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Abstract

The larvae of the black soldier fly (BSFL), Hermetia illucens L. (Diptera: Stratiomyidae), are of economic interest
due to their use as livestock feed component. Unraveling their response to a bacterial infection will allow us to gain
a better insight into their biology. In the current study, we used RNA-Seq analysis to unravel the transcriptomic
response of BSFL to wounding and infection by a Gram-negative bacterium, Pseudomonas protegens Pf-5. Five-day-
old BSFL were subjected to three treatments, i.e. untreated, PBS-injection, and bacteria-injection (5000 CFU per
larva) and samples were collected at three time points (2 h, 6 h, and 13 h) post- treatment. Wounding induced
expression of genes encoding recognition molecules and signaling pathway genes such as PGRP-SA, and Relish,
and antimicrobial peptides (AMPs) such cecropin, defensin, and attacin. At 2 h, wounding resulted in a significant
upregulation of immunity-related genes whereas genes encoding for resilin and cuticle proteins were significantly
downregulated. At 6 h, the expression of immunity-related genes reduced in response to wounding whereas their
expression increased in infected larvae. At 13 h, the expression of immunity-related genes reduced drastically in
response to wounding, while their expression increased significantly in infected larvae. Conversely, the expression
of metabolism-related genes, such as trypsin and chymotrypsin, was significantly upregulated in wounded larvae
at 13 h, while their expression was significantly reduced in infected larvae. Increased investments in immunity-
related processes in infected BSF larvae correlated with the downregulation of genes associated with metabolic
processes indicative of a trade-off. Various immunity-related genes, including those encoding cecropin, defensin,
attacin, and PGRP-SA, were consistently induced only during pathogen infection, indicating their role in immunity
against Gram-negative bacteria. In this study, we report multiple genes that are significantly upregulated post-
bacterial infection in BSFL that may be utilized as biomarkers to monitor insect health in mass production facilities.
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1 Introduction mechanisms such as encapsulation, phagocytosis, nodu-

lation, melanization, and the production of antimi-
Insects are generally exposed to physical injuries and  crobial peptides (AMPs) to deal with wounding or
infections by microbial pathogens in their natural envi-  pathogens (Lemaitre and Hoffmann, 2007). Wound-
ronment. The insect hosts employ multiple defense ing elicits a hemocyte clotting response and activation
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of the wound-repair pathway to maintain homeosta-
sis and limit the spread of pathogens that may have
gained entry into the insect hemocoel (Galko and Kras-
now, 2004; Haine et al., 2007). Insects possess spe-
cific pathways, such as the JNK pathway, which aids
wound healing through epidermal spreading and re-
epithelialization by activating epidermal cells around
the wound (Galko and Krasnow, 2004). The entry of
an entomopathogen in an insect’s hemocoel triggers
a cascade of host-specific immunological responses,
initiated by recognition of bacterial peptidoglycans
through molecules such as peptidoglycan receptor pro-
teins (PGRPs), Gram-negative bacteria-binding protein
(GNBPs), and beta-1,3-glucan-binding proteins (GBPs)
that eventually lead to the biosynthesis of effector
molecules such as antimicrobial peptides (AMPs) (Hult-
mark et al., 1980; Wang et al., 2019b). AMPs were ini-
tially isolated from the hemolymph of the giant silk
moth, Hyalophora cecropia, immunized with Enterobac-
ter cloacae strain P12 as antibacterial peptide cecropin
(Hultmark et al., 1980). Since then, a broad and diverse
range of AMPs acting against multiple bacteria, fungi,
parasites, and viruses have been identified (Vogel et al.,
2022).

The larvae of the black soldier fly (BSFL), Herme-
tia illucens L., are increasingly utilized as livestock feed
ingredients due to their rich nutritional profile and their
ability to process low-quality organic streams (Broeckx
et al., 2021; Van Huis, 2020; Veldkamp et al, 2021).
In mass-rearing operations, BSFL may be fed on vari-
ous organic streams derived from agriculture or super-
market leftovers (Isibika et al., 2019; Lalander et al,
2013; Lalander et al., 2019). The organic streams harbor
diverse microorganisms, some of which could be oppor-
tunistic pathogens of BSFL. Although no pathogens that
cause mortality in BSF are known (Joosten et al., 2020),
the recent study by She et al. (2023) reported that vege-
tative cells of Paenibacillus thiaminolyticus GX6 resulted
in approx. 30% mortality in BSFL larvae in mass-rearing
conditions. However, the mortality of BSFL to P. thi-
aminolyticus GX6 cells depends on temperature and
substrate moisture, with insect mortality increasing at
high temperature and low substrate moisture. While
infection may increase BSFL mortality, sub-lethal infec-
tions could negatively affect the development and wel-
fare of insect larvae. The use of entomopathogenic
microorganisms on crops as biological control agents,
such as Pseudomonas protegens Pf-5 (Garrido-Sanz et al.,
2023), could make their way into the diet of BSF lar-
vae and result in adverse effects on larval health. The
bacterium, P. protegens Pf-5, produces multiple insecti-
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cidal toxins (Flury et al, 2017; Loper et al., 2016) that
are capable of causing oral toxicity in insects such as D.
melanogaster, Musca domestica, and Galleria mellonella
(Loper et al., 2016; Ruiu et al.,, 2022; Ruiu and Mura,
2021).

Despite the commercial importance of BSFL, only a
few studies have explored various facets of its immune
response to wounding and experimental infections so
far (Bruno et al., 2021; Vogel et al., 2018; Von Bredow et
al., 2022; Zdybicka-Barabas et al., 2017). The effects of
wounding on hemocyte count (Von Bredow et al., 2022),
phenoloxidase activity (Bruno et al, 2021; Zdybicka-
Barabas et al, 2017), and effect of infection with an
Escherichia coli — Micrococcus luteus mixture on the
expression of selected AMP genes through qPCR analy-
sis have been identified (Bruno et al., 2021). Despite the
commercial importance of BSFL, only two studies have
so far has looked at the overall transcriptomic response
of BSFL to bacterial infection (Cho and Cho, 2024; Vogel
et al., 2018). Vogel et al. (2018) observed a significant
induction of AMP genes in BSFL, 72 h after oral expo-
sure of fifth-instar larvae to a bacterial mix of Gram-
positive and Gram-negative bacteria. Similarly, Cho and
Cho (2024) observed a significant upregulation of AMP
genes 12 h post-injection with the Gram-negative bac-
terium Escherichia coli. Both studies assessed the tran-
scriptomic response at a single time point. To gain
insight into the temporal dynamics and phases of the
immune response, it is imperative to determine the
transcriptional response pattern at different time points
and elucidate the underlying mechanisms in BSFL gen-
erated as a response to wounding and infection.

