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A B S T R A C T

Nowadays, retailers try to optimize the shopping experience for consumers by offering personalized services.
Recommending food options, i.e. providing consumers suggestions on what products to buy, is one of such
services. Food recommender systems for grocery shopping are typically preference-based, using consumers’
shopping history to determine what products they would like. These systems can predict well what a consumer
would potentially like to buy, however, they do not stimulate consumers to buy healthier or more sustainable
food options. In response to increasing global concerns about public health and sustainability, this paper aims to
integrate healthiness and sustainability levels of food options in recommender systems to encourage consumers
to buy better food options. To assess the impact of integrating healthiness and sustainability information of food
choices in predicting an item to buy, we employ three food recommendation models: a Baseline popularity-based
model, Restricted Boltzmann Machine (RBM), and Variational Bayesian Context-Aware Representation (VBCAR)
based on (1) preferences, (2) preferences and health, (3) preferences and sustainability, and (4) all combined
attributes. Models were trained and tested using two different datasets: Instacart and a Dutch supermarket
dataset. The experimental results indicate improved performance for VBCAR compared to Baseline and RBM.
Models that emphasize healthiness and/or sustainability of food choices do not significantly alter model per-
formance compared to preference-based models. The results of the health and sustainability-based recommender
systems demonstrate the potential of recommender systems to assist people in finding healthier and more sus-
tainable products that are also suited to their preferences.

1. Introduction

Recommender systems navigate consumers through the over-
whelming amount of product options by suggesting alternative products
that match the needs of a specific consumer (Alamdari et al., 2020, Ricci
et al., 2011). Leveraging such technology for digital transformation can
increase customer satisfaction in the digital landscape (Abbu et al.,
2021), which is beneficial now that more and more consumers are
shifting toward the online environment for grocery shopping. To illus-
trate, Dutch online grocery shopping sales with home delivery quadru-
pled from 2018 to 2023 (Rabobank, 2023), specifically accelerated by
the COVID-19 pandemic (Baarsma and Groenewegen, 2021). Expecta-
tions are that the Dutch online grocery market revenue will surpass 6
billion euros, doubling its value compared to 2022 (Statista, 2024). In
this online grocery environment, consumers typically get recommended
products based on their preferences that reflect what they have liked in

the past (Trattner and Elsweiler, 2017). Many algorithms have been
used to provide accurate items to consumers (see for example the article
by Portugal et al. (2018) for an overview).

Although providing suggestions based on preferences can be helpful
to consumers in finding suitable product alternatives in an online gro-
cery store, these systems are typically designed from a retailer’s
perspective to drive sales consumption (Smith and Linden, 2017) and
suggestions merely reinforce existing eating habits (Starke, 2019). The
need to develop recommender systems that go beyond consumer pref-
erences and earlier purchases is important in the context of healthy and
sustainable eating behavior, given the rise in obesity levels and the ur-
gent need to combat climate change (Willett et al., 2019). Nowadays,
information is available on the attributes that determine whether a
product is healthier or more sustainable such as low sugar levels and
organic farming. Still, a bottleneck prevails in altering consumer
behavior toward lasting change. Various factors contribute to this
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bottleneck, such as cultural and social contexts, convenience, costs, and
the food environment (Munt et al., 2017). Consequently, consumers
often lack the knowledge and motivation to choose healthily or sus-
tainable (Hollywood et al., 2013, Munt et al., 2017) and would benefit
from guidance in finding more healthy and sustainable alternatives to
change their eating behavior (Jansen et al., 2023).

It is crucial to guide consumers in achieving broader goals of healthy
and sustainable eating, which are eating behaviors that “promote all
dimensions of individuals’ health and wellbeing; have low environ-
mental pressure and impact; are accessible, affordable, safe and equi-
table; and are culturally acceptable” (FAO, WHO 2019, p.9).
Nevertheless, preference-based recommender systems primarily focus
on taste and personal preferences, without necessarily considering the
nutritional value of foods (Chen et al., 2023). This often reinforces un-
healthy eating habits, as the systems primarily strengthen existing
preferences without encouraging more balanced choices (Chen et al.,
2023). By focusing on past behavior, these systems tend to offer a
limited variety of recommendations, restricting consumers to a narrow
selection of familiar products and missing opportunities to educate in-
dividuals about the importance of balanced nutrition (Starke and
Trattner, 2021). Education and diversity in offerings might increase
consumer’s adherence to dietary changes over time (Hauptmann et al.,
2022, Starke and Trattner, 2021).

The inclusion of health is becoming more of a hot topic in food
recommender systems (FRS) research, for instance in generating meal
plans or by substituting ingredients within recipes (Trattner and Els-
weiler, 2017). Nonetheless, little research has been conducted on FRS
tailored for grocery shoppers, particularly in terms of including health
and sustainability considerations in these information systems. In the
few studies conducted on sustainable grocery recommendations, Asikis
(2021) proposed multi-objective optimization algorithms to provide
sustainable recommendations but only evaluated the outcomes based on
the costs, environmental impact, and nutritional quantities of the basket
rather than using the more common offline evaluation metrics such as
Precision and Recall (Ghannadrad et al., 2022). Another previous work
identified sustainability-minded grocery shoppers and learned from
their purchasing patterns to identify sustainable products but did not
evaluate a recommender system (Tomkins et al., 2018). Regarding
health, Bodike et al. (2020) used a simple collaborative filtering
approach to recommend products and improved grocery recommenda-
tions by including the nutritional value of food products using natural
language processing. Hafez et al. (2021) focused on item-to-item rec-
ommendations for healthier grocery shopping without including infor-
mation on consumer buying behavior. All in all, although some research
has focused on integrating health or sustainability attributes of products,
developing Grocery Recommender Systems (GRS) that incorporate all
attributes - preferences, health, and sustainability - and evaluating these
systems with traditional machine learning metrics remains unexplored.

Accordingly, the main objective of this study is to utilize implicit
purchase data to examine models that consider the health and sustain-
ability value of food options in addition to consumer preferences when
suggesting grocery products to the consumer and to evaluate these
models with offline metrics. It is assumed that continuously recom-
mending products that are more sustainable or healthier than products
initially chosen by the consumer will improve diet and environmental
footprint. We aim to empirically validate various machine learning-
based recommendation models while also studying whether including
healthiness and/or sustainability information about food choices in in-
formation systems impacts model performance compared to preference-
based models. Specifically, we aim to answer the following research
question: “How do the proposed models that include healthiness and/or
sustainability information of food choices perform compared to existing
preference-based models?”

This research tests three recommendation algorithms for preference-
based healthy, sustainable food choices based on real-life shopping
basket data. The outcomes of preference-based recommendations are

evaluated in comparison to other objectives, including preference and
health, preference and sustainability, and a combination of these factors.
As a first model, we take a simple Baseline model that recommends the
most popular items.1 Second, a Restricted Boltzmann Machine (RBM)
model opted by Salakhutdinov et al. (2007) was used.2 RBMs learn the
probability distribution over input data using two layers: a visible
(input) and hidden (learned features) layer, while continuously updat-
ing the input data with backward reconstruction (Salakhutdinov et al.,
2007). Third, a more up-to-date and state-of-the-art algorithm specif-
ically designed for grocery shopping was modified for our research
(VBCAR by Meng et al. (2021)). The VBCAR3 model predominantly
employs Bayesian Skip-gram and Variational Autoencoder techniques to
learn low-dimensional embeddings of users and items, while also ac-
counting for contextual factors in purchase behavior, such as the
healthiness of products.

In summary, this study contributes to the field of recommender
systems by utilizing implicit consumer data to examine health and
sustainability-focused recommendation models by evaluating these
models with offline metrics. We propose to consider the healthiness and
sustainability level of food choices for product recommendations and
adjust various models for item prediction by integrating health and
sustainability information. Through experiments, we show that results
from models incorporating the healthiness and/or sustainability level of
food choices do not significantly deter from preference-based model
results. Moreover, experiments verify that advanced techniques that
capture underlying relationships offer more accurate recommendations
than baseline popularity models. The following part of the paper is
organized as follows: Section 2 provides a background on FRS with a
specific focus on grocery recommendations. Section 3 describes the
materials and methods used. Section 4 provides detailed results of our
experiments on two grocery datasets. We compare three models (Base-
line, RBM, and VBCAR) for preference-based product suggestions and
recommendations based on additional product information. Finally, we
provide conclusions and recommendations for future work.

