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Abstract
We consider ridge-type estimation of the multivariate normal distribution’s covari-
ance matrix and its inverse, the precision matrix. While several ridge-type covariance
and precision matrix estimators have been presented in the literature, their respective
inverses are often not considered as precision and covariance matrix estimators even
though their estimands are one-to-one related through the matrix inverse. We study
which estimator is to be preferred in what case. Hereto we compare the ridge-type
covariance matrix estimators and their properties to that of the inverse of the ridge-
type precision matrix estimators, and vice versa. The comparison, in which we take
all ridge-type estimators along, is limited to a specific case that is illustrative of the
difference between the covariance and precision matrix estimators. The comparison
addresses the estimators’ estimating equation, analytic expression, analytic proper-
ties like positive definiteness and penalization limit, mean squared error, consistency,
Bayesian formulation, and their loss and potential for marginal and partial correlation
screening.
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1 Introduction

LetY1, . . . ,Yn be p-variate randomvariables drawn from the zero-centeredmultivari-
ate normal distributionN (0p,�) with covariance matrix�. The maximum likelihood
estimator ̂� of the parameter of this distribution is the sample covariance matrix
S = 1

n

∑n
i=1 YiY�

i . If p > n, the maximum likelihood estimator is singular. This
singularity is typically overcome through either shrinkage, i.e. adding a positive def-
inite matrix to S, or the use of a penalized estimator of the covariance matrix. The
latter maximizes the loglikelihood augmented with a penalty. The penalty—be it lasso,
ridge or other—is commonly put on the precision matrix, the inverse of the covariance
matrix (see e.g. Friedman et al. (2008) and Van Wieringen and Peeters (2016)). Here
we investigate whether the �2 penalty is best put on the covariance or precision matrix
or what type of shrinkage estimator is to be preferred.

Penalized covariance matrix estimators result from penalties put on the covariance
matrix.While lasso or shrinkage estimators of the covariancematrix exist (cf. Bien and
Tibshirani (2011), Ledoit and Wolf (2004), respectively), an �2-penalized counterpart
has not yet been reported. To facilitate our comparison, we address this omission here.

Penalized precision matrix estimators, resulting from a penalty on the precision
matrix, have been reported (Friedman et al. 2008; Van Wieringen and Peeters 2016).
The �2-penalized precision matrix estimator maximizes the loglikelihood augmented
by an �2 penalty on the precision matrix:

log(|�|) − tr(�S) − 1
2λωtr[(� − Tω)�(� − Tω)], (1)

with inverse covariance matrix a.k.a. precision matrix �, penalty parameter λω, and
non-random target matrix Tω ∈ S p

+, where S p
+ is the class of nonnegative definite,

symmetric, p× p-dimensional matrices. The latter summand of the preceding display
is the �2-penalty as it equals 1

2λω‖� − Tω‖2F . For increasing values of λω, the �2-
penalized precision matrix estimator is shrunken towards the target matrix Tω. An
analytic expression for the maximizer of this loss (1) exists:

̂�(λω) = { 12 (S − λωTω) + [λωIpp + 1
4 (S − λωTω)2]1/2}−1. (2)

Van Wieringen and Peeters (2016) remark that the inverse of this �2-penalized preci-
sion matrix estimator can be used as a covariance matrix estimator. While true, this
inversion does not yield the �2-penalized covariance matrix estimator (as is acciden-
tally suggested in Van Wieringen and Peeters (2016)), which is presented here. This,
however, does demand for a comparison between the ridge-type covariance matrix
estimators.

The aforementioned ridge-type estimators are ‘ridge’ as both employ an �2-type
penalty, but other ridge-type estimators based on shrinkage have been proposed.
Warton (2008) proposes the ridge-type covariance estimator: ̂�(λa) = S + λaIpp
with penalty parameter λa > 0. This estimator circumvents the singularity of the sam-
ple covariance matrix and provides a stable and positive definite covariance estimate.
The ridge covariance estimator ofWarton (2008) is ‘ridge’ as it adds a ridge, i.e. λaIpp,
to the diagonal. In a similar vein, but motivated by the work on James-Stein estimators

123



Ridge-type covariance and precision matrix estimators… 5837

(James and Stein 1961), Ledoit and Wolf (2004) present the ridge-type covariance
estimator: ̂�(θ�) = (1 − θ�)S + θ�T� with weight parameter θ� ∈ [0, 1] and positive
definite target matrix T�. Both estimators, ̂�(λa) and ̂�(θ�), and their inverses are
taken along in the comparison of ridge-type covariance and precision estimators.

To stress the use of notationwedenote covariance andprecisionmatrix estimators by
̂�(·) and ̂�(·). Their arguments and corresponding subscripts determine the particular
variant, which have different functional forms. For instance, ̂�(λa) and ̂�(θ�) are both
covariance estimators, but the first one is that introduced by Warton (2008) while the
second by Ledoit and Wolf (2004) (see the preceding paragraph).