In this study, we investigated the transcriptomic
response of five-day-old BSFL to wounding and infec-
tion with the Gram-negative bacterium P. protegens
Pf-5. The BSF larvae were subjected to three treat-
ments: Untreated, PBS injection, and bacteria injec-
tion, to investigate the effects of wounding (compar-
ing PBS-injected with untreated larvae) and infection
(comparing bacteria-injected with PBS-injected larvae).
Differentially expressed genes, pathways, and biological
processes affected by wounding and bacterial infection
in BSFL have been identified and are discussed.

2 Materials and methods

Insect rearing

BSF larvae used in the experiments were grown from
eggs derived from an adult H. illucens colony main-
tained at the Laboratory of Entomology, Wageningen
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University (the Netherlands) in a climate room (27 + 1
°C, 70 + 10% R.H., L12:D12). The genetic background of
this strain has been described by Khamis et al. (2020).
Eggs laid within six hours in clean corrugated cardboard
sheets were collected from a cage harbouring adult flies
of different ages. Two egg clutches (~1,500 eggs) were
selected at random and were provided with a chicken-
feed diet (150 g, Kuikenopfokmeel 1; Kasper Faunafood,
Woerden, the Netherlands), and 300 ml water in a cir-
cular plastic container (15.5 x 10.5 x 6 cm). The chick-
enfeed composition was evaluated at Mérieux Nutri-
Sciences (Ede, the Netherlands), and contained 21%
protein, 40% carbohydrates, 4.4% fats, 6.6% ash, 12.2%
water, 4.4% crude fibre and 12.1% other dry matter (min-
erals and lignin). The container was closed with a plastic
lid, had a rectangular ventilation hole (7 x 5.5 cm), and
was covered with nylon of 1 mm mesh size.

Larval infection and sample collection

In previous experiments (Shah et al., 2024a), we exper-
imentally determined that infection with a dose of
~5,000 CFU of P. protegens Pf-5 per BSF larva resulted
in 100% mortality, for which LTy, (time to 100% mor-
tality) was 16-18 h at 27 °C. Based on qPCR experiments
in the same study, the expression of five immunity-
related genes was determined at five time points (i.e.
2 h, 6 h, 10 h, 16 h, and 21 h), sample collection was
pre-determined at 2 h, 6 h, and 13 h post-infection to
assess the effect of early, mid, and late phases of the
transcriptomic response of BSFL to wounding and bac-
terial infection, respectively.

Sterile PBS buffer was prepared by dissolving 1x
Oxoid™ Phosphate Buffered Saline Tablets (Thermo Sci-
entific, Waltham, MA, USA) in 100 mL distilled water
and autoclaved at 121 °C for 15 min. For the prepa-
ration of the bacterial suspension, colonies of P. pro-
tegens Pf-5 stored at -80 °C were transferred to Petri
dishes containing King Agar B medium (Merck Milli-
pore, Burlington, MA, USA) and stored inverted inside a
climate cabinet maintained at 27 °C for 48 h. An isolated
single CFU was transferred from the Petri dish to sterile
LB broth and placed overnight in a rotary incubator at
24 °C and 180 rpm. The bacterial culture was diluted
(OD600 = 0.25 corresponding to 5 x 108 CFU/ml) in
sterile PBS buffer to generate a 5,000 CFU/uL concen-
tration.

Five-day-old BSFL were surface-sterilized in 70%
ethanol for 5 s followed by two consecutive rinses in
sterile water for 5 s each time. Surface-sterilized larvae
were randomly sampled and subjected to one of the fol-
lowing treatments: (a) untreated, (b) injection with 1 pL
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sterile PBS buffer, and (c) injection with 1 uL of P. pro-
tegens Pf-5 suspension, ~5,000 bacterial cells per larva.
Treatments a, b, and ¢ will be referred to as ‘Untreated’,
‘PBS), and ‘Bacteria), respectively. Forty larvae, provided
with chickenfeed (50 g + 100 mL water), were housed
per container (volume 550 mL, height 11 cm, top-width
10 c¢m, bottom width 8.5 cm; the lid (9.5 cm x 5 mm)
had a circular vent of 5 cm diameter covered with nylon
of 1 mm mesh size) for each treatment. At each time
point, five biological replicates (of two pooled larvae
each) were collected for each treatment across three
sampling time points (2 h, 6 h, and 13 h).

Sample preparation for RNA-Seq

Total RNA was extracted from the samples as described
in Shah et al. (2023). 200 pL TRI-Reagent® (Sigma-
Aldrich, St. Louis, MO, USA) and two 5-mm glass beads
were added per 1.5 mL Eppendorf Safe-Lock tube and
snap-frozen in liquid nitrogen for each biological repli-
cate. Each sample was homogenized using a bead-
mill homogenizer (TissueLyser II, Qiagen, Venlo, the
Netherlands) at 30 oscillations/s for 5 min. After that,
all samples were treated with TURBO™ DNase (Ther-
moFisher Scientific) per the manufacturer’s instructions
to remove any DNA contamination. Samples were addi-
tionally treated with phenol: chloroform: isoamyl alco-
hol (25:24:1; Sigma-Aldrich) solution to remove protein
impurities. Purified total RNA was re-suspended in ster-
ile RNase-free water (Qiagen) and stored at -80 °C until
further use.

