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Data-Driven Intra-Autonomous Systems
Graph Generator

Caio Vinicius Dadauto

and Ricardo da S. Torres

Abstract—Accurate modeling of realistic network topologies
is essential for evaluating novel Internet solutions. Numerous
investigations have used topologies generated by graph generators
employing scale-free-based models. Although scale-free networks
accurately encode node degree distribution, they overlook crucial
graph properties, such as betweenness, clustering, and assorta-
tivity. The limitations of existing generators pose challenges for
evaluating network mechanisms and protocols, such as routing.
This paper introduces a novel deep learning-based generator of
synthetic graphs representing intra-autonomous on the Internet,
named Deep-Generative Graphs for the Internet (DGGI). It
also presents a massive new dataset of real intra-AS graphs
extracted from the project Internet Topology Data Kit (ITDK),
called Internet Graphs (IGraphs). DGGI creates synthetic graphs
that accurately reproduce the properties of centrality, clustering,
assortativity, and node degree. DGGI overperforms existing
Internet topology generators. On average, DGGI improves the
Maximum Mean Discrepancy (MMD) metric by 84.4%, 95.1%,
97.9%, and 94.7% for assortativity, betweenness, clustering, and
node degree, respectively.

Index Terms—Machine learning,
Internet topology, topology generator.

graphs and networks,

I. INTRODUCTION

ENERATING graphs that represent realistic network
Gtopologies is crucial for modeling and assessing
novel protocols and traffic control mechanisms for the
Internet [1], [2]. The growing employment of deep learn-
ing models, particularly Graph Neural Networks (GNN), in
various networks and communication mechanisms and pro-
tocols requires extensive and diverse datasets [3], [4], [5].
The availability of such datasets achieved by GNN can
benefit investigations of novel traffic control mechanisms and
protocol proposals [3], [4], [5]. However, topology generators
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that encode multiple properties of the Internet topology are
still unavailable [6], [7], [8], [9], [10].

The node connections in the Internet topology graphs are
largely modeled by a heavily tailed distribution [11]. The
algorithm Bardbasi-Abert (BA) [12] algorithm is the most pop-
ular one for generating scale-free networks (i.e., networks for
which power-law distribution can model node relations), and
has served as the basis for several topology generators [13],
[14], [15], [16].

Most Internet topology graph generators are structure-based
and focus on inter-AS topologies [7], [8], [9], [10], [17], [18].
Moreover, empirical observations are typically used to model
the structure of the Internet as a hierarchical composition
of graphs. This hierarchy is based on various assumptions,
such as scale-free, uniform growth, and function fitting for
the node degree distribution. However, these assumptions
only partially capture the characteristics of subgraphs in the
Internet topology since they rely on a network growth pattern
ultimately based on a power-law distribution. Structure-based
generators have been designed to synthesize graphs of hun-
dreds of thousands of nodes but do not accurately reproduce
the properties of intra-AS graphs, such as betweenness, node
degrees, clustering, and assortativity (Section VI).

Classical generators based on scale-free models exhibit
commendable characteristics, such as elegant mathemati-
cal formulations and a high degree of flexibility. Their
proven utility and efficiency in various studies underscore
the strength of their well-established theoretical foundations
[19], [20], [21].

While graph generators based on power-law assumptions
effectively model node degree distribution, they often overlook
other important graph properties [22], such as between-
ness, clustering, and assortativity. The replication of these
metrics is essential for addressing communication network
issues. Centrality metrics like betweenness, for instance, are
valuable in finding alternative routes when a node failure
occurs [23], [24], while clustering metrics have been utilized
in routing protocol solutions [25]. Furthermore, assessing
network robustness may involve clustering coefficients, which
help to gauge network resilience against security threats [26].
Assortativity also plays a critical role in quantifying network
growth, underscoring the importance of accurately replicating
it in any graph generator [7], [9], [10].

However, data-driven solutions for studies on Internet pro-
tocols and traffic control mechanisms have relied on trivial
topologies. They are typically based on only a few samples
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of real networks or synthetic ones generated by BA-based
models [3], [5], [27]. The use of unrealistic topologies can
produce misleading assessments of the effectiveness of the
performance of new solutions [26], [28], [29].

This paper proposes an intra-AS graph generator based on
deep learning, named Deep-Generative Graphs for the Internet
(DGQGI). It accurately reproduces Internet graphs’ centrality,
clustering, assortativity, and node degree. DGGI allows the
customization of synthetic graphs and can generate an arbitrary
number of synthetic parameterized graphs. To our knowledge,
this is the first paper to propose an intra-AS graph generator
based on deep learning.

This paper also introduces a novel dataset of 90,326
intra-AS subgraphs extracted from the sets of large intra-
AS graphs (millions of nodes) named IGraphs [30]. It was
collected from the project ITDK conducted by the Center for
Applied Internet Data Analysis (CAIDA) [31]. This extraction
employs the Filtered Recurrent Multi-level (FRM) algorithm,
designed to capture the node agglutination patterns found on
the Internet and ensure that the sizes of the subgraphs will
be in a predefined range. IGraphs is especially useful for
training DGGI. Furthermore, incorporating IGraphs allows the
inclusion of realistic and comprehensive network scenarios
in evaluating network protocols and mechanisms based on
simulation and emulation.

The main contributions of this paper are:

o the introduction of a novel generator (DGGI) based on
deep learning for the generation of intra-AS graphs that
encodes not only the node degree distribution of training
data but also their centrality, clustering, and assortativity;

o the presentation of a new dataset composed of real intra-
AS graphs (IGraphs) extracted from the project ITDK.

Compared with existing generators for the Internet, DGGI
improves the Maximum Mean Discrepancy (MMD) similarity
index [32], [33], on average, by 84.4%, 95.1%, 97.9%, and
94.7% for assortativity, betweenness, clustering, and node
degree, respectively. In the worst case, DGGI improves by
13.1% for assortativity, and in the best case, and 99.8% for
clustering.

