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SUMMARY

Deciphering microbial metabolism is essential for understanding ecosystem functions. Genome-scale meta-
bolic models (GSMMs) predict metabolic traits from genomic data, but constructing GSMMs for uncultured
bacteria is challenging due to incomplete metagenome-assembled genomes, resulting in many gaps. We
introduce the deep neural network guided imputation of reactomes (DNNGIOR), which uses AI to improve
gap-filling by learning from the presence and absence of metabolic reactions across diverse bacterial ge-
nomes. Key factors for prediction accuracy are: (1) reaction frequency across all bacteria and (2) phylogenetic
distance of the query to the training genomes. DNNGIOR predictions achieve an average F1 score of 0.85 for
reactions present in over 30% of training genomes. DNNGIOR guided gap-filling was 14 times more accurate
for draft reconstructions and 2–9 times for curated models than unweighted gap-filling.

INTRODUCTION

Simulating microbial metabolism is an effective method to un-

derstand bacterial physiology and interactions within their

communities.1–3 The functions and interactions of bacteria

can be inferred from their genome sequences using genome-

scale metabolic models (GSMMs).3–6 GSMMs can be con-

structed either manually or automatically with tools such as

Cobrapy,7 RAVEN,8 ModelSEED,9 KBase,10 and CarveMe,11

which identify metabolic reactions encoded on the genome

and build a metabolic network. However, if the original

genome sequence is incomplete, a common occurrence

with metagenome-assembled genomes (MAGs), the inferred

GSMM will also be incomplete.12 Consequently, gaps in

GSMMs emerge due to missing knowledge and errors intro-

duced during sequencing,13 binning,14,15 and annotation.16 In

the past, gap-filling was primarily executed through manual

curation,17–20 but this method is time-consuming and does

not scale well for studies that include a large number of

GSMMs.21–24

Several algorithms have been developed to automate gap-

filling, such as FastGapfilling,25 GlobalFit,26 CHESHIRE,27

OptFill,28 and DEMETER29 that add reactions that allow a

GSMM to simulate growth or match phenotypic profiles. The

reaction sets that can gap-fill a model are not unique30 and

the organism’s actual metabolism may not always align with

the minimal set of reactions satisfying a user-defined objec-

tive.31 This indicates room for refining gap-filling algorithms to

yield more realistic solutions. As most gap-filling algorithms

allow us to weight reactions individually according to their likeli-

hood of being in the model,11,25,30 several attempts have been

made to find weights based on genomics,32 proteomics,8 to-

pology,27,30 or reaction type.9,33 Nevertheless, despite these

advances, determining the optimal weights for any reaction

and any model still remains challenging.4 The limitations of

the currently employed methods and their limited usage of

phylogenetic information as a signal for gap-filling, opens up

an opportunity for a machine-learning based approach to bet-

ter optimize these weights.

In this article, we introduce DNNGIOR: a Python package

that uses a neural network to assign weights to metabolic reac-

tions to complete GSMMs that are built from incomplete ge-

nomes. This neural network is trained to discern patterns in

the co-occurrences of reactions across the bacterial domain

and to predict reactions based on incomplete reaction sets,

with the goal of assessing which reactions may be missing

from an incomplete network. This information will be useful

for automated and manual GSMM reconstruction. When we
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used the predictions of the neural network to weight reactions

in incomplete GSMMs, we found that the accuracy of the neu-

ral network depends on the frequency of reactions in the

training data and the phylogenetic relatedness of genomes

used to generate these data. We benchmarked the predictions

using both automated and manually curated models, including

data from a recent study on carbon usage profiles by plant-

associated bacteria.34

RESULTS

We set out to build a tool that would make use of the co-

occurrence patterns of reactions found in a broad range of

bacterial genomes to improve the reconstruction of metabolic

models from incomplete genomes and MAGs. Therefore, we

trained a neural network on the occurrence of 2,457 or 4,240

metabolic reactions for ModelSEED and CarveMe, respec-

tively, in over 13 thousand species (training and testing data-

sets). This network predicts missing reactions within incom-

plete reaction sets. A schematic overview of our approach is

depicted in Figure 1.

Figure 1. Schematic overview of training

and testing the DNNGIOR neural network

Step 1: constructing the dataset. Genomes were

collected from the BV-BRC database35 selecting

one genome per species (13,359 genomes), ge-

nomes were annotated and metabolic networks

constructed as outlined in STAR Methods section

‘‘Collection and processing of training and testing

datasets’’. The resulting incidence matrix of re-

actions in different genomes was split into subsets

for testing (best per genus, 1,659 genomes) and

training (remaining 11,700 genomes). Step 2:

training the neural network. We randomly deleted

30% of reactions 30x to simulate incomplete ge-

nomes. The network was trained to predict which

reactions were removed, while not predicting the

reactions that were not part of the original draft

model. All reactions that were given as input to the

network are ignored when calculating the loss from

the predictions. Step 3: testing the neural network.

To estimate the prediction accuracy for different

reactions in a diverse set of organisms, the network

was tested on the 1,659 genomes in the testing

dataset. Incomplete genomes were simulated as

above, 10x per genome. This figure was created

using BioRender.36

Reaction frequency is an important
factor for prediction accuracy
Before testing the predictions to guide

gap-filling we first wanted to understand

the factors underlying accurate predic-

tions by the DNNGIOR neural network.

Understanding these factors can show

the strengths of the network, show

possible areas of improvement, and pro-

vide new insights into the gap-filling

problem. We identified two important

factors that affect the accuracy of predictions by the neural

network: (1) the frequency of reaction across all bacteria and

(2) the phylogenetic distance between the organisms in the

testing and training dataset.

Frequent reactions have higher recall and precision than rare

reactions, with core reactions that are present in >90% of all bac-

teria having a recall of 0.96 (sd = 0.007) and precision of 0.86 (sd =

0.039) (Figure 2A). The neural network has more opportunities to

learn reactions and their associated patterns when they are com-

mon than when a reaction is only present in a few genomes.