RNA-sequencing and read processing

The quality and quantity of total RNA were assessed
using a DS-11 series spectrophotometer (DeNovix, Wilm-
ington, DE, USA) and Agilent 2100 Bioanalyzer (Agi-
lent, CA, USA). RNA samples were used to prepare
cDNA libraries using TruSeq Stranded Total RNA Library
Preparation (Illumina 1.9) at BaseClear B.V. (Leiden,
the Netherlands). The cDNA libraries were sequenced
on a NovaSeq-6000 instrument with paired-end 150 nt
sequencing protocol to an average depth of 20 mil-
lion reads per sample. FASTQ read sequence files were
generated using bcl2fastq2 version 2.20 (Illumina 1.9),
which included Illumina Chastity quality filtering with
default settings. Subsequently, reads containing (par-
tial) adapters were clipped up to a minimum read length
of 50 bp. PhiX control signals were removed using an
in-house filtering protocol at BaseClear B.V. (Leiden, the
Netherlands). An additional quality assessment was per-
formed on the remaining reads using the FASTQC qual-



ity control tool version 0.11.8, and reads with a Q-score
of >35 were retained.

The quality of reads was assessed using fastQC
(Andrews, 2010) and multiQC (Ewels et al, 2016). A
genome index (with overhang = 99) was created with
the reference genome and gene annotation file (gtf) of
H. illucens L. (Generalovic et al., 2021) from the NCBI
database using STAR (Dobin et al.,, 2013). The filtered
sequences were aligned to the genome index in the
quantMode function to obtain read counts per gene
directly as output. On average, 78% of the reads (with
average GC% = 39%) mapped uniquely to the reference
genome (Supplementary Table S1). The raw sequences
and processed data have been deposited in NCBI's Gene
Expression Omnibus (GEO) public repository and are
available under accession code GSE263745. Addition-
ally, the study can be accessed with NCBI's Bioproject
(PRJNA1099151) using the following URL: https://www
.ncbinlm.nih.gov/bioproject/1099151.

Principal component analysis and DESeq?2 analysis
The gene counts per sample were transformed to a
log, scale via restricted logarithmic transformed counts
(rLog) using the DESeq2 package in R (Love et al., 2014).
rLog counts data was used as input to generate a prin-
cipal component analysis (PCA) plot using the ggplot2
package in R (Wickham, 2016). Genes in the top and bot-
tom loadings for PCl and PC2 were extracted using the
pcaexplorer package (Marini and Binder, 2019) in RStu-
dio (Posit team, 2024).

Genes with low counts (<20) were filtered out across
all samples before DESeq2 analysis to avoid false posi-
tives, resulting in 11,900 genes. The differences in sample
library sizes were normalized using the estimateSizeFac-
tors function. A DESeq model with design = Treatment
x time was used to determine relevant temporal differ-
ences between and within treatments (i.e. time points
between Untreated, PBS, and Bacteria treatments).

Differentially expressed genes (DEGs)

Comparisons of gene expression between (1) PBS ver-
sus Untreated, and (2) Bacteria versus PBS were made
for the three-time points using the result function of
the DESeq2 package to identify differentially expressed
genes (DEGs) and evaluate the effect of wounding and
infection on BSFL, respectively. Genes were identified
as DEGs when their false discovery rate or Benjamini-
Hochberg adjusted P-value was lower than 0.001, and
their log,-fold change was less than -2 (downregu-
lated) or greater than 2 (upregulated). The number of
DEGs derived from these comparisons was plotted on a
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stacked bar plot to display the number of up-and-down-
regulated genes resulting from wounding or infection.

DEG cluster analysis and gene ontology (GO)
enrichment analysis

DEG cluster analysis

DEGs were divided into distinct clusters via k-means
clustering (Pearson correlation matrix) based on their
expression over treatment and time. The scaled gene
count (row z-score) of these DEGs was plotted on
the expression heatmap using the pheatmap package
(Kolde, 2019) in R to determine temporal patterns of
DEG expression between treatments.

Gene ontology (GO) enrichment analysis

A list containing associated GO-terms for each gene
of the reference H. illucens genome was accessed from
Ensembl Metazoa (https://metazoa.ensembl.org
/biomart/martview/). After that, a custom annotation
file was generated to assign associated GO terms to
corresponding genes using Python3 in PyCharm. Each
DEG cluster was analyzed using Fisher’s exact test for
ontologies corresponding to biological processes (BP),
cellular components (CC), and molecular functions
(MF). The gene ontologies for each DEG gene cluster
were determined using the topGO package (Alexa and
Rahnenfuhrer, 2023) to determine associated processes
affected by wounding or infection. In addition, upregu-
lated and downregulated DEGs in response to wounding
and infection were separately subjected to GO enrich-
ment analysis to determine the physiological processes
affected by wounding and infection, respectively. node-
Size of 2 and 5 were used to prune GO hierarchy from
terms with less than 2 and 5 annotated genes for clus-
ter analysis and treatment, respectively. The top 25 GO
terms (topNodes = 25) contributing to BP, CC, and MF
for each gene cluster were summarized. A process was
deemed to be significantly affected (either upregulated
or downregulated) at P < 0.05 (Fisher’s exact test),
and the processes involved by wounding or infection
were visualized in bubble plots using the ggplot2 pack-
age. The enrichment factor (ratio of DEGs attributed
to a specific process compared to the total number of
genes attributed to that process) was used to visualize
the most affected processes.

Expression heatmaps of the immunity-related
pathways

The log,-fold change in DEGs associated with spe-
cific immunological pathways or pathogen-recognition
molecules, metabolic processes, and antimicrobial pep-
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tides for wounding and infection were plotted using
ggplot2. Their homologs were identified in H. illucens
using BLAST search against the RefSeq genome of H.
illucens (GenBank assembly accession: GCA_905115235.
1). An expression heatmap indicating the scaled count
of all genes belonging to these pathways has been sum-
marized in the Supplementary Materials. Additionally,
an expression heatmap containing scaled counts of Imd
and Toll pathway genes was plotted to determine their
temporal expression.

3 Results

A total of 45 high-quality cDNA libraries were obtained
with an average read depth of 19.2 million reads (average
GC% = 38.5; Supplementary Table S1). Of 15,712 genes in
the reference genome, we observed 15,196 genes in our
dataset. Genes with counts <20 were filtered out to pre-
vent false positive results during downstream analysis,
resulting in 11,900 genes. The gene counts were normal-
ized to the respective library size before further analysis.