2. Background

2.1. Food recommender systems

Recommender systems that leverage previous buying behavior
(customer-product interaction) to suggest useful product options to
consumers have gained much attention from both academia and in-
dustry for many years (Wei et al., 2007). In recent years, the use of
recommender systems has extended to specific fields such as food and,
even more specifically, grocery shopping (e.g., Yuan et al., 2016).
Within grocery recommendations, these systems aim to predict which
grocery products a consumer might buy in the future based on previous
transactions. These systems have been implemented on grocery shop-
ping platforms, including major retailers like Kroger (www.kroger.com)
and Albert Heijn (www.ah.nl). By implementing these systems, retailers
seek to enhance the shopping experience for consumers (Elahi et al.,
2021). In doing this, recommender systems influence what information
consumers see in the shopping environment and consequently influence
decision-making by selection and ranking of choices (Jesse and Jannach,
2021). Benefits for consumers are manifold, such as receiving a narrow
consideration set specifically tailored to an individual (Sarwar et al.,
2002) or exploring new or additional products (Fayyaz et al., 2020).

Various methods for delivering personalized food recommendations
have been researched. The three most common types of filtering
methods are content-based, collaborative, and hybrid filtering (Portugal
et al., 2018, Ricci et al., 2011). In a content-based system, items will be

1 https://github.com/microsoft/recommenders/tree/main
2 https://github.com/microsoft/recommenders/tree/main
3 https://github.com/mengzaiqiao/VBCAR
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recommended to a user based on the content features of items that a user
has previously interacted with. Unlike content-based recommendations,
collaborative filtering (CF) approaches are not dependent on item data
but collect a huge amount of user data to find alternatives. Collaborative
filtering is an approach that relies on user-item interactions to identify
patterns in behavior such as purchase history and consequently
recommend products that are popular among similar users. The ratio-
nale is to find products that similar users have bought in the past because
similar users are a good indicator of relevancy for the current user.
Hybrid filtering methods combine the advantages of content and
collaborative filtering methods by processing different data sources. In
other words, a hybrid system ‘tries to use the advantages of A to fix the
disadvantages of B’ (Ricci et al., 2011, p.13).

These traditional recommender systems capture static preferences
(isolated preferences), whereas providing food recommendations in the
context of grocery shopping requires capturing preferences in a
sequence over time (Wang et al., 2019). As such, sequential recom-
mender systems (SRS) are often used to model user-item interactions as a
dynamic sequence in the grocery shopping context (Wang et al., 2019).
Typical examples of these are next item and next basket recommenda-
tions, where a model recommends additional items to add to an existing
basket or for the next basket, respectively (Katz et al., 2022). Another
possibility is recommending options to switch a product in the basket
(i.e. recommendations at the basket/checkout page) or at the moment of
product selection (i.e. recommendations at the product page), so-called
food swaps (Jansen et al., 2021).

Typically, recommender systems create suggestions based on what
consumers have bought or liked in the past and thus present information
within the bubble of consumer preferences (Jansen et al., 2024, Trattner
and Elsweiler, 2017). While preference-based food recommendations
can increase consumer satisfaction (Pecune et al., 2020), there are also
opportunities to achieve specific goals with recommender systems, such
as trying to get people to eat healthier or more sustainably (Jesse and
Jannach, 2021). For instance, a recommender system might suggest
options that a user will probably like, while, at the same time, high-
lighting healthier options (Starke et al., 2021).

Rather than a market-driven focus, models can take into account the
health and sustainability level of products. In doing this, FRS are not just
a tool for matching preferences but can serve as persuasive technologies
that influence food choices and behaviors while allowing freedom of
choice (Jesse and Jannach, 2021). Incorporating health and sustain-
ability factors into recommender systems can transform those systems
into persuasive tools to subtly nudge consumers toward healthier and
more sustainable food choices. As posited in Nudge Theory (Thaler and
Sunstein, 2009), recommender systems then act as a digital nudge to
influence behavior in a way that supports better food choices without
restricting consumer choice. Such digital interventions are expected to
enhance behavioral change toward healthier and more sustainable food
choices (Jansen et al., 2023).

By integrating machine learning, recommender systems not only
personalize interventions to better match individual preferences but also
offer a powerful tool for supporting consumers in making healthier or
more sustainable food choices. Machine learning empowers recom-
mender systems to continuously learn from consumer interactions such
as purchase or browsing behavior (Schafer et al., 1999). This allows the
systems to identify behavioral patterns important for accurate pre-
dictions on what products consumers would like to buy. In this regard,
machine learning can shed light on the features of recommendations
that are most effective in driving behavioral change.

2.2. Grocery recommender systems

This section starts by discussing two types of recommender systems
that are closely related to the grocery recommendation problem: (1)
next item recommendation, and (2) next basket recommendation. Next
item recommendations focus on predicting the next item that a user is

likely to buy based on the previous shopping history (Ilyas et al., 2022).
For instance, the system might recommend adding butter if a user has
bread, milk, and eggs in the basket. Next basket recommendations go
one step further and focus on predicting an entire set of items that a user
might be interested in buying (Shao et al., 2022). As such, next basket
recommendations identify combinations of products that are likely to be
bought together by a user.

A typical technique used to develop next item or next basket rec-
ommendations is a sequential model based on Markov Chains (Ilyas
et al., 2022). Markov Chains (MC) models are an improvement over the
more standard models such as Collaborative Filtering because MC
models can include sequential behavior rather than simply predicting
based on the complete purchase history of a consumer (Chen and li,
2021). An example is Factorizing Personalized Markov Chains (FPMC),
which is a model that leverages matrix factorization and MC to model
users’ general interests and basket transition relations (Rendle et al.,
2010). The downside of MC techniques is that they predict future
behavior based on only the last or few last behaviors (items or baskets
bought) (Ilyas et al., 2022, Wang et al., 2020).

For both next item and next basket recommendations, there is a
growing emphasis on deep learning techniques because of the ability to
learn longer sequential and temporal information (Ilyas et al., 2022).
Improved performance based on deep learning techniques has been
shown (e.g., Yu et al., 2016), but a recent previous study also showed
that deep learning techniques might not be more effective than simple
frequency-based models (Li et al., 2023). Deep learning models are
useful for exploring and finding hidden patterns in data, but not so much
for finding repeated items that play a substantial role in grocery shop-
ping recommendations (Li et al., 2023).

Aside from typical techniques underlying recommender systems,
item and basket recommendations often revolve around a widely
accepted objective: consumer preferences (e.g., Bai et al., 2019; Fouad,
Hussein, Rady, Yu,&Gharib, 2022; Hoang& Le, 2021). This is often also
reflected in the definition of these recommendations. For example, Shao
et al. (2022) define a next basket recommender system as a system that
aims to predict a user’s next basket by modeling the user’s preferences
based on the shopping history. As a result, recommender systems often
promote unhealthy and unsustainable alternatives that align with con-
sumer’s previous buying behavior. Previous work in the FRS domain
showed some positive results when recommending healthier recipes
(e.g., Starke and Trattner, 2021) or diets (e.g., Yang et al., 2017), but
only to a limited extent. To our knowledge, none of the existing GRS has
investigated leveraging health and sustainability information of food
choices to improve model performance compared to the typical
preference-based models.

While the challenge of integrating health and sustainability of food
choices as additional information in recommender systems is specific to
the food domain, various other, more generic, challenges should also be
considered. Most important are the amount and the sparseness of the
data (Bodike et al., 2020). Supermarkets often have a huge product
database, of which some products are never or hardly bought by con-
sumers, which makes it hard to find users who purchased the same items
(Bodike et al., 2020). Many approaches cannot handle such large and
sparse datasets, but Restricted Boltzmann Machines (RBM) present a
solution (Salakhutdinov et al., 2007). RBM models learn compressed
representations of features in training data, which reduces the dimen-
sionality of data. Regarding the health and sustainability of food op-
tions, RBMmodels offer the possibility to integrate as much item feature
information as one would want, as the models can take low-level fea-
tures from the items as input.

Bayesian techniques can also be leveraged to integrate prior infor-
mation based on large datasets (Abdar et al., 2021, Ansari et al., 2018),
while incorporating different types of information such as healthiness
and sustainability of food choices in one coherent model (Condliff et al.,
1999). Such deep learning methods can consider semantic information
well and this semantic information leads to model improvement with
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more input (Dong et al., 2017). In this context, skip-gram-based models
have shown promise to optimally understand relationships between
items and to improve predictions, using word embedding techniques
(Meng et al., 2021, Mikolov et al., 2013). However, skip-gram-based
methods have yet to be explored for healthier and more sustainable
grocery shopping.