The ridge-type covariance and precision matrix estimators are not only of theoret-
ical interest. They may be used to screen marginal pairwise dependencies (Luo et al.
2014). Hero and Rajaratnam (2011) showed the inflation (i.e. over-estimation) of the
sample correlation when dimension p approaches the sample size n or even exceeds it.
This may be countered by employing a penalized or shrinkage estimator of the covari-
ance matrix. Both estimator types may improve the screening of marginal pairwise
dependencies.

In this work we study ridge-type estimators of the covariance and precision matrix
of themultivariate normal distribution. The ridge-type covariance and precisionmatrix
estimators’ estimands are one-to-one related through the matrix inverse. The matrix
inverse of covariance/precisionmatrix estimator can thus be considered an estimator of
the precision/covariance matrix. Here we are primarily concerned with the assessment
of which ridge-type estimator to use in what case. As a secondary goal we develop
the hirtherto unreported �2-penalized covariance matrix estimator (defined in the next
section). While the development of the �2-penalized covariance matrix estimator is
the thread in this work, to answer our primary question we compare this estimator
throughout its development to the other ridge-type estimators. The development of
the �2-penalized covariance matrix estimator starts from the definition of its loss
function and the study of its estimating equation. The sought estimator is then found
by solving the estimating equation. In the subsequent section analytic properties of
the estimator are proven. We then discuss its mean squared error and consistency
and provide a Bayesian formulation. These aspects are contrasted to that of the other
ridge-type estimators. Finally, we compare in silico the performance of all ridge-type
covariance and precision matrix estimators in terms of Frobenius and quadratic loss
and with respect to their marginal and conditional correlation screening behavior. The
paper concludes with an overview of the differences between the various covariance
and precision matrix estimators.

2 The estimating equation

The �2-penalized covariancematrix estimatorminimizes the log-likelihood augmented
with a ridge penalty of the elements of the covariance matrix:

̂�(λσ ) = arg max
�∈S p

++
− log(|�|) − tr(�−1S) − 1

2λσ tr[(� − Tσ )�(� − Tσ )], (3)
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where—for clarity—the penalty parameter λσ and target matrix Tσ are now indexed
by a σ where S p

++ is the class of positive definite, symmetric, p × p-dimensional
matrices. To see that this is indeed an �2-penalized estimator note that the penalty
can be reformulated as 1

2λσ ‖vec(�) − vec(Tσ )‖22, where the vec-operator stacks
the columns of its arguments into a vector. In contrast to the loss function of the �2-
penalizedprecisionmatrix estimator, the loss function (3) for its covariance counterpart
is not strictly concave. This is due to the fact that the loss function is a sum of a convex
and strictly concave function, and an argumentation provided in Bien and Tibshirani
(2011). This complicates the search for its maximizer. In contrast, the loss function
(1) of the �2-penalized precision matrix estimator is strictly concave with an analytic
solution. While the other ridge-type estimators, ̂�(λa) and ̂�(θ�), have originally not
been motivated from a loss function, they do optimize a strictly concave one (see
Supplementary Material) with analytic expressions of the optimum provided in the
introduction.

The dual formulation of �2-penalized optimization problem amounts to a constraint
estimation problem. The elements of � can be expressed in terms of the elements of
its inverse �. Moreover, so can the penalty induced parameter constraints of the �2-
penalized covariance and precision matrix estimation problems. This allows us to
compare them, which is done in the next toy example.

Example 1 Assume the precision matrix � to be of the form (ωd − ω0)Ipp + ω01pp
with Ipp is the identity matrix and 1pp the p× p-dimensional matrix comprising only
ones. The parameters of � are then by the Sherman-Morrison formula too expressible
in terms ofωd andω0:� = (ωd −ω0)

−1{Ipp−ω0[ωd +(p−1)ω0]−11pp}. Moreover,
so are the penalty induced parameter constraints:
{

(ωd , ω0) ∈ R2 : �(ωd , ω0) � 0, ‖�(ωd , ω0)‖2F = pω2
d + p(p − 1)ω2

0 ≤ c(λω)
}

and
{

(ωd , ω0) ∈ R2 : �(ωd , ω0) � 0, ‖�(ωd , ω0)‖2F =
p(ωd − ω0)

−2{1 − ω0[(p − 2)ω0 + 2ωd ][(p − 1)ω0 + ωd ]−2} ≤ c(λσ )
}

,
where for clarity the dependence of � and � on ωd and ω0 has temporarily been
explicated and the target matrices Tσ and Tω set equal to 0pp. Figure1 shows these
sets for p = 3 and with c(λω) and c(λσ ) scaled to have domains of comparable
size. The most striking difference is the shape of the domains. The �2-penalty of the
precision matrix implies a convex domain, while its covariance counterpart is clearly
nonconvex. This nonconvexity complicates the maximization of the likelihood.