Specifically, true positives (TPs) increase linearly with fre-

quency (Figure 2B) while true negatives (TN) decrease linearly

(Figure 2E). Since the total number of times a reaction is deleted

also increases with frequency, there are more opportunities to

correctly predict that a reaction is present or absent. Moreover,

the false positives (FPs) and false negatives (FNs) decrease for

more frequent reactions (Figures 2C and 2D). This indicates

that the neural network can accurately predict whether a reaction

should be present or absent from the model if they are suffi-

ciently represented in the training dataset. This makes it impor-

tant to approach predictions for rare reactions cautiously, as
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they are more likely to be incorrect. However, as these reactions

make an organism and their metabolic role in communities

unique, we still feel that they should be considered.

Training data can be adapted to reflect the frequency of
missing reactions in real data
As we have seen previously, the frequently occurring reactions

can be more accurately predicted. However, the most frequent

reactions might not be the ones that are most likely to bemissing

from incomplete models in practice. Several biases in binning

and annotation affect the distribution of missing reactions in

real data. For instance, accessory genes are more likely to be

missing from MAGs because the binning of mobile genetic

elements is less effective than the rest of the genome.15 Addi-

tionally, large genomes with many accessory genes are more

difficult to annotate than smaller genomes with mostly core

genes.16 As accessory genes are by definition rarer than core

genes,37 this leads to a bias toward rare genes being missing

from MAGs. Another important bias is that taxa with less-

researched members are more difficult to annotate accurately

using homology-based tools.16,38 Finally, reactions can be

perceived to be rarer because they are more often missing

from the data.

Thesebiases couldbeaconcern ifwewant to useDNNGIOR to

gap-fill models based on larger genomes,MAGs, or from the less

researched parts of the bacterial domain as reactions missing

from thosemodels aremore likely to be rare. Therefore,we tested

theDNNGIOR neural network on data that contained a deliberate

deletion bias, where rarer reactionswere deletedmore often (see

Equations 1a and 1b in the STAR Methods). In this case, the

F1-score decreased 36% as the network overestimated com-

mon reactions and underestimated rare reactions (Figure S1).

In contrast, if the network was trained on data with the same

bias toward deleting rarer reactions, this effect was reduced

(from 36 to 18%), and the network became better at predicting

rare reactions (Figure S1). This means that it is possible to train

the network to account for biases that may be present in the

data. However, given that the bias in the data are variable and

difficult to quantify, DNNGIOR uses a neural network trained on

uniform deletion by default, as will all further analysis unless spe-

cifically mentioned otherwise.

Short phylogenetic distances and complete
representation improve prediction
Wewanted to determine next which genomes are predicted bet-

ter. We expected that predictions would be better for genomes

from well-sampled taxa than from taxa with only few sequenced

relatives. To test this, we plotted the F1-score for all genomes in

the testing dataset on a phylogenetic tree (Figure 3A). While the

DNNGIOR neural network scored well on most models (mean

F1-score = 0.84, sd = 0.054, Figure 3B), predictions were more

accurate for species that had close relatives in the training data-

set than for species that were more distantly related. When we

made predictions for every species in the testing dataset, we

found that the F1-score of the predictions correlatedwith the dis-

tance to the closest neighbor (Pearson r2 = 0.261, p =

1.53*10�40). Indeed, species that have close relatives in the

training dataset are easier to predict than species that are phylo-

genetically unique (Figure 3C).

The correlation between F1-score and interspecies distance il-

lustrates the importance of a good and complete representation

of the bacterial domain as this would reduce the average dis-

tance between query species and those in the training dataset.

We confirmed this hypothesis by excluding some phyla from

the training dataset, which resulted in lower F1-scores

compared to when all phyla were included (Figure 3D). We also

confirmed that the reverse is true, i.e., training on only reaction

sets from one phylum increases the performance of that phylum

(Figure S3). Using the training module, DNNGIOR neural net-

works can be trained on any collection of genomes, e.g., from

a certain taxonomic group or environmental biome. This sacri-

fices general applicability, but can improve the performance

(Figure S4). Several specialized networks are available on

GitHub for this purpose.

Frequency of reaction Frequency of reaction

Va
lu

e

A B

C

D

E

Figure 2. Prediction accuracy increases

with reaction frequency

(A) Relationship between the recall (red) and pre-

cision (blue) of predictions as a function of the

reaction frequency (the fraction of models in the

testing dataset where a reaction occurs). Re-

actions were binned in ranges of 50 models,

dot size corresponds to number of reactions in

the bin, the y-axis shows precision and recall.

The shaded region shows the 95% confidence

interval of the regression. Recall = TP/(TP + FN),

Precision = TP/(TP + FP).

(B–E) Regression plots of True Positives (TP, B),

False Positives (FP, C), False Negatives (FN, D) and

True Negatives (TN, E) as a function of reaction

frequency (the fraction of models in the testing

dataset where a reaction occurs). Trend lines were

estimated using a polynomial regression model.

A ROC curve of neural network predictions can be

found in Figure S2. For more metrics and standard

deviations see Table S1.
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Neural network weights improve gap-filling of draft
models
Next, we determined the effectiveness of using NN-predicted

weights to guide gap-filling, compared to other alternatives.

For this, we gap-filled the models from the testing dataset using

the half-interval gap-filling algorithm (see STARMethods), where

weights may be assigned to individual reactions and the algo-

rithm finds a metabolic network that is capable of generating a

biomass flux, while minimizing the weights that are added over-

all. We assessed whether the artificially removed reactions could

be recovered when reactions were weighted based on four

different weighting schemes: W1. No weights, W2. Naive binary

weights, W3. Frequency-based weights, and W4. NN-weights

(see STAR Methods). To be clear, the process of gap-filling re-

sults in a functional model that can produce biomass, while the

training dataset consists of draft models that generally cannot

produce biomass and contain exclusively reactions derived

from genome annotations, from which a fraction was deleted

(see Figure 1). We found that NN-weights (W4) significantly

improved the accuracy of automated gap-filling compared to

other weighting schemes (Table S3), i.e., they allowed a larger

fraction of the deleted reactions to be recovered in the model.

By using scheme W4, the F1-score increased by a factor of

13.98 times compared toW1 (p = 4*10�18), 1.92 times compared

to W2 (p = 4*10�18), and 1.09 times compared to W3 (p =

3*10�18, Figure 4).