In this paper, three models are used to address the challenges of
incorporating preferences, health, and sustainability factors into grocery
recommendations. A Baseline model provides a simple reference point
for comparison, while two other models offer increasingly sophisticated
approaches for capturing the multifaceted nature of grocery decision-
making and generating personalized recommendations that promote
health and sustainability in addition to preferences. An RBM model is
chosen for its ability to capture complex patterns and interactions within
high-dimensional data. VBCAR is selected because it combines collab-
orative filtering techniques and variational Bayesian inference and
regularization mechanisms to leverage user preferences and auxiliary
information regarding health and sustainability information in a prin-
cipled and probabilistic framework.

3. Methodology

3.1. Data collection and preprocessing

3.1.1. The datasets
Two datasets were selected for our analysis: the first one is a publicly

available benchmark dataset4, and the second one is a recent real-life
grocery shopping dataset that contains all the required information on
health and sustainability features. This combination allowed us to
validate the models using comprehensive real-world data while also
comparing the results with an established benchmark dataset.

The first dataset used was the Instacart dataset,4 which is publicly
available and often used in research on recommender systems (e.g.,
Ariannezhad et al., 2022, Faggioli et al., 2020, Li et al., 2023). Instacart
is a web service that provides grocery delivery in the US. The anony-
mized data file comprised six files containing information on a con-
sumer’s order, such as order ID, product ID, aisles, and departments.
Data was collected in 2017 from more than 200,000 customers, con-
taining more than 3 million grocery orders of 50,000 items. The specific
date of each order was missing, but the order of transactions was pro-
vided for each user. The dataset also gave information on the day of the
week and the hour of the day the order was placed.

The second dataset was provided by a large Dutch supermarket
chain, of which data from September until December 2021 was used in
this paper. Purchase data included all purchases from customers who
made, on average, one order per week in the period of data collection.
Moreover, separate datafiles for each week with pricing data were
provided, as well as information on the active price promotions each
week and lists of products with their corresponding healthiness (3740
products) and sustainability (1293 products) information. The healthi-
ness of products was based on the United Kingdom Food Standard
Agency (FSA) score and the corresponding Nutri-Score label (Santé
Publique France, 2023), which has been used in previous work on food
recommendations (e.g., Starke et al., 2021). The Nutri-Score label was
shown on the products during data collection (September – December
2021). The sustainability of products was defined by the European
Union organic label, a certificate indicating that EU rules on organic
farming in terms of production, processing, transportation, and storage
were respected (European Commission, 2023).

3.1.2. Pretreatment of data

3.1.2.1. Instacart data. Instacart - integration of multiple data sources: The
different files of Instacart data (i.e., order_products_prior, orders, prod-
ucts, departments, aisles) were merged into one file based on a unique
identifier (e.g., order_id in order_products_prior and orders), leading to
one dataset with information on among others order, product, user,
product description, aisle, department, and whether the dataset
belonged to prior, train, or test set. The final purchase dataset contained
over 32 million rows of data.

Instacart - data transformation: By default, the Instacart data lacked
health and sustainability features. Thus, two variables for the health and
sustainability level of food choices were generated and added by
randomly assigning values. For NutriScore, values 0 (no NutriScore
label) and values 1 to 5 (NutriScore A to E) were assigned to products
based on the distribution in the Dutch supermarket dataset (see Section
3.1.3). Organic labels were assigned to 50% of the products (organic=1
versus non-organic=0). Moreover, a column for quantity bought was
created by randomly assigning values between 1 and 4 products bought,
with 50% assigned 1, 20% assigned either 2 or 3 products, and 10%
assigned 4 products bought. A variable for ratings was added by equally
assigning values 1 to 5 to each product randomly. For easy data pro-
cessing, all cells and headers were transformed into capital letters.

Instacart - data cleaning: Three data cleaning steps were followed
(Bauer et al., 2023): (1) remove users with too few baskets, (2) remove
items that appear in too few baskets, or (3) remove too small baskets.
Instacart data was cleaned by setting the threshold at 3 for the number of
purchases a user should have made, how often an item should have been
bought, and how many products a basket should contain.

Instacart - data reduction: Following Meng et al. (2021), data was
selected by randomly taking 25% of the data to allow the merging of
data files. To overcome computational problems, a random subset of
30,000 rows (referred to as a small dataset) or 143,000 (referred to as a
large dataset) was used for model training and testing. Table A1 explains
the different variables and one example of the merged Instacart dataset.

3.1.2.2. Dutch supermarket data. Dutch supermarket - integration of mul-
tiple data sources: Six different types of datasets were provided by the
Dutch supermarket: (1) Purchase Data, (2) Price Data, (3) NutriScore,
(4) Organic Label, (5) Category Structure, and (6) Promotions.5 Pur-
chase Data was provided in 39 separate datasets (September to
December 2021), which were merged for data analysis. Price Data was
supplied in separate weekly datasets, which required merging for data
analysis. Separate files were provided for NutriScore, Organic Label,
Category Structure, and Promotions. To enable merging, week numbers
and year (2021) were added to the Purchase Data based on the day of
purchase. With a left join, NutriScore, Organic Label, and Category
Structure were merged into the Price Data. After that, a left join merged
this data into the Purchase Data, while also adding a column to indicate
whether a product was on promotion using the Promotions data. The
purchase data size for September to December 2021 was around 23
million rows.

Dutch supermarket - data transformation: NutriScore and Organic la-
bels were replaced with numerical values (1 to 5 for NutriScore A to E,
and a value of 0 for missing labels. For organic, the presence of label was
indicated with a 1 and no label with a 0). A variable for product ratings,
required for running the Baseline and RBM models, was added by
equally assigning values 1 to 5 to each product randomly.

Dutch supermarket – data cleaning: Anomalies in the data were
removed. For instance, headers of the purchase files were repeated every
10,000 rows and had to be deleted. Moreover, cells and headers were

4 http://www.instacart.com/datasets/grocery-shopping-2017

5 Note that information about price, category structure, or promotions were
not used in the current paper.
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converted into capital letters for easy processing, leading and trailing
spaces were stripped, and postal codes in a different format than Dutch
standard (e.g., NNNNLL) were removed. Duplicates were removed and
missing data was replaced with NaN for textual data (e.g., NutriScore
label), the mean value for numerical data (e.g., price), or zero (‘0′) for
numerical data that was not measurable (e.g., PE ART. NR. Number).
Rows were deleted if the article number (CE ART. NR.) was not present.
The full dataset was cleaned for infrequent users, items, and baskets
using the same procedure as Instacart data with a threshold of 3.

Dutch supermarket – data reduction: To allow the merging of datasets,
the purchase dataset was reduced to 25%, in line with the data reduction
procedure for Instacart. In line with Instacart, a random subset of 30,000
rows (referred to as small dataset) and 143,000 rows (referred to as large
dataset) was used for model training and testing. Table A2 explains the
different variables in the Dutch supermarket data and one example of
the merged dataset.

3.1.3. Description of data
Table 1 displays the statistics of both datasets after pre-processing,

including the number of transactions, items, consumers, main cate-
gories, the average number of items in a basket (transaction), and the
average number of baskets for a user. The Instacart dataset (25%)
included 89,685 customers, 603,677 orders, and 41,476 products
divided into 21 main categories. The average basket contained 11
products per basket and each user bought on average 7 baskets. Most
products were ordered from the categories ‘Produce’, ‘Dairy eggs’,
‘Snacks’, and ‘Beverages’, and the most ordered products were bananas,
strawberries, spinach, and avocado. NutriScore and Organic information
were divided among the sample using the division of the Dutch super-
market data for NutriScore and Organic. The Dutch supermarket data
was utilized as a reference point for external extrapolation of NutriScore
and organic information, which provides a more credible basis than
random assignment.

The Dutch supermarket data (25%) had around 14 thousand cus-
tomers who ordered 47,397 times in total. The 12,818 products were
divided into 18 main categories such as ‘potatoes, vegetables and fruits’
and ‘candy, cookies, chips, and nuts’. Customers shopped around 3 times
on average and had an average of 32 products in their baskets during the
data collection period (September to December 2021). NutriScore in-
formation was available for 2852 products. The division of NutriScore
labels A to E was as follows: A (weight 0.07), B (weight 0.03), C (weight
0.03), D (weight 0.05), and E (weight 0.03). Originally, organic infor-
mation was present on 581 out of 12,818 products. For analysis, 50% of
the products were randomly given an organic label.