This paper is organized as follows. Section II presents
related work focused on generators for Internet topology
graphs; Section III shows the graph metrics used for the
evaluation of the proposed solution; Section IV introduces the
DGGI; Section V introduces the IGraphs dataset; Section VI
describes the evaluation procedures adopted to validate the
DGGI generator and discusses the results obtained. Section VII
draws some conclusions and directions for future work.

II. RELATED WORK

This section describes existing work related to graph gener-
ation to represent Internet-like topologies. Table I summarizes
the characteristics of the reference work and shows how
DGGI differs from other generators. The models are classified
according to the applicability of their generated graphs to deep
learning training. Generators classified as “Suitable for DL
(vide Table I) can synthesize realistic graphs for an arbitrary
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number of nodes, i.e., they are not restricted to generating
large graphs with hundreds of thousands of nodes.

Most generators employ algorithms based on scale-free
networks and power-law node degree distribution [7], [8], [9],
[10], [13], [14], [15], [16], [17], [18]. The models in [8],
[9], [10], [17] aim to generate graphs as a composition of
subgraphs (structures), e.g., AS nodes, core, and periphery.

The BA algorithm [12] is based on the preferential attach-
ment property, i.e., nodes with the highest node degree values
tend to have new links attached. The Boston University
Representative Internet Topology Generator (BRITE) [13]
implements the BA algorithm to generate Internet graphs for
inter-AS and intra-AS topologies.

A set of generators based on the BA algorithm has
been proposed to introduce new strategies for the preferen-
tial attachment paradigm to enhance the ability to generate
more realistic graphs. The Extended Barabasi-Abert (EBA)
algorithm randomly modifies links beyond the preferential
attachment [15]. The Bianco-Bardbasi (BB) algorithm intro-
duces a set of parameters (fitness weights) to specialize the
preferential attachment mechanism [15]. In contrast, the Dual
Barabasi-Abert (DBA) algorithm changes the number of links
to be attached to new nodes in a random way [14]. The BB
algorithm can reproduce the empirical power-law decays for
Autonomous System (AS) graphs [6]. However, the generated
graphs are general purpose, i.e., they are not specific to Internet
graphs.

Generators based on structure decomposition have been
proposed to mitigate BA-based generators’ limitations in
reproducing the Internet graph’s properties. The Simulates
Internet graphs using the Core Periphery Structure (SICPS) [9]
model partitions the Internet graphs into 16 structures
that represent different statistical assumptions, including
the power-law distribution. The SubNetwork Generator
(SubNetG) [10] represents subnets and routers as a bipartite
graph based on their power-law distribution. The Structure-
Based Internet Topology gEnerator (S-BITE) [8] and Internet
AS Graph (IAG) [18] generators use similar approaches
to decompose the Internet into the core and periphery,
each with a different distribution of power laws. The
Jellyfish [17] generator captures the Internet’s topology core
(the ring) based on the assumption of a distribution by
power law.

However, both structure-based and the BA-based generators
rely on the assumption of power-law distribution, which
restricts the generalization of node connectivity, since the
decay parameter of a power-law distribution is insufficient to
represent the topology diversity in the Internet [11].

An alternative proposal consists of employing different
structuring procedures. The Orbis generator [7] creates Internet
graphs by adopting dK-distributions as a criterion to maintain
the correlation node degree of subgraphs of size d. Orbis uses
the 1K and 2K distributions, which refer to the distributions
of node degree and joint node degree, respectively. Although
the dK-distributions attempt to unify a wide range of graph
metrics [7], they focus only on the node degree, which can
lead to a poor representation of other graph properties, such
as clique formation and node centrality.
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Reference Technique Requirements View Suitable Validation
for DL
SICPS [9] Multi-Structure Number of Nodes and Inter-AS No First-Order Moments of
Decomposition Structure Statistical Node Degree,
Properties Assortativity, and
Clustering
SubNetG [10] Scale-free and Number of Nodes and Intra-AS No First-Order Moments of
Hierarchical Component Power Law Node Degree and Clique
Decomposition Coefficients Sizes
S-BITE [8] Scale-Free and Number of Nodes and Inter-AS No First-Order Moments of
Core-Periphery Core-Periphery Node Degree, Clustering,
Decomposition Statistical Properties Betweenness, Closeness,
and Clique Size
Jellyfish [17] Scale-Free and Number of Nodes and Inter-AS No First-Order Moments of
Ring Ring Power Law Node Degree
Decomposition Coefficients
1AG [18] Scale-free and Number of Nodes Inter-AS No First-Order Moments of
Hierarchical Node Degree
Decomposition
Orbis [7] dK-Series Number of Nodes and Both No First-Order Moments of
Preservation dK-Series Node Degree and
Betweenness
BRITE [13] Barabasi-Abert Number of Nodes and Both Yes First-Order Moments of
Preferential Attachment Node Degree
Coefficients
DBA [14] Dual Number of Nodes and - Yes -
Barédbasi-Abert Preferential Attachment
Coefficients
BB [15] Bianco-Barabasi Number of Nodes and - Yes First-Order Moments of
Preferential Attachment Node Degree
Coefficients
EBA [16] Extended Number of Nodes and - Yes First-Order Moments of
Barabasi-Abert Preferential Attachment Node Degree
Coefficients
DGGI (our) Deep Learning Number of Nodes and - Yes Multi-Order Moments of
DL Weights Node Degree,

Clustering, Betweenness,
and Assortativity

— : No applicable

However, all of these generators mentioned above have been
validated only by inspecting the first-order moments of the
selected metrics (as indicated in Table I). Moreover, classical
generators are often manually parameterized based on specific
methodologies involving the inspection of Internet topologies.
This process is time-consuming and requires a substantial
manual overhaul of the model parameters. Orbis is the only
exception since it implements an automatic procedure to adapt
to the network scenario considered.

In contrast, DGGI generators do not depend on the power-
law assumption, and the modeling is not focused only on the

node degree. DGGI, which is based on deep learning (DL),
can be trained for various network scenarios without sub-
stantial overhaul. Furthermore, our evaluation is not restricted
to the first-order moments of graph properties; we explore
higher-order moments using the MMD metric to quantify the
similarity between graph distributions.