Sample clustering indicates time- and
treatment-specific effects of wounding and infection
Principal component analysis (PCA) of the top 500
genes with the highest row variance reveals treatment-
and time-specific sample clustering (Figure 1). PC1 and
PC2 explain 75% and 11% of the variation in gene
expression between samples, respectively. At 2 h, sam-
ples from larvae subjected to PBS- or bacteria injection
clustered closely, indicating that both treatments gener-
ated a similar response in BSF larvae early on (Figure 1).
However, samples from the three treatments clustered
separately at 6 h, indicating a divergence in transcrip-
tomic response to bacteria- and PBS-treatment. At the
last sampling time (13 h), samples from untreated and
PBS-treated larvae clustered together, whereas those
from bacteria-injected larvae clustered separately (Fig-
ure 1).

Genes contributing to sample variation along PCl
and PC2 are involved in immunity and developmental
processes in multiple insect species, such as cecropin,
cuticle protein, and seminal metalloprotease I-like. The
top loadings of the PC2 axis (Figure 1), i.e. genes con-
tributing most to sample distribution along the PC2
axis, are interesting because this axis separates the
three treatments. Of the top 15 genes contributing to
positive sample loadings along the PC2 axis, thirteen
were cecropin-encoding genes (Supplementary Figure
S1), suggesting their potential importance as an effector
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molecule against bacterial infection with P. protegens Pf-
5.

BSFL transcriptomic response to wounding and
infection

Wounding and infection elicited significant changes in
gene transcription in BSF larvae, including upregula-
tion and downregulation of genes (Figure 2). The list
of differentially expressed genes generated from wound-
ing and infection along with their log2 fold expres-
sion at each time point is presented in Supplementary
Tables S2 and S3, respectively. The number of upregu-
lated DEGs generated by wounding decreased over time,
while infection increased the number of upregulated
DEGs over time (Figure 2). The expression of DEGs from
both wounding and infection was affected by time and
treatment, separating the DEGs into 10 distinct gene
clusters (Figure 3).

Response to wounding
Wounding resulted in the upregulation of 206 genes.
After 2 h, 113 genes were upregulated in response to
wounding, of which 51 genes were still upregulated at
6 h (Figure 2). The number of upregulated genes post-
wounding was reduced considerably at 13 h, as only
59 genes were significantly upregulated, of which 24
genes were already upregulated at the previous time
point, i.e. at 6 h. A total of 19 genes (including attacin-
A, lysozyme, two genes encoding for beta-1,3-glucan-
binding protein, peptidoglycan-recognition protein SA,
two defensin genes, cecropin (LOC119656619) and mul-
tiple uncharacterized genes; Figure 2) were consistently
upregulated across all time points in response to wound-
ing. Genes such as Relish, cecropin, defensin, and attacin
were significantly upregulated at 2 h post-wounding, but
their expression level reduced over time, and they were
no longer differentially expressed at 13 h post-wounding.
Wounding resulted in significant downregulation of
21 and 5 genes at 2 h and 6 h, respectively (Figure 2).
Downregulated genes in response to wounding included
cytochrome P450 and pancreatic triacylglycerol lipase,
which are involved in metabolic processes (Figure 4B).
No genes were downregulated in response to wounding
at 13 h post-injection.

Response to infection

Infection resulted in significant upregulation and down-
regulation of 1,014 and 884 genes, respectively, in BSF
larvae (Figure 2). Only 6 genes were upregulated at 2 h
in infected larvae, while no gene was downregulated at
2 h in the infected larvae (Figure 2). At 6 h, the number
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FIGURE 1  Principal Component Analysis (PCA) of the top 500 genes with the highest row variance across all treatment x time

combinations. Five biological replicates (of two pooled larvae each) are represented for each treatment at a particular time. The
elliptical line around samples for respective treatment x time combination clusters represents the 95% confidence level.

of upregulated and downregulated genes in response to
infection was 347 and 341, respectively. The upregulated
DEGs in infected larvae at 6 h included genes encoding
for Relish, multiple PGRPs, and AMPs, including numer-
ous copies of attacin, cecropin, and defensin genes (Fig-
ure 4A-C). Relish was upregulated across all time points
in infected larvae. Genes related to metabolism, such as
lipase and 29 cytochrome-encoding genes, were down-
regulated in infected BSF larvae at 6 h.

The number of upregulated DEGs in infected BSF lar-
vae increased to 818 genes at 13 h. Of these 818 genes, 156
were upregulated at both 6 h and 13 h, indicating their
consistent role in response to pathogen infection. From
the 156 consistently upregulated genes, several genes
are associated with immunity-related functions such as
cecropin (23 genes), defensin (5 genes), heat shock 70 (2
genes), melanization protease 1, and serine protease (3
genes), while 38 other genes are characterized for hav-
ing potential immunological functions (Figure 2).

Infection resulted in a significant downregulation of
341 and 678 genes at 6 h and 13 h, respectively (Fig-

ure 2). Genes associated with metabolic- and develop-
mental processes were downregulated in infected BSFL
at 6 h and continued to stay downregulated at 13 h:
this includes general odorant-binding protein 99a/b (14
genes), cytochrome P450 family (13 genes), glycine N-
methyltransferase (2 genes), and 87 uncharacterized
genes (Figure 2). Thirty-two out of 137 genes downreg-
ulated in infected larvae at both 6 h and 13 h are unchar-
acterized.

DEG clusters

To gain insight into the temporal pattern of DEGs in
the response to wounding and infection, DEGs were
grouped (using hierarchical clustering, with complete
linkage) into 10 different clusters (Supplementary Fig-
ure S2) based on expression patterns over time in
response to treatments (Figure 3). Clusters 1, 3, 9, and
10 were composed primarily of genes upregulated by
bacterial infection, while DEGs in clusters 2, 4, and 8
were significantly downregulated in response to infec-
tion (Figure 3).
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Genes were considered DEGs if their false discovery rate was < 0.001 and [log,FC| > 2. The genes were divided into 10 distinct
clusters based on the outcome of hierarchical clustering with complete linkage. Log, (normalized counts per million) counts
were centered and scaled by row (yielding a row z-score). Each row represents a scaled gene count for a specific DEG, ranging
from 2 (red indicates upregulation) to -2 (blue indicates down-regulation).