3.2. Experimental design

3.2.1. Algorithm construction
Algorithm construction consisted of three phases (see Fig. 1): (1)

identify the user preferences, (2) classify the products according to their
health and/or sustainability level, and (3) recommend suitable products.
In other words, the algorithm aimed to provide food recommendations
based on user preferences and product attributes (health and/or sus-
tainability level).

Phase 1: User preference classifier - User preferences were retrieved
by analyzing the two datasets encompassing previous buying behavior
of consumers. To determine consumers’ preferences, a target item that
was bought by a certain consumer was taken to identify the products
that were most frequently bought together with this target item using
the behavior of other users who have interacted with the target item.

Phase 2: Product healthiness and sustainability classifier - After
understanding user preferences, the algorithm must assess a product’s
sustainability or health level. The Dutch supermarket data measured the
healthiness score of products with the NutriScore label. The NutriScore
label is based on the nutrient profiling (NP) system of the UK Food
Standards Agency (FSA) (Food Standards Agency, 2011). The FSA score
is a scoring system to determine the nutrient content per 100 g of food or
drinks (Hagmann & Siegrist, 2020). Negative and positive points are
given to components of the food product, leading to a 5-level score from
dark green (healthy) to red (unhealthy) with a value ranging from -15
(healthy) to +40 (unhealthy). To assess whether a product was organic,
the EU organic farming classification was used. These products comply
with strict regulations from the EU on production, transportation, and
storage (European Commission, n.d.).

Phase 3: Recommender system – User input (previous buying
behavior) and product input (healthiness and sustainability score) were
used to recommend products that are tailored to the user. In the case of
retail, there is a set of users U and a set of items I and each user purchases
a subset of these items, i.e., the basket. A basket is defined as a set of
items such that B = {x1, x2, … xn} where xi ∈ I denotes an item from
itemset I. Given the purchase history, the goal of the recommender
system is to predict other products to buy based on the consumer’s
baskets, whilst constraining the prediction for the healthiness or sus-
tainability level of the product. This is a multi-objective recommender
system that tries to optimize the algorithm by simultaneously ranking a
set of potential items according to several criteria: user preferences,
health, and/or sustainability.

3.2.2. The recommendation algorithms
Three machine learning models that identify recommendable prod-

ucts based on the product’s match with consumer preferences and the
healthiness or sustainability level of the product were empirically
assessed (Ricci et al., 2011). Identifying (a set of) products to recom-
mend is a collaborative filtering problem, aimed at finding similar users
or items based on the purchase history of a consumer, that is, the user
interaction with products. Aside from integrating preference informa-
tion, the models were also tested for considering the health and/or
sustainability information of products. As such, each of the three models
had four versions: a basic version that only included preferences and
three other versions that added healthiness information, sustainability
information, and both health and sustainability information of products.
Two machine learning models, RBM and VBCAR, were compared to the
Baseline performance of recommending the most popular item.

Restricted Boltzmann Machine (RBM) – Restricted Boltzmann Ma-
chines are generative neural network models that consist of visible
(input) and hidden (feature learning) layers (Ghojogh et al., 2022). The
visible layer is the input data, whereas the hidden layer represents
features or embeddings of the visible data. In RBM models, the visible
layers are connected to hidden layers, and vice versa, but a visible
(hidden) layer cannot be connected to another visible (hidden) layer.
This means that there is a connection between input data and learned

Table 1
Statistics of the datasets.

Instacart Dutch supermarket

Transactions (total orders) 603,677 47,397
Products 41,476 12,818
Customers 89,685 14,005
Main categories 21 18
Average size of basket (products per order) 11.21 32.65
Average baskets per user 6.73 3.38
Products with NutriScore (health) Weight  
- NutriScore: no label (0.78) 32,330 9966
- NutriScore A (0.08) 3321 955
- NutriScore B (0.03) 1273 352
- NutriScore C (0.03) 1225 432
- NutriScore D (0.05) 2073 714
- NutriScore E (0.03) 1254 399
Products with Organic label (sustainability)  
- Organic: no label 20,702 6473
- Organic: label 20,774 6345
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features, but not between the elements of visible and hidden layers
themselves. An RBM model’s task is to learn the joint probability dis-
tribution over input data using visible (input) and hidden (learned fea-
tures) layers (P(visible, hidden)). It does this in two phases: (1) a
feed-forward pass in which input is forwarded to feature learning
layers, which then adds a bias and sends the value to an activation
function, and (2) a feed-backward pass in which the input layers are
back trained using activated hidden units, leading to biased recon-
structed inputs as output (note that both visible and hidden layers have a
bias). Such a model is defined by the following function, where the first
term captures the correlation between visible and hidden units and the
other terms capture the bias of the units.

H = −
∑

i j ∈G
vi wij hj −

∑m

i=1
vi ai −

∑n

j=1
hi bi

The model is designed to handle large sparse datasets because it
focuses on typical behavior rather than particular instances
(Salakhutdinov et al., 2007), which is validated for movie recommen-
dations and is also considered useful for the case of grocery shopping
where people usually buy only a few of the available options. For
training, the model uses a variant of stochastic gradient descent called
contrastive divergence, which means that the weight of connections
between neurons is adjusted. To integrate health and/or sustainability in
the model, item embeddings were updated with information on the
healthiness and sustainability levels of food items during data training.
The data are represented using multinomial units, i.e. discrete proba-
bility distributions (vectors of probabilities).

Variational Bayesian Context-Aware Representation (VBCAR) -
The VBCAR model is specifically designed for grocery recommendations
to predict items a user will buy next. The model is optimized for
including side information from products, such as the product

description or brand (Meng et al., 2021). It uses a Bayesian model to
learn low-dimensional representations of users and grocery items, while
it can also include additional side information such as product category,
or, in our case, the healthiness and sustainability information of prod-
ucts. The underlying model is the Triple2Vec model (Wan et al., 2018),
which samples triples of item1, item2, and a user (co-purchase of two
items by the same user) to learn the latent embeddings for users and
items to predict the occurrence probability of those triples, in combi-
nation with a Bayesian Skip-gram model to represent users and items as
Gaussian distributions, i.e., as probabilistic quantities (Barkan, 2017):

P(zu) = N
(
0,α2I

)
, p

(
zi
)
= N

(
0, α2I

)
,

where α = 1
To perform an exact inference on the posterior density of variables in

the model, Meng et al. (2021) proposed to use a Variational Bayes
approach that maximizes a lower bound of the logarithm marginal
likelihood (i.e., the probability of observing a particular triple of item,
item, user in the data) to infer the embeddings of users and items. In the
end, product recommendations are a ranked list of possible items. This
model can handle big datasets containing high-dimensional data and is
specifically designed to model complex relationships between users,
items, and features. To integrate health and/or sustainability informa-
tion of products, item embeddings were concatenated with the infor-
mation on healthiness and/or organic aspects of food items in data
training, similar to the RBM model. One-hot encoding was used to
represent side information.

3.2.3. Split technique
All models, Baseline, RBM, and VBCAR, employed a 70/30 split.

RBM model used a stratified splitter to randomly select 70% for training

Fig. 1. Algorithm construction.
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and 30% for testing from the user/affinity matrix. A temporal split
strategy was used in the VBCAR model, where baskets were split into
training (70%), testing (30%), and validation (the last 20% of training)
based on the temporal order of the baskets.

3.2.4. Algorithm performance assessment
In line with Meng et al. (2021), four metrics are reported for the

ranking task of product recommendations: precision@k, recall@k,
NDCG@k, and MAP@k. These metrics, focused on relevance and
ranking of models, are often used for recommender system evaluation
and allow for comparison of quality across papers (Bauer et al., 2023,
Valcarce et al., 2020). Adopting various metrics to evaluate systems can
provide insights into different aspects of the system (Bauer et al., 2023).

Precision is the number of correctly recommended items compared to
the total number of items. It measures the accuracy of predictions made
by a model.

Precision =
|Lnk ∩ Ru|

n

Recall is the number of correctly recommended items compared to
the total number of relevant recommended items. It measures the ability
of a model to capture all the relevant items.

Recall =
|Lnk ∩ Ru|

|Ru|

NDCG (Normalized Discounted Cumulative Gain) assesses the
ranking quality by sorting results on their relative relevance, meaning it
assumes that items higher in the list are more relevant. By considering
both the relevance and the position of items in a ranked list, NDCG
measures the effectiveness of a model in predicting relevant items.