III. GRAPH METRICS

Four graph metrics are used to analyze the properties of
the generated graphs: node degree, clustering coefficients,
interdependence, and assortativity [34].
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The training pipeline for generative models tailored to the Deep Graph Generative Model (DGGM) is designed to synthesize Internet-like graph,

which includes deriving a training dataset from limited samples of expansive networks and incorporating a layer for controlling both the quantity and number
of nodes of the synthesized graphs. The instantiation of DGGI is based on three procedures: training set construction, DGGM training, and DGGM-based

synthetic graph generation.

Let G be an undirected graph with N nodes and A €
{0,1}N be the adjacency matrix of the graph G. The node
degree is the number of connections of a node, i.e., the node
degree of the i-th node is

N

> Ali,j] €N,

J

(D

Kq

in which A[i, j] is the element on the i-th row and j-th column
of the adjacent matrix.

The clustering coefficient indicates the tendency of a node
to cluster with its neighbors, i.e., the occurrence of density-
connected regions in the graph. The clustering coefficient for
the i-th node is defined as

C,=2 : l

ki(ki — 1)

€[0,1] 2
in which [; is the number of edges between the neighbors of
node i. Moreover, the global clustering coefficient can also be
defined as

3)

in which N, is the number of triangles in the graph, and N3 is
the number of connected triads of nodes, i.e., all sets of three
nodes that are connected by either two or three undirected
edges.

The betweenness coefficient measures the importance of a
node in a graph. It quantifies the number of times a node acts
as a bridge along the shortest path between two other nodes.
This measure is essential in understanding the role of a node in
communication networks. Nodes with high betweenness cen-
trality are critical for the transfer of information or resources
within the network. They often serve as bottlenecks or hubs
that facilitate communication. Formally, the betweenness for
the i-th node can be defined as

>

pFi#ge{l,...N}
pF£q

Ui(p7 q)

a(p,q)

B, €1[0,1] “)

in which o;(p, ¢) is the number of shortest paths between
the p-th and g-th nodes that pass through the i-th node, and
o(p, q) is the total number of shortest paths between p and q.

The assortativity coefficient measures the correlation
between the degrees of connected nodes. A positive degree
assortativity coefficient indicates that nodes tend to connect
with other nodes that have a similar degree. In contrast, a
negative coefficient suggests that the high-degree nodes are
more likely to connect with the low-degree nodes. So, it
indicates whether or not the growth of the network follows
the preferential attachment pattern. Assortativity is a scalar
measure defined as

b Dk Gk
>k kB

where k is the node degree of graph G, aj = > ./ e,
Br = > ex'k» and ey is the number of edges of nodes
with degree k and nodes with degree k’.

e[-1,1], (&)

IV. DEEP-GENERATIVE GRAPHS FOR THE INTERNET
(DGGI) MODEL

Figure 1 illustrates the three procedures used to instantiate
the DGGI generator: the construction of the training set
based on applying the FRM algorithm, the training of the
deep-generative graph model, and the generation of synthetic
graphs.

For constructing the training set, the input is a set of samples
from large intra-AS networks, with lower and upper bounds
reflecting the number of nodes. The final training dataset
contains only graphs with a given number of nodes in the
defined range.

The Deep Graph Generative Model (DGGM) is then trained
using the training graphs created during this first procedure.
The final procedure then involves using the trained model
to synthesize intra-AS graphs based on two parameters: an
optional list that defines the number of nodes and the number
of graph samples. When not specified, the defined range is
that of the construction of the training set.

The implementation of each procedure is described below.

A. Training Set Construction

To extract subgraphs with a size bounded by a predefined
limit, we introduce the Filtered Recurrent Multi-level (FRM)
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algorithm, which employs the multilevel algorithm [35] recur-
sively, followed by using a filter based on betweenness
centrality to avoid a single-star topology. The multilevel algo-
rithm aims to define the communities that maximize the node’s
local contribution to the overall modularity score. This score
measures the ratio between the density of intracommunity
and intercommunity links. For a graph with |E| edges, the
modularity can be defined as

Di i\ 2
0=3 Sm (St
21E|  \2[E|
piEP

where # is the set of graph communities, p; is the i-th
community, Sizl)j is the number of edges into community p;,
and Stlgt is the number of edges incident to the nodes in the
community p;.

The multilevel algorithm operates in two steps. In Step 1,
each node in a graph is assigned a distinct community. For
each node, it assesses the gain in modularity by relocating the
node to the community of another node. The node is placed in
the community that yields the maximum positive modularity
gain; if the gain is negative, the node remains in its current
community.

Step 2 involves constructing a new graph using the com-
munities identified in Step 1 as nodes. Nodes are formed by
merging all nodes within a community into a single node.
Links between nodes of the same community result in self-
loops for the community in the new graph. Then, using this
new graph, the algorithm iterates through Step 1 until no
further improvement in modularity can be achieved.

The recursive application of the multilevel algorithm may
lead to graphs with a single hub (graph with a star topology)
due to the high disparity between intra-hub and inter-hub
links observed in subgraphs with many hubs and low clus-
tering coefficients. All subgraphs defined by a single hub are
discarded using the aforementioned filter to avoid redundant
occurrences of hubs in the training dataset.

Algorithm 1 presents the FRM algorithm used to construct
the training set. The lists defined in the first two lines control
the subgraph extraction process. The list fo_process contains
the graphs that must be split into smaller subgraphs, while the
list training_set contains the subgraphs that define the training
set.

The first condition on Line 6 checks whether the graph
in the loop has a node count greater than the upper limit
(Nmaz). If this condition holds, clusters are attempted to
be extracted from the graph under consideration using the
multilevel algorithm, and the loop continues. The condition in
Line 8 ensures that the subgraphs are pushed to ro_process
only if the multilevel algorithm can split the graph. Otherwise,
they are ignored.

In contrast, if the node count does not exceed Nj,qz, the
second condition in Line 12 comes into play. This condition
ensures that the graph under consideration meets the criteria
of having a node count greater than the lower limit (Np,;y,)
and is not structured as a single star topology, i.e., a topology
that has more than one node with a betweenness coefficient
greater than zero.

