining the sound-
producing species was not possible. Since the Wadden Sea is part of 
the North Sea region, this list can be easily expanded to cover the 
broader North Sea by including species that occur there but are 
absent in the Wadden Sea. 

Additionally, the database of unidentified sounds, shared with 
researchers from IMR, VLIZ, and RUG, currently contains 12 
described unidentified sounds from the North Sea that later should 
become identified. This collaborative database continues to grow as 
research advances, contributing to the broader understanding of 
underwater soundscapes. 

In addition to the above-mentioned data collections, WP1 also 
yielded valuable methodological insights. Considerable expertise was 
gained in using the SoundTrap ST600 sound recorder and in deploying 
underwater recording units. These advancements bolster the 
capacity of the Marine Animal Ecology group for future acoustic 
research. 

Finally, the project facilitated new network connections and 
strengthened existing ones for the Marine Animal Ecology group. 
Collaboration with researchers in bioacoustics, including the 

 
22 https://swimway.waddensea-worldheritage.org/fish-species 

https://swimway.waddensea-worldheritage.org/fish-species
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acoustic team from VLIZ, has expanded the group's connections and 
opportunities for future collaborative research. 

4.2 WP2. Development of machine learning bioacoustics 
detectors 

In Work Package 2, the aim was to address the challenge of 
marine animals' sound automatic detection under data-

scarce conditions. The development of few-shot learning for 
bioacoustics using an innovative method was promising, and as a 
contribution submitted to the DCASE Challenge 2024 task 5 (Liang et 
al., 2024). A detailed technical report23 and the source code24 are 
publicly available from the DCASE Challenge website, facilitating 
further research and development. 

Although the DCASE Challenge has been running for several years, 
few-shot learning methods for detection in bioacoustics had not yet 
been applied to real-world data. The applicability of the method 
submitted to the DCASE challenge was demonstrated by improving 
the speed of gathering fish sound annotation five times over the 
classical manual annotation method. These findings were shared 
with the bioacoustics research community through a presentation at 
the 5th World Ecoacoustic Congress25 In Madrid. 

Using Agile Modelling, seven models were trained to identify putative 
sounds of different species across three distinct environments: a 
coral reef, an offshore wind farm, and a harbour. Models for detecting 
toadfish (Opsanus tau) sounds, presumed haddock (Melanogrammus 
aeglefinus) sounds and for different unidentified sounds were 
developed. The method was also applied successfully for detecting a 

 
23 
https://dcase.community/documents/challenge2024/technical_reports/DCASE202
4_Bordoux_66_5.pdf 
24 https://github.com/vbordoux/dcase_task5_Bordoux_WUR 
25 https://ecoacoustics2024.org/ 

https://dcase.community/documents/challenge2024/technical_reports/DCASE2024_Bordoux_66_5.pdf
https://dcase.community/documents/challenge2024/technical_reports/DCASE2024_Bordoux_66_5.pdf
https://github.com/vbordoux/dcase_task5_Bordoux_WUR
https://ecoacoustics2024.org/
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sound assumed to be from anthropogenic source based on its 
characteristic, suggesting the applicability of Agile Modelling to sound 
from different type of sources. 

In a pilot study, a model was trained to investigate sounds, presumed 
to be emitted by fish based on temporal and spectral characteristics, 
recorded at Texel Harbour. An example of application of this model is 
shown in Figure 22, which displays the count of automated detections 
of sound per two-hour intervals, time of day, and the average value of 
the relative sound pressure levels (mostly influenced by boat noise).  
This study suggests the potential of the method for the analysis of 
extensive acoustic recordings that would otherwise demand 

prohibitive effort or present logistical challenges (in this investigation, 
166 hours of data were processed in 90 minutes). Continued 
development and validation of this approach is warranted. 

 

 

Figure 22: Number of automatic detections of fish sounds per 2-hour recording from Texel-
Oudeschild harbour. The grey and yellow areas represent night and daytime, respectively, 
and the red curve represents the average value of the relative sound pressure level per 2 
hours. 



67 

4.3 WP3. Building an embedded system for real-time 
monitoring 

Sound and video data were successfully collected by the 
embedded system running on a socket power supply in a 
pond on the Wageningen University campus (Figure 23, 

left). Unfortunately, shortly before its scheduled offshore 
deployment, the Raspberry Pi was accidentally formatted, causing 
the loss of the sound recording application. Due to time constraints, 
this human error could not be corrected before deployment, 
preventing testing of sound collection by the system on autonomous 
power (Figure 23, right). Now fixed, the embedded system is currently 
available to function as an autonomous recorder for both sound and 
video, ready for future deployments within the biodiversity sensing 

box. 

Figure 23: Deployment of the embedded system in the pond on the Wageningen 
University campus with a power connection supply from the building (left). 
Biodiversity Sensing Box ready to be deployed at sea with the embedded system and 
its power supply mounted on it (right). 
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During the deployment of the Biodiversity Sensing Box at sea, the 
system was observed to topple sideways. In response, Rick 
Hendricksen proposed a modified design to prevent tilting. A stability 
analysis was performed to evaluate the design's effectiveness under 
the strong underwater currents expected in the North Sea (up to 2 
knots). The analysis revealed that the Biodiversity Sensing Box 
remained unstable even with the design modifications. The proposed 
modified design of the Biodiversity Sensing Box and calculations for 
the analysis are shown in Appendix C. 

4.4 WP4. Design of a graphical user interface for 
bioacoustic monitoring 

The Dashboard for real-time monitoring and detection is 
ready for deployment once the Jetson Nano is reintegrated 
into the embedded system. Although the system is not yet 

fully operational, a proof-of-concept test was conducted by playing 
underwater recordings through a speaker and using a laptop 
microphone as a substitute for the hydrophone connected to the 
embedded computer (Figure 24).  

During this test, real-time detection of the target sound was 
successful. However, some instances of the target sounds were 
missed, likely due to distortions introduced by the speaker and the 
automatic signal processing applied to the laptop microphone input. 

Figure 24: Testing real-time monitoring and detection of fish sounds with a mock 
system. The speaker plays a soundscape recorded in an underwater 
environment. The laptop's microphone plays the role of the hydrophone, and the 
laptop runs the model doing automatic detection, which would normally run on 
the onboard computer. 
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Upon full hardware integration, the dashboard will operate on the 
embedded computer and will be accessible via a local or web server 
to visualise the system functioning underwater. 