NDCG =

∑

n
k = 1

G(u, n, k)D(k)

∑

n
k = 1

G*(u, n, k)D(k)

MAP (Mean Average Precision) assesses the ranking quality by checking
whether all relevant items are ranked high in the list, meaning it is an
average precision at the positions where a relevant item is found. The
function below (Average Precision) can be averaged over the whole
dataset to get the mean value.

AP =
1

|Ru|

∑n

k=1
‖
(
Lnu[k] ∈ Ru

)
Pu @k

with ‖ as indicator function.

Experiments were run on a Windows 11 Pro desktop computer
featuring a 64-bit operating system, equipped with a 12-core processor
and 32GB of RAM. Results were obtained using Visual Studio Code with
Python 3.11.2, including statistical testing in Rstudio. Table 2 gives an
overview of the different algorithms and the hyperparameters used. For
the full functional architecture of this study, see Fig. 2.

3.3. Statistical tests

The current research investigated differences between models
(preference-based version of each model), differences when adding
additional information (compare preference-based models to models
that integrate health, sustainability, or both), and differences between
datasets (Instacart and Dutch supermarket datasets and the small and
large version of datasets).

First, to analyze the statistical significance of the performance of
each algorithm, the Two Samples T-Test was adopted to compare the
means of a combination of two models. Independence of data was
assumed because, despite 30K and 143K datasets containing identical

data, the distinctions between the datasets were not critical when
assessing model performance. Second, the same procedure was used to
assess whether additional health or sustainability information signifi-
cantly alters results. The normality of data was confirmed based on the
Shapiro-Wilk test and Q-Q plots (Thode, 2002). The F-test for homoge-
neity of variances was used to assess whether there were significant
differences in variance among the models. If non-significant, the Two
samples T-test was adopted, whereas the Welch t-test was used if vari-
ances between the models were significantly different. Due to the
limited number of samples, Hedges g was preferred over Cohen’s d to
calculate effect sizes (Goulet-Pelletier and Cousineau, 2018).

Lastly, for dataset comparison, dependency of data was assumed
when comparing the small or the large datasets to each other. To
compare datasets from Instacart and the Dutch supermarket to each
other, independence of data was assumed. Data was not normally
distributed according to the Shapiro-Wilk test (Thode, 2002). Conse-
quently, the homogeneity of variances was checked and confirmed with
Levene’s test (Nordstokke et al., 2011). Wilcoxon Rank Test or Wilcoxon
Rank Sum Test, the non-parametric equivalent of the t-test, was per-
formed depending on whether data was paired or not, respectively (Xia,
2020).

4. Results and analysis

This section presents the results for assessing overall model perfor-
mance when integrating previous buying history, performance over
different datasets, and whether models can accurately capture health
and sustainability information of food choices.

4.1. Model comparison

Tables 3 and 4 present the results of the comparison of the Dutch
supermarket and Instacart datasets for N=30,000 and N=143,000,
respectively. When assessing the performance of the different models for
the preference-based version, we observe that the VBCAR model ach-
ieved better performance than the Baseline and RBM models across all
metrics (i.e., MAP, NDCG, Precision, and Recall). Two Sample T-tests
were conducted to compare the means of the various models to each
other for each metric. Mean values were 0.0578 (SD = 0.0347), 0.2640
(SD = 0.1940), and 0.6540 (SD = 0.0862) for Baseline, RBM, and
VBCAR respectively. Statistical significance testing (see Table 5) reveals
that, except for Precision between the Baseline and RBM model, all
preference-based models exhibited significant differences across each
metric. Table 5 also shows significant effect sizes for these models across
all metrics.

Table 2
Three models and the hyperparameters.

Algorithm Hyperparameters Values tested

Baseline K (items to recommend) 10
RBM Number of hidden units 600

Number of training epochs 18
Minibatch size 200
Probability of keeping a connection to
hidden unit active

0.99

K (items to recommend) 10
VBCAR Model VAE (Variational Auto

Encoder)
Epoch 100
Latent dimensions 256
Embedding dimensions 64
Learning rate 0.001
Batch size 256
Alpha 0.01
Negative items for each user 100
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4.2. Effect of adding health or sustainability information

To answer the main research question on the influence of including
healthiness and/or sustainability information of food choices on model
performance, we compared four different versions for all models
(Baseline, RBM, VBCAR): (1) preference-based, (2) preference and
health based, (3) preference and sustainability based, and (4) all com-
bined. In line with the overall model performance, VBCAR outperformed
the Baseline and RBM models across all metrics (i.e., MAP, NDCG,
Precision, and Recall), regardless of the additional information included.
Table 3 and Table 4 show no difference in performance of the Baseline
model, and only minor changes for RBM and VBCAR. Significance
testing (see Table 6) demonstrated that the inclusion of health infor-
mation, sustainability information, or both, did not yield a statistically
significant change in outcome measures compared to the preference-
based model across all three algorithms.

A boxplot, as shown in Fig. 3, was generated to visualize the distri-
bution of evaluation outcomes for all models. The boxplot shows that
variability happened between the models rather than within each vari-
ation based on additional health or sustainability information. The
vertical spread indicates that median values for VBCAR models were
higher compared to both RBM and Baseline models (as confirmed by
significant results presented in Section 4.1), whereas the horizontal
alignment of the boxplots suggests similar distributions (as confirmed by
non-significant results presented in this section).

4.3. Dataset comparison

The current research used two different datasets (Instacart and Dutch
supermarket data) and two different data sizes (30K and 143K). The
Dutch supermarket data reflected consumer shopping behavior from
2021, with shoppers being shown health and sustainability information
about products. Instacart data represented buying behavior from 2017
with constructed variables for health and sustainability. The two data-
sets were distinct from each other, implying independence. However,

when comparing the 30K and 143K datasets, the analysis was conducted
within the dataset (Instacart or Dutch supermarket), assuming de-
pendency within the small and large datasets.

4.3.1. Compare Instacart to Dutch supermarket data
Although Tables 3 and 4 suggest better Precision and NDCG for the

Dutch supermarket model (except VBCAR NDCG for small datasets) and
improved Recall and MAP for the Instacart data (except VBCAR MAP for
large datasets) for both small datasets (30K) and large datasets (143K),
Wilcoxon Rank Sum Test did not yield statistically significant differ-
ences between the Dutch supermarket and Instacart dataset for both
small (30K) and large (143K) datasets. Significance testing results are
shown in Table 7.

4.3.1. Compare small to large datasets for Instacart and Dutch supermarket
data separately

Wilcoxon Rank Test assessed the differences between small and large
datasets as presented in Tables 3 (small datasets: 30K) and 4 (large
datasets: 143K). Results in Table 7 suggest that the declined perfor-
mance for Baseline and RBM models and the improved performance of
the VBCAR model with more data was not significant, except for the
Precision metric. The precision of models significantly improved with
more data for both Dutch supermarket and Instacart data.

5. Discussion

5.1. Discussion of findings

This research has investigated the performance of a multi-objective
GRS focused on the health and sustainability level of food choices. A
Variational Bayesian Context-Aware Representation (VBCAR) and a
Restricted BoltzmannMachine (RBM)model were used and compared to
a Baseline model to explore the effect of integrating health and sus-
tainability information of products alongside user preferences in a GRS.

Regarding overall model performance, experiments on two real-life

Fig. 2. Functional architecture.
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datasets showed that VBCAR and RBM significantly achieved better
performance than the Baseline model for each of the variations: pref-
erences, preferences and health, preferences and sustainability, and all
combined. The experiment also showed that VBCAR outperformed RBM,
potentially caused by the superiority of the domain-specific approach of
VBCAR compared to the general deep-learning approach of RBM. The
accuracy of the RBM model was previously verified using a movie
dataset, where distinct factors play a role compared to grocery shopping
data. Groceries encompass a wide variety of products that have different
characteristics (e.g., freshness, seasonality) and purchase factors (e.g.,
nutritional preferences and allergies, expiration date, availability) that
influence choices (Steptoe et al., 1996), which can be better captured
with a model that is context-aware and able to learn complex patterns
and to model uncertainties by estimating probabilities rather than
making predictions. While recommender systems share common prin-
ciples, the multifaceted nature and specific characteristics of the grocery
shopping domain might require a more context-dependent algorithm to
provide relevant recommendations to grocery shoppers (Ricci et al.,
2022). Yet, results should be approached with caution due to the wide
confidence intervals indicating uncertainty surrounding the magnitude
of the observed effects (Thompson, 2007). To increase certainty of the
effect sizes, future work could use a more extensive dataset that covers a
longer time period. While the 4-month period from September to
December captures a lot of variability in consumer behavior, purchasing
patterns, and product availability due to seasonal factors, a longer
period might provide more meaningful insights into consumer shopping
behavior and allow for more precise estimates.