The estimating equation for the �2-penalized covariancematrix is found by equating
the derivative of its loss function (3) with respect to � to zero:

−�−1 + �−1S�−1 − λσ (� − Tσ ) = 0pp.

For comparison with the other ridge-type estimators, it is more insightful (as it yields
a polynomial in �) to pre- and post-multiply the estimating equation in the preceding
display by �. This gives:

0pp = −� + S − λσ (�3 − �Tσ �). (4)
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Fig. 1 The gray shaded area
demarcates the combinations of
ωd and ωo that produce a
positive definite precision
matrix, i.e. the set of feasible
estimates. The green dashed and
red dashed-dotted lines are the
�2-penalized precision and
covariance parameter constraint,
respectively. Estimates to the
‘right’ of these constraints are
excluded (color figure online)
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To find the �2-penalized covariance matrix estimator it is thus required to solve a
cubic matrix equation. In contrast, the �2-penalized precision matrix estimator solves
a quadratic matrix estimating equation, while the other two ridge-type estimators solve
linear ones (see Supplementary Material). As will be obvious from the remainder the
computational complexity of solving a cubic matrix equation is substantially more
difficult than a linear or quadratic one. In particular, an explicit solution of the former
appears to exist only for specific choices of target matrix, while for more general cases
one needs to resort to numerical procedures. Both are outlined in either the next section
or the Supplementary Material.

3 The estimator

Here the �2-penalized covariance matrix estimator is derived, while analytic expres-
sions of the other ridge-type estimators are given in the introduction. First for a
diagonal, equivariant target matrix, i.e. Tσ = ασ Ipp, and at towards the end of the
section the numerical evaluation of the estimator with general Tσ is sketched. Besides
practical relevance— often no information on a structured Tσ is available—this for-
mer diagonal, invariant case is illustrative of the differences between the ridge-type
estimators. Substitution of this diagonal, equivariant target matrix in the reformulated
estimating equation (4) yields:

0pp = −� + S − λσ (�3 − ασ �2).
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The root of this equation must share its eigenspace with S. To see this, let VsDsV�
s

be the eigendecomposition of S, where Vs comprises the eigenvectors as columns
diagonal matrix and Ds has the corresponding eigenvalues on its diagonal. Then, pre-
and post-multiply the estimating equation of the preceding display by V�

s and Vs ,
respectively. This yields

V�
s �Vs + λσ (V�

s �VsV�
s �VsV�

s �Vs − ασV�
s �VsV�

s �Vs) = Ds .

The right-hand side of the preceding display is diagonal and, consequently, so must
V�
s �Vs be. The sought estimator is thus of the form ̂�(λσ ) = VŝDσV�

s , where diag-
onal matrix ̂Dσ contains the eigenvalues of the estimator. It rests to find the diagonal
elements of ̂Dσ , which should be strictly positive to warrant the positive definiteness
of the �2-penalized covariance matrix estimator. The solution of the matrix equation
is then found by solving the eigenvalue estimating equation (after multiplication by
−1 to have a positive lead term):

0 = λσd
3
σ, j − ασ λd2σ, j + dσ, j − ds, j , (5)

where dσ, j = (Dσ ) j j . This is a cubic equation in the unknown dσ, j , which has—by
the fundamental theorem of algebra—three roots. The positive, real roots that yield the
maximum of the penalized likelihood constitute the �2-penalized covariance estimator
(their derivation can be found in the Supplementary Material). If ds, j = 0,

d̂σ, j = max
{ 1
2ασ − 1

2λ
−1/2
σ

√

α2
σ λσ − 4, 1

2ασ + 1
2λ

−1/2
σ

√

α2
σ λσ − 4

}

.

If ds, j > 0, then define the discriminant of the cubic eigenvalue equation (5)

� j = 18ασ λ2σds, j − 4α3
σ λ3σds, j + α2

σ λ2σ − 4λσ − 27λ2σd
2
s, j .

Moreover, let q j = (−2α3
σ λ3σ + 9λ2σ ασ − 27λ2σds, j )/(27λ

3
σ ) and r = (3λσ −

α2
σ λ2σ )/(3λ2σ ). Then, for � j < 0:

d̂σ, j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−2
√

r
3 sinh

[ 1
3 asinh

( 3q j
2r

√

3
r
)] + 1

3ασ if r > 0,

−2sign(q j )
√−r

3 cosh
[ 1
3 acosh

( 3|q j |
−2r

√

3−r
)] + 1

3ασ if r < 0&4r3 + 27q2j > 0,√−r + 1
3ασ if r < 0&q j = 0,

3
√−q j + 1

3ασ if r = 0&q j < 0,

max
{ 3q j

r ,
−3q j
2r

} + 1
3ασ if r �= 0, q j �= 0&4r3 + 27q2j = 0.

and, for � j > 0:

d̂σ, j = max
{

2
√

−r
3 cos

[ 1
3 acos

( 3q j
2r

√

3−r
)] + 1

3ασ , 2
√

−r
3 cos

[ 1
3 acos

( 3q j
2r

√

3−r
) + 2

3π
] + 1

3ασ ,

2
√

−r
3 cos

[ 1
3 acos

( 3q j
2r

√

3−r
) + 4

3π
] + 1

3ασ

}

.