Whenwe try to explain the improvement observed, amajor part

is already visiblewithW2which shows that the reactions from the

pan-reactome are indeed themost important ones. The improve-

ment with W3 is in line with the observations from assessing the

accuracy of the predictions of the DNNGIOR neural network

directly, namely that frequency of a reaction is also important

for gap-filling. Although this may be expected, the reaction fre-

quency has often been neglected when gap-filling strategies

aredeveloped. These strategiesoften focusonfluxor network to-

pology, giving the same cost to all reactions. This leads to addi-

tion of a minimum number of reactions that are necessary for

growth, agnostic to all external information. Here, we found that

simply weighing reactions by their frequencies in the bacterial

domain already significantly improves the accuracy of gap-filling

(Figure 4). The DNNGIOR neural network scores (W4) further

improve gap-filling, suggesting that additional information has

been learned from the co-occurrence patterns.

When observing these results, we note that the F1-scores

were lower than might be expected based on the prediction ac-

curacy (Figure 2B). This consistent trend can be attributed to the

fact that the draft models were already incomplete before the

additional reactions were removed, because they were based

on genome annotations alone. Thus, some reactions were

necessarily added by the half-interval gap-filling algorithm to

enable biomass production that was counted as FPs here since

they were not present in the genome annotation. Furthermore,

the objective of the half-interval gap-filling algorithm was not to

find back reactions but rather to find a set of reactions that allows

biomass production, while minimizing their overall weights. As

many of the annotated reactions that were removed were not

strictly required for biomass production they were not added

back, leading to FNs. Although the F1-scores were thus system-

atically reduced, we can still interpret the trends in performance

of the four different weighting schemes in Figure 4.
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Figure 3. Phylogenetic distance influences

the accuracy of DNNGIOR neural network

predictions

(A) Phylogenetic tree based on a concatenated

multiple sequence alignment of 71 single-copy

marker genes of all the 1,659 genomes in the

testing dataset. Branch color represents the F1-

score, the color of the outer ring corresponds to the

phyla ordered by size, all phyla with less than five

species are combined in other, the four largest

phyla are annotated. The five species with high-

quality curated metabolic models used during the

gap-fill analysis are also marked: 1. Escherichia

coli, 2. Klebsilla pneumoniae, 3. Synechococcus

elongatus, 4.Bacillus subtilis, and 5.Streptococcus

aureus. The tree is based on a concatenated

alignment of hits to HMM profile of 71 single-copy

marker genes. Phylogenetic distances in the tree

represent the number of amino acid substitutions

per site.

(B) Histogram of the F1-scores colored with the

same color map as the Tree. For more metrics and

standard deviations see Table S1.

(C) Scatterplot of the F1-score versus the distance

to the nearest neighbor expressed in the Jaccard

distance, trendline (Pearson r2 = �0.51, p =

1.53*10�40).

(D) Split violin plots of F1-scores of the predictions

for neural networks when different phyla are

included (left) or excluded (right) from the training dataset. Interior of the violin shows the median and the interquartile range. All differences between splits were

significant (Table S2).
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Overall, reactions that were assigned a high probability by the

DNNGIOR neural network are likely to be present in the meta-

bolic network, whereas low probability reactions are likely to

be absent. To further incentivize the inclusion of high probability

reactions while still satisfying the biomass production objective,

we provided these reactions with negative, rather than zero

costs (see Equation 2). These reactions were thus even more

stimulated to be included, and indeed this nearly doubled

(x1.95) the F1-score compared to using only positive weights

(Figure S6A). However, this approach also led to an increase in

FPs for reactions that were absent but were still assigned high

probabilities by DNNGIOR (Figure S6B).

The testing of gap-filling against the AGORA2 model collec-

tion22 showed the same pattern but overall lower scores (Fig-

ure S7), presumably because the gap-filling algorithm does not

generally find reactions that are non-essential for growth, while

those reactions may have been added during curation by

DEMETER29 as part of the AGORA2 pipeline.

Neural network-based weights improve gap-filling of
curated models
Next, we assessed the performance of the four weighting

schemes using six high-quality manually curated models. As

previously, we artificially removed reactions from these models

and tested how well these reactions were reintroduced when

weighted by the DNNGIOR neural network (see STARMethods).

As shown in Figure 5, the NN-weights (W4) outperformed

the other weights for all six models. Notably, Saccharomyces

cerevisiae (iND750) performed the worst of the six testedmodels

(mean = 0.11, sd = 0.05). This may be expected since

S. cerevisiae is a eukaryote and only distantly related to the pro-

karyotic reference genomes that comprised the DNNGIOR

training dataset. The best performance (mean = 0.22, sd =

0.08) was found for Escherichia coli (iML1515), a species from

a well-studied family with many reference genomes. The good

performance of the E. coli model, but also of the other models

might in part be explained by the fact that they are derived

from relatively well-studied taxa with extensive annotation.

Thus, these models perform better than most draft models in

our testing dataset previous. We also performed a test where

only reactions that were deemed essential were removed,

showing that scores improved (Figures S8A–S8F). Notably,

this also revealed a bias where more frequent reactions were

more often essential (Figures S8G and S8H), especially in

K. pneumoniae (iYL1228) and S. elongatus (iJB785). This led to

reduced performance of NN-weights (W4) compared to fre-

quency-based weights (W3).

The fact that the NN-weights (W4) performed better than the

frequency-based weights (W3) indicates that the neural network

learned more than the reaction frequency alone. To gain an intu-

ition for the additional information the network could have

learned, we built Escher maps of the citric acid cycle of E. coli

and colored reactions by their mean recall over 500 iterations

where we randomly deleted 30% of the reactions each time

(Figure 6). Scheme W4 produced the highest recall (Figure 6D),

followed by W3 (Figure 6C). We found that recall partially corre-

lated with the reaction frequency in the training data for both

W3 (Pearson r2 = 0.5, p = 1.06*10�116) and W4 (Pearson r2 =

0.25, p = 1.22*10�26, Figure S13) but that W4 also found some

rare reactions that were more specific to E. coli, indicating that

the network also learned specific co-occurrence patterns. The

rest of the central metabolism of E. coli showed a similar pattern

as the citric acid cycle (Figures S10 and S11).