The interface for offline file analysis is fully functional. It currently 
integrates the seven trained sound-detection models and supports 
analysis across three environments. Users can run file analyses and 
extract the resulting data efficiently. 
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5 Discussion 
This chapter discusses the contributions of this project to the 
development and improvement of PAM techniques for marine 
biodiversity, in the context of multi-sensor monitoring system 
integration. This project was separated into four packages: WP1. 
Collection of underwater bioacoustics data, WP2. Development of 
machine learning bioacoustics detectors, WP3. Building an 
embedded system for real-time monitoring, and WP4. Development 
of a graphical user interface for bioacoustic monitoring. This 
discussion establishes the research context for the design of this 
EngD project, then situates each work package's contribution within 
this context, and concludes with future development prospects. 

Passive Acoustic Monitoring for fish and marine 
invertebrates 

With increasing attention and emerging cost-effective technologies, 
the development of PAM as a monitoring technique for fish is 
undergoing quick progress, which will subsequently enhance the 
monitoring of marine invertebrates (Mooney et al., 2020; Parsons et 
al., 2024; Stowell, 2022). Based on insights from the available 
literature and the work realised in this project, two positive feedback 
loops and the main bottlenecks in the development of PAM for fish 
and marine invertebrates are underlined in Figure 25  and below. 
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The development of autonomous acoustic recorders has recently led 
to a massive increase in the amount of available raw data, making it 
nearly impossible to analyse manually. However, accessible and 
effective data analysis methods, such as Agile Modelling, enable the 
processing and annotation of larger datasets. Such progress allows 
for unprecedented processing of hours of recordings into annotated 
data, previously unmanageable in terms of costs and duration of 
analyses (Stowell, 2022).  If a proportion of this annotated data is 
made available for other studies, this will, in turn, support the 
development of better methods for data analysis and feed into a 
positive feedback loop, accelerating the process even more. 
Furthermore, the availability of annotated data and the improvement 
of data analysis methods will facilitate the acquisition of new 
reference sounds, e.g. when a sound is matched with in situ visual 
fish identification (Dantzker et al., 2024; Mouy et al., 2023; Vieira et 

Figure 25: Positive feedback loops in PAM advancement for fish and marine 
invertebrates: key drivers and main bottlenecks (in dotted red squares). 
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al., 2024). The availability of databases with more reference sounds 
will increase PAM applicability to study more specific species for 
various purposes, e.g. species distribution knowledge for red listing, 
relative population abundance for fishery quotas, or detection of fish 
spawning aggregation sites to protect the area (Bolgan et al., 2023; 
Souza Jr et al., 2023; Wilson et al., 2019). By advancing progress and 
overcoming current limitations, PAM could emerge as a cost-
effective, reliable solution for large-scale underwater monitoring, 
offering unique information that complements other monitoring 
methods (Cabrito et al., 2024). 

To summarise, at the start of this EngD work, the application of PAM 
for marine animal  monitoring is limited by three major bottlenecks 
(Figure 25): 

- Effective data analysis methods: High cost associated with 
manual data analysis, and limited accessibility and reusability 
of existing automated data analysis. 

- Available annotated data: Lack of openly accessible annotated 
data. 

- Reference sounds in database: Scarcity and reliability of 
reference sound databases for identification of sound 
sources. 

Through the different work packages, this EngD project made several 
contributions to advancing progress and overcoming bottlenecks for 
PAM for marine animals, as depicted in Figure 26. 
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Toward automated data processing with deep learning 

The outcomes of WP2 demonstrate that automatic detectors can be 
rapidly developed for marine animal sounds across temperate 
underwater environments. This builds on Agile Modelling, a method 
initially designed for rare bird sound detection (Williams et al., 2024), 
which was successfully adapted for the detection of fish sounds in 
different environments.  

Automatic detection of fish sounds using deep learning models has 
already been achieved for specific fish species or in specific 
environments, e.g. brown meagre, Caribbean groupers, and 
unidentified sounds in the Strait of Georgia (Ibrahim et al., 2024; 
Laplante et al., 2022, 2021; Mouy et al., 2024). In these studies, 
detectors trained for specific utilisation generally achieve higher 
performance (based on F1 score) for fish sound detection or 
classification than the models developed in WP2. However, the 

Figure 26: Contribution of this EngD, placing the outcome of the different work 
packages (in purple), in the context of the development of PAM for fish and 
marine invertebrates. The main bottlenecks are indicated in dotted red squares.  
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model development in previous studies included a lot of fine-tuning 
that has been specifically made to suit each dataset, such as window 
length, model architecture, threshold selection, spectrogram 
generation parameters, or feature selection. In addition, each of 
these detectors required dozens of hours of manually annotated data 
to be trained and additional development time for finding the best 
parameters for the model and training. Unfortunately, specialised 
detectors as the one built in the reported studies have limited 
transferability, meaning that the extensive time spent doing manual 
annotations (not mentioned in the study but likely to be tens to 
hundreds of hours) must be spent anew for different environments. In 
this EngD project, using Agile Modelling and starting with only one 
annotated sound, a fish sound detector was developed. The detector 
reached a precision score of 1 and a recall score of  0.54 after less 
than an hour of training, including annotation time, without fine-
tuning parameters (see Section 3.2.3). Such performances cannot be 
considered sufficient to be applied confidently to replace a human 
annotator. However, the method can be used to get initial insight into 
long deployment or to very efficiently gather training data to train a 
detector, saving huge amounts of time on manual annotation work, 
especially in environments with low sound event activity or for 
detecting rare sounds. 

While many researchers in biology or ecology are interested and 
would benefit from using machine learning techniques in PAM, the 
accessibility of such methods is limited by the knowledge of 
computer science and programming skills needed. This EngD project 
demonstrates how interdisciplinary collaboration can bridge this gap 
effectively. Current research on fish sounds still largely relies on 
manual annotation methods, with multiple studies explicitly 
highlighting the need for automated detection systems to enable 
reproducible and scalable PAM investigations. (Dantzker et al., 2024; 
Jarriel et al., 2024a; Mouy et al., 2023). The method used in WP2 can 
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help advance such studies, though significant work remains to reach 
progress comparable to terrestrial bioacoustics research.  

Currently, terrestrial bioacoustics emphasises developing 
standardised, accessible methods, using graphical user interfaces 
and models capable of operating across diverse regions and species 
or even taxonomic groups.(Bergler et al., 2022; Hagiwara, 2022; Kahl 
et al., 2021; Robinson et al., 2024a, 2024b). In both realms, terrestrial 
and underwater, the creation of robust detectors for a range of 
different types of sounds and environments requires sufficient 
training data similar to the conditions where the detector will be used. 
The much more limited annotated data available for fish and marine 
invertebrates sounds, a bottleneck addressed above (Figure 26) and 
in WP1 and WP2, are not yet sufficient to build a robust detector that 
can be used in different environments. For this reason, training 
specialised models for detecting one target sound in a specific 
environment is currently more likely to result in high-performance 
detectors than developing a general model that is applicable 
everywhere. 