(6)
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Algorithm 1 Filtered Recurrent Multi-level (FRM)

Require: A graph G, the minimum (NVy,;;,) and the maximum
(Nmax) of the number of nodes.
1: to_process = [G]
2: training_set = ||
3: while |to_process| > 0 do
4 G = to_process.pop()
5: N = number_of_nodes(G)
6
7
8
9

if N > Npax then
clusters = multilevel (G)
if |clusters| > 1 then
: to_process = concat(to_process, clusters)
10: end if

11: else

12: if N > Ny, and |[B1,...,B8y] > 0| > 1 then

13: training_set =  concat (training_set,
clusters)

14: end if

15: end if

16: end while

17: return training_set

The FRM algorithm is a recursive algorithm designed to
stop when all graph components fall within the range of
[Mmins Nmax|. The best-case scenario occurs when a single
call of the multilevel algorithm successfully places all com-
ponents within this range. In this optimal case, the algorithm
complexity is O(N) since the multilevel algorithm has a linear
complexity as a function of the number of nodes [35].

In contrast, the worst-case scenario arises when each call
to the multilevel algorithm divides the original graph into two
components, each having half the number of nodes of the
original graph. The termination condition for the algorithm
FRM is met when all graph components satisfy the node
number constraints, ie., are in the range of [Nyin, Nmax)-
In this worst-case scenario, the algorithm’s complexity is
determined by the structure of a binary tree, where each
leaf represents a graph component with nodes in the range
[Mnin, Nmax]- The complexity in the worst case is O(2(1 —
2h)N ), since the number of nodes in a binary tree of height
h is the sum of a finite geometric series whose elements are
the sum of nodes in each level of the tree. The tree height can
be estimated as

N
Nmin < 27 > Nmax (7)
N N
> 2" < ®)
Nmin Nmax

N N
b@<N.)2h§b@<N ), ©)
min max

since the total number of leaves in a binary tree is 2".

If the multilevel algorithm fails to generate clusters, FRM
will stop the loop in Line 3 and return the training set,
regardless of its content, due to the condition in Line 8. In
contrast, convergence is guaranteed by the depletion of the
stack of graphs awaiting processing, a state achieved when
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the multilevel algorithm ceases to identify new clusters or all
identified clusters contain fewer nodes than Ny ax.

B. Deep Graph Generative Model Training

DGGI uses the recently proposed GraphRNN [33] as the
deep-generative graph model. This model is a general-purpose
data-driven generator of synthetic graphs based on deep learn-
ing. GraphRNN is acknowledged as the current state-of-the-art
method for graph generation, demonstrating the generation of
synthetic graphs that exhibit greater realism compared to other
DGGMs, such as GraphVAE [36] and Deep Generative Model
of Graphs (DeepGMG) [37].

The architecture of GraphRNN comprises two different
hierarchical Gate Recurrent Units (GRUs) [38], one to embed
the graph representation and the other to predict the new
connections for each node. A Gate Recurrent Unit (GRU) is
a variation of recurrent neural networks specialized in embed-
ding relations established by long-ordered sequences of tensors
into a state, a vector with a pre-defined dimension (so-called
latent dimension). GraphRNN maps the graph generation into
a sequential procedure based on the edges added to each node.
In order to make this feasible, GraphRNN establishes a node
order to process all graphs during training.

There is no unique node order to represent a graph using
a sequence of nodes. The number of possible representations
of this sequence-based graph is N! with N being the number
of nodes [33]. GraphRNN uses the pre-defined node order to
reduce the number of possible node permutations, improving
the learning efficiency [33]. GraphRNN uses the node order
established by the Breadth First Search (BFS) algorithm since
different node permutations can be mapped onto a unique node
order [33].

Formally, let G be a graph with N nodes defined by a given
order. A sequence to represent the graph G is described as s =
(51,...,8Nn), with s; € {0,1}*~1 being the vector represent-
ing all connection between the node i and the remaining i — 1
nodes. Assuming the BFS order for the nodes, the dimension
of vector s; V4 can be bounded by a fixed number M [33], the
transient dimension. Therefore, a vector s; Vi € {2,...,N}
can be redefined as

s; = [Amax(i, i — M), 1],..., At — 1,1]],
where A[i, j] is the element of the i-th row and j-th column
of the adjacency matrix of the graph G.

Algorithm 2 outlines how GraphRNN synthesizes a graph.
The loop in Line 2 determines all the connections for each
new node. These connections are defined for all Ny 5x nodes
(as defined in Section IV-A). In Line 3, the state hg is
determined by the GRU g using the connections of i-th node
and the previous state hy. The loop in Line 5 determines the
min(i — 1, M) connections of the (i + 1)-th node, in which
i nodes have already been added to the graph. Finally, each
J connection is determined by the second GRU f using the
current hy state and the j-th connection of the i-th node. The
complexity of Algorithm 2 is O(min(i — 1, M) NpaxCy +
NimaxC f), where Cy and Cy are the respective complexities
for GRU layers f and g.

(10)
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Algorithm 2 GraphRNN

Require: The maximum number of nodes Ny ax, the latent
dimension L, the transient dimension M, two GRU layers,
g : RM RE) s R and f : (R,RY) = R, the initial
state hg, and the start and end tokens, SOS € RM and
EOS e RM,

51 =808 andi =1

: for each i € {1,..., Nppax} do

hg = g(sia hg)

Si+1 = i

for each j € {1,... ,min(i —1,M)} do

hy = f(si41l1] hy)
siv1i] = hy

end for

: end for

: return {sy,--- sy, }

D AN A Al

—_
=]

C. Synthetic Graph Generation

The final procedure synthesizes intra-AS graphs using the
trained GraphRNN model. Two parameters are required to
generate graphs: the number of synthetic graphs and, option-
ally, a list of the number of nodes.

Synthetic graphs are created using the output of Algorithm 2
given a trained GraphRNN. In order to define a graph, the vec-
tors {s1,...,5n,,,t provided by the trained GraphRNN are
transformed into an adjacency matrix A. This transformation
requires mapping the vector values to be 0 or 1 since s; €
[0, l]M Vi. A threshold 7 is used to implement the mapping.
The algorithm assigns 1 if the value is higher than 7 and 0
otherwise.