DNNGIOR-generated models have conservative but
precise carbon usage profiles
Finally, we provide an experimental benchmark by comparing

the ability of models constructed with DNNGIOR and

CarveMe11 to predict experimentally measured carbon usage

profiles of 224 different bacteria.34 We found that although the

balanced accuracy scores of DNNGIOR models were similar in

range to the CarveMe models, some models performed worse

and other models better with no significant trend either way.

DNNGIOR’s half-interval algorithm tends to be more conserva-

tive in adding reactions than CarveMe’s algorithm, which re-

sulted in more TNs but also fewer TPs (Figure 7B). Interesting

to note are the balanced accuracy scores of W4 DNNGIOR

models of Leaf412 and Leaf456, two Methylophilus species

that showed high scores compared to both the W1 (+0,24) and

CarveMe models (+0.34). These high scores are likely due to

the low strain versatility, i.e., only glucose and methanol led to

in vitro growth, which made an NN-guided accurate inclusion

particularly effective.

In contrast to the internal validation, using NN-weights (W4)

did not greatly improve accuracy compared to the gap-filling

with no weights (W1). The similarity in scores illustrates

that matching phenotypes remains challenging, and manual cu-

ration will remain valuable to resolve ambiguities.34 However,

DNNGIOR weights provide additional information useful for

Figure 4. Weighted gap-filling of draft models

Violin plots of F1-scores of the gap-filling of 1,659 models in the testing

dataset, from which we randomly deleted 30% of reactions in triplicate. These

reduced models were gap-filled using four different weighting schemes

(Equation 4). For W1 (‘‘No weights’’) all reactions in the database are weighted

equally. For W2 (‘‘Naive binary weights’’) all reactions that are present in the

training dataset were given the same weights. For W3 (‘‘Frequency-based

weights’’) the frequency of the reaction was used to weight reactions. For W4

(‘‘NN-weights’’) the prediction scores generated by the DNNGIOR neural

network were used. Lines connect the same models to show trends and are

colored based on the difference in F1-score for the model between weighting

schemes. Interior of the violin plots shows the median and the interquartile

range. All groups were significantly different (Table S3). Violin Plots of recall,

precision, TP, FP, FN, and TNs can be found in Figure S5. For mean F1-scores

and standard deviations see Table S4.
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both manual and automated model reconstruction efforts

that represent the evolutionary associations between metabolic

reactions throughout the bacterial domain. Interestingly, we

observed that DNNGIOR performed better on larger than on

smaller pathways, as we found a weak correlation between

pathway size and F1-score (Pearson r2 = 0.23, p = 3.6*10–7, Fig-

ure S14). This could reflect a stronger co-occurrence signal be-

tween reactions in larger than in smaller pathways.

DISCUSSION

Future potential of the neural networks
The DNNGIOR neural network-based reaction weights signifi-

cantly improved the gap-filling of GSMMs for a wide variety of

bacteria. This success derives from the network learning as-

pects including the frequency and co-occurrence relationships

between reactions. Additional features outside the scope of this

study, such as reaction fluxes, pathway annotations, or envi-

ronmental factors that were previously shown to be useful for

gap-filling26–28,37–39 could also be incorporated, which could

improve the prediction accuracy of the weights and subsequent

gap-filling even further. Another promising avenue is using the

network structure of the input data, including phylogenetic

and metabolic networks. Graph convolution takes networks

as input and may be a powerful tool to address such complex

problems.40 A promising approach using hypergraph link pre-

diction based on the stoichiometric matrix has recently been

suggested as an alternative method for gap-filling metabolic

networks, showing the potential of including the graph topology

into the neural network.27 Combining this with the broader taxo-

nomic signal found in our more diverse dataset could, in the

future, improve performance across a broad range of

organisms.

Extensions to increase applicability
Currently, efforts are beingmade to reconcile the different reac-

tion databases into MetaNetX.41 Once finished, a new neural

network could be created that would use the reconciled data-

base that would be more broadly applicable. In this paper we

focused on ModelSEED models, but we have also created a

version trained on CarveMe models showing similar results

(Figure S15). This shows that it is possible to create neural net-

works for weighing the reactions in models from different sour-

ces. The neural network gives a prediction score for all reac-

tions, not just for the missing ones. Currently, most of these

predictions are ignored as our foucs was to fill in the missing

reactions and retain the ones that were based on genome anno-

tation, i.e., that have genetic evidence. However, mistakes dur-

ing metagenome binning14,15 and annotation result not only in

missing reactions (incomplete MAGs) but also reactions that

are falsely attributed to a genome (contaminated MAGs) and

thus spurious reactions in the corresponding metabolic

models.42 Combining evidence of the predicted taxonomic

affiliation of metagenomic contigs43 with the weights predicted

by the DNNGIOR neural network could potentially help identify

such erroneous reactions which could then be removed during

model curation.

Final remarks
We developed DNNGIOR, a neural network that predicts

which metabolic reactions are present in a given bacterial

strain, based on incomplete information. As the neural

network learns about these reactions from known bacteria, it

is particularly effective for scoring reactions that are relatively

common, and for organisms that are relatively closely related

to those present in the training dataset. Advanced users can

tailor the training dataset to their specific needs, e.g., training

models for certain biomes or taxa. The predicted weights

can be used during gap-filling to improve the accuracy and

overall quality of the reconstructed metabolic models.

Increasingly, GSMMs are being used to interpret microbial

metabolic traits, growth, or environmental associations.

DNNGIOR should be a valuable tool to enhance the potential

of these models.

S. elongatus (iJB785) E. coli (iML1515) K. pneumoniae (iYL1228)

S. cerevisiae (iND750) B. subtilis (iYO844)

A B C

D E FS. aureus (iYS854)

W1 W3W2 W4 W1 W3W2 W4 W1 W3W2 W4

Figure 5. Weighted gap-filling of six curated

metabolic models

Violin plots of F1-scores of the gap-filling of curated

models, from which we randomly deleted 30% of

reactions 10 times. These reduced models were

gap-filled using four different weighting schemes

(Equation 4). For W1 (‘‘No weights’’) all reactions in

the database are weighted equally. For W2 (‘‘Naive

binary weights’’) all reactions that are present in the

training data were given the same weights. For W3

(‘‘Frequency-based weights’’) the frequency of

the reaction was used to weight reactions. For W4

(‘‘NN-weights’’) the prediction scores generated by

the DNNGIOR neural network were used.