Agile Modelling is, to this date, the fastest method to train specialised 
detectors of marine animal sounds in different temperate 
environments such as a harbour, an offshore wind farm, a rocky 
plateau, or a coral reef (Section 4.2). Due to time constraints, the 
method was not compared with the most novel approaches for quick 
annotation, e.g. the combination of active learning and label 
propagation to clusters from unsupervised learning (Napier et al., 
2025; Parcerisas et al., 2024). Future work should also  investigate the 
application of Agile Modelling for multiclass classification, already 
possible with the current version, which was not addressed in this 
EngD work due to time constraints. 

The application of Agile Modelling is a step toward addressing two of 
the main bottlenecks in PAM for fish and marine invertebrates. First, 
directly contributing to providing the ability to analyse large volumes 
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of data with effective and accessible state-of-the-art machine 
learning methods. Secondly, indirectly addressing the lack of 
available annotated data: by rapidly accelerating the detection of 
sounds and providing a method that is accessible to everyone, 
researchers will be able to process a lot more data than with manual 
annotation. 

Future development of Agile Modelling should further enhance its 
accessibility. The current version, implemented in a Jupyter 
Notebook, enables users to execute code sections by section, guided 
by comments and instructions. While this approach improves 
accessibility, it still requires Python proficiency, particularly for 
adjusting the code to specific data requirements. Integrating Agile 
Modelling into a user-friendly interface (to be incorporated into the 
WP4b Interface) will further increase accessibility by removing the 
need for coding. 

An additional point of improvement, Agile Modelling relies on a 
general classification model such as BirdNET, Perch or SurfPerch for 
training specialised detectors. Development of new general 
classification models that outperform the best bird detection models, 
such as NatureLM-audio, should be included and tried to facilitate 
the training of better detectors (Robinson et al., 2024a). 

Methods for reference sound collection 

Reference sounds are required for sound-based identification of 
species in field recordings. An additional challenge of PAM for marine 
animals remains with the lack of reference sounds available. 
Historically, reference fish sounds have been collected in aquarium 
studies. However, these reference sounds may not be representative 
of sounds made in situ because the fish produced sounds prompted 
by unnatural stressors, e.g. electroshocks or manual stimulation 
(Clark and Dunn, 2022). In addition, sound production in fish is often 
associated with social behaviour (Amorim et al., 2015) or in response 
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to environmental cues, which can be difficult to recreate in tank 
conditions. Recent developments in simultaneous video and acoustic 
monitoring have proven successful in identifying fish sounds in situ 
(Dantzker et al., 2024; Mouy et al., 2023). In WP3, a system was 
developed that can record sound and video simultaneously for real-
time monitoring, specifically, the embedded system is also usable to 
associate sounds with images underwater. Localising the sound 
source is necessary to reliably confirm the identity of the marine 
animal producing the sound, e.g. with echolocation using an array of 
underwater sound recorders (Dantzker et al., 2024; Mouy et al., 2023; 
Pyć et al., 2021). Therefore, future efforts should focus on integrating 
multiple hydrophones combined with one or several cameras to 
reconstruct the position of the sound source. 

Another promising approach to rapidly gather reference sounds is 
cross-referencing unidentified sounds recorded in different locations 
against species lists (Vieira et al., 2024). The authors also utilised 
environmental conditions, such as time of day, depth, and habitat 
type, to narrow down the list of potential species or families 
producing a given sound, although they were unable yet to confirm 
the species. The study suggests that larger databases of unidentified 
sounds can provide information about the local acoustic community, 
help to better understand soniferous species, and serve as a proxy for 
biodiversity. 

In WP1, a collaborative database was established in partnership with 
VLIZ, RUG, and IMR to facilitate the sharing of unidentified sounds 
among North Sea researchers, addressing the current lack of data-
sharing initiatives (Parsons et al., 2024). As knowledge expands in the 
different research teams, this collaborative database will provide 
access to a growing number of unidentified sounds. By comparing 
sounds recorded in different locations, alongside environmental data 
and local species list, unidentified sounds are expected to be matched 
to their corresponding species, as suggested by Vieira et al. (2024). 



78 

An additional source of recordings for fish and marine invertebrate 
sounds has potentially been overlooked. No research has yet 
systematically examined fish and marine invertebrate sounds in 
existing publicly available datasets originally published for studying 
marine mammals or released without annotations (Darras et al., 2024; 
Hatch et al., 2024). Although direct ground-truthing is not possible 
anymore, these unrelated datasets likely contain fish and marine 
invertebrate sounds that could be exploited for cross-referencing in 
acoustic studies, removing the cost needed for additional data 
collection. Currently, identifying and analysing these sounds is highly 
time-consuming. However, with the advancement of automated 
detection and analysis tools, this process could become significantly 
more efficient shortly. 

Over time, reference sounds for most of the 22,000 fish species 
expected to produce sound will be collected, expanding the 
applications of PAM. Because of the restrictions of the current 
manual approaches, the current rate of discovery is slow (Looby et 
al., 2022; Rice et al., 2022). Both traditional methods, such as aquaria 
studies, and novel approaches, like deployable audio-video arrays, 
continue to steadily increase the number of fish species recognised 
as actively soniferous while also providing essential reference sounds 
(Figure 27). However, these methods inherently depend on the 
detection and annotation of animal sounds, making the process 
labour-intensive and time-consuming (Dantzker et al., 2024; Mouy et 
al., 2023; Vieira et al., 2024. Automating fish sound detection and 
annotation would significantly improve the efficiency of these 
approaches. Thus, the development of accessible automation tools 
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for fish sound detection, such as Agile Modelling (WP2), also 
accelerates the expansion of reference sound databases. 

A key application of the automated onboard sound detection system 
in the Biodiversity Sensing Box was to create a novel method for 
collecting reference sounds. This innovative approach would use a 
decision-making algorithm (Figure 28) to trigger targeted eDNA 
sampling upon detecting sound of interest, potentially allowing DNA-
based identification of sound-producing species. 

 

Figure 27: Cumulative references of actively soniferous fish species. 
Source: Looby et al., 2022. 