Gene clusters upregulated in response to infection
(i.e. clusters 1, 3, 9, and 10) are primarily involved in
cellular response to stress, humoral immune response,
antimicrobial response, and DNA repair. Genes in clus-
ter 1 (comprised of 39 genes) were upregulated in
bacteria-treated larvae at 6 h and 13 h; they include
ABC transporter G family member 23, lysozyme, pan-
creatic triacylglycerol lipase, and pupal cuticle protein
Edg-78E. The genes within cluster 1 are involved in var-
ious biological processes, such as cellular response to
stimulus, DNA repair, cellular response to stress, and

post-replication repair. Genes within cluster 3 and clus-
ter 9 were significantly upregulated by wounding and
infection at 2 h; however, their expression remained
upregulated in response to infection while decreas-
ing over time in response to wounding. Clusters 3
and 9 were composed of 42 and 229 genes, respec-
tively, including various genes such as serine protease-7,
cecropin peptide 1, defensin-A, CDI09 antigen, lysozyme,
NF-kappa-B inhibitor cactus, peptidoglycan-recognition
protein SA. The genes within clusters 3 and 9 are
involved in humoral immune response, antimicrobial
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Fold-change relative to control in the expression of (A) genes involved in pathogen recognition, (B) growth and
metabolism-related genes, and (C) genes encoding effector molecules such as antimicrobial peptides (AMPs) in response to
wounding (comparison of treatments: PBS versus Untreated) and infection (comparison of treatments: Bacteria versus PBS) at
three sampling time points (2 h, 6 h, and 13 h since treatment) in 5-day-old H. illucens larvae. The degree of upregulation is
described in the respective legend panels. Red indicates upregulation, and blue indicates downregulation for respective genes.
The name and associated gene IDs are represented at the left side.

humoral response, defense response to bacterium, and tribute to biological processes associated with DNA

immune response. Forty-nine genes within cluster 9 are  repair, cellular response to DNA damage stimulus, cel-
uncharacterized. lular response to stress, and RNA biosynthetic process.

Almost one-third of all DEGs (604 from 1,959 DEGs)  Genes in this cluster encode for, e.g. caspase Dronc,
were grouped in cluster 10. Genes in cluster 10 con- cytochrome P450 6Al, cytochrome P450 6a8, DNA
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repair protein RAD50, heat shock protein 27, major heat
shock 70 kDa protein Ab, and melanization protease 1.
Cluster 10 contains 158 uncharacterized genes that are
upregulated post-bacterial infection.

Gene clusters 2, 4, 5, 6, 7, and 8 contain DEGs
downregulated in infected larvae, primarily linked to
metabolic and growth processes (Figure 3). Cluster
2 contains 331 genes, such as cytochrome P450 6a2,
lipase-3, carboxypeptidase-B, chymotrypsin-A, trypsin-
beta, and peroxidase. Downregulated DEGs in cluster
2 are involved in carbohydrate metabolic processes,
lipid metabolic processes, and primary metabolic pro-
cesses. In clusters 4 and 5, 95 and 237 genes were
significantly downregulated in infected larvae at 13 h
post-infection. Genes in cluster 4 include trypsin-1, adult

cuticle protein 1, cuticle protein 16.5, and Gram-negative
bacteria-binding protein 3, which are associated with
carbohydrate (chitin) metabolic process and proteoly-
sis. Cluster 5 genes include lipase 3, heat shock protein 27,
cuticle protein 12.5, cytochrome P450 6al3, argininosucci-
nate synthase, and trypsin-3, which are associated with
response to toxic substances, cellular detoxification, and
lipase activity.

DEGs in cluster 6 (118 genes) and cluster 7 (216 genes)
were significantly downregulated at 6 h and 13 h in
infected BSF larvae. Cluster 6 genes include mitotic-
spindle organizing protein I, cytochrome b5, trypsin,
general odorant-binding protein 99a, general odorant-
binding protein 99b, and hydroxylysine kinase. The bio-
logical processes represented by genes in cluster 6
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include organelle organization, cellular component
organization, or biogenesis. Genes in cluster 7 are L-
xylulose reductase, larval serum protein 2, cell division
cycle protein 20 homolog, mitochondrial fission process
protein 1, and a, a-trehalose-phosphate synthase [UDP-
forming], amongst others. The genes within cluster 7 are
involved in the regulation of the mitotic cell cycle and
cell cycle processes.

Wounding and infection resulted in the downregu-
lation of 48 genes in cluster 8. Downregulated genes
in cluster 8 are involved in molecular functions such
as heme binding, tetrapyrrole binding, and monooxyge-
nase activity; including
chymotrypsin-2, cytochrome P450 6A1, and procathepsin
L.

carboxypeptidase B,

Infection causes a trade-off between metabolism and
immundity-related genes

Of the genes attributed to specific immunological path-
ways (Supplementary Figure S3), as described in Vogel
et al. (2022), various genes from the Imd pathway are
upregulated during bacterial infection (Supplementary
Figure S4A), while fewer genes from the Toll path-
way are upregulated (Supplementary Figure S4B). DEGs
known to contribute to pathogen recognition (Figure
4A), metabolic processes (Figure 4B), and antimicrobial
peptides (Figure 4C) were selected, and their relative
expression (Log, fold change) to wounding and infec-
tion was plotted (Figure 4).

Wounding resulted in significantly upregulated
expression of the genes beta-1,3-glucan binding pro-
tein and peptidoglycan-recognition protein 2, which are
not significantly upregulated in infected larvae (Fig-
ure 4A). Upregulation of the gene encoding the serine
protease snake indicates upregulation of the phenolox-
idase pathway in response to wounding (Figure 4A).
PGRP-SA (LOC119657333), Relish, melanization protease-
1, and serine protease 7 were significantly upregulated
in infected larvae (Figure 4A). Peptidoglycan-recognition
protein 2 (LOC119657585) was only upregulated in
infected BSFL (Figure 4A), suggesting its role in the
identification of pathogen-associated molecular pat-
terns (PAMPs). Spaetzle proteins, associated with Toll
pathway, were significantly downregulated in infected
BSF larvae (Figure 4A).

