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A B S T R A C T

Background and aims: Metabolic syndrome (MetS) is an important determinant of cardiometabolic disease 
development, with excessive sugar intake as one of the key modifiable risk factors. However, evidence on the 
association between sugar-sweetened beverages (SSB), their replacement by low/no caloric beverages (LNCB), 
and MetS development is still limited.
Methods and results: Data from participants’ of Lifelines (n = 58 220), NQPlus (n = 1094) and Feel4Diabetes (n =
342) were prospectively analysed. Dose-response associations were investigated using restricted cubic spline 
analyses (Lifelines). Cox proportional hazard regression analysis with robust variance was used to quantify as-
sociations between intakes of SSB, fruit juices (FJ) and LNCB and MetS incidence; data were pooled using 
random-effects models. Associations were adjusted for demographic, lifestyle and other dietary factors. In 
Lifelines, NQPlus, and Feel4Diabetes, 3853 (7 %), 47 (4 %), and 39 (11 %) participants developed MetS, 
respectively. Pooled analyses showed that each additional serving of SSB was associated with a 6 % higher risk of 
MetS (95%CI 1.02–1.10). A J-shaped association was observed for FJ and MetS, with a significant inverse as-
sociation at moderate intake levels (IPR 0.89, 95 % CI 0.82–0.96). LNCB intake was not associated with MetS 
(IPR 1.59, 95%CI 0.74–2.43), but findings across studies were inconsistent (I2 94 %, p-value <0.01). Replacing 
SSB with FJ or LNCB did not show any associations with MetS incidence.
Conclusion: SSB intake was adversely associated with MetS incidence. A J-shaped association was observed be-
tween FJ and MetS. For LNCB, results were inconsistent across studies and therefore findings must be interpreted 
cautiously.

1. Introduction

Globally, about 13–31 % of adults, 3 % of children, and 5 % of ad-
olescents are affected by Metabolic Syndrome (MetS) [1,2]. MetS is a 
biologically complex condition characterized by abdominal obesity, 

dyslipidaemia, hypertension, and impaired glucose metabolism [3], 
which are important risk factors for cardiometabolic disease develop-
ment including type 2 diabetes (T2D) and cardiovascular disease (CVD) 
[4–7]. Obesity, sedentary lifestyle and unhealthy diet, including exces-
sive sugar intake, are well-known modifiable risk factors of MetS [3,8].

Accordingly, various health authorities have already successfully 
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recommended limiting sugar intake [9,10] as shown by decreasing 
trends in sugar intake in the US [11,12]. However, consumption levels 
remain high and additional efforts are urgently needed [11,13,14]. 
Replacing sugars with low/no-caloric sweeteners may be an effective 
strategy to reduce sugar content in foods and beverages, and may aid a 
further reduction of sugar intake at a population level.

Based on various short-term trials, replacing sugar with low/no- 
caloric sweeteners to improve MetS parameters seems promising 
[15–17]. Yet, long-term observational studies are limited, and overall, 
do not support the findings of short-term trials [18–20]. This un-
derscores the need for further research, particularly including epide-
miological analyses within larger datasets for detailed insights. 
Therefore, we studied associations between sugar-sweetened beverages 
(SSB), fruit juices (FJ), and low/no caloric beverages (LNCB) intakes, 
and MetS incidence in three European population-based cohort studies, 
including well-powered stratified analyses as well as theoretical sub-
stitution analyses to examine whether replacing SSB by LNCB or FJ al-
ters MetS risk.

2. Methods

2.1. Study design and population

The study was part of the SWEET project, an EU-funded initiative 
examining the risks and benefits of replacing sugar with sweeteners and 
sweetness enhancers (www.sweetproject.eu). For current analyses, data 
were sourced from the Lifelines Cohort (Lifelines) study (The 
Netherlands), Nutrition Questionnaire Plus (NQPlus) study (The 
Netherlands), and Feel4Diabetes-study (Feel4Diabetes; Greece) 
(Supplemental Table 1) [21–23]. Each study collected data based on its 
objectives and protocols, and variables of interest were harmonized for 
analysis. All studies were conducted according to the principle of the 
Declaration of Helsinki. All participants gave written informed consent 
before participating.