Figure 28: Future development steps for the Biodiversity Sensing Box: 
links and elements that remain to be developed are highlighted in red. 
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Triggering eDNA sampling based on sound detection 

Project findings, discussions with eDNA researchers, and expertise 
developed in computational bioacoustics revealed several 
unresolved challenges that must be addressed before implementing 
an efficient audio-eDNA combination for reference sound collection. 
Confirming the sound source based on eDNA sampling is unlikely to 
be effective because the eDNA could originate from any animals 
upstream, not necessarily the ones making the sound. Sound can 
travel in all directions, eDNA only with the current, so the distance or 
position of a sound source relative to water currents can compromise 
eDNA detection (Rishan et al., 2023). Also, eDNA samples often 
contain DNA from multiple species, so they cannot reliably certify the 
species that made the sound (Rishan et al., 2023). Finally, current 
state-of-the-art automatic fish or marine invertebrate sound 
detection is largely limited to familiar sounds. Detecting unexpected 
or rare sounds not included in the training of a model is a research 
field known as open-set classification, which has been studied in 
birds but appears to be unexplored in fish (Tavares, 2022). Therefore, 
existing automated sound detection methods are not expected to be 
advanced enough yet to enable the effective integration of PAM with 
eDNA techniques.  

Nonetheless, the method could be used in niche applications as 
eDNA-based monitoring has demonstrated applications beyond 
biodiversity assessment, including population abundance estimation 
(Spear et al., 2021) and population genetic analyses (Parsons et al., 
2024). Therefore, triggering eDNA sampling based on sound detection 
could enable targeted monitoring of specific species with known 
vocalisations, such as haddock or cod, or under specific conditions, 
such as river migrations (e.g., triggering sampling in response to Alosa 
fallax mating sounds (Langkau et al., 2016)). 
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Challenges and opportunities for PAM in the North Sea 

This EngD thesis suggests that PAM has potential to become can 
become one of the standardmethods for monitoring fish in the North 
Sea, with this work representing a step toward that goal. Initially, 
concerns were expressed about the feasibility of recording fish 
sounds in this region due to their low propagation distance (De Jong et 
al., 2007; Ladich, 2004) and the lower fish diversity compared to less 
deteriorated tropical ecosystems (Froese and Pauly, 2002). 
Additionally, doubts arose regarding the possibility of training 
machine learning models due to the limited availability of annotated 
data.  Nevertheless, in this project, fish sounds in the North Sea were 
successfully recorded, manually annotated, and automatically 
detected. During the project, new studies have also confirmed the 
feasibility of recording fish sounds in the North Sea region (Watson et 
al., 2024) and have combined  unsupervised machine-learning 
techniques with active learning for efficient data annotation 
(Parcerisas et al., 2024). When combined with automated data 
processing, PAM provides significant advantages for ecological 
monitoring. Unlike eDNA analysis, video surveys, or diver-based 
visual assessments, PAM enables continuous spatial and temporal 
monitoring under conditions where other methods would be 
unapplicable, and at potentially lower costs. 

While PAM is a powerful tool, it is inherently limited to detecting 
soniferous species. Studies have proposed using fish sounds as 
environmental proxies for habitat biodiversity monitoring (Di Iorio et 
al., 2018) and further research is required to validate this approach in 
different marine environments. To enhance flexible monitoring 
capabilities, future efforts should focus on deploying multi-sensor 
systems with complementary applications (Cabrito et al., 2024) at 
strategic locations such as artificial reefs, migratory corridors, 
biodiversity hotspots, and marine protected areas. 
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Future perspectives 

Development of passive acoustic monitoring 

With the main bottlenecks being addressed, the development of PAM 
for fish and marine invertebrates sounds is nearing an acceleration 
point, whereafter application is going to increase drastically. PAM will 
then become a major asset in monitoring marine biodiversity, 
especially when combined with other monitoring techniques in multi-
sensor systems. Future development pathways are outlined in Figure 
29 and discussed below, except for improvements to Agile Modelling, 
which were covered previously. 

Multi-sensors integration  

Insights from this project highlight the promise of combining audio 
and video recordings for ecological monitoring. While audio-video 

Figure 29: Future perspective for the development and application of 
 PAM for fish and marine invertebrates 
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arrays have successfully identified new reference sounds in healthy 
tropical reefs, their effectiveness in temperate or degraded 
ecosystems, such as the North Sea, remains untested. These 
environments pose unique challenges, including lower marine animal 
diversity and abundance, and higher turbidity, which may limit 
observable events for sound identification and reference collection. 
Current methods rely heavily on cherry-picking high-quality events, 
where a sound of interest matches with a sufficiently clear visual 
capture, enabling identification. In temperate regions, such events 
are likely rarer, potentially complicating or compromising the use of 
the video-audio array method for reference sound collection. Further 
research is needed to adapt these approaches for broader ecological 
contexts. A key limitation to the number of events recorded with 
audio-video monitoring is that deployment duration is constrained by 
the battery life of cameras (Dantzker et al., 2024; Mouy et al., 2023). In 
contrast, sound monitoring is highly energy-efficient, with recorders 
capable of running for months or even years, depending on duty 
cycles, sampling rates, and battery capacity (D’Eu et al., 2012). To 
overcome this limitation, the development of the embedded system 
(WP3) with real-time onboard processing could enable cameras to be 
activated based on real-time sound detection. This event-triggered 
approach would significantly reduce camera usage, extending battery 
life and allowing for longer deployments. As a result, more marine 
animal sounds could be captured in a single deployment, enhancing 
the chances of capturing high-quality events. 

Monitoring applications and implications 
The necessity for long-term ecological monitoring in the North Sea 
presents an opportunity where PAM can play a crucial role. Offshore 
wind farm construction is re-introducing artificial hard structures that 
are expected to enhance biodiversity. This development, however, 
still needs to be followed over several years before conclusions can 
be drawn about the ecological impact. The ability of PAM to operate 
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over long temporal scales makes it a particularly suitable method for 
long-term studies. The integration of PAM with complementary 
methods, such as energy-efficient triggered video recording and, in 
the future, targeted eDNA sampling, enables multimodal data 
collection through systems like the Biodiversity Sensing Box. When 
enhanced with automated data processing, such replicable systems 
can support robust and scalable ecological assessments of marine 
environments. This approach will be developed and applied within the 
context of the NWA-funded initiative, Hybrid Labs26, to assess the 
impact of floating offshore energy-producing structures on 
biodiversity and the potential multi-use of the area. Long-term 
monitoring of these installations can provide valuable insights for 
designing nature-inclusive infrastructure, improving understanding of 
species ecology, and informing conservation strategies and 
stakeholders of the developments underwater. 