Wounding and infection directly affected the expres-
sion of genes involved in growth (adult cuticle proteins,
cuticle protein 16.5, and pupal cuticle protein CIB) and
metabolism (chymotrypsin, lipase, trypsin, and uricase)
(Figure 4B). Although wounding initially reduced the
expression of these genes, their expression recovered
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at later timepoints (Figure 4B). In contrast, infection
caused a sustained decrease in the expression of these
genes over time (Figure 4B).

Similarly, wounding initially induced the expres-
sion of AMP-encoding genes, but this declined over
time (Figure 4C). In contrast, the expression of AMP-
encoding genes increased significantly in infected lar-
vae over time (Figure 4C). The differentially expressed
AMP-encoding genes include attacin, cecropin, defensin,
and lysozyme (Figure 4C). Additionally, the gene encod-
ing the enzyme tyrosine-3-monooxygenase, which cat-
alyzes the of L-tyrosine to L-34-
dihydroxyphenylalanine (L-DOPA), the initial and rate-
limiting step in the melanin biosynthetic pathway, was
significantly upregulated in wounded larvae only at the

conversion

early timepoint while its expression was upregulated (>
1log,-fold) in infected BSF larvae across all timepoints.

Gene ontology (GO) enrichment analysis

To gain insight into processes affected (either upreg-
ulated or downregulated) by wounding or infection,
DEGs generated from wounding and infection were sub-
jected to GO analysis to determine affected biological
processes (BP), cellular components (CC), and molecu-
lar function (MF).

Wounding and infection resulted in common upreg-
ulation of genes involved in innate immune response.
However, wounding results in the upregulation of genes
involved in metabolic or catabolic processes, while
infection results in the upregulation of genes involved in
DNA repair and immune system processes (Figures 5A
and 6A). DEGs downregulated in response to wound-
ing and infection are associated with transition metal
ion binding and oxidoreductase activity in BSF larvae
(Figures 5B and 6B). DEGs downregulated in response
to infection contribute to catalytic activity, DNA replica-
tion, and various metabolic processes (Figure 6B).

The DEGs upregulated by wounding contribute to
‘response to stimulus’ and ‘innate immune response’
(Figure 5A). Genes coding for molecular functions such
as endopeptidase, lyase, and serine hydrolase activity
were overexpressed. However, genes coding for molecu-
lar functions such as ion- and heme-binding processes
were downregulated in response to wounding (Figure
5B).

Gene ontology (GO) analysis reveals that upregulated
DEGs in infected BSF larvae are associated with bio-
logical processes involved in immune response, innate
immune response, response to stress, and DNA repair
processes (Figure 6A). These biological processes are
carried out in cellular components located in the extra-


https://doi.org/10.6084/m9.figshare.26969074
https://doi.org/10.6084/m9.figshare.26969074
https://doi.org/10.6084/m9.figshare.26969074
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Gene ontology analysis of wounding-related DEGs to determine affected processes related to biological processes (BP) and
molecular functions (MF) for (A) upregulated DEGs, and (B) downregulated-DEGs. On the right panel, BP represents a
biological process (BP) or ‘biological programs’ performed by multiple molecular activities, cellular components (CC), and
molecular function (MF) describes the molecular-level activities performed by affected gene product(s).
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Gene ontology analysis of DEGs in response to infection to determine affected processes related to biological processes (BP),

cellular components (CC), and molecular functions (MF) for (A) upregulated DEGs, and (B) downregulated DEGs. On the right
panel, BP represents the biological process (BP) being performed by multiple molecular activities within cellular components
(CC), in which molecular functions (MF) are being conducted by affected gene product(s).

cellular region and extracellular space (see CC in Figure
6A). Molecular functions associated with DEGs upregu-
lated in response to infection include ABC-type trans-
porter activity, increased receptor ligand activity, and
signaling receptor regulator activity.

DEGs downregulated in response to infection are
associated with molecular functions such as pepti-
dase, lipase, and oxidoreductase activity (Figure 6B).
The affected biological processes are proteolysis, lipid
metabolic process, cell cycle, and carbohydrate
metabolic process. The downregulated DEGs represent
molecular functions and biological processes in the
extracellular and chromosomal region.
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4 Discussion

Knowledge of the temporal dynamics of the transcrip-
tomic response of BSFL to pathogen infection is limited.
We recorded a distinct difference in the transcriptomic
response of BSFL to wounding (injection of PBS) and
the injection of the Gram-negative bacterium, P. prote-
gens Pf-5. The transcriptomic response to wounding and
infection treatments varied over time. The early induc-
tion of immunity-related genes to wounding (i.e. in both
PBS and Bacteria treatments) indicates that injury, irre-
spective of pathogen presence, can elicit a transcrip-
tomic response in BSF larvae. A similar upregulation of
immunity-related genes and differential modulation of
immune response to wounding or infection is observed
in D. melanogaster and Tenebrio molitor (Johnston and
Rolff, 2013; Myllymaki et al., 2014; Valanne et al., 2011).
The ability of insects to distinguish between wound-
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ing and pathogen infection allows them to modulate
their immunological responses accordingly (Johnston
and Rolff, 2013). The early induction of transcriptomic
response to wounding can also be gauged as a preven-
tative measure by the larvae against pathogen prolifera-
tion.

Response to wounding

The transcriptomic evaluation indicates that wounding
initially elicits a general immune response in BSFL that
is similar to infection. Similarly, a common immune
response to either wounding and infection has been
observed in the damselfly, Coenagrion puella, wherein
a similar set of genes involved in immune response and
wound repair was initially upregulated (Johnston and
Rolff, 2013). The majority of genes upregulated upon
wounding encode for pathogen-recognition molecules
and antimicrobial peptides that continue to stay upreg-
ulated in infected BSFL larvae, similar to those observed
in T. molitor (Johnston et al., 2014). Interestingly, genes
responsible for structural processes, such as pupal cuti-

0.25 0.50 0.75 1.00

Enrichment factor

cle protein 36a, pro-resilin, and protein yellow, were ini-
tially upregulated in BSFL in response to wounding.
Protein yellow is involved in melanin production and
chitin-related functions in D. melanogaster (Qin et al.,
2012; Wittkopp et al., 2002), indicating an activation of
a wound-repair mechanism.