(A–E) (A) E. coli iML1515, (B) K. pneumoniae

iYL1228, (C) S. elongatus iJB785, (D) S. aureus

iYS854, (E) S. cerevisiae iND750, and (F) B. subtilis

iYO844. Interior of the violin shows the median and

the interquartile range.
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RESOURCE AVAILABILITY

Lead contact

Further inquiries and requests should be directed to and will be fulfilled by the

lead contact: M.D. Boer (meineboer@gmail.com).

Materials availability

No physical material was produced during this study.

Data and code availability

d All relevant code is publicly available on GitHub (https://github.com/

MGXlab/DNNGIOR) or as a pip package (https://pypi.org/project/

dnngior/).

d All relevant data are freely available and found in supplementary data

(Tables S6-11), all other related data can be requested from the lead

contact: M.D. Boer (meineboer@gmail.com).

d All other items are available upon request from the lead contact.

Limitations of the study

The study still leaves room for improvement. First, the current study does not

incorporate additional features such as reaction fluxes, pathway annotation,

or environmental factors. Second, the network structure of the input data,

such as phylogenetic and metabolic networks, is not utilized in the neural

network. Finally, the neural network performance is linked to the training da-

taset, which may limit its effectiveness for more distantly related or uncom-

mon organisms.

C      D

BA  

Figure 6. Recall of the reactions in the citric acid cycle of E. coli

Escher maps of the citric acid cycle colored by the mean recall after gap-filling models, from which we randomly deleted 30% of the reactions 500 times.

(A–D) Reducedmodels were gap-filled using four different weighting schemes: (A)W1: Noweights (B)W2: Naive binary weights (C)W3: Frequency-basedweights

and (D) W4: NN-weights (see Figure 5 caption and STAR Methods for details). IDs for secondary metabolites were omitted, the full central metabolism can be

found in (Figures S10 and S11). For the gap-filling scores of the 500 duplicates of the E. coli model using different weights see Figure S12 and Table S5.
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3. Garcı́a-Jiménez, B., Torres-Bacete, J., and Nogales, J. (2020). Metabolic

Modelling Approaches for Describing and Engineering Microbial Commu-

nities. Comput. Struct. Biotechnol. J. 19, 226–246. https://doi.org/10.

1016/j.csbj.2020.12.003.

4. Gu, C., Kim, G.B., Kim, W.J., Kim, H.U., and Lee, S.Y. (2019). Current Sta-

tus and Applications of Genome-Scale Metabolic Models. Genome Biol.

20, 121. https://doi.org/10.1186/s13059-019-1730-3.

5. Fang, X., Lloyd, C.J., and Palsson, B.O. (2020). Reconstructing Organisms

inSilico:Genome-ScaleModels andTheir EmergingApplications.Nat. Rev.

Microbiol. 18, 731–743. https://doi.org/10.1038/s41579-020-00440-4.

6. Passi, A., Tibocha-Bonilla, J.D., Kumar, M., Tec-Campos, D., Zengler, K.,

and Zuniga, C. (2021). Genome-Scale Metabolic Modeling Enables In-

Depth Understanding of Big Data. Metabolites 12, 14. https://doi.org/10.

3390/metabo12010014.

7. Ebrahim, A., Lerman, J.A., Palsson, B.O., and Hyduke, D.R. (2013). COBR-

Apy: COnstraints-Based Reconstruction and Analysis for Python. BMC

Syst. Biol. 7, 74. https://doi.org/10.1186/1752-0509-7-74.

8. Wang, H., Marci�sauskas, S., Sánchez, B.J., Domenzain, I., Hermansson,

D., Agren, R., Nielsen, J., and Kerkhoven, E.J. (2018). RAVEN 2.0: A Ver-

satile Toolbox for Metabolic Network Reconstruction and a Case Study

on Streptomyces Coelicolor. PLoS Comput. Biol. 14, e1006541. https://

doi.org/10.1371/journal.pcbi.1006541.

9. Henry, C.S., DeJongh, M., Best, A.A., Frybarger, P.M., Linsay, B., and

Stevens, R.L. (2010). High-Throughput Generation, Optimization and

Analysis of Genome-Scale Metabolic Models. Nat. Biotechnol. 28,

977–982. https://doi.org/10.1038/nbt.1672.

10. Arkin, A.P., Cottingham, R.W., Henry, C.S., Harris, N.L., Stevens, R.L.,

Maslov, S., Dehal, P., Ware, D., Perez, F., Canon, S., et al. (2018). KBase:

The United States Department of Energy Systems Biology Knowledge-

base. Nat. Biotechnol. 36, 566–569. https://doi.org/10.1038/nbt.4163.

No weights (W1) NN weights (W4) Count

TN W1

TN W4

TN CarveMe

TN CarveMe

TP W1

TP W4

A B

C

D
el

ta
 b

al
an

ce
d 

ac
cu

ra
cy

 s
co

re

Figure 7. Accuracy of simulated carbon us-

age profiles

(A–C) Swarm plots of the (A) Balanced accuracy

score, (B) TNs, and (C) TPs of the carbon usage

profiles of automatically constructed models

compared to experimentally measured profiles.

Lines connect scores belonging to the same

models showing possible trends. (TPR = True

Positive Rate. TNR = True Negative Rate, TP = True

positives, TN = True negatives. Models that showed

growth without any carbon source provided or did

not grow on any of the carbon sources were

omitted. The full carbon utilization profiles can be

found in Table S6.

8 iScience 27, 111349, December 20, 2024

iScience
Article

ll
OPEN ACCESS

https://doi.org/10.1016/j.isci.2024.111349
https://doi.org/10.1016/j.isci.2024.111349
https://doi.org/10.1038/s41467-023-41059-2
https://doi.org/10.1016/j.isci.2022.103775
https://doi.org/10.1016/j.csbj.2020.12.003
https://doi.org/10.1016/j.csbj.2020.12.003
https://doi.org/10.1186/s13059-019-1730-3
https://doi.org/10.1038/s41579-020-00440-4
https://doi.org/10.3390/metabo12010014
https://doi.org/10.3390/metabo12010014
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1371/journal.pcbi.1006541
https://doi.org/10.1371/journal.pcbi.1006541
https://doi.org/10.1038/nbt.1672
https://doi.org/10.1038/nbt.4163


11. Machado, D., Andrejev, S., Tramontano, M., and Patil, K.R. (2018). Fast

Automated Reconstruction of Genome-Scale Metabolic Models for Micro-

bial Species and Communities. Nucleic Acids Res. 46, 7542–7553. https://

doi.org/10.1093/nar/gky537.