Beyond ecological monitoring, the data collected through PAM and 
multi-sensor systems can be utilised to raise awareness and 
communicate conservation efforts. Marine ecosystems play a vital 
role in supporting human society and global ecological stability, yet 
they often receive less attention than terrestrial environments due to 
their inaccessibility. To address this, the real-time monitoring 
dashboard (WP4a) is ready for implementation and will display sound 
and video data once the Jetson Nano is integrated into the embedded 
system (WP3). This autonomous system will provide real-time visual 
and acoustic insights into underwater ecosystems, observable from a 
dashboard (WP4a), making them more accessible to the public and 
policymakers. By increasing visibility and understanding of marine 
environments, such monitoring initiatives can help bridge the 
knowledge gaps and facilitate communication among stakeholders 

 
26 https://hybridlabs.tudelft.nl/ 

https://hybridlabs.tudelft.nl/
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about the pros and cons of offshore floating energy structures and 
opportunities for nature-inclusive design. 
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6 Conclusion 
The objective of this project was to improve the efficiency, accuracy 
and applicability of passive acoustic monitoring (PAM) techniques for 
underwater biodiversity monitoring and for the integration of PAM into 
a multi-sensor deployable system.  
During the project, underwater acoustic data were collected through 
deployments and collaborations, and a regional data-sharing 
initiative was started. The collected data were organised into a local 
repository to support the development of automatic marine animal 
sound detectors using an innovative approach, tailored to address 
the scarcity of annotated data. The development of an autonomous 
recorder for sound and video was undertaken, and the system is 
expected to be enhanced with onboard processing capabilities. 
Additionally, a dashboard was developed to display the acquired 
acoustic data in real time, along with automatically detected sounds 
of interest. Integrating the design in the context of the current state of 
research, two positive feedback loops were identified that drive PAM 
advancements for marine fish and invertebrates. These positive 
feedback loops were constrained by three main bottlenecks: the high 
cost of manual data analysis and limited access to automated 
methods, the lack of openly available annotated datasets, and the 
scarcity of reference sounds. 
This work demonstrates how novel deep-learning methods can 
rapidly train automatic detectors for various sounds in diverse marine 
environments. Developed detectors streamline and accelerate the 
collection of annotated data, supporting continuous improvement of 
deep learning models. Moreover, Agile Modelling only requires one 
annotated sound to initiate training and demands minimal 
programming and machine learning expertise. Consequently, this 
approach significantly improves accessibility for bioacousticians to 
efficient data analysis methods. Future efforts will aim to further 
enhance accessibility for non-programmers by developing a graphical 
user interface. 
In addition to data analysis methods and available annotated data, 
addressing gaps in reference sound databases is critical for 
advancing PAM. Two novel and promising methods exist to gather 
rapidly reference sounds: cross-referencing unidentified sounds from 
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multiple locations and deploying integrated acoustic-video arrays in 
the field. In this project, a step was made toward using both methods 
in the North Sea region for the first time: a collaborative database was 
initiated to share unidentified sounds focused on the North Sea, and 
an autonomous recorder for sound plus video was developed. Real-
time detection of fish sounds from playback recordings was achieved 
in this project to test the approach; additional efforts are required for 
integration of the detectors in the sound recorder for application in 
situ under water. More sounds need to be gathered in different 
locations of the North Sea, and the applicability of acoustic-video 
arrays should be tested in deteriorated as well as intact temperate 
environments. Both cross-referencing and acoustic-video array 
approaches will benefit from improved automatic detection, as sound 
annotation remains a prerequisite for their application. 
 
Combining sound and activity-triggered video sensors is promising for 
extending deployment time and improving monitoring quality by 
providing complementary data in different environmental conditions. 
In contrast, the state of the art in both eDNA monitoring and 
automated sound detection for marine animal techniques is 
concluded not yet suitable to be synergistically combined for most 
applications.  
 
By addressing key bottlenecks in PAM, this project lays the foundation 
for more effective and widespread adoption of the technique and 
facilitates its integration into multi-sensor systems to advance marine 
ecosystem monitoring. In the future, multi-sensor systems will 
undoubtedly play a key role in monitoring marine ecosystems due to 
their ability to provide complementary data from multiple sources, 
enhance detection accuracy, extend monitoring capabilities across 
various environmental conditions, and the possibility to replicate 
them to increase temporal and spatial monitoring scale. Beyond 
advancing marine science knowledge, monitoring systems with real-
time observatories can increase public awareness about and interest 
in hard-to-visit environments. Ultimately, improved ecological data 
and greater visibility will enhance support for conservation and 
restoration efforts and sustainable management of marine 
biodiversity in relation to human activities in the ocean. 
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Appendix A. Preliminary results on classification of fish 
sounds 

This appendix shows some preliminary results from experiments 
using different models for the detection of fish sounds in recordings 
from Grey Reef, recorded within the SanctSound project (Hatch et al., 
2024). 

Separability of the data based on a dimensional reduction of the 
embeddings from AVES using TSNE 

While some clusters can be observed, the separation is not nearly 
perfect, indicating that some noises are not distinguishable from calls 
by the model and vice versa. 

Appendix A Figure 1: TSNE of the embeddings from AVES. The letters represent 
different types of fish sounds. 
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Removing the noise, a confusion between different types of calls can 
also be observed. While the call type B is well grouped, A and C 
overlap mostly, indicating that the model does not make a difference 
between the two types of calls. This could be due to the similarity of 
the calls but could also  to confusion of the annotator between the 
two calls. 

Appendix A Figure 1: TSNE of the embeddings of fish calls. The letters 
represent different types of fish sounds. 
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Confusion matrix of the results of AVES model to classify different 
type of fish sounds. 

 

Appendix A Figure 2: Results of a classification on a validation set using AVES to 
separate different types of fish sounds 

As expected from the visualisation of the embeddings above, the 
classifier displays some confusion between call and noise and 
between noise and call. Numerous call type A are classified as C. The 
classifier displays good performance for classifying the type C sound, 
which is most abundant in the training set, but also confuses other 
sounds, such as the G and Noise types, as C. This is likely the result of 
the imbalance in the dataset used for training, which overrepresents 
the more abundant type C sounds. 
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Binary classification using a Convolutional Neural Network (CNN) 

Figure 4 from Appendix 1 shows that most sound and noise snippets 
were successfully classified with high confidence (green markers with 
a score close to 1 and orange markers with a score close to 0). 
However, many samples were also misclassified. After a qualitative 

verification, some of the misclassified samples (both noise and calls) 
were found to be errors in annotations, where the annotator did not 
provide the correct label to the sample by mistake. 
This experiment was one of the first to familiarise me with machine 
learning libraries, and the training of deep learning models was using 
a simplified case where the test set originated from the same 
deployment as the training set, hence the relatively good 
performance.  

Appendix A Figure 3: Result of a binary detection of fish sounds 
and noise using a CNN model 
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Appendix B: Metrics and protocol of the experiment on Agile 
Modelling  

Definitions 

In binary classification, metrics are often expressed in terms of True 
Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN). Table 1 of Appendix B shows the definition of each of 
these terms for the prediction and the real label. 