Concerning the effect of adding a product’s health or sustainability
information, T-test results revealed that adding this information did not

introduce a significant difference to the resulting metrics MAP, NDCG,
Precision, and Recall compared to preference-based models, which
suggests that all variations of models could be used indistinctly. The
congruence between consumer preferences and health and sustainabil-
ity considerations is advantageous as it shows that health and sustain-
ability information of food choices can be promoted without a
significant drop in performance. Potentially, highlighting this informa-
tion will not deter consumers from making these purchases. This insight
is valuable for retailers and store managers who frequently perceive a
misalignment between decisions that drive sales and those that improve
health (Gravlee et al., 2014).

The insignificant performance differences between themodels can be
interpreted from several angles. First, the datasets likely represent a
diverse range of consumer behaviors, preferences, and priorities. The
lack of significant performance differences could indicate that the pro-
portion of individuals who prioritize health and sustainability is rela-
tively small compared to those who prioritize other factors such as taste,
convenience, or affordability. Second, the results of these datasets might
reflect a limited availability and accessibility of healthier and sustain-
able food options, decreasing the possibility of incorporating these fac-
tors into purchasing decisions. Future work can investigate the value of
introducing and saliently presenting health and sustainability informa-
tion to consumers in shifting preferences and purchase behavior over
time. It can be investigated whether consumers make healthier and/or
more sustainable food choices by comparing historical data where
consumers were not exposed to health and sustainability information
versus transactional data where health and sustainability information
was present in the (online) store.

Table 3
Overall performance on the two datasets (n = 30.000).

INSTACART

Precision Recall NDCG MAP

BASELINE
preferences 0.0287 0.0784 0.0642 0.0349
preferences and health 0.0287 0.0784 0.0642 0.0349
preferences and organic 0.0287 0.0784 0.0642 0.0349
all 0.0287 0.0784 0.0642 0.0349
RBM
preferences 0.1095 0.3406 0.3462 0.2507
preferences and health 0.1093 0.3403 0.3465 0.2510
preferences and organic 0.1092 0.3316 0.3435 0.2490
all 0.1096 0.3413 0.3474 0.2522
VBCAR
preferences 0.6855 0.7996 0.8940 0.7008
preferences and health 0.6873 0.8027 0.8940 0.7083
preferences and organic 0.6773 0.7967 0.8945 0.7125
all 0.6855 0.8006 0.8959 0.7105

DUTCH SUPERMARKET

Precision Recall NDCG MAP

BASELINE
preferences 0.0937 0.0305 0.1328 0.0158
preferences and health 0.0937 0.0305 0.1328 0.0158
preferences and organic 0.0937 0.0305 0.1328 0.0158
all 0.0937 0.0305 0.1328 0.0158
RBM
preferences 0.4552 0.2018 0.5634 0.1706
preferences and health 0.4507 0.2011 0.5602 0.1694
preferences and organic 0.4437 0.1992 0.5531 0.1660
all 0.4489 0.2001 0.5593 0.1684
VBCAR
preferences 0.7458 0.5587 0.8628 0.4933
preferences and health 0.8207 0.4144 0.8442 0.3669
preferences and organic 0.7322 0.5520 0.8565 0.4897
all 0.7288 0.5511 0.8498 0.4805

Note. The best-performing result is highlighted in bold and underlined (note that
this is always the VBCAR model). The best result for the RBM model is given in
italics (for BASELINE there is no difference between models).

Table 4
Overall performance on the two datasets (n = 143.000).

INSTACART

Precision Recall NDCG MAP

BASELINE
preferences 0.0291 0.0753 0.0625 0.0328
preferences and health 0.0291 0.0753 0.0625 0.0328
preferences and organic 0.0291 0.0753 0.0625 0.0328
all 0.0291 0.0753 0.0625 0.0328
RBM
preferences 0.0844 0.2452 0.2731 0.1956
preferences and health 0.0846 0.2457 0.2733 0.1959
preferences and organic 0.0877 0.2548 0.2913 0.2121
all 0.0846 0.2457 0.2733 0.1959
VBCAR
preferences 0.6430 0.8485 0.9011 0.7565
preferences and health 0.6428 0.8479 0.9007 0.7550
preferences and organic 0.6451 0.8491 0.9010 0.7556
all 0.6479 0.8486 0.9042 0.7593

DUTCH SUPERMARKET

Precision Recall NDCG MAP

BASELINE
preferences 0.0832 0.0238 0.1242 0.0123
preferences and health 0.0832 0.0238 0.1242 0.0123
preferences and organic 0.0832 0.0238 0.1242 0.0123
all 0.0832 0.0238 0.1242 0.0123
RBM
preferences 0.4077 0.1850 0.5294 0.1590
preferences and health 0.4086 0.1853 0.5298 0.1591
preferences and organic 0.4178 0.1891 0.5413 0.1644
all 0.4064 0.1845 0.5291 0.1590
VBCAR
preferences 0.9354 0.5411 0.9375 0.8413
preferences and health 0.9367 0.5427 0.9348 0.8393
preferences and organic 0.9355 0.5424 0.9412 0.8481
all 0.9364 0.5426 0.9363 0.8414

Note. The experiment was run 10 times and the average value of the results is
computed. The best-performing result is highlighted in bold and underlined
(note that this is always the VBCAR model). The best result for the RBMmodel is
given in italics (for BASELINE there is no difference between models).

L.Z.H. Jansen and K.E. Bennin International Journal of Information Management Data Insights 5 (2025) 100303 

9 



Furthermore, significance testing showed no evidence of improved
performance for different datasets (Instacart versus Dutch supermarket
data) and data sizes (30K versus 143K). These evaluation results on
various datasets show the generalizability and robustness of the models
(Bauer et al., 2023). Food choices in the Dutch Supermarket data were
expected to be influenced by the presence of additional product labeling
to indicate the health (NutriScore label) and sustainability (organic
label) level of food products, as labeling could raise awareness among
consumers about the health and sustainability aspects of food products,
potentially influencing choices. Despite this difference with the Instacart
dataset, in which constructed variables were employed to indicate the
health and sustainability features of products, no significant difference
in performance was found. It is important to consider that labeling is
expected to be most effective when all products in the store are dis-
played with the label (Hagmann and Siegrist, 2020), a condition that
was not reflected in the current data. Future work can address this by

employing transaction data in which interventions such as labeling are
present on all products.

While increased data typically enhances recommender system out-
comes (Schafer et al., 1999), the current results did not align with this
expectation. This deviation from expectations may be caused by the
relatively small size of all datasets. Given the premise that deep learning
models perform best if they can learn frommore data, future researchers
are advised to explore the dynamics between data volume and the ef-
ficacy of multi-objective GRS. An interesting line of research is to
examine the effectiveness of domain-specific algorithms on a larger
dataset capturing long-term shopping behavior including seasonality
effects. Furthermore, integrating consumer information could greatly
improve personalization results, but privacy regulations should be in
place to assure consumers that their data will be protected (Schafer
et al., 1999).

Table 5
Two Sample T-Test Model Comparison (Baseline, RBM, VBCAR).

95% CI 95% CI for
Hedges g

Metric Means1 t df p-value2 Lower Upper Hedges’ g Lower Upper

Baseline
vs
RBM

MAP 0.0240 -8.0222 6 0.0002 -0.2219 -0.1182 -4.9327 -7.9573 -1.9080
NDCG 0.0959 -4.5623 6 0.0038 -0.5102 -0.1550 -2.8052 -4.9243 -0.6862
Precision * 0.0587 -2.0817 3.1907 0.1233 -0.5093 0.0983 -1.2800 -2.9314 0.3714
Recall 0.0520 -5.0653 6 0.0023 -0.2835 -0.0988 -3.1145 -5.3525 -0.8766

Baseline
vs
VBCAR

MAP * 0.6980 -9.0702 3.0365 0.0027 -0.9089 -0.4391 -5.577 -8.9034 -2.2507
NDCG 0.8989 -32.998 6 5.154 exp-8 -0.8625 -0.7434 -20.2895 -31.1867 -9.3924
Precision 0.6539 -12.812 6 1.389 exp-5 -0.7088 -0.4815 -7.8780 -12.3304 -3.4255
Recall * 0.7856 -8.9521 3.1917 0.0023 -0.9857 -0.4814 -5.5044 -8.7964 -2.2125

RBM
vs
VBCAR

MAP 0.1940 -6.5589 6 0.0006 -0.6920 -0.3160 -4.0329 -6.6531 -1.4126
NDCG * 0.4280 -6.5437 3.2849 0.0055 -0.6890 -0.2527 -4.0236 -6.6398 -1.4074
Precision 0.2642 -3.6652 6 0.0105 -0.6498 -0.1295 -2.2537 -4.1774 -0.3300
Recall 0.2432 -6.1723 6 0.0008 -0.7574 -0.3274 -3.7952 -6.3130 -1.2774

* Equal variances could not be assumed, so the Welch T-Test was performed.
1 Means are values for Baseline (Baseline vs RBM), VBCAR (Baseline vs VBCAR), and RBM (RBM vs VBCAR), respectively
2 Significant p-values are bold and underlined

Table 6
Two Sample T-Test Model variation comparison (preference, health, and/or sustainability).