The �2-penalized covariance matrix estimator is now fully defined.
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The above could be generalized to target matrices with an eigenspace coinciding
with that of the sample covariance matrix: Tσ = VsDtσ V

�
s . To accommodate such

a choice of the target matrix it only requires to replace ασ by the (Dtσ ) j j in the j-th
eigenvalue estimating equation (5).

No analytic expression of the �2-penalized covariance matrix estimator for general
Tσ ∈ S p

+ appears to exist. In the Supplementary Material we sketch how it can be
evaluated numerically.

In the remainder we restrict ourselves to the �2-penalized covariance matrix esti-
mator with an isotropic, i.e. diagonal, equivariant, target Tσ = ασ Ipp. In part this is
motivated by mathematical convenience. But this particular case is also believed to
be illustrative for the properties of the proposed estimator and representative of the
difference among the ridge-type covariance and precision matrix estimators, now all
equipped with isotropic targets Tω = αωIpp and T� = α�Ipp.

4 Analytic properties

Analytic—in contrast to stochastic—properties of the �2-penalized covariance matrix
estimator are studied. The proposition below claims the positive definiteness of the
estimator and describes its λσ -limiting behavior, i.e. no shrinkage and maximum
shrinkage.

Proposition 1 Let ασ > 0 and λσ ≥ 0. If S has one or more zero eigenvalues, assume
additionally that α2

σ λσ > 4. Then:

(i) ̂�(λσ ) � 0,
(ii) If S � 0, then limλσ ↓0 ̂�(λσ ) = S,
(iii) limλσ →∞ ̂�(λσ ) = ασ Ipp.

The proof of Proposition 1, like all proofs, is deferred to the Supplementary Material.
Proposition 1 only contains sanity facts on the �2-penalized covariance matrix esti-

mator. Of main interest is the joint constraint, apart from their individual positiveness,
on λσ and ασ to warrant its positive definiteness when it is derived from a singular
sample covariance matrix. In contrast, the other ridge-type estimators only require
the penalty, weight and shrinkage parameters to be positive to ensure their positive
definiteness.

The regularization limits of the ridge-type covariance matrix estimators ̂�(λσ ),
[̂�(λω)]−1, ̂�(λa) and ̂�(θ�) coincide, in the sense that they converge to S when
λσ , λω, λa, θ� ↓ 0. Similarly, the regularization limits of the ridge-type precision
matrix estimators [̂�(λσ )]−1, ̂�(λω), [̂�(λa)]−1 and [̂�(θ�)]−1 coincide, in the sense
that they converge toS+ whenλσ , λω, λa, θ� ↓ 0.On the other endof the regularization
scale the estimators converge towards (the inverse of) their shrinkage target, except
for ̂�(λa) and its inverse. In the λa → ∞-limit ̂�(λa) is undefined, while its inverse
converges to the nonnegative definite 0pp. The regularization limits for ̂�(λa) and
̂�(θ�) and their inverses are self-evident, while that of the �2-penalized precision
matrix and its inverse are provided by Proposition 1 of Van Wieringen and Peeters
(2016). An overview of the shrinkage limits is provided in the SupplementaryMaterial.
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Finally, a shared shrinkage limit does, however, not imply a common regularization
path (see the Supplementary Material for an illustration).

5 Mean squared error

Shrinkage methods like ridge penalized estimation may, for a suitable choice of the
penalty parameter, yield estimators that outperform themaximum likelihood estimator
in the mean squared error (MSE) sense (of the vectorized estimator). It reveals the
inadmissibility of themaximum likelihood estimator. This has been shown for the ridge
regression estimator by Theobald (1974). In preceding work (vanWieringen 2017) we
proved that this also holds for the �2-penalized precision matrix estimator, and for its
inverse as a covariance matrix estimator, when using an isotropic target matrix. Here
we investigate whether the �2-penalized covariance matrix estimator also exhibits this
property.

Before we state the main result of this section, we need the following auxiliary
lemma.

Lemma 2 Let Tσ = ασ Ipp with ασ > 0. Then: ̂�(λσ ) = S + ασ λσS2 − λσS3 +
λ2σS

3(Ipp − S)(2ασ Ipp − 3S) + O(λ3σ ) for 0 < λσ  1.

The proof of the lemma is immediate after substitution of the estimating equation into
itself, expansion of the right-hand side and grouping of terms. Note that theO-notation
in Lemma 2 means that there exists a C > 0 such that the largest eigenvalue of the
remainder term is bounded by Cλ3σ for λσ sufficiently close to zero.