Using a fixed value of 7 will produce the same set of
graphs for all runs of Algorithm 2 due to the fixed weights of
GraphRNN. To prevent such reproduction, the threshold 7 is
sampled from a uniform distribution U(]0, 1[) each time the M
edges of a node are defined, resulting in N random parameters
for each synthetic graph, with N representing the number
of nodes. This sampling ensures that a unique set of graphs
is generated for each run of the algorithm, highlighting the
crucial role of the uniform distribution in the graph generation
process.

Given the statistical nature of both deep learning models and
the threshold 7, the adjacency matrix resulting from the former
process does not necessarily represent a connected graph. The
connected subgraphs provided by the adjacency matrix provide
the synthetic graph.

Algorithm 3 outlines how the generator is defined using
a pre-trained GraphRNN. In Lines 6 to 8, the threshold,
an empty adjacent matrix, and the node states are defined,
respectively. The loop in Line 10 maps each vector state s; to
the proper column of the adjacency matrix using the threshold
7 and the transient dimension M (defined in Section IV-B).
The loop in Line 16 extracts all connected subgraphs from the
adjacency matrix. Only the subgraphs with a certain number of
nodes included in the list L are considered. The algorithm stops
when the number of synthetic graphs is greater than or equal
to 7. The generation of each graph has complexity bounded
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Algorithm 3 Graph Generator
Require: A trained GraphRNN ¥, the number of synthetic
graphs 7, and, optionally, the list of numbers of nodes L,
the minimum (Np,jy) and the maximum (Npax) of the
number of nodes, and the transient dimension M.
graphs = |
if L =0 then

L = {Nnin, - - -
end if
while |graphs| < T do

T~ U(]0, 1))

Ay, = {0} Vo N

{817 T 73Nmax} = T()

for each s; € {s1,--- ,sy,,..} do

I Nmax}

R A A A

10: for each i € {max{1,5 — M},j — 1} do
11 if s;[i] > 7 then

12: Agliyj] =1

13: else

14: Ak[i,j] =0

15: end if

16: end for

17: end for

18: for each G = connected_subgraphs(Ay) do
19: if number_of_nodes(G) € L then

20: graphs.push(G)

21: end if

22: end for

23: end while
24: return graphs

by O(Cq+ N2,y) and O(Cq+ N2, + M2 — Nypax M), where
Cg is the complexity of GraphRNN.

If the list of node numbers L includes values beyond
the predetermined range [Npyin, Nmax| established by the
training dataset, the convergence of Algorithm 3 cannot be
assured. This limitation arises due to the specialization of the
GraphRNN model, which was trained specifically to produce
graphs featuring a node count confined within the specified
bounds of [Npyin, Nmax]-

V. THE INTERNET GRAPHS (IGRAPHS) DATASET

This section describes the construction and properties of the
proposed intra-AS graph dataset, IGraphs. IGraphs is used as
the training graphs in Figure 1. Specifically, IGraphs is used
to train GraphRNN defining the intra-AS generator DGGI.

A. The IGraphs Construction

The construction of IGraphs is based on applying FRM
(Section IV-A) over a cross-section of the Internet with more
than 90 million nodes provided by CAIDA through the ITDK
repository. This repository stores the historical router-level
topologies, providing the IPv4/v6 traces, the router-to-AS
assignments, the router geographic location, and the DNS for
all observed IP addresses.
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Fig. 2. Cumulative distribution of the numbers of nodes of intra-AS graphs.
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Fig. 3. The cumulative distribution of the numbers of nodes of IGraphs.
The orange curve represents the CDF of gamma with parameters fitted to the
presented cumulative distribution.

This Internet cross section is partitioned into AS subgraphs
using router-to-AS tables and IPv4 links. The links are pre-
processed to extract edges, as multiple nodes can share a single
link, resulting in multiple edges per link. Subsequently, all
edges where the predecessor and successor are within the same
AS are classified as intra-AS edges, thus delineating the AS
topologies.

The AS topologies are simplified to emphasize the router
relations. Multiedges (edges with the same pair of predecessor
and successor) and self-edges (edges with the predecessor
equal to the successor) are discarded. Then, the IGraphs graphs
are created after defining the intra-AS edges.

Each AS topology is used to extract the graphs that will
compose the IGraphs dataset. The number of nodes in the
IGraphs graphs ranges from 12 to 250. These limits have been
defined based on the number of nodes of graphs often used
to evaluate recently proposed graph-based data-driven models
in communication networks [3], [5], [10]. However, FRM can
be used for other ranges.

Figure 2 illustrates the distribution of the number of nodes
in AS graphs, indicating that 22% of the ASes contain more
than 250 nodes. FRM was employed to obtain intra-AS graphs
with a node count within the desired range. The resultant
dataset (IGraphs) comprises 90,326 graphs, each containing
between 12 and 250 nodes. The node count distribution is
depicted in Figure 3.
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Fig. 4. Examples of graph samples from IGraphs presenting different graph metrics, evaluated in terms of their betweenness ratio, assortativity, and global
clustering. The graph on the left does not contain triangles. This leads to a clustering coefficient equal to zero and a low assortativity score. The graph in the
middle is a densely connected graph. In this case, the clustering coefficient is high, while the assortativity score is low. The graph on the right contains two

hubs. In this case, the betweenness ratio score is high.
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Fig. 5. The scattering of graph properties against the average node degree for IGraphs datasets. Figures (a) and (b) present the scattering of global assortativity
and clustering, respectively; (c), shows the scattering of the ratio between the maximum and the average of the betweenness coefficients.

B. IGraphs Properties

The analyses presented in this section are based on three
graph metrics: the coefficients for assortativity, clustering, and
betweenness. For the latter, the ratio between the maximum
and average betweenness coefficients. This ratio encodes the
number of hop occurrences in each graph [39]. Figure 4
illustrates the values calculated associated with the three
metrics for three graph samples collected from IGraphs.