2.2. Lifelines

Lifelines is a multi-disciplinary prospective cohort study examining 
in a unique three-generation design the health and health-related be-
haviours of 167 729 persons living in the northern part of The 
Netherlands [21,24]. It employs a broad range of investigative proced-
ures in assessing biomedical, socio-demographic, behavioural, physical 
and psychological factors which contribute to health and disease in 
general population. Between 2006 and 2013, people aged 0–93 years 
were recruited to undergo baseline measurements. People who had 
limited life expectancy (<5 years) due to severe psychiatric or physical 
illness or were unable to read Dutch were not invited to participate. 
Participants are followed for over 30 years, in which every one and a half 
years, participants are invited to complete a follow-up questionnaire. In 
addition, several physical measurements are conducted and additional 

questionnaires are administered on average every five years. For present 
analyses, data from 152 728 participants aged ≥18 years were included. 
After consecutive exclusion of those with missing dietary data (n =
8633), implausible energy intake (<800 or >4000 kcal/day for men or 
<500 or >3500 kcal/day for women) (n = 15 483) [25], missing 
outcome (n = 52 051), diagnosis of diabetes, CVD, or having MetS at 
baseline (n = 13 764), or missing covariates (n = 4577), n = 58 220 
remained for current analyses (Supplemental Table 2). Lifelines has 
been approved by the Medical Ethical Review Committee of the Uni-
versity Medical Center in Groningen under number 2007/152.

2.3. NQPlus

NQPlus is a prospective cohort study involving Dutch adults aged 
20–70 years from the central part of The Netherlands [22]. This study 
aimed to establish a national dietary reference database to develop and 
validate food frequency questionnaires (FFQs) as well as to investigate 
the potential long-term impact of dietary factors on health-related out-
comes. Participants were recruited between 2011 and 2013, and those 
who were able to make their own decisions and had sufficient knowl-
edge of the Dutch language (spoken and written) were eligible to 
participate. Participants were followed for 2 years, during which all 
measurements were repeated annually. In total, 2048 participants were 
included, of which 1647 provided dietary intake data. After consecu-
tively excluding participants with implausible energy intake (n = 20), 
missing outcome data (n = 235) or having MetS, diabetes or CVD at 
baseline (n = 298), n = 1094 remained for current analyses. Due to the 
high proportion of missing covariates (9 %), multiple imputations were 
applied using “mice” package in R and five duplicate datasets were 
produced [26]. NQPlus was approved by the ethical committee of 
Wageningen University and Research.

2.4. Feel4Diabetes

Feel4Diabetes is a European Union-funded intervention study, 
focusing on T2D prevention by promoting healthy eating and lifestyle 
among vulnerable families across Europe. Feel4Diabetes was a cluster- 
randomized design with two components: 1) ‘all families’ via school 
settings, and 2) ‘high-risk families’ component carried out in families 
with increased risk of T2D via community health centres [23,27]. In 
2016, participants from selected provinces in Belgium, Bulgaria, 
Finland, Greece, Hungary and Spain were included in baseline mea-
surements. Participants were followed for 2 years, and data from 765 
participants aged ≥18 years from Greece who belonged to ‘high-risk 
families’ were available for current analyses. After consecutively 
excluding participants with missing exposure data (n = 86), missing 
information on MetS at follow-up (n = 179), or having MetS and dia-
betes at baseline (n = 187), n = 342 participants were included in 
current analyses. Due to the high percentages of missing covariates (27 
%), multiple imputations were applied with five duplicate datasets 

Acronyms:

AQuAA Activity Questionnaire for Adults and Adolescents
BMI body mass index
CI confidence interval
CVD cardiovascular disease
DBP diastolic blood pressure
FFQs food frequency questionnaires
FJ fruit juices
FPG fasting plasma glucose
HDLc high-density lipoprotein cholesterol
IPAQ Physical Activity Questionnaire

IPR incidence proportion ratios
IQR interquartile range
LNCB low/no calorie beverages
MET metabolic equivalent
MetS metabolic syndrome
NQPlus Nutrition Questionnaire Plus
SBP systolic blood pressure
SD standard deviation
SQUASH Short Questionnaire to Assess Health
SSB sugar-sweetened beverages
T2D type 2 diabetes
TG triglycerides
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produced [26]. Feel4Diabetes was approved by the Bioethics Committee 
of Harokopio University. Feel4Diabetes is registered with ClinicalTrials. 
gov (NCT02393872).