Appendix B Table 2: Binary confusion matrix 

 Predicted label (model prediction) 
Positive Negative 

Real label  
(manual annotation) 

Positive TP FN 
Negative FP TN 

 

From these definitions, Precision and Recall scores are calculated 
as such: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                  𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The F1 score combines Precision and Recall in one score using the 
harmonic mean: 

𝐹1 =  2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

These metrics are sensitive to the threshold used for the detectors.  

A detector threshold is the limit score above which a detector 
considers a sample as positive. Output scores are typically 
normalised between 0 and 1. But the threshold can be selected by a 
user, impacting the value of the Precision, Recall and therefore F1 
scores. For example, if the prediction score of a true negative sample 
is 0.6, the sample would be counted as a false positive with a 
threshold of 0.9 but as a true negative with a score of 0.5. The value of 
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a threshold is typically application dependent and a trade-off 
between Recall and Precision. 

The Area Under the Curve of the Receiver Operating Characteristic 
Curve (AUC-ROC) score is the value of the surface area under the 
Receiver Operating Characteristic (ROC) curve. The ROC curve is the 
plot of the Recall against Specificity for every detector threshold (from 
0 to 1 if normalised). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

The AUC-ROC has the advantage of being independent of the 
threshold of the detector but is not directly interpretable compared to 
Precision or Recall. 

K-fold cross-validation is a common method for evaluating 
classifiers. It consists of splitting the data into K equally sized parts 
and training K models with different training data and evaluating each 
model on a different split of the data. A 5-fold cross-validation 
protocol is shown in Figure 2 of Appendix 2. For each iteration, the 
performance of the model is computed, and the average performance 
is given as the result. This approach limits the variability of scores due 
to specificity in part of the training or validation data, and so, it is 
estimated to be a more reliable evaluation method. K-fold cross-
validation is called stratified when the proportion of positive and 
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negative samples is the same in the different folds. 

 

Appendix B Figure  1. Protocol for 5-fold cross-validation. 

Experimental protocol 

After manual annotation, the test set was generated using a sliding 
window approach with a window length of 5 seconds on recordings 
with a sampling rate of 32000Hz, corresponding to the format 
expected by the model SurfPerch; the hop size was set to 5 seconds. 
A window was counted as positive if 20% of the duration of the 
window is overlapping with a manual annotation or if more than 50% 
of one or several annotations are contained in the window. 
Otherwise, the window was labelled negative. 
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The Agile Modelling approach started with one example of the target 
sound. Using a similarity search with the highest similarity to the 
initial example of the target, 20 samples were annotated. These 20 
samples were used to train the first detector. By iteration, more 
samples were added. The samples were selected around a subjective 
logit score, where it was assumed that some samples would be 
positive (i.e. predicted to contain a target sound by the detector) and 
some negative (pink dashed line on Figure 2 of Appendix 2). The 
number of samples annotated at each iteration started with 20 and 
increased by 10 for every iteration, up to 90 (8 iterations), reproducing 
the scenario a user could use, annotating more and more samples as 
the model becomes more reliable. At each iteration, 5 models were 
trained using a stratified 5-fold cross-validation method and their 
performance was evaluated on the validation set and on the test set 
using Precision, Recall, F1 and AUC-ROC scores. The iterative training 

Appendix B Figure  2. Distribution of logit scores from a detector applied to the samples 
from the deployment in the Harbour of Texel-Oudeschild. The pink dashed line 
represents an example of a score used to find more samples to be annotated by the 
user. The red dashed line is the threshold of the detectors. 
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process was stopped after one hour. At the end of the training, 148 
samples were labelled positively, and 291 samples were labelled 
negatively. The total number of samples labelled differs from the sum 
of samples labelled during the iterations because duplicates can be 
shown during the training and re-annotated, which would count for 
only one sample at the end. 

Detectors used were one-layer linear classifiers, trained with a batch 
size of 12, a learning rate of 0.001 for 128 epochs, and a detector 
threshold of 0 (in logit score, red dashed line in Figure 2 of Appendix 
2). These parameters were kept constant for the whole iterative 
training process. 

Additional parameters for the computation of the spectrograms and 
of the embeddings, the display of the spectrograms, and the training 
of the models were kept unchanged from the original script available 
on the Github of the SurfPerch project27. 

It is important to notice that Agile Modelling is an intrinsically very 
unrepeatable process because it builds on iteration where samples 
are selected using a semi-stochastic approach: to accelerate the 
research of similarity sounds on the whole Training pool, the search is 
done on a subset of the all data and an early stop condition is 
activated after some time of not finding better samples. In practice, it 
was observed that the similarity search of the first samples produces 
non-repeatable results, e.g. the top 5 samples would not necessarily 
figure within the output of a request for the top 10 samples. Therefore, 
the results obtained on the same dataset, using the same reference 
sounds, are likely to vary if the iterative training is repeated. 

  

 
27 https://github.com/BenUCL/surfperch/tree/surfperch  

https://github.com/BenUCL/surfperch/tree/surfperch
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Appendix C. Theoretical study on the Biodiversity Sensing 
Box stability  

In the first deployment, the Biodiversity Sensing Box unfortunately fell 
sideways on the seafloor. Based on a theoretical analysis of the 
stability of the box’s frame under high underwater currents, Rick 
Hendriksen suggested a new design to prevent tilting (Figure 1 of 
Appendix 3). The stability of the design was estimated accounting for 
the expected force of the currents in the North Sea, the shape and the 
mass of the box. Details of the calculation are available in Figure 2 of 
Appendix 3. 

 

Appendix C Figure 1: 3D model of the solution suggested to improve the stability of 
the Biodiversity Sensing Box during deployment. 
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Appendix C Figure 2: Theoretical study of the stability of the Biodiversity Sensing Box 
under strong water current conditions. 
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Appendix D. List of fish species in the Wadden Sea, with 
sonifery knowledge and available recordings online 
Appendix D Table 1: Fish species list from the Wadden Sea28 with reported sonifery 
and number or recordings available (according to Fishsounds.net). 

Index Latin name Common name 
Known as 
actively 

soniferous 

Recording 
available 

1 Abramis brama Carp bream Yes 0 

2 Acipenser sturio Sturgeon Yes 0 
 Acipenser sp.    

3 Agonus cataphractus Hooknose   

4 Alburnus alburnus Bleak   

5 Alosa fallax Twaite shad   

6 Ammodytes marinus Lesser sandeel   

7 Ammodytes tobianus Small sandeel   

8 Anguilla anguilla Eel Yes 0 

9 Aphia minuta Transparent goby   

10 Arnoglossus laterna Scaldfish   

11 Aspius aspius Asp   

12 Atherina boyeri Big-scale sand smelt   

13 Atherina presbyter Sand-smelt   

 Atherina sp.    