Figure 5 shows the scattering of the graph metrics used
in relation to the average node degree calculated using the
approach adopted in [39]. The global clustering and assortativ-
ity scores were calculated as defined in Equations (3) and (5).
The maximum and average values were calculated for the
betweenness ratio according to Equation (4).

Fig. 5(a) shows that graphs from IGraphs with a higher
average node degree tend to present null assortativity, and
graphs with nodes with a high node degree do not follow the
precepts of preferential attachment, unlike graphs with small
node degrees. In this case, the negative assortativity indicates
an inverse preferential attachment prone.

Figure 5(b) shows the occurrences of density subgraph
networks in IGraphs. For graphs with a low average node
degree, there is a trend to a monotonic increase in global
clustering, which is not verified for graphs with a high average
node degree. These graphs present a greater dispersion, which
indicates that nodes are not necessarily prone to triangle
formation when the node degree increases.

Fig. 5(c) suggests that a low average node degree leads
to a greater probability of hub occurrences. At the same
time, the increase in average node degree does not imply
a large occurrence of hubs, i.e., the centrality tends to be
homogeneous among all nodes.

IGraphs comprises intra-AS graphs that take advantage
of novel possibilities to analyze solutions in communication
networks. The 90,326 graph samples from IGraphs allow
training data-driven models based on real Internet topologies
instead of augmentation procedures over a few samples of real
networks, e.g., from the Topology Zoo [39] dataset.

Training using IGraphs can also improve the generalization
capability, preventing overfitting since IGraphs presents large
topological variability.

Typically, evaluations of network mechanisms are based
on simulations or emulations running over simple topologies
(e.g., grids, stars) or on a few samples from real topologies
(e.g., NSF, Geant2, and Germany50) [3], [5]. On the other
hand, introducing IGraphs opens opportunities to perform
more robust evaluations based on the diversity of real-world
topologies.

VI. EVALUATION OF DGGI

This section describes the procedure followed to assess the
effectiveness of DGGI, instantiated as described in Section IV.
The assessment consists of quantifying to the extent that the
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generated synthetic topologies differ from real-world intra-AS
graphs.

Section VI-A introduces the Maximum Mean Discrepancy
(MMD) metric, which estimates whether two samples are
modeled from the same distribution [32]. Section VI-B
describes the training procedures, while Section VI-C
describes the baseline generators considered in our
study. Finally, the results are presented and discussed in
Section VI-D.

A. Maximum Mean Discrepancy (MMD)

Let P and Q be two distributions defined in a metric space
X; H be a reproducing kernel Hilbert space (RKHS) with a
kernel k; and ¢ be a function that maps X to H. MMD is
defined as

MMD(P, Q) =

B, 00~ E o)

= F H}(I,ZE/) -2 F K(Iay>+ E H(yayl)a(ll)
z~P z~P y~Q
z'~P y~Q y'~Q
which satisfies the metric properties, such as MMD(P, Q) =
0 iff P = Q [32].
The MMD kernel used is defined as follows:

kw(P.Q) = eXp(W(f;Q)>

g

(12)

in which W is the Wasserstein distance, and o is a free
parameter similar to a Radial Basis Function (RBF) kernel.
This function maintains the MMD assumptions since it induces
a unique RKHS [33], and all statistical moments, which can
be verified by the Taylor expansion of xqy [33].

The MMD for all graph metrics (node degree, clustering,
betweenness, and assortativity) were estimated by bootstrap
sampling, given the computational cost of MMD evaluation.
This procedure consists of sampling 500 graphs from the
IGraphs dataset with replacement and assessing the MMD (for
all graph metrics) using these graphs with other 500 synthetic
graphs created by either baselines or our DGGI generator.
This bootstrap evaluation was repeated 100 times, allowing
the establishment of a confidence interval associated with each
MMD value computed for each graph metric.

B. Training the DGGI Generator

IGraphs was divided into three distinct parts: training,
validation, and testing. All sample graphs from IGraphs were
shuffled, and 70% were reserved for the training set, while
the remaining graphs were divided equally for the validation
and test sets. This partition led to 63.229, 13.547, and 13.547
graphs for training, validation, and testing, respectively.

The generator DGGI learns the conditional distribution that
models the generation of links of the graphs in the training
data, i.e., given a previous state for graph representation, the
generator predicts a new link. Binary cross entropy [40] is used
as the loss function since the prediction of links is mapped to
a binary classification problem to determine if a link exists.

The machine used for training had an i7-9700 CPU and a
Quadro RTX 6000 GPU. The training procedure consisted of
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500 epochs using the Adaptive Moment Estimation (ADAM)
optimizer [41] with an initial learning rate of 0.003, decaying
by a factor of 0.3 when the training reaches 300 epochs.
Backpropagation for each mini-batch composed of 40 graphs
sampled from the training set was evaluated using uniform
bootstrap sampling. The best model was determined based
on the best MMD value obtained for the validation set,
considering the node degree distributions.

Fig. 6 shows the distributions of all the graph metrics
mentioned. Based on these distributions, it can be inferred that
the generator DGGI reproduces the distribution of the test set
accurately for all the metrics assessed. Figures 6(a), 6(c), 6(e),
and 6(g) indicate that those based on the BA method (i.e.,
BRITE, BB, EBA, DBA) do not reproduce the test set
distribution for all metrics.

C. Baselines

The baseline generators adopted were divided into two
groups: generators based on the BA algorithm, BRITE, BB,
EBA, and DBA, and those based on the structure-based models
of SubNetG, S-BITE, IAG, and Orbis.

The BA-based models were configured using commonly
used parameter values [6], [11], [13]. Each new node estab-
lishes two new links after preferential attachment. In BRITE,
these links connect the new nodes with existing ones. EBA
was configured to behave as BRITE 50% of the time, while
25% of the links were added to the existing nodes, and for the
other 25%, two known links were rewired. DBA uses two BA
models simultaneously; 35% of the time, one link was added
to any new node instead of two links.