12. Bowers, R.M., Kyrpides, N.C., Stepanauskas, R., Harmon-Smith, M.,

Doud, D., Reddy, T.B.K., Schulz, F., Jarett, J., Rivers, A.R., Eloe-Fadrosh,

E.A., et al. (2017). Minimum Information about a Single Amplified Genome

(MISAG) and a Metagenome-Assembled Genome (MIMAG) of Bacteria

and Archaea. Nat. Biotechnol. 35, 725–731. https://doi.org/10.1038/

nbt.3893.

13. Meziti, A., Rodriguez-R, L.M., Hatt, J.K., Peña-Gonzalez, A., Levy, K., and

Konstantinidis, K.T. (2021). The Reliability of Metagenome-Assembled

Genomes (MAGs) in Representing Natural Populations: Insights from

Comparing MAGs against Isolate Genomes Derived from the Same Fecal

Sample. Appl. Environ. Microbiol. 87, e02593-20. https://doi.org/10.1128/

AEM.02593-20.

14. Nelson, W.C., Tully, B.J., and Mobberley, J.M. (2020). Biases in Genome

Reconstruction from Metagenomic Data. PeerJ 8, e10119. https://doi.

org/10.7717/peerj.10119.

15. Maguire, F., Jia, B., Gray, K.L., Lau, W.Y.V., Beiko, R.G., and Brinkman,

F.S.L. (2020). Metagenome-Assembled Genome Binning Methods with

Short Reads Disproportionately Fail for Plasmids and Genomic Islands.

Microb. Genom. 6, e000436. https://doi.org/10.1099/mgen.0.000436.

16. Lobb, B., Tremblay, B.J.-M., Moreno-Hagelsieb, G., and Doxey, A.C.

(2020). An Assessment of Genome Annotation Coverage across the Bac-

terial Tree of Life. Microb. Genom. 6, e000341. https://doi.org/10.1099/

mgen.0.000341.

17. Monk, J.M., Lloyd, C.J., Brunk, E., Mih, N., Sastry, A., King, Z., Takeuchi,

R., Nomura, W., Zhang, Z., Mori, H., et al. (2017). iML1515, a Knowledge-

base That Computes Escherichia Coli Traits. Nat. Biotechnol. 35,

904–908. https://doi.org/10.1038/nbt.3956.

18. Aminian-Dehkordi, J., Mousavi, S.M., Jafari, A., Mijakovic, I., and Marashi,

S.-A. (2019). Manually Curated Genome-Scale Reconstruction of the

Metabolic Network of Bacillus Megaterium DSM319. Sci. Rep. 9, 18762.

https://doi.org/10.1038/s41598-019-55041-w.

19. Thiele, I., and Palsson, B.Ø. (2010). A Protocol for Generating a High-

Quality Genome-Scale Metabolic Reconstruction. Nat. Protoc. 5,

93–121. https://doi.org/10.1038/nprot.2009.203.

20. Battjes, J., Melkonian, C., Mendoza, S.N., Haver, A., Al-Nakeeb, K., Koza,

A., Schrubbers, L., Wagner, M., Zeidan, A.A., Molenaar, D., and Teusink,

B. (2023). Ethanol-Lactate Transition of Lachancea Thermotolerans Is

Linked to Nitrogen Metabolism. Food Microbiol. 110, 104167. https://

doi.org/10.1016/j.fm.2022.104167.
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Uncertainty in Genome-Scale Metabolic Model Reconstruction and Anal-

ysis. Genome Biol. 22, 64. https://doi.org/10.1186/s13059-021-02289-z.

43. von Meijenfeldt, F.A.B., Arkhipova, K., Cambuy, D.D., Coutinho, F.H., and

Dutilh, B.E. (2019). Robust Taxonomic Classification of Uncharted Micro-

bial Sequences andBins with CAT andBAT. GenomeBiol. 20, 217. https://

doi.org/10.1186/s13059-019-1817-x.

44. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

https://www.gurobi.com.

45. Kingma, D.P., and Ba, J. (2017). Adam: AMethod for Stochastic Optimiza-

tion. Preprint at arXiv. https://doi.org/10.48550/arXiv.1412.6980.

46. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cour-

napeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.

(2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python. Nat. Methods 17, 261–272. https://doi.org/10.1038/s41592-019-

0686-2.

47. Genome Annotation Service | BV-BRC. https://www.bv-brc.org/docs/

tutorial/genome_annotation/genome_annotation.html (accessed 2024-

05-27)

48. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-

rado, G.S., Davis, A., Dean, J., Devin, M., et al. (2015). TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems.

Preprint at arXiv 19. https://doi.org/10.48550/arXiv.1603.04467.

49. Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019). Optuna:

A Next-Generation Hyperparameter Optimization Framework. In Proceed-

ings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & DataMining (KDD ’19; Association for Computing Machinery),

pp. 2623–2631. https://doi.org/10.1145/3292500.3330701.

50. Godoy, D. Understanding binary cross-entropy / log loss: a visual explana-

tion. Medium. https://towardsdatascience.com/understanding-binary-

cross-entropy-log-loss-a-visual-explanation-a3ac6025181a.

51. Broddrick, J.T., Rubin, B.E., Welkie, D.G., Du, N., Mih, N., Diamond, S.,

Lee, J.J., Golden, S.S., and Palsson, B.O. (2016). Unique Attributes of Cy-

anobacterial Metabolism Revealed by Improved Genome-Scale Meta-

bolic Modeling and Essential Gene Analysis. Proc. Natl. Acad. Sci. USA

113, E8344–E8353. https://doi.org/10.1073/pnas.1613446113.

52. Liao, Y.-C., Huang, T.-W., Chen, F.-C., Charusanti, P., Hong, J.S.J.,

Chang, H.-Y., Tsai, S.-F., Palsson, B.O., and Hsiung, C.A. (2011). An

Experimentally Validated Genome-Scale Metabolic Reconstruction of

Klebsiella Pneumoniae MGH 78578, iYL1228. J. Bacteriol. 193, 1710–

1717. https://doi.org/10.1128/JB.01218-10.