95% CI 95% CI Hedges g

Variations1 Metric Means2 t Df p-value Lower Upper Hedges’ g Lower Upper

RBM Preference
vs
Health

MAP 0.1939 -0.0043 6 0.9967 -0.0710 0.0707 0.0027 -1.5019 1.5072
NDCG 0.4275 -0.0058 6 0.9956 -0.2429 0.2418 0.0036 -1.5010 1.5081
Precision 0.2633 -0.0066 6 0.9950 -0.3361 0.3343 0.0040 -1.5005 1.5085
Recall 0.2431 -0.0010 6 0.9992 -0.1207 0.1206 0.0006 -1.5039 1.5052

Preference
vs
Sustainable

MAP 0.1979 0.1355 6 0.8967 -0.0665 0.0743 -0.0833 -1.5885 1.4219
NDCG 0.4323 0.0440 6 0.9664 -0.2337 0.2423 -0.0270 -1.5316 1.4776
Precision 0.2646 0.0029 6 0.9978 -0.3342 0.3350 -0.0018 -1.5063 1.5027
Recall 0.2437 0.0110 6 0.9916 -0.1164 0.1175 -0.0068 -1.5113 1.4978

Preference
vs
All

MAP 0.1939 -0.0034 6 0.9974 -0.0717 0.0715 0.0021 -1.5024 1.5066
NDCG 0.4273 -0.0076 6 0.9942 -0.2426 0.2411 0.0047 -1.4999 1.5092
Precision 0.2624 -0.0134 6 0.9898 -0.3360 0.3323 0.0082 -1.4963 1.5128
Recall 0.2429 -0.0050 6 0.9961 -0.1216 0.1211 0.0031 -1.5014 1.5076

VBCAR Preference
vs
Health

MAP 0.6674 -0.24001 6 0.8183 -0.3426 0.2814 0.1476 -1.359 1.6542
NDCG 0.8934 -0.22445 6 0.8299 -0.0646 0.0537 0.1380 -1.3683 1.6443
Precision 0.6734 0.27121 6 0.7953 -0.1566 0.1957 -0.1668 -1.6739 1.3404
Recall 0.7504 -0.2495 6 0.8113 -0.3797 0.3094 0.1534 -1.3534 1.6601

Preference
vs
Sustainable

MAP 0.7015 0.0330 6 0.9748 -0.2563 0.2632 -0.0203 -1.5249 1.4843
NDCG 0.8983 -0.0235 6 0.9818 -0.0572 0.0561 0.0146 -1.4900 1.5192
Precision 0.6493 -0.0783 6 0.9401 -0.1483 0.1391 0.04816 -1.4566 1.5529
Recall 0.7833 -0.0193 6 0.9852 -0.2841 0.2797 0.0119 -1.4927 1.5164

Preference
vs
All

MAP 0.6979 -0.0005 6 0.9996 0.2621 0.2620 0.0003 -1.5043 1.5048
NDCG 0.8966 -0.0977 6 0.9253 -0.0599 0.0553 0.0601 -1.4448 1.5650
Precision 0.6512 -0.0450 6 0.9654 -0.1462 0.1409 0.0278 -1.4768 1.5324
Recall 0.7842 -0.0119 6 0.9909 -0.2839 0.2812 0.0073 -1.4972 1.5119

1 Note that ‘Preference’ refers to the presence-based model, ‘Heath’ to the preference and health model, ‘Sustainable’ to the preference and sustainability model, and
‘All’ to the combined model based on preferences, health, and sustainability information.
2 The Mean values given are from the health, sustainable, or combined model. Mean values of the preference-based RBM and VBCAR models are 0.1940 & 0.6980

(MAP), 0.4280 & 0.8989 (NDCG), 0.2642 & 0.6539 (PRECISION), and 0.2432 & 0. 7856 (RECALL), respectively.
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5.2. Limitations

A limitation of the current work is the use of deep learning ap-
proaches to test model performance, as these predictive models often
lack interpretability about the underlying mechanisms for model pre-
diction. The current research specifically focused on integrating the
health (FSA) and sustainability (organic) scores of products, but the
exact interpretability of the models is lacking. Interpretability is
important for both retailers, to refine marketing strategies, and for
consumers, to understand why suggestions are given. Nonetheless, while
interpretability is valuable in understanding how models arrive at their
output, the lack of it does not diminish the importance of the study’s
conclusions. Not only does the current work underscore the need for
continued research into explainable AI, but it also shows that models
integrating health and sustainability features are equally efficient in
product recommendations as a preference-based model.

Another limitation is the underlying data used for determining
recommender system accuracy. First, a four-month period of data might
not fully capture long-term behavior, but we believe that this period still
provides meaningful insights into consumer shopping behavior,

particularly during a diverse time of the year (September to December).
A second possible threat to the validity of the findings is how the data
was preprocessed. For instance, removing users with too few items or
baskets might skew results, and random sampling may lead to a loss of
significant information (Famili et al., 1997). However, careful docu-
mentation of all the preprocessing steps mitigates this threat by ensuring
transparency and reproducibility. Third, since the datasets were ob-
tained in 2017 and 2021, the preference relationships and potentially
the health and sustainability information of products might have
changed along with product modifications. For instance, the increase in
the introduction and consumption of plant-based products would
require new data on such products. In line with this, the publicly
available dataset employed did not contain health and sustainability
features of products and randomly assigning values for these two vari-
ables might have affected the results. Nonetheless, semi-synthetic data is
often used as a comparison and considered valuable (e.g., Karatzoglou
et al., 2010), especially when compared with a recent, real-world dataset
containing all required information.

Moreover, differences in shopping habits between online and offline
environments highlight a need for testing algorithms with online store
data rather than offline channel data (Ariannezhad et al., 2021). A
drawback is that publicly available datasets oftentimes do not represent
recent purchase behavior and private datasets inhibit replicability. This
research provides valuable insights, but the field would greatly benefit
from anonymized, up-to-date, publicly available transaction data from
an online store. By making research more reproducible, the validity of
the results increases.

Relatedly, future work can examine the implementation of a
recommender system algorithm in a (simulated) online grocery store to
explore the potential of a recommender system that integrates nutri-
tional and environmental criteria as a digital marketing tool for public
health- and sustainability purposes. An extension of this work could
involve online grocery stores offering recommendations to consumers,
assessing their influence on purchasing behavior and examining con-
sumer reactions to these suggestions. User experience, which is crucial
for the success of recommendations, is not solely determined by the
accuracy of recommendations but also looks at aspects such as privacy
or situational factors that are best explored in a real-life grocery shop-
ping scenario (Knijnenburg et al., 2012). Furthermore, real-life appli-
cations of recommender systems could generate insights into the effect

Fig. 3. Boxplot comparison of performance across all models
Note. Pref refers to preference-based models, Health also includes health information, Org also includes sustainability information, and All is the combined model
based on preferences, health, and sustainability information.

Table 7
Dataset comparison.

Dataset comparison Metric Test statistic p-value1

30K Instacart
vs
30K Dutch supermarket

MAP W = 48 0.1730
NDCG W = 80 0.6636
Precision W = 96 0.1729
Recall W = 48 0.1730

143K Instacart
vs
143K Dutch supermarket

MAP W = 64 0.6635
NDCG W = 96 0.1729
Precision W = 80 0.6636
Recall W = 64 0.6636

30K Dutch supermarket
vs
143K Dutch supermarket

MAP V = 42 0.8439
NDCG V = 42 0.8439
Precision V = 0 0.0024
Recall V = 42 0.8439

30K Instacart
vs
143K Instacart

MAP V = 32 0.6087
NDCG V = 26 0.3249
Precision V = 10 0.0248
Recall V = 26 0.3249

1 Significant p-values are bold and underlined
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on sales volume and revenue, further improving insights into the
effectiveness of product recommendations.