Wounding of BSFL resulted in the initial upregula-
tion of many genes involved in pathogen recognition,
such as genes coding for PGRPs, GNBPs and GBPs, ser-
ine protease snake, and Relish. A similar set of genes
was upregulated upon wounding in the hemocytes of
D. melanogaster (Ramond et al., 2020). Peptidoglycan-
receptor proteins (PGRPs) are crucial in the initial
recognition of bacterial membrane proteins by the
insect host, and mediate immune pathways including
Imd, Toll and PO (Aymeric et al, 2010; latsenko et
al., 2016; Kurata, 2014; Neyen et al., 2012; Wang et al.,
2019a; Wang et al., 2021; Zhao et al., 2018). PGRPs acti-
vate the NF-xB family transcription factor Relish, which
induces AMP expression (Choe et al., 2002). Infection
with Gram-negative bacteria elicits the expression of
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PGRP and Relish in D. melanogaster adults, generating
an inflammatory response that reduced lifespan (Lib-
ert et al., 2006). PGRP-LB and PGRP-LC are known to
function synergistically, and their activation is required
to modulate a melanization response in infected insects
(Takehana et al., 2004). Additionally, PGRPs are essen-
tial in recognizing commensal bacteria (Onuma et al.,
2023) and in maintaining gut microbiota richness and
diversity (Liang et al., 2023). The transfer of untreated
BSF larvae to fresh substrate elicited upregulation of
PGRP-LB and PGRP-LC, which play a role in pathogen
detection (Iatsenko et al., 2016; Koyama et al., 2015;
Wang et al., 2020; Yanagawa et al., 2017). The presence
of bacteria with a DAP-type peptidoglycan is perceived
by the PGRP-LC receptor in D. melanogaster, which
induces a cleaning behavior in the insect when intro-
duced into a substrate infested with Gram-negative bac-
teria (Yanagawa et al., 2017).

PGRP-LA and PGRP-SA are induced during bacte-
rial infection in BSFL. PGRP-SA is reportedly activated
by Gram-positive bacteria (Gottar et al., 2002), but we
observed a significant upregulation of PGRP-SA in BSF
larvae infected with a Gram-negative bacterium. PGRP-
SA plays several roles in D. melanogaster and T. molitor
by activating both the Toll pathway as well as prophe-
noloxidase activity, which eventually results in phago-
cytosis, melanin synthesis, or generation of reactive oxy-
gen species (Dziarski and Gupta, 2006). PGRP-SA medi-
ates melanization and AMP production in Antheraea
pernyi caterpillars infected with Gram-negative E. coli
and P. aeruginosa and in Helicoverpa armigera (Hiib-
ner) caterpillars infected with the Gram-negative Enter-
obacter cloacae (Xiong et al, 2020; Zhao et al., 2018).
Other pathogen recognition molecules such as beta-
1,3-glucan-binding protein 1 involved in the recogni-
tion of Gram-positive bacteria (Kurata, 2014; Shan et
al., 2023) were upregulated upon wounding in BSF, but
their expression was downregulated in infected individ-
uals.

The signaling cascade initiated by PGRP upregu-
lates genes encoding serine proteases (snake, rubble,
and Sp7) in BSF, which are involved in the phenoloxi-
dase pathway (Shan et al.,, 2023). Serine proteases are
essential for the clearance of bacterial cells within the
insect hemocoel, primarily by mediating the phenolox-
idase (PO) and Toll (via Spitzle) pathways in different
insect species (Kanost and Jiang, 2015). Serine proteases
tightly modulate the intensity of melanization, and their
activity reduces over time in the absence of a pathogen
(Kanost and Jiang, 2015). Accordingly, expression of the
serine protease snake decreases over time in response to
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wounding. However, we recorded genes encoding ser-
ine proteases to be consistently upregulated in infected
BSFL across all time points, suggesting a function in
pathogen clearance (Bae et al., 2021; Dudzic et al., 2019;
Johnston et al., 2014; Salcedo-Porras et al., 2022; Shan et
al., 2023).

Apart from serine proteases, signaling molecules
such as the NF-xB transcription factor Relish, are also
crucial in regulating the Imd pathway in Drosophila
(Libert et al., 2006; Yao et al., 2023). Long-term acti-
vation and production of AMPs in the absence of
pathogens leads to deleterious effects in D. melanogaster
(Libert et al, 2006), which are therefore tightly con-
trolled and modulated by Relish. Relish is involved in
the modulation of AMP responses in different insect
species, such as D. melanogaster, T. molitor, and M.
domestica (Asgari et al., 2022; Keshavarz et al., 2020;
Libert et al., 2006; Yao et al., 2023). Wounding of BSFL
results in the upregulation of Relish; however, its expres-
sion reduces considerably over time in the absence of
pathogens. Genes encoding spitzle proteins (involved
in the Toll pathway) are significantly upregulated in
response to wounding but downregulated in infected
BSFL except for Spz-5 which is significantly upregu-
lated at 13 h in infected BSF. Unlike a clear distinc-
tion in the expression of the Toll and Imd pathways in
D. melanogaster, we observe that several genes associ-
ated with the Toll pathway are initially upregulated in
infected BSFL but their expression reduced over time.
This is indicative of crosstalk between immunity path-
ways, as reported by Cho and Cho (2024) in BSFL. Col-
lectively, our results indicate that the major immuno-
logical responses involved in BSFL response to Gram-
negative bacterial infections are the phenoloxidase and
Imd pathways.

Initial upregulation of immunity and repair pro-
cesses upon wounding comes at the expense of down-
regulation of metabolic processes. However, reduced
immune investments over time to wounding response
increases investment towards metabolism, as the
expression of genes such as trypsin increases signifi-
cantly over time after an initial downregulation. The
decreased immune response and elevated metabolic
processes within a 13 h period indicate the agility and
intensity of the immune response generated in BSFL,
possibly to minimize negative long-term consequences
on fecundity and health.