53. Bro, C., Regenberg, B., Förster, J., and Nielsen, J. (2006). In Silico Aided

Metabolic Engineering of Saccharomyces Cerevisiae for Improved Bio-

ethanol Production. Metab. Eng. 8, 102–111. https://doi.org/10.1016/j.

ymben.2005.09.007.

54. Vikromvarasiri, N., Shirai, T., and Kondo, A. (2021). Metabolic Engineering

Design to Enhance (R,R)-2,3-Butanediol Production from Glycerol in Ba-

cillus Subtilis Based on Flux Balance Analysis. Microb. Cell Fact. 20,

196. https://doi.org/10.1186/s12934-021-01688-y.

55. Seif, Y., Monk, J.M., Mih, N., Tsunemoto, H., Poudel, S., Zuniga, C., Brod-

drick, J., Zengler, K., and Palsson, B.O. (2019). A Computational

Knowledge-Base Elucidates the Response of Staphylococcus Aureus to

Different Media Types. PLoS Comput. Biol. 15, e1006644. https://doi.

org/10.1371/journal.pcbi.1006644.
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STAR+METHODS

KEY RESOURCES TABLE

METHOD DETAILS

Collection and processing of the training and testing datasets
Weconstructed the training and testing datasets using genomes collected from theBV-BRCdatabase35 (formerly PATRIC, accessed

26th April 2022). For training, one genome per species was selected based on sequencing quality scores using the formula:

completeness - (5 * contamination). Ties for this score were resolved by selecting the genome with the highest coarse consistency,

a value provided by bv-brc that evaluates the functional completeness of a genome, as assessed by evalCon.47 This selection re-

sulted in a dataset of 13,359 genomes (Table S8) that comprehensively represents the bacterial domain while reducing the risk of

overfitting on well-studied species. From this dataset we selected one best genome from each of the 1,659 genera in the best-

per-species dataset based on the same score, resulting in a training dataset of 11,700 genomes and a testing dataset of 1,659 ge-

nomes (Table S9). This ensured that the testing dataset contained diverse bacterial genomes, not biassed toward genera with more

species that were different from those in the training dataset.

For the 1,659 genomes in the testing dataset, we created a phylogenetic tree using concatenated alignment of hits to HMMprofiles

of 71 single-copymarker genes that was used for visualizing and further investigating the performance of our approach. Phylogenetic

distances in the tree represent the number of amino acid substitutions per site.

From all genomes, metabolic models were constructed using either either ModelSEED9 or CarveMe11 and the set of gene-asso-

ciated reactions was determined. From these models we determined the total set of reactions that were annotated in the 13,359 ge-

nomes, resulting in a ‘‘pan-reactome’’ of the bacterial domain within the ModelSEED and BiGG databases (n = 2543 and 4240 re-

actions, respectively). These pan-reactomes contain all reactions for which predictions can be made, this represents a majority of

gene-associated bacterial reactions (Figure S16). Most of the other reactions in theModelSEED and BiGG databases either originate

from non-bacterial organisms (e.g., plants, fungi, animals) or are artificial reactions. Both these categories of reactions are not asso-

ciated with bacterial genes, and therefore do not appear in the draft models or associated reactome. We decided against including

non-gene-associated reactions in the training data to avoid learning the biases that automated tools introduce when including non-

gene associated reactions. For every model in the training and testing datasets, we constructed a binary array describing which re-

actions were present, resulting in an incidence matrix of all reactions in all genomes.

During training we repeatedly deleted 30% (nz300) of the reactions in each genome, this was done 30 times for each of the 10,700

genomes resulting in a training dataset of 351,000 incomplete reaction sets for optimal performance (Figure S17). Reactions were

randomly deleted either according to a uniform probability (Equation 1a) or with a bias toward lower frequency reactions (Equation

1b). We used the uniform deletion probability for all of the analyses except for the analysis of the effect of reaction deletion bias.

Probability function for uniform (a) or weighted (b) deletion.

aÞ DwðfracrÞ = 0:3 Equation 1a

b
�
DwðfracrÞ = 1 � 1

1+ e10�ðfracr � 0:5Þ Equation 1b

We also generated several additional training datasets with certain phyla purposefully excluded to explore the importance of a full

representation of the bacterial domain. For each genome, the original reaction sets as predicted by the genome-based draft recon-

structions were used as truth. Testing datasets were created in a similar manner.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Tensorflow Abadi et al.39 https://www.tensorflow.org/

COBRApy Ebrahim et al.7 https://opencobra.github.io/cobrapy/

ModelSEEDpy Henry et al.9 https://github.com/ModelSEED/ModelSEEDpy

Gurobi Gurobi Optimization LLC.44 https://pypi.org/project/gurobipy/

CarveMe Machado et al.11 https://carveme.readthedocs.io/en/latest/

Escher King et al.45 https://escher.github.io/

SciPy Virtanen et al.46 https://scipy.org/

DNNGIOR This paper https://github.com/MGXlab/DNNGIOR
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Finally we also collectedmodels from the AGORA2 collection22 aswell as their associated genomes from the bv-brc database35 for

evaluation of prediction and gap-filling accuracy against 7,302 (semi-)curated models.

Hyper-parameterization and loss function of the neural network
Two neural networks were built, one for predicting ModelSEED reactions and one for predicting CarveMe or BiGG reactions. Both

neural networks were built using Tensorflow48 v2.0.0. Their topology consists of an input and output layer of 2,453 or 4,240 nodes

(one for each reaction in the ModelSEED or CarveMe pan-reactomes respectively) and three hidden layers. All layers were fully con-

nected resulting in a network with 1,260,697 or 2,306,960 parameters respectively. The optimizer used for training both networkswas

the Adam optimizer45 with the following parameters: learning rate = 0.005, beta1 = 0.9, beta2 = 0.999, epsilon = 1.0e-8, decay = 0.01.

Hyper-parameterization was performed in 100 trials using the Optuna package49 v2.0, resulting in the following hyper-parameters:

number of nodes per hidden layer = 256, batch size = 50, number of hidden layers = 3, dropout = 0.1, number of epochs = 10.