2.5. Dietary assessment

In all studies, dietary intake was assessed at baseline using FFQs. In 
Lifelines and NQplus, dietary intake data were collected using a vali-
dated 110-item FFQ [28] and a 183-item semi-quantitative FFQ [29,30], 
respectively. FFQs were used to collect information on intake frequency 
and portion sizes of all major food groups using the previous month as a 
reference period. Questions on intake frequency were answered by 
selecting responses ranging from “never” to “6–7 days/week”. Intakes of 
energy and foods were calculated by multiplying intake frequency by 
portion size and nutrient content (grams) as indicated in The Dutch Food 
Composition Table (NEVO) (2011) [31]. In Feel4Diabetes, dietary 
intake was assessed using a 33-item FFQ covering major food groups, 
which was a modified version of the questionnaire for National Type 2 
Diabetes Prevention in Finland (FIN-D2D) [32]. Questions were 
completed by selecting intake frequency and a pre-specified portion size 
based on common household units. Food intakes were calculated by 
multiplying intake frequency by portion size. When the frequency 
category was defined as a range, such as “3–4 servings/day”, the median 
of the intake range (3.5 servings/day) was taken. When the category 
started or followed with “less than” or “more than” such as “more than 5 
servings/day”, the given portion size was assumed, which in this case 
was 5 servings/day. The FFQ used in Feel4Diabetes was not developed 
to derive intakes of energy and specific nutrients. In all included studies, 
SSB and LNCB were defined as soft drinks or lemonade, with or without 
added sugar, respectively. Water, coffee, or tea sweetened with sugar or 
sweeteners were not included. FJ was defined as apple juice, orange 
juice, or mixed fruit juice, mostly pasteurized, and included both 100 % 
juices and those with added sugars. Intake of SSB, FJ, and LNCB was 
reported in servings of 150 ml.

2.6. MetS ascertainment

Anthropometric assessments, including waist circumference, height, 
and weight were performed by well-trained staff according to each co-
hort’s protocol. Participants were asked to remove shoes and heavy 
clothing, and empty their pockets before measurements. Waist circum-
ference was measured to the nearest 0.5 cm in Lifelines and NQplus, and 
0.1 cm in Feel4Diabetes. Body mass index (BMI) was calculated as 
weight divided by squared height (kg/m2). In all studies, blood samples 
were collected by trained staff after an overnight fast. Fasting plasma 
glucose (FPG) was analysed using standard procedures. Blood lipids 
including total cholesterol, high-density lipoprotein cholesterol (HDLc), 
and triglycerides (TG) were measured with enzymatic methods using 
routine procedures on a Roche Modular analyser (Roche, Basel, 
Switzerland) in Lifelines, Dimension Vista (Siemens, Erlangen, Ger-
many) or a Roche Modular analyser (Roche Diagnostics, Indianapolis, 
USA) in NQplus, and Roche or Hitachi Modular analyser (Roche Di-
agnostics SA, Vasilia, Switzerland) in Feel4Diabetes. Blood pressure was 
measured using Dinamap PRO 100V2 in Lifelines, OMRON HEM-907 in 
NQplus, and OMRON M6 or M6 AC in Feel4Diabetes. Diagnosis of MetS 
was according to the harmonized criteria classification by International 
Diabetes Federation together with American Heart Association/National 
Heart, Lung, and Blood Institute ATPIII [3], with specific recommen-
dations for FPG provided by European Diabetes Epidemiology Group 
[33]. Thus, MetS was defined as fulfilling at least three out of five 
criteria: (1) waist circumference ≥102 cm in men and ≥88 cm in 
women; (2) TG levels ≥1.70 mmol/L or used drug for elevated TG; (3) 
HDLc levels <1.03 mmol/L in men and <1.30 mmol/L in women; (4) 
systolic blood pressure (SBP) ≥130 mmHg and/or diastolic blood pres-
sure (DBP) ≥85 mmHg or in antihypertensive drug treatment; (5) FPG 
level ≥6.1 mmol/L or used medication treatment of elevated glucose. 

Information on medication use at follow-up was not available in Life-
lines. Thus, this information was not included in the outcome 
ascertainment.

2.7. Covariates

Information on sociodemographic, lifestyle, and disease history was 
obtained by self- or interviewer-administered questionnaires. Educa-
tional level was categorized into low, medium or high. Smoking status 
was categorized as a non-smoker, former, or current smoker. Physical 
activity and sedentary behaviours (i.e. TV-watching and/or sitting) were 
assessed using the Short Questionnaire to Assess Health (SQUASH) in 
Lifelines [34] and the Activity Questionnaire for Adults and Adolescents 
(AQuAA) in NQplus [35]. In Feel4diabetes, physical activity was 
assessed using a modified version of the International Physical Activity 
Questionnaire (IPAQ) [36]. Physical activity was reported in Metabolic 
equivalent (MET)-minutes per week for moderate-level activity and in 
minutes per week for sedentary behaviour. Alcohol intake (ethanol) was 
quantified using FFQ and was categorized as 0, >0-≤10, >10-≤20, or 
>20 g/day. No data on ethanol intake was available in Feel4Diabetes.