The number of nodes of the synthetic graphs generated
by BA-based models was randomly determined. In order to
improve the similarity between these graphs and IGraphs
graphs, those generated by BA-based models were adjusted
to have several nodes drawn from a customized gamma
distribution. This distribution was tailored by fitting it to
the distribution of the number of nodes of IGraphs graphs,
as illustrated in Fig. 3. The fitting process consisted in
the employment of Maximum Likelihood Estimation (MLE),
resulting in a local optimal gamma distribution expressed
concerning x as (y* lexp(—y)/(sT'(a)), with a = 0.852,
s =59.64,y=(x —m)/s, and m = 11.99.

On the other hand, for structure-based models, the config-
urations used followed the parameters suggested in [7], [8],
[9], [10]. For S-BITE and SubNetG, the parameters were
determined using topologies provided by the Internet Research
Lab (IRL)-based dataset [8], [10]. The joint distribution of
node degrees required by Orbis was extracted from the CAIDA
AS topology (Section V). Moreover, IAG did not require any
further configuration.

Unlike BA-based models, S-BITE, SubNetG, and Orbis
models were designed to generate graphs in the range of
hundreds of thousands of nodes. The FRM algorithm was used
to extract small subgraphs from the large synthetic graphs
provided by those baselines (Section V) since graphs with
hundreds of nodes are expected.
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Fig. 6. The figure shows the frequency distribution for the occurrence of each assessed graph metric. For comparison, all graphs present the distribution for
CAIDA and for our model, DGGI, and the baselines are organized in two groups, BA and structure-based.

D. Results and Discussion from IGraphs (Section VI-B). The same comparison was

We aim to assess the similarity of the graphs synthesized performed for the baseline generators. The similarity is quan-
by the DGGI generator considering the test set extracted tified using the first and higher moments of the following
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TABLE I

ACHIEVED AVERAGE MMD FOR DIFFERENT GRAPH METRICS

IGraphs

MMD Assortativity

MMD Betweenness

MMD Clustering

MMD Node Degree

Training Sampling  7.09¢e—03 + 6.01e—03

4.23e-04 + 3.96e—-04

7.15e-04 + 6.20e—04

2.25e-03 + 1.59e-03

MMD Betweenness

MMD Clustering

MMD Node Degree

4.67e-02 +2.25e-03

9.62e—-01 + 2.64e-02

8.95e—01 + 1.26e—-02

5.68e—-02 +2.57e-03

4.54e—01 £ 1.44e-02

5.62e—01 + 1.26e-02

7.99e-02 +2.77e-03

4.16e—-01 + 2.32e-02

1.06e+00 + 1.33e—02

1.04e—01 + 4.16e—-03

8.54e—01 +2.26e—-02

6.86e—01 + 1.26e—-02

7.87e—02 + 3.39e—-03

3.45e-01 £ 1.75e-02

8.51e—01 + 1.33e-02

4.59e-03 + 7.33e-04

5.02e-02 £ 7.29e-03

2.35e—-02 + 3.04e—03

1.19e-01 + 8.64e—03

6.24e—01 + 2.49e—-02

3.23e—01 + 1.69e-02

4.17e-02 + 5.50e-03

2.76e—-02 £+ 5.37e-03

6.27e—-02 £ 9.18e-03

1.03e-01 + 6.49e—-03

1.54e+00 + 1.76e—02

5.95e-01 + 1.23e-02

Generator MMD Assortativity

BB 1.58e+00 + 4.03e—-02
BRITE 1.70e+00 = 3.22e—02
DBA 1.75e+00 = 3.28e—02
EBA 1.85e+00 + 1.95e—02
IAG 1.69e+00 =+ 3.36e—02
Orbis 3.49e—-01 + 5.63e—02
S-BITE 1.45e+00 + 5.17e—-02
SICPS 8.70e—02 + 2.18e—02
SubNetG 1.68e+00 + 3.66e—02
DGGI (our) 7.56e—02 + 3.26e—-02

1.31e-03 + 8.77e—04

2.80e—03 + 1.54e—-03

6.82e—03 + 2.17e-03
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four graph metrics: node degree, clustering, betweenness, and
assortativity.

Figure 6 illustrates the distributions for the considered graph
metrics. It displays results for two sets of baselines, BA-
based and structure-based generators. The distributions for the
real graphs (sampling from training and test datasets) and the
graph synthesized by DGGI are also provided to simplify the
comparison. However, the distributions in Fig. 6 allow only a
visual comparison and give a limited notion of mean, variance,
and other higher moments. The MMD was used to concisely
represent the differences between the test and training sets
of these statistical moments to provide a more significant
comparison.

For structure-based baselines, Figures 6(b), 6(d), 6(f),
and 6(h) show that neither IAG nor SubNetG succeeded in
reproducing the distributions of the test and training sets.
Orbis and SICPS can visually decrease the overall distance
concerning the distributions of the test and training sets for
the node degree, betweenness, and assortativity. However,
Orbis does not reproduce the clustering distribution accurately.
accurately. S-BITE does not visually reproduce the right tail
of distributions of the test and training sets for the clustering,
betweenness, and assortativity metrics.

In contrast, Figures 6(a), 6(c), 6(e), and 6(g) depict the
distributions for BA-based baselines. All BA-based gener-
ators exhibit similar behavior regarding node degree, with
baseline distributions shifted relative to real ones (training
and test sampling from IGraphs), except for the distribution
tails. We aim to assess the similarity of the graphs synthe-
sized which BA-baselines BA-baselines reasonably reproduce.
For betweenness, the behavior of the baselines mirrors that
observed for node degree; however, only BRITE accurately
reproduces the right tail of the distribution. Lastly, the BA
baselines prove inadequate in reproducing the observed distri-
butions for clustering and assortativity metrics.

Table II shows the MMD values assessed for the four
graph metrics to quantify the similarity between the baseline
distributions and the real distribution defined by the sample
from the test set. Orbis and SICPS outperform other baselines
regarding MMD values across all graph metrics, suggesting
their ability to replicate higher-order statistical properties of
real intra-AS topologies. Generally, baselines utilizing BA
model exhibit inferior performance in reproducing intra-AS
topology, as evidenced by their lower MMD values than
their structure-based counterparts. However, an exception is
noted with BRITE, despite its status as the earliest generator,
as it surpasses all baselines except Orbis and SICPS in
replicating the four metrics of high-order statistical proper-
ties. Furthermore, Table II presents the MMD values for the
training sampling, which can serve as a reference due to the
sampling of both the training and the test sets from the same
population, corroborated by the low MMD values observed in
the training sampling.