Proposition 3 states that there exists λσ > 0 such that the �2-penalized covariance
matrix estimator outperforms its maximum likelihood counterpart in themean squared
error sense, when the parameter ασ > 0 of the diagonal, equivariant target T = ασ Ipp
matrix is not too large.

Proposition 3 Let Tσ = ασ Ipp with p < n and 0 ≤ ασ < a2/a1 where

a1 = n−2{[tr(�)]3 + (2n + 3)tr(�2)tr(�) + (2n + 4)tr(�3)}
a2 = n−3{(2n2 + 17n + 20)tr(�3)tr(�) + (5n + 6)[tr(�)]2tr(�2)

+(n2 + 4n + 5)[tr(�2)]2 + (3n2 + 17n + 20)tr(�4)}.

Then, there exists a λσ > 0 such that MSE{vec[̂�(λσ )]} < MSE{vec[̂�(0)]} =
MSE[vec(S)].

Analogous results to Proposition 3 can be formulated for the ridge-type covari-
ance matrix estimators. Hereto we provide an overview of the first order expansion
of the estimators’ MSE in terms of their regularization parameter around zero (which
for the �2-penalized precision estimator and its inverse can be found in van Wierin-
gen (2017)). The overview reveals that all ridge-type covariance matrix estimators
but ̂�(λa) outperform their maximum likelihood counterpart. However, for ̂�(λσ )

and ̂�(θ�) this superior performance depends on the value of the target parameter,
whereas [̂�(λω)]−1 outperforms the maximum likelihood estimator for all aω > 0.
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Similarly, all ridge-type precision matrix estimators outperform their maximum like-
lihood counterpart, but now ̂�(λω) only for certain values of its target parameter. The
ridge-type estimators thus render the maximum likelihood estimator inadmissable,
but they do so among themselves as the behavior of their MSE depends on the model
parameter.

It seems counter-intuitive that even for a very poor target parameter, e.g. the inverse
of �2-penalized precision matrix estimator has a better MSE than the maximum like-
lihood estimator. We therefore illustrate the effect of the target parameter on the mean
squared error of the ridge-type covariance and precision matrix estimators in a simple
example. Hereto data Yi for i = 1, . . . , 30 are drawn from the N (05,�−1)-law with
the precision matrix� as in Sect. 4. From these data the sample covariance matrix and,
subsequently, the ridge-type estimators are evaluated over a grid of penalty parameters
for various target parameters chosen such that they share the same shrinkage limits.
For each estimator the squared Frobenius norm of its difference to � = �−1 is calcu-
lated. The above is repeated 10, 000 times and the results are averaged. The results are
plotted (cf. SupplementaryMaterial). These plots show themean squared errors versus
the regularization parameter over the [0, δ] domain with 0 < δ  1. It confirms that,
irrespective of the choice of the target parameter, the mean squared error of, e.g., the
inverse of the �2-penalized precision matrix estimator indeed outperforms that of the
maximum likelihood estimator for small enough values of its regularization param-
eter. But the choice of the target parameter does of course affect the domain of the
regularization parameter where the ridge-type estimator is superior to the maximum
likelihood one. The plots also shows that for excessive choices of the target parameter,
e.g., the �2-penalized covariance matrix estimator does not outperform the maximum
likelihood counterpart, thereby confirming the need for the constraint formulated in
Proposition 3.

6 Consistency

The consistency of the �2-penalized covariancematrix estimator is shown, consistency
in the traditional sense with the sample size n tends to infinity while the dimension p
is kept fixed. This is deemed appropriate for practical purposes where the dimension
of the system under study is fixed from the onset of the analysis.

Proposition 4 Equip both λσ and ̂�(λσ ) with the novel subscript n and write λσ,n

and ̂�n(λσ,n) to stress their dependence on the sample size. Let λσ,n converge in
probability to zero as n tends to infinity. Then: p-limn→∞ ̂�n(λσ,n) = �.

Proposition 4 assumes p-limn→∞ λσ,n = 0. There is no theoretical justification for
this assumption. It has been shown in silico to be unproblematic for the �2-penalized
precision matrix estimator and its generalization (Van Wieringen and Peeters 2016;
vanWieringen 2019). Intuitively, this is not surprising as for larger n less regularization
is required to produce a well-defined estimator.

All ridge-type estimators are, under analogous assumptions on the regularization
parameter, consistent estimators. The consistency of ̂�(λa) and ̂�(θ�) for� is evident
by that of the sample covariance estimator in combination with continuous mapping
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theorem (van der Vaart 2000), while the consistency of̂�(λω) for� has been shown in
VanWieringen and Peeters (2016). By the continuous mapping theorem, their inverses
are also consistent for the inverse of the parameter.