Response to infection
Infection results in a sustained induction of immunity-
related processes in BSFL. Apart from sustained induc-
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tion of recognition and signaling molecules, effector
molecules associated with immunity-related functions
were also significantly upregulated. AMP-encoding
genes such as cecropin, defensin, attacin, heat shock
protein 27, heat shock protein 70, and lysozyme were
significantly upregulated in infected BSF larvae. These
genes have also been implicated in immunity-related
responses to pathogen infections in other insect species
(Edosa et al., 2020; Li et al., 2022; Ramirez et al., 2023).

Time-course experiments revealed that injection
of E. coli lipopolysaccharide in adult D. melanogaster
resulted in acute upregulation of several AMP genes
(attacins and PGRPs) within 2 to 6 h of injection
(Schlamp et al., 2021), just as we observed for BSFL in
this study as well.

Antimicrobial peptides are
molecules secreted upon successful activation of either

essential effector
the Toll or the Imd pathway, and are used for clearing
pathogens from the insect host (Vogel et al., 2022). The
BSF genome contains a wide range of AMP-encoding
genes that likely enable it to survive in pathogen-rich
environments (Generalovic et al., 2021; Moretta et al.,
2020). BSF contains up to 36-37 genes encoding for
cecropin (Generalovic et al., 2021; Vogel et al., 2022).
In our study, 11 of the top 15 genes that contribute most
to the separation of treatments in a multivariate anal-
ysis are cecropin-encoding genes, which indicates their
important role in infection response of BSFL to an infec-
tion with a Gram-negative bacterium. Cecropin confers
immunity in D. melanogaster adults against infection
with Gram-negative bacteria like Enterobacter cloacae
and Providencia heimbachae (Carboni et al., 2022). Oral
intake or injection of pathogen directly into the hemo-
coel resulted in the elicitation of multiple cecropin and
defensin encoding genes in BSFL (Bruno et al., 202l;
Park et al., 2015; Van Moll et al., 2022; Vogel et al., 2018;
Vogel et al., 2022).

Attacin represents another group of AMPs that were
upregulated in infected BSFL and are known to confer
immunity against infections by multiple Gram-negative
bacteria in adult D. melanogaster (Hanson et al., 2016;
Poppel et al., 2015; Tanji et al., 2007). Infecting a triple-
knockdown attacin mutant (TmAttla, TmAttlb, and
TmAtt2) of adult T. molitor with Gram-negative Pseu-
domonas entomophila resulted in increased bacterial
load and reduced survival compared to control insects
(Keshavarz et al., 2023), indicating the importance of
attacin in insect immunity. Several genes encoding heat-
shock proteins 27 and 70 were upregulated in infected
BSF larvae. These proteins contribute to the immune
response of Galleria mellonella against the fungus Coni-
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diobolus coronatus (Wronska and Bogus, 2020). The
upregulation of heat-shock protein genes suggests their
importance in the immunological response of H. illucens
to Gram-negative bacterial infection.

In addition to AMPs, enzymes like tyrosine-3-
monooxygenase that is involved in the phenoloxidase
pathway was upregulated in infected BSFL. Tyrosine-3-
monooxygenase catalyzes the conversion of L-tyrosine
to L-3,4-dihydroxyphenylalanine (L-DOPA), the initial
and rate-limiting step in the biosynthesis of melanin
(Gorman et al., 2007). Melanin biosynthesis is essen-
tial for sclerotization of insect cuticle and healing in
response to wounding (Sugumaran and Barek, 2016).
The injection of PBS and the Gram-negative bacterium,
Enterobacter cloacae, also results in an induction of tyro-
sine metabolism in the fat body tissue of the kissing bug,
Rhodnius prolixus (Salcedo-Porras et al., 2022).

Trade-off between immunity and metabolism

The balance in investing in metabolic and immune
activities is essential for the evolutionary success of an
insect (Li et al, 2023). An insect’s fat body is primar-
ily responsible for energy storage, which during infec-
tion switches to the production of antimicrobial pep-
tides to counter invading microorganisms (Dolezal et
al., 2019). An increased production of AMPs or humoral
immunity in infected insects occurs at the expense of
metabolic processes, thereby negatively affecting devel-
opmental processes (Dolezal et al., 2019). Wounding of
BSFL resulted in an immediate increase in the expres-
sion of AMP-encoding genes, however their expres-
sion reduced within a couple of hours. Prioritised and
increased allocation of resources by BSFL to immune
responses upon infection corroborates the concept of
the “selfish immune system” proposed by Straub (2014),
wherein the immune system is hierarchically placed
above other organismal requirements during a state
of infection. However, long-term immune investments
incur developmental or reproductive costs. Interest-
ingly, the actual presence of a bacterial pathogen in
infected BSFL resulted in an exponential increase in
the expression of AMP genes over time. An increased
immune response resulted in the downregulation of
metabolic activity in infected BSFL. Recently, another
study recorded complementary indications for a trade-
off between immunity and metabolism (Shah et al.,
2024b). BSF larvae that were exposed to the myco-
toxin aflatoxin B, upregulated the transcription of genes
known to be involved in aflatoxin B; metabolism in
other insect species while downregulating genes known
to be involved in the immune response (Shah et al.,
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2024b). Thus, there is evidence for both directions of
this trade-off in BSFL. Investigating the dynamics of
the trade-off between immunity and metabolism will
be important to understand how an insects like BSFL,
that are under selection to develop rapidly in ephemeral
resources, deal with pathogen exposure.

5 Conclusion

Experimental evaluation of the transcriptomic response
of BSFL to an infection with a Gram-negative bac-
terium at a high dose of 5,000 CFU injected per larva
revealed a clear transcriptomic response with little vari-
ation between samples. Although such a high level of
infection is unlikely to occur in a production setup, this
study offers insight into the genes and pathways that
are significantly upregulated during infection in BSFL.
The genes identified can be utilised to develop a health-
monitoring program for BSFL in mass-rearing facilities.
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