For the loss function, we used a customized version of the binary cross-entropy function (CE, Equation 2).

Loss function based on binary cross-entropy50 to calculate the difference between the neural network output (O
!
) and the correct

reactions (T
!
). I
!

is the input vector of the NN, b0 is the absent class scaling factor.

mCE
�!

=
�
1
! � I

!�
+
h
ð1 � b0Þ

n
T
!
+log

�
O
!� o

� b0

n�
1
! � T

!�
+log

�
1
! � O

!� o i
Equation 2

CE is calculated as the log-loss of the difference between what the network predicts (O
!
) and the truth (T

!
). We introduced two ad-

aptations to increase the performance based on our training data. First, as for a given reaction set only �960 of the possible 2,457

reactions are present, we introduced a scaling factor (b0 = 0:3) that allowed us to scale the loss of the two classes (absent and pre-

sent). We multiplied b0 by the loss for the absent class and 1 � b0 by the loss for the present class. Second, we added a masking

vector (1-T) that allowed us to exclude the loss associated with predictions for reactions that were already known to be part of the

genome, i.e., those given as input to the neural network.Wemultiplied the loss of both classes element-wise b 1
! � I

!
where I

!
is the

vector of reactions given as input. This adaptation ensures that the neural network learns to complete the reaction set and does not

simply repeat the input.

Gap-filling algorithm and database
After predicting weights for all reactions, we used those weights to guide a half-interval search for the minimal set of reactions that

simultaneously has a high probability and generates biomass flux that is greater than zero. The half-interval gap-filling algorithm was

adapted from Latendresse.25 Briefly, this algorithm iteratively minimizes the following objective function with linear programming

conditional on flux through the biomass reaction (fb):

Objective function of the half-interval gap-filling algorithm that optimizes gap-filling of an incomplete metabolic network based on

weights and flux of reactions in a network.

X
r ˛m

crfr

����� fb > 0 Equation 3

This sums over all reactions (r) in the candidate set (M), with fr the flux through reaction r and cr a user-defined cost used

to implement the different weighting schemes during gap-filling. By using linear programming, the runtime is reduced by up

to two orders of magnitude compared to mixed integer linear programming.25 The objective was solved using the gurobipy

package.44

For ModelSEED models the default ‘bio1’ reaction was used as biomass reaction and for BiGG the CarveMe ‘Growth’ reaction

was used. The reaction database from where reactions were selected was downloaded from the BiGG website (http://BiGG.

ucsd.edu, Table S10) for the BiGG and CarveMe models and from the ModelSEED website (https://modelseed.org,

Table S11) for the ModelSEED models. From these databases, biomass reactions were removed as they are generally

artificial, added before gap-filling and not predicted by the DNNGIOR Neural Network. Reversible reactions were split into

two reactions, one for each direction. The algorithm can also take into account different media compositions, as these may

affect the solution.

Curated genome-scale metabolic models
We selected six high-quality manually curatedmodels based on literature (iML1515,17 iJB785,51 iYL1228,52 iND750,53 iYO844,54 and

iYS85455 from the BiGG database.56 We deleted in 10x replicate 30% of reactions from these models and gap-filled them with the

same four weighting schemes as for gap-filling the draft-models (see section above). For these models the neural network trained on

CarveMemodels was used as the reaction identifiers matched those from the curated models. To illustrate which reactions are most

likely to be found with the different weighting schemes we also deleted in 500x replicate 30% of reactions from the Escherichia coli

model (iML1515) and constructed an Escher57 map of the central metabolism. For the test where only essential reactions were

removed, the find_essential_reactions function was used from COBRApy7 (v0.28.0).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Weighting schemes for guiding the gap-filling algorithm
Four weighting schemes were used to guide the half-interval algorithm, namely: W1. No weights, W2. Naive binary weights, W3.

Frequency weights and W4. NN weights (see Equation 4). For W1, all reactions in the database (n = 43,775) are given the default

cost (cr = 50). For W2, a low fixed cost (cr = 1) is given to reactions that are present at least once in the training dataset (Rtrain, n =

2457), and the default cost to all other reactions in the database. For W3 a lower cost is given to a reaction if it is present in a higher

fraction of genomes in the training dataset. ForW4, a lower cost is given to reactions that have a higher prediction score. Because the

half-interval gap-filling algorithm tries to minimize the product of a reaction’s cost and flux, reactions that are given lower costs are

given more weight in the final solution.

Four weighting schemes to guide the half-interval gap-filling algorithm, see text for details.

W1 = 50

W2 = f1; r˛Rtrain; 50; r;Rtraing

W3 = 1 � fracr

W4 = 1 � pNN

Equation 4

We compared the four different weighting schemes by gap-filling the models that were constructed based on the 1,659 genomes

from the testing dataset fromwhich 30%of reactions (nz300) was deleted at random in triplicate. After gap-filling, we countedwhich

removed reactions were re-added correctly (TPs) or not (FNs), and which reactions were falsely added (FPs). These were used to

calculate an F1-score for the different weighting schemes.

Validation of gap-filled models based on experimental data
We obtained the genome sequences of 224 bacterial isolates from Arabidopsis thaliana leaves.34 Draft models were constructed us-

ing ModelSEEDpy58 v0.3.0 and gap-filled in a minimal medium (Table S7) with and without DNNGIOR neural network weights.

CarveMe11 models were built using version v1.6.0 with default parameters and the M9 minimal medium provided by the package.

Simulated carbon utilization profiles were established by measuring flux through the biomass function (‘bio1’ for DNNGIOR models

and ‘Growth’ for CarveMe models) on 45 different carbon sources using cobrapy7 v0.28.0. Balanced accuracy scores were calcu-

lated by comparing the simulated carbon utilization profiles to those that were measured in vitro34 using Equation 5.

Balanced accuracy score.

Balanced accuracy = ðspecificity + recallÞ = 2 Equation 5

Statistical tests
Statistical significance of the correlations between prediction accuracy and reactions frequency, phylogenetic distance or KEGG

pathway size was determined using the pearsonr function from SciPy46 with default parameters. Determining the significance of

the difference in mean F1-score between including and excluding phyla or the different weighting schemes was performed using

the Wilcoxon rank test from SciPy46 using default parameters.
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