We compare the �2-penalized covariance matrix estimator and the inverse of the �2-
penalized precision matrix estimator with respect to the amount of regularization that
yields the same convergence rate. Hereto consider—in line with the assumption on the
penalty parameter of Proposition 4—regularization schemes of the form λσ = n−cσ

and λω = n−cω for rates cσ , cω > 0. For large n the MSEs of both estimators then are
(cf. the proof of Proposition 3 and van Wieringen (2017)):

MSE{vec[̂�(λσ )]} = MSE[vec(S)] − 2λσa2 + O(λ2σ ),

MSE{vec[̂�−1
(λω)]} = MSE[vec(S)] − 2λω p(p − 1)(n − p + 1)−1 + O(λ2ω),

where for simplicity both targets ασ and αω have been set to zero. Numerically, for
a variety of choices of � we have observed that a2 > p(p − 1)(n − p + 1)−1. This
indicates that the �2-penalized covariance matrix estimator tolerates more regular-
ization to achieve the same MSE asymptotically. Put differently, it can handle more
shrinkage, while not comprising the rate of MSE consistency, in comparison to the
inverse �2-penalized precision matrix estimator. A reversed conclusion can be drawn
for the inverse �2-penalized covariance and �2-penalized precision matrix estimators
as estimators of the precision matrix. For large n their MSEs are:

MSE{vec[̂�−1
(λσ )]} = MSE[vec(S−1)] − 2λσ (p + 1)(n − p − 1)−1 + O(λ2σ ),

MSE{vec[̂�(λω)]} = MSE[vec(S−1)] − 2λω tr[E(S−4 − S−3�−1)] + O(λ2ω),

where the former is found by similar means as employed in the proof of Proposition 3
and the latter has been derived in vanWieringen (2017). Numerically, we now observe
(p+1)(n− p−1)−1 < tr[E(S−4 −S−3�−1)] for many choices of�. For large n and

comparable regularization schemes the MSE of ̂�
−1

(λω) is closer to that of ̂�(λσ )

than that of ̂�
−1

(λσ ) is to that of ̂�(λω). Hence, the �2-penalized precision matrix
estimator is—asymptotically—to be preferred if it is to be used for both covariance
and precision matrix estimation.

7 Bayesian interpretation

All ridge-type estimators have a Bayesian interpretation. The ridge covariance matrix
estimators ̂�(λa) and ̂�(θ�) arise from a conjugate inverse Wishart prior. Assume �

to follow an inverse Wishart distribution IW(�,m) with scale parameter � � 0 and
degrees of freedom m ∈ N+ such that m > p − 1. Then,

E(� |Y1, . . . ,Yn) = (m + n − p − 1)−1(� + nS).

Both covariance matrix estimators have this form. Similarly, the precision matrix
estimators [̂�(λa)]−1 and [̂�(θ�)]−1 arise from a conjugate Wishart prior. Let � ∼
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W(ϒ, ν) with scale parameter ϒ � 0 and degrees of freedom ν ∈ N+ such that
n > p − 1. Then,

E(�−1 |Y1, . . . ,Yn) = (ν + n)(ϒ−1 + nS)−1.

The right-hand side is the same form as the precision matrix estimators.
The �2-penalized covariance matrix estimator corresponds to theMaximumA Pos-

teriori (MAP) estimator of �. This MAP estimator employs a prior of independent
Gaussians on the entries of �. Each of these Gaussians has a mean equal to the corre-
sponding entry of the target matrix Tσ , but they have common variance equal to λ−1

σ .
Hereto note that

− 1
2λσ tr[(� − Tσ )�(� − Tσ )] = − 1

2λσ

∑p

j, j ′=1
[(�) j, j ′ − (Tσ ) j, j ′ ]2, (6)

and that each summand [(�) j, j ′ − (Tσ ) j, j ′ ]2 is proportional to the log-density of the
univariate Gaussian distribution with mean (Tσ ) j, j ′ and variance λ−1

σ . Consequently,

̂�(λσ ) = arg max
�∈S p

++
log[p(� |Y)] = arg max

�∈S p
++

log[p(Y | �)] + log[p(�)],

with prior p(�) =d ∏p
j, j ′=1N [(�) j, j ′ ; (Tσ ) j, j ′, λ−1

σ ] × 1{�∈S p
++}. In this prior,

N (x;μ, τ 2) denotes that the random variable x is normally distributed with mean μ

and variance τ 2, and S p
++ is the space of all real symmetric positive definite matrices.

The �2-penalized precision matrix estimator too corresponds to a MAP estimator
of �, again under independent Gaussian priors on the entries of � with means equal
to the entries of the target matrix Tω and variances equal to λ−1

ω :

̂�(λω) = arg max
�∈S p

++
log[p(� |Y)] = arg max

�∈S p
++

log[p(Y | �)] + log[p(�)],

with p(�) =d ∏p
j, j ′=1N [(�) j, j ′ ; (Tω) j, j ′, λ−1

ω ] × 1{�∈S p
++}.