2.8. Statistical analysis

Baseline characteristics were presented as means with standard de-
viations for normally distributed continuous variables or as medians and 
interquartile ranges for skewed variables. Categorical variables were 
shown as numbers and percentages. First, dose-response associations 
between SSB, FJ and LNCB intakes and Mets risk were analysed using 
restricted cubic spline analyses (3 knots) [37]. The fit of the spline model 
was examined against a linear model with the likelihood-ratio test. To 
ensure adequate power and precision, restricted cubic spline analyses 
were only conducted in Lifelines. Cox proportional hazard regression 
with robust variance estimate was used to investigate associations of 
SSB, FJ and LNCB intakes with MetS risk resulting in Incidence Pro-
portion Ratios [IPR] with a 95 % confidence interval [95%CI]) for each 
cohort. Theoretical substitution analyses were conducted using the 
leave-one-out model where the model included SSB, FJ and LNCB 
(servings/day) as one variable followed by beverage defined as a 
replacement. Subsequently, IPRs of individual cohorts were pooled 
using random-effects models, in which heterogeneity was also exam-
ined. The sample size of Lifelines also allowed us to conduct 
well-powered sensitivity analyses by adding adjustments for BMI or 
excluding participants with a desire to lose weight. Moreover, to assess 
for potential influence of residual confounders, the E-value was calcu-
lated for the Lifelines data [38]. All analyses were adjusted for age, sex 
(Model 1), educational level (low, medium, or high), moderate physical 
activity (MET-min/week), sedentary behaviour (min/week), smoking 
status (never, former, or current smoker), and alcohol use (0, >0-≤10, 
>10-≤20, or >20 g/d) if available (Model 2), other food intake groups 
including grains (g/d), potatoes (g/d), fats and oils (g/d), vegetables 
(g/d), fruits (g/d), meat (g/d), dairy (g/d), coffee (ml/d), tea (ml/d), 
legumes (g/d), nuts (g/d), sugary foods (g/d), and mutual adjustment 
for other beverages (SSB, FJ or LNCB in g/d), total energy intake 
(kcal/d) if available (Model 3). Statistical analyses were performed 
using R 4.0.2 and Rstudio 2022.02.0 for Lifelines and Rstudio 2022.07.0 
for NQplus and Feel4Diabetes.

3. Results

More than half of the participants in Lifelines (62 %) and Feel4-
Diabetes (62 %) were women, whereas women and men were equally 
represented in NQPlus (51 %). Mean ± SD age ranged from 43 ± 6 in 
Feel4Diabetes to 53 ± 11 years in NQplus (Table 1). Most participants 
did not smoke at baseline (83 % in Lifelines, 93 % in NQplus and 67 % in 
Feel4Diabetes) and had a moderate education level (64 % in Lifelines 
and 57 % in Feel4Diabetes), except in NQPlus where most participants 
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were highly educated (57 %). Median (IQR) SSB intake ranged from 0.0 
(0.0–0.1) servings/day in NQPlus to 0.1 (0.0–0.6) servings/day in 
Lifelines. Similar intake levels were observed for LNCB. For FJ, median 
(IQR) intakes were similar in all cohorts (0.2 [0.0–0.6] in Lifelines and 
NQPlus and 0.2 [0.0–0.7] in Feel4Diabetes). Almost half of Lifelines’ 
and NQPlus’ participants had BMI≥25 kg/m2 (49 % and 46 %), whereas 
a higher prevalence was observed in Feel4Diabetes (66 %). Mean ± SD 
of TG and DBP were rather comparable across cohorts (TG 1.0 ± 0.5, 1.0 
± 0.4, 0.9 ± 0.4 mmol/L and DBP 73 ± 9, 73 ± 10, and 71 ± 9 mmHg 
for Lifelines, NQPlus, Feel4Diabetes, respectively). For HDLc and SBP, 

mean ± SD were higher in Lifelines and NQPlus (HDLc 1.6 ± 0.4 and 1.7 
± 0.4 mmol/L and SBP 124 ± 15 mmHg in both cohorts) compared to 
Feel4Diabetes (HDLc 1.4 ± 0.4 mmol/L and SBP 109 ± 14 mmHg). For 
FPG, lower mean ± SD was observed in Lifelines (4.9 ± 0.5 mmol/L) 
than in NQPlus and Feel4Diabetes (5.3 ± 0.5 and 5.3 ± 0.4 mmol/L). In 
total, 3853 (7 %), 47 (4 %), and 39 (11 %) participants of Lifelines, 
NQPlus and Feel4Diabetes developed MetS during a follow-up time of 
~4 years in Lifelines and 1–2 years in NQPlus and Feel4Diabetes 
(Table 2).

Dose-response analysis in Lifelines did not provide strong evidence of 
a non-linear association between SSB and MetS (p non-linearity = 0.09) 
(Fig. 1). Pooled results of all cohorts showed that each additional 
serving/day of SSB intake was associated with a 12 % higher risk of 
developing MetS (95%CI 1.08–1.16) after adjustment for age and sex 
(Table 2). The association attenuated but remained statistically signifi-
cant after additional adjustment for other demographic, lifestyle and 
dietary factors (IPR 1.06, 95%CI 1.02–1.10); no interaction with sex or 
BMI was observed (p = 0.08 and