5.3. Theoretical and practical implications

An examination of a GRS that includes healthiness and sustainability
information of products yields several contributions. Theoretically, our
study shows that a context-dependent algorithm can handle additional
criteria around healthiness and sustainability better than the more
general baseline and RBM algorithm. Findings on the superior perfor-
mance of the context-dependent algorithm demonstrate that machine
learning can effectively integrate complex side information and show
the importance of investigating the more sophisticated techniques in
GRS research. Existing theoretical models could be expanded by incor-
porating broader contextual factors, leading to a more holistic under-
standing of consumer food choices. For instance, while traditional
theoretical models such as Nudge theory mainly focus on personal
preferences, they can also account for global issues such as health and
sustainability factors of food choices. Machine learning’s ability to
analyze and learn from large datasets enables the integration of complex
behavioral and contextual data, supporting the integration of broader
social considerations into the consumer decision-making process.

Furthermore, the insignificant results between preference-based
models and models incorporating health and sustainability informa-
tion suggest that incorporating such factors into the models does not
notably affect their performance. This implies that adding health and
sustainability considerations may not interfere with the model’s ability
to predict consumer choices. From a behavioral theory perspective, this
could align with concepts like Nudge Theory, which posits that subtle
changes in how choices are framed can influence decisions without
limiting options. In this context, machine learning models could provide
insights into how integrating health and sustainability information into
recommendations might subtly guide consumer decisions to more sus-
tainable or healthier food choices.

This study additionally demonstrates the need for future research on
how to actively shape consumer decision-making toward healthier and
more sustainable grocery choices. Educating consumers on the impor-
tance of health and sustainability might eventually influence their
preferences, making this information more impactful in future recom-
mender systems. As such, our findings can inform the development of
more advanced and responsible recommender systems that better
educate consumers and contribute to broader sustainability goals.

In turn, machine learning allows to analyze how consumers respond
to specific digital interventions that highlight health benefits or the
environmental impact of products. Analyzing such responses provides
the opportunity to refine theoretical models of consumer decision-
making and behavioral change, with a specific focus on the role of ed-
ucation in influencing consumer choices. By examining how different
recommendation strategies impact consumer food choices, researchers
can gain a deeper understanding of the effectiveness of various digital
interventions. To illustrate, machine learning can reveal which types of
product information are most persuasive in encouraging healthier eating
habits. Such evidence can contribute to the refinement of existing the-
ories by providing a more nuanced view of how digital interventions
influence consumer food choice behavior.

This study also has various practical implications. Even though there
is a growing awareness of health and sustainability issues among con-
sumers (Jansen et al., 2023), integrating these issues into a recom-
mender system for grocery shopping does not significantly improve
performance compared to preference-based models. This suggests that
awareness alone might not translate into improved behavior, high-
lighting the need for better education on the importance of health and
sustainability, potentially influencing future consumer behavior and the

effectiveness of multigoal recommender systems. Furthermore, signifi-
cant differences between models indicate that advanced recommender
systems can lead to more accurate and relevant recommendations,
enhancing the overall shopping experience for consumers. These
advanced models make better use of the vast amount of data that re-
tailers are collecting these days, allowing for more tailored recommen-
dations. Potentially, retailers can leverage additional data sources
related to product healthiness and sustainability to enhance the rele-
vance of recommendations for niche groups motivated to buy healthy
and sustainable. In doing this, retailers can support broader sustain-
ability goals (United Nations, 2023) by guiding consumers toward
healthier and more sustainable products.

6. Conclusion

This paper investigates the impact of integrating health and sus-
tainability information of grocery products for improving the perfor-
mance of a GRS. Employing three models with four versions each
(preferences, health, sustainability, combination of all) and two data-
sets, results show that a recommender system that integrates health and
sustainability information of products in addition to consumer prefer-
ences is equally efficient in product recommendation as a model based
on consumer preferences alone. These results demonstrate that recom-
mender systems have the potential to assist consumers in finding
healthier and more sustainable choices that are also suited to their
preference, but also highlight the need for increasing consumer aware-
ness of the healthiness and sustainability level of food choices. In
conclusion, these insights show that information systems such as GRS
hold promise in advancing sustainable development. Over time, health
and sustainability-focused recommender systems can improve consumer
buying behavior as they provide a variety of food products including
healthier and more sustainable options. Our findings position grocery
recommendations as an effective strategy to be implemented in the
online shopping environment.
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Appendices

Appendix A. Variables in the datasets

Table A1
Variables in the Instacart dataset.

Meaning of variable Example

CUSTOMER_ID Number corresponding to a customer 205,970
ORDER_ID Number corresponding to an order 3
PRODUCT_ID Number corresponding to product 21,903
PRODUCT_QUANTITY Amount of product bought 1
ORDER_DOW Day of the week 5
ORDER_HOUR_OF_DAY Hour of the day 17
DAYS_SINCE_PRIOR_ORDER Number of days since last order 12
ADD_TO_CART_ORDER Sequence in which products in the same order were added to the cart 4
REORDERED Whether a product was ordered before (1) or not (0) 1
ORDER_NUMBER Order sequence number of specific consumer 16
AISLE_ID Number corresponding to an aisle 123
DEPARTMENT_ID Number corresponding to a department 4
HOOFDCATEGORIE The main category of the product PRODUCE
SUBCATEGORIE The sub category of the product PACKAGED VEGETABLE FRUITS
OMSCHRIJVING Description of the product including the brand, product name and content ORGANIC BABY SPINACH
NUTRISCORE Healthiness score of the product based on the NutriScore label (values 0 (no label) and 1 to 5) 0
ORGANIC Sustainability label indicating whether a product is Organic (1) or not (0) 1
RATINGS The rating assigned to the product (values 1 to 5) 4
EVAL_SET Evaluation set the transaction belongs to PRIOR

* Note that the variables NUTRISCORE, ORGANIC, and RATINGS are constructed variables

Table A2
Variables in the Dutch supermarket dataset.

Meaning of variable Example

CUSTOMER_ID Number corresponding to a customer 100XXX
ORDER_ID Number corresponding to an order 538XXXX
STORE_ID Number corresponding to a store 5XX
POSTALCODE Postal code of customer 1234AB
ORDERS_TIME Time of order (yyyy-mm-dd) 15/9/21
PRODUCT_ID Number corresponding to product (same as CE ART. NR.) 559,572
PRODUCT_QUANTITY Number of products bought 1
PRODUCT_PRIJS Price of product bought 4.09
WEEKNR Number of the week 37
JAARNR Number of the year 2021
PE ART. NR. Number uniquely identifying each product 559,573
CE ART. NR. Number identifying each product (same as PRODUCT_ID) 559,572
MERK Brand of the product BIO+
OMSCHRIJVING Description of the product including the brand, product name and content BIO+ PIJNBOOMPITTEN BIOLOGISCH

BK 75GR
VERPAK Measuring unit (e.g., KG, FLS, PAK) BK
INHOUD_X Content 75
EENHEID Measuring unit (e.g., KG, ML, GR, L, ST) GR
HOOFDCATEGORIE The main category of the product AARDAPPELEN, GROENTE, FRUIT
SUBCATEGORIE The sub category of the product FRUIT
SUBSUBCATEGORIE The sub category of the product NOTEN EN GEDROOGDE VRUCHTEN
SUBGR. OMSCHR. Description of subgroup of the product (most specific category information) NOTEN EN GEDROOGDE VRUCHTEN
NUTRISCORE Healthiness score of the product based on the NutriScore label (values 0 (no label) and 1 to 5) 3
ORGANIC Sustainability label indicating whether a product is Organic (1) or not (0)Note that the columnORGANIC50 has

50/50 ratio of label or non-label.
1

RATINGS The rating assigned to the product (values 1 to 5) 3
PROMO Whether product was on promotion in a specific week (yes or no) NO
EVAL_SET Evaluation set the transaction belongs to TRAIN

* Note that the variables EVAL_SET and RATINGS are constructed variables
* Other variables present in the data but irrelevant for the current research are PRODNR, SUBGR, ST, EAN CE, EAN PE, VAR, VOLGNUMMER, LAST_ORDERED, and all
WEB variables that refer to the description in the online store.
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