The Gaussian priors used in the above Bayesian formulations of the �2-penalized
covariance and precision estimators yield penalties that are proportional to the sum
of square differences between the parameters and their target. Hence, the ridge prior
encourages entries of ̂�(λσ ) (respectively ̂�(λω)) to be close to the entries of Tσ

(respectively Tω) by an amount that is controlled by λσ (respectively λω). Remark
that if Tσ = 0pp (respectively Tσ = 0pp) the ridge prior is centered at zero. Con-
trast this to Tσ = ασ Ipp (respectively Tσ = αωIpp), where the ridge prior of the
diagonal elements of the covariance (respectively precision) matrix is centered at ασ

(respectively αω), which is a natural choice as those elements should be positive.
Due to the complex inverse transformation between � and � the priors of the �2-

penalized covariance and precision matrices are not equivalent. This is true even in the
simple case where p = 1. The left panel of Fig. 2 shows that the inverse transformation
affects both the location and shape of the prior. This effect is expected to be accentuated
when p is larger. While it is difficult to visualize higher-dimensional priors, the right
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Fig. 2 Illustration of the ridge prior on covariance and precision elements. Left panel: p = 1, σ 2 has
a truncated normal prior (tσ = 2 and λσ = 10) and the implied prior on its inverse σ−2 is displayed
(black line). Right panel: The toy example of Sect. 2 is considered where � = (ωd − ω0)I33 + ω0133 is
parameterized in terms of two parameters only. The contour plot of the ridge prior where Tω = 033 and
λω = 1 is displayed along with the positive definite domain of �

panel of Fig. 2 illustrates the prior for the toy example of Sect. 2 the contour plot of
the ridge prior when Tω = 033 and λω = 1 along with the positive definite domain of
�.

Miok et al. (2017) reported that the �2-penalized precision matrix estimator corre-
sponds to the posterior expectation of � (instead of posterior mode) under a Wishart
prior with scale matrix (4n2λωIpp + n2S2)−1/2 and degree of freedom n. However,
we prefer the formulation as a Bayesian MAP estimator presented above to the poste-
rior mean one as the former formulation does not require that n > p − 1. Moreover,
the normal product prior of the MAP estimator emphasizes the symmetry of the �2-
penalty, both on the diagonal and off-diagonal elements of � and � as well as in
the involvement of the (prior) matrices Tσ and Tω. It is also more in line with the
Bayesian formulations of other penalized estimators such as that of the graphical
lasso and horseshoe estimators (Wang 2012; Li et al. 2019).

In summary, ̂�(λa) and ̂�(θ�) (and their inverses) are posterior mean estimators
that optimize the quadratic loss. They are equipped with conjugate priors and their
posterior is a well-known distribution. On the other hand, the �2-penalized covariance
and precision estimators are MAP estimators that optimize a 0/1 loss function. A
sampler can be constructed to draw from the posterior distribution.

8 Correlation screening

Through simulation we compare the ridge-type covariance and precision estimators
in terms of loss and for screening of either marginal and conditional and partial
correlations. The data are sampled from a zero-mean p-variate normal law with a
covariance matrix that is either specified directly � or indirectly via its inverse, i.e.
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the precision matrix �. Five parametrizations of these matrices are adopted: banded
(twice), blocked (twice), and striped (details in the Supplementary Material). In these
parametrizations the � is replaced by � when considering conditional correlation
screening. Furthermore, we consider all pairwise combinations of the sample size
n ∈ {10, 50, 100} and dimension p ∈ {50, 100, 250}. All combinations represent
high-dimensionality as the number of parameters equals 1

2 p(p + 1). In accordance
with these specificationsY1, . . . ,Yn are drawn from eitherN (0p,�) orN (0p,�−1)

when investigating properties of the ridge-type covariance and precision matrix esti-
mators, respectively. In either screening case the ridge-type covariance and precision
matrices are estimated from the data with their penalty parameters chosen through
leave-one-out cross-validation. Subsequently, the performance of the estimators is
measured by i) the AUC and pAUC, the (partial) Area Under the Curve, obtained
from the (partial) correlation matrix estimates with respect to the support of the true
(partial) correlation matrix, and more indirectly by ii) the Frobenius and quadratic
loss, which for e.g., the �2-penalized covariancematrix estimator are ‖̂�(λ

(cv)
σ )−�‖2F ,

‖̂�(λ
(cv)
σ )�−1−Ipp‖2F , ‖̂�

−1
(λ

(cv)
σ )−�‖2F , and ‖̂�

−1
(λ

(cv)
σ )�−1−Ipp‖2F , where the

superscript of the regularization parameter explicates that it has been chosen through
cross-validation. The above is repeated a hundred times.