The node degree, indicative of the number of adja-
cent nodes, exhibits a notable correlation with betweenness
centrality owing to considering neighboring nodes in deter-
mining shortest paths. This correlation is depicted in
Figure 6, wherein the generators consistently manifest anal-
ogous errors in estimating node degree and betweenness
centrality. Notably, baseline methods, particularly Orbis,
SICPS, and BRITE, tend to synthesize network topologies
exhibiting similar sets of shortest paths. The distribution of
betweenness coefficients offers insight into the prevalence of
hub nodes within a topology. As illustrated in Figure 6(e),
BRITE-synthesized graphs exhibit lower frequencies of large
betweenness coefficients compared to real-world counter-
parts from training and testing datasets, indicating a higher
incidence of hubs in actual intra-autonomous System (AS)
topologies. Conversely, Orbis and SICPS demonstrate com-
parable hub frequencies to real-world datasets, attributed to
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TABLE III
ACHIEVED AVERAGE IMPROVEMENTS USING DGGI

IGraphs

Assortativity  Betweenness

Clustering Node Degree

Training Sampling -967.05%

-210.81%

-291.14% -202.99%

Baseline Assortativity Betweenness Clustering Node Degree
BB 95.22% 97.19% 99.71% 99.24%
BRITE 95.56% 97.68% 99.38% 98.79%
DBA 95.68% 98.35% 99.33% 99.35%
EBA 95.91% 98.74% 99.67% 99.01%
IAG 95.54% 98.33% 99.19% 99.2%
Orbis 78.31% 71.35% 94.43% 70.93%
S-BITE 94.78% 98.9% 99.55% 97.89%
SICPS 13.08% 96.85% 89.86% 89.11%
SubNetG 95.49% 98.72% 99.82% 98.85%

their ability to reproduce the right tail of the betweenness
distribution.

Clustering, which denotes the prevalence of triadic relation-
ships among nodes (Section IIT) manifests itself in densely
interconnected regions within a network. However, none of
the baseline models successfully reproduce the clustering
coefficients observed in real intra-AS topologies, as evident
from Figures 6(c) and 6(d). Furthermore, Table II reports
clustering MMD values significantly deviating from zero for
baseline methods, indicating a substantial dissimilarity with
real-world clustering patterns, up to 20 to 30 times worse
concerning clustering MMD values for training sampling.
Networks generated by baseline methods tend to exhibit dense
node regions inconsistent with real intra-AS topologies.

Assortativity, which indicates the correlation between con-
nections of nodes that share similar neighborhood sizes, still
needs to be attainable for most baseline models, with Orbis
and SICPS being exceptions. As illustrated in Figure 6 and
Table II, baseline models fail to replicate the assortativity
coefficients observed in real intra-AS graphs, implying a diver-
gence from the attachment tendencies characteristic of actual
network formations. In contrast, the Orbis and SICPS models
demonstrate a reasonable approximation of this attachment
tendency, aligning more closely with the observed network
assortativity patterns.

DGGI outperforms all baselines in terms of the realism of
its synthetic graphs. For all metrics, node degree, between-
ness, clustering, and assortativity, DGGI substantially reduces
overall dissimilarity in terms of the distributions observed
in both training and test sets, as illustrated in Figure 6.
However, none of the generators, including DGGI, accurately
replicate the right tails of the distributions for clustering and
assortativity (Figures 6(c), 6(d), 6(g), and 6(h)). This inability
of DGGI to reproduce these right tails could be attributed
to potential overfitting, given that these right tails manifest
exclusively in the test set. Furthermore, Table I shows that

DGGI surpasses all baselines, even considering the high-order
statistical properties assessed through MMD.

Table III summarizes the significant improvements achieved
by DGGI, presenting the average improvements of DGGI rel-
ative to the baselines. On average, DGGI improved the MMD
(84.4 £ 27.3)%, (95.1 £ 8.9)%, (97.9 &+ 3.5)%, and (94.7 £
9.5)% for assortativity, betweenness, clustering, and node
degree, respectively. Compared to training samples, the graphs
generated by DGGI exhibit lower realism levels than those
sampled from the training set, as expected, since the training
set is drawn from the genuine population of intra-AS graphs
(IGraphs). However, despite this disparity, DGGI demonstrates
superior realism compared to baselines. Consequently, DGGI
exhibits the most notable overall reduction in discrepancy
concerning the MMD values.

VII. CONCLUSION

This paper introduced DGGI, a novel intra-AS graph gen-
erator. It also introduces a novel dataset (IGraphs) composed
of real intra-AS graphs. To create IGraphs, we proposed an
adaptation of the multilevel algorithm in [35] (FRM) that
is a parameterized algorithm for subgraph extraction, which
ensures that subgraphs are within predefined limits for a
number of nodes without losing the original characteristics of
the graph formation process.

The experimental results demonstrate that the generator
DGGI outperforms all the baseline generators. On average,
DGGI improved the Maximum Mean Discrepancy (84.4+
27.3)%, (95.1£ 8.9)%, (97.9+ 3.5)%, and (94.7£ 9.5)%,
for assortativity, betweenness, clustering, and node degree,
respectively, as shown in Table III.

IGraphs is the first dataset to show such a wide variety
of real-world intra-AS graphs, offering novel possibilities for
the analysis of solutions for the Internet. IGraphs provides
the possibility of training data-driven models based on graphs
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using only real-world topologies and improving the generaliza-
tion capacity of models due to the variety of graphs. IGraphs
can also be used to diversify the simulation and emulation of
solutions for the Internet.

Future work includes investigating DGGI’s generalization
capacity and using it for graph-based learning algo-
rithms [3], [5]. We also plan to develop a user interface for
DGGI to help synthesize graphs for intra-AS networks.
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