14 Barbus barbus Barbel   

15 Belone belone Garfish   

16 Blicca bjoerkna White bream   

17 Buglossidium luteum Solenette   

18 Callionymus lyra Dragonet   

19 
Callionymus 
maculatus 

Spotted dragonet   

20 
Callionymus 
reticulatus 

Reticulated dragonet   

21 Carassius carassius Crucian carp Yes 0 

22 Carassius gibelo Gibel carp   

23 
Chelidonichthys 
lucerna 

Tub gurnard Yes 0 

24 Chelon aurata Golden grey mullet Yes 0 

25 Chelon labrosus Thick-lipped grey mullet   

 
28 https://swimway.waddensea-worldheritage.org/fish-species 
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26 Chelon ramada Thin-lipped grey mullet   

 Chelon sp.    

27 Chirolophis ascanii Yarrell's blenny   

28 Chondrostoma nasus Common nase   

29 Ciliata mustela Five-bearded rockling   

30 Clupea harengus Herring Yes 2 

31 Conger conger Conger eel Yes 0 

32 Conodon nobilis Barred grunt   

33 Coregonus oxyrinchus Houting   

34 Coregonus albula European cisco   

 Coregonus sp.    

35 Cottus perifretum    

36 Ctenolabrus rupestris Goldsinny   

37 Cyclopterus lumpus Lumpsucker   

38 Cyprinus carpio Carp   

39 Dicentrarchus labrax Sea bass   

40 Echiichthys vipera Lesser weever   

41 Enchelyopus cimbrius Four-bearded rockling   

42 Engraulis encrasicolus Anchovy Yes 0 

43 Entelurus aequoreus Snake pipefish   

44 Esox lucius Pike Yes 0 

45 Eutrigla gurnardus Grey gurnard Yes 2 

46 Gadus morhua Cod Yes 8 

47 Gaidropsarus vulgaris Three-bearded rockling   

48 Galeorhinus galeus Topeshark   

49 
Gasterosteus 
aculeatus 

Three-spined stickleback Yes 1 

50 Gobiosoma bosc Naked goby   

51 Gobius niger Black goby Yes 1 

52 
Gymnocephalus 
cernua 

Ruffe   

53 
Helicolenus 
dactylopterus 

Bluemouth redfish Yes 0 

54 
Hippocampus 
hippocampus 

Sea-horse Yes 0 

55 
Hippoglossoides 
platessoides 

American plaice   

56 
Hyperoplus 
immaculatus 

Greater sandeel   

57 
Hyperoplus 
lanceolatus 

Great sandeel   

58 Lampetra fluviatilis River lamprey   
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59 Leucaspius delineatus Sunbleak   

60 Leuciscus aspius Asp   

61 Leuciscus idus Ide   

62 Leuciscus leuciscus Common dace   

63 Limanda limanda Dab   

64 Liparis liparis Sea-snail   

65 Liparis montagui Montagu's Sea-snail   

66 Lota lota Burbot Yes 0 

67 Maurolicus muelleri Pearlsides   

68 Merlangius merlangus Whiting   

69 Merluccius merluccius European hake Yes 0 

70 
Micropogonias 
undulates 

Atlantic croaker Yes 6 

71 Microstomus kitt Lemon sole   

72 Misgurnus fossilis Weatherfish   

73 Molva molva Ling Yes 0 

74 Mullus surmelutus Surmullet   

75 Mustelus asterias Starry smooth-hound   

76 
Myoxocephalus 
scorpius 

Bullrout Yes 1 

77 
Neogobius 
melanostomus 

Round goby Yes 0 

78 Neogobius fluviatilis Monkey goby   

79 Oncorhynchus mykiss Rainbow trout Yes 1 

80 Osmerus eperlanus Smelt   

81 Pagellus bogaraveo Blackspotted seabream Yes 0 

82 
Parablennius 
gattorugine 

Tompot blenny   

83 Perca fluviatilis European perch Yes 4 

84 Petromyzon marinus Sea lamprey Yes 0 

85 Pholis gunellus Butterfish   

86 Platichthys flesus Flounder   

87 Pleuronectes platessa Plaice   

88 Pollachius pollachius Pollack Yes 1 

89 Pollachius virens Saithe Yes 2 

90 
Pomatoschistus 
lozanoi 

Lozano's goby   

91 
Pomatoschistus 
microps 

Common goby   

92 
Pomatoschistus 
minutus 

Sand goby Yes 0 

93 Pomatoschistus pictus Painted goby Yes 2 

94 Ponticola kessleri Kessler's goby   



115 

95 
Proterorhinus 
semilunaris 

Western tubenose goby   

96 Pungitius pungitius Ninespine stickleback   

97 Raja clavata Thornback   

98 Rhodeus amarus European bitterling   

99 Rutilus rutilus Roach   

100 Salmo salar Salmon Yes 1 

101 Salmo trutta Sea trout Yes 1 

102 Sander lucioperca Pike perch Yes 4 

103 Sardina pilchardus Pilchard   

104 
Scardinius 
erythrophthalmus 

Common rudd   

105 Scomber scombrus Mackerel   

106 
Scophthalmus 
maximus 

Turbot   

107 
Scophthalmus 
rhombus 

Brill   

108 Scyliorhinus canicula Lesser spotted dogfish   

109 Silurus glanis Wels catfish Yes 3 

110 Solea solea Sole   

111 Spinachia spinachia Sea stickleback   

112 
Spondyliosoma 
cantharus 

Black seabream   

113 Sprattus sprattus Sprat   

114 Squalius cephalus Common chub   

115 Squalus acanthias Spurdog   

116 Symphodus melops Corkwing Yes 0 

117 Syngnathus acus Great pipefish   

118 
Syngnathus 
rostellatus 

Nilsson's pipefish   

119 Taurulus bubalis Long-spined sea scorpion   

120 Tinca tinca Tench Yes 0 

121 Trachurus trachurus Horse mackerel Yes 0 

122 Trisopterus luscus Bib   

123 Trisopterus minutus Poor cod   

124 Zoarces viviparus Eelpout   

total  Number of species 
soniferous 

species 
recorded 
species 

  123 37 16 
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Appendix E. Summary of the thesis 

Marine biodiversity is facing significant global threats due to human 
activities such as overfishing, habitat destruction, pollution, and 
climate change. Monitoring marine ecosystems is essential to be able 
to understand and mitigate the decline in biodiversity and habitats as 
a first step for effective conservation and restoration measures. 
Traditional monitoring methods based on fishery or SCUBA diving are 
invasive, costly, incomplete and limited to certain areas. Listening to 
animal sounds, a technique known as Passive Acoustic Monitoring 
(PAM), is a potentially broadly applicable and cost-effective 
alternative for current marine biodiversity monitoring practices.  

The underwater world was once assumed to be silent, but it is now 
clear that sound plays a vital role for marine animals. From whales 
and dolphins to fish and invertebrates, many marine species depend 
on sound for communication, much like birds do on land. Listening to 
these communications provides a non-invasive way to study 
biodiversity and animal behaviour. Passive acoustic monitoring is a 
well-established technique in marine mammal research, but remains 
underused for fish and invertebrates. Two key challenges limit its 
broader application. First, the scarcity of known and accessible 
reference sounds limits species identification from acoustic 
recordings. Second, PAM generates vast amounts of data, often 
hundreds or thousands of hours, which are time-consuming to 
manually analyse and automated AI-based methods are not yet 
efficient and widely accessible for fish and marine invertebrate 
sounds. Overcoming these limitations could make PAM a reliable, 
cost-effective, and widely applicable monitoring method. Combined 
with other emerging monitoring techniques, it could significantly 
enhance marine biodiversity assessments using a data-driven 
approach. 

This project aimed to improve the efficiency and usability of PAM 
while facilitating its integration into autonomous multi-sensor 
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monitoring systems. The effort was structured into four work 
packages (WPs). WP1: Underwater bioacoustics data collection - 
Acoustic recordings were gathered from various marine environments 
to capture a variety of marine animal sounds. Datasets, which include 
human-made annotations, are essential for training AI models to 
automate bioacoustics data processing, while reference sounds are 
critical for species identification. WP2: Development of machine 
learning bioacoustics detectors - Deep learning-based AI models 
were trained to automatically identify animal sounds in underwater 
audio recordings, focusing on techniques reducing the manual efforts 
necessary for training, including data annotation. WP3: Creation of an 
embedded system for real-time monitoring - A portable underwater 
recorder was developed, integrating audio and video capture along 
with onboard processing to support real-time sound detection from 
the AI models and communication with researchers. WP4: Design of a 
graphical user interface for bioacoustic monitoring - A dashboard was 
developed to display live recordings and automate the detection of 
animal sounds from the underwater recorder. 

In Chapter 2,  established methodologies and knowledge relevant to 
the design of each work package were reviewed. Most reference 
sounds of marine animals, aside from marine mammals, are missing 
and remain unknown, and no annotated datasets of fish sounds were 
available at the beginning of the project. This limited the data 
collection aimed for in WP1. Although species identification requires 
reference sounds, the detection of unidentified fish sounds has 
previously contributed to ecological understanding of biodiversity, 
and species identification can still become possible later. Existing 
detection models, developed for specific birds, fish species, or 
different taxa, did not apply to the objectives of WP2, as they were 
trained for different uses. Training an AI model for automatic species 
sound detection requires data that reflects real use conditions, but 
such training data were also unavailable. Creating training datasets 
involves manual annotation of recordings, a process that is both time-
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intensive and costly. Therefore, several machine learning approaches 
suitable for limited-data scenarios were identified. For WP3, existing 
autonomous sound recorder solutions lacked onboard processing 
capabilities and were therefore unsuitable. Appropriate hardware for 
an autonomous recorder was identified, and collaboration began with 
partners developing a similar recorder for video, with interest in 
adding sound capability. Multiple libraries were found to support the 
creation of graphical user interfaces as envisioned for developing in 
WP4. 

Chapter 3 presents the design processes, implemented solutions, 
and associated challenges for each work package. In WP1, 
bioacoustics data were collected using underwater recordings from 
various environments, obtained through collaborations, open-access 
sources, and field deployments. Animal sounds were successfully 
recorded during a deployment in the North Sea. Reference sounds 
used for species identification were sourced from an open-access 
database compiling scientific knowledge on fish sounds. However, 
most fish species still lack known reference sounds, and only limited 
data exist for invertebrates. In WP2, a workflow based on active 
learning, a technique where a model works with a human to improve 
its performance iteratively, was adapted from bird bioacoustics and 
applied to train models for the detection of animals in various marine 
environments. WP3 saw the development and deployment of a 
prototype underwater audio-video recorder for data collection. 
Further work is needed to incorporate onboard data processing, as 
originally intended. In WP4, two graphical user interfaces were 
developed. One is a real-time detection dashboard for use with the 
embedded system. The other is a standalone software tool that 
enables users to analyse acoustic data after deployments, using AI 
models pre-trained in different environments. 

Chapter 4 summarises the key outcomes of each work package, while 
Chapter 5 places them in the broader context of passive acoustic 
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monitoring (PAM) research. WP1’s data collection, sourced from 
deployments and collaborative efforts, supports the training of 
automatic detectors across diverse environments, gathers reference 
sounds for species identification. These will be extended and made 
available as initiatives for global bioacoustics data sharing are being 
developed. In WP2, the active learning workflow enabled successful 
training of detection models for diverse sounds from different 
locations, requiring minimal data and manual effort. The approach is 
both flexible and user-friendly, representing a significant step forward 
in making AI techniques more accessible to marine bioacoustics 
researchers. The WP3 audio-video system records video and sound 
simultaneously. Future enhancements, based on research in tropical 
reefs, will add multiple hydrophones for sound source localisation via 
triangulation. This will enable visual species confirmation and the 
collection of new reference sounds, an approach not yet tested in 
temperate or degraded environments. WP4’s interfaces further 
increase the accessibility of AI in underwater PAM. The standalone 
interface allows for the application of pre-trained models, with plans 
to support new model training in future versions, following the 
development direction observed in terrestrial bioacoustics. The real-
time dashboard interface will be further developed and applied in a 
larger-scale follow-up project aimed at public and stakeholder 
engagement for monitoring biodiversity in future offshore floating 
wind farms in the North Sea. 

This project has contributed to advancing underwater PAM for fish 
and marine invertebrates by enhancing automated data analysis 
methods and taking a step towards the integration of PAM in 
autonomous multi-sensor monitoring systems. The expansion of 
underwater bioacoustics data collection will continue, allowing for 
the identification of more species and the training of better models. 
The method employed to train AI automatic sound detectors applies 
to any environment, providing bioacoustics researchers with an 
efficient and accessible data analysis tool. The audio-video recorder, 
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already deployed for data collection, will be improved to facilitate 
reference sound collection and real-time communication, using the 
dashboard highlighting marine biodiversity. These advancements 
bring PAM closer to becoming a viable, cost-effective, and broadly 
applicable solution for underwater monitoring. Progress has also 
been made towards integrating PAM with other monitoring 
techniques, enabling the combination of acoustic and video data 
recording, onboard processing, and triggering water sampling for DNA 
analysis based on sound detection. The ongoing advancement of PAM 
and its integration into multi-sensor systems will enhance biodiversity 
assessment, ultimately improving marine life conservation and 
restoration efforts.  
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