The results of the marginal and conditional screening as well as the Frobenius
and quadratic loss of the ridge-type covariance and precision matrix estimators are
displayed as boxplots (see the Supplementary Material). The results of the (partial)
AUC clearly show that marginal correlations screening is best done with the inverse
of the �2-penalized precision matrix, with a small exception almost irrespective of the
type of covariance matrix. The estimators ̂�(λ

(cv)
a ) and ̂�(θ

(cv)
� ) are the runners-up

for marginal correlation screening, while ̂�(λ
(cv)
σ ) clearly trails behind. For condi-

tional correlation screening, the estimator [̂�(λ
(cv)
a )]−1 generally performs best in

terms of AUC and pAUC but is closely followed—if not a par—by [̂�(θ
(cv)
� )]−1 and

[̂�(λ
(cv)
σ )]−1. The estimator ̂�(λ

(cv)
ω ) yields a smaller AUC and pAUC than these

estimators but is generally not too far behind.
The loss results of the estimators reveal that ̂�(λ

(cv)
a ) and [̂�(λ

(cv)
ω )]−1 are the best

covariance matrix estimators, both in the Frobenius and quadratic loss sense. These
estimators are followed at some distance by ̂�(λ

(cv)
σ ), while ̂�(θ

(cv)
� ) performs worst,

especially high-dimensionally. The picture is more or less similar for the estimation
of the precision matrix, with ̂�(λ

(cv)
ω ) now slightly preferably in both losses over

[̂�(λ
(cv)
a )]−1. But [̂�(λ

(cv)
σ )]−1 has comparable but worse loss, while [̂�(θ

(cv)
� )]−1

trails behind dramatically in the high-dimensional setting.
To assess how the performance is affected if we relax the normality assumption, we

have repeated the simulation now drawing the data from the multivariate t-distribution
with 10 degrees of freedom. The above parametrizations of the covariance and pre-
cision matrix are then that of the multivariate’s t-distribution’s scale parameter or
its inverse, respectively. Conclusions are more or less similar to the normal case:
‘marginal correlation’ screening is best done on the basis of either scale parameter
estimator ̂�(λ

(cv)
a ) or [̂�(λ

(cv)
ω )]−1, with the latter performing best with higher dimen-

sionality. These two estimators also yield the lowest loss among the scale parameter
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estimators, with preference depending on the topology. Again notable is the poor loss
of ̂�(θ

(cv)
� ). Turning to the inverse scale parameter estimates, for ‘conditional correla-

tion’ screening [̂�(λ
(cv)
a )]−1 is slightly preferable but [̂�(θ

(cv)
� )]−1 and [̂�(λ

(cv)
σ )]−1

are good competitors whilê�(λ
(cv)
ω ) follows suit.With respect to the loss of the inverse

scale estimators, their performance is—apart from [̂�(θ
(cv)
� )]−1—more or less on a

par.

9 Conclusion

A first contribution of this work can be found in the presentation of the �2-penalized
estimator of the covariance matrix, which was hitherto unavailable in the literature. An
analytic solution of the estimator’s estimating equation has been found for a specific
but practically relevant case, while a numerical procedure for the general case has been
outlined. Moving forward with the specific case, analytic and stochastic properties,
like its positive definiteness, mean squared error, consistency, the Bayesian perspective
and correlation screening, of the �2-penalized covariance matrix estimator have been
studied.

The other contribution lies in the comparison of the various ridge-type covariance
and precision matrix estimators to shed light on which estimator best to use for the
estimation of the covariance or the precisionmatrix.While in the two-dimensional case
the estimators are equivalent, in higher dimensions they exhibit clear differences. Their
differences originate in their estimating equations, a nonconvex cubic vs. a convex
quadratic vs. linear matrix equation for the �2-penalized covariance and precision
matrix estimators and shrinkage covariance matrix estimators, respectively. Analytic
expressions of the solutions to the estimating equations of ̂�(λa), ̂�(θ�), and ̂�(λω)

exist. For ̂�(λσ ) it exists only for isotropic targets. Moreover, the latter comes with an
additional constraint on the penalty parameter and target if the dimension p exceeds
the sample size n. All estimators have been shown to outperform—for suitably chosen
regularization parameter values—their maximum likelihood counterpart in the MSE
sense. Similarly, under assumptions, the estimators are all consistent for both � and
�. From a Bayesian viewpoint, we have shown that the �2-penalized estimators of
the covariance and precision matrices are Maximum A Posteriori estimators when
employing independentGaussian priors on the entries of thematrices and that the priors
are not equivalent, even when p = 1. The other ridge-type estimators are posterior
mean estimator that stem from a conjugate Wishart-type prior. Finally, the estimators
(and their inverses) have been compared in simulation with respect to their capacity
of marginal and partial correlation screening and their Frobenius and quadratic loss.
This revealed that, while the preferred estimator depends on the objective and context,
overall the (inverse of the) �2-penalized precision matrix estimator has a (small) edge
over its counterparts. Only for conditional correlation screening in high-dimensional
settings the other ridge-type estimators exhibit slightly favorable behavior.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-024-01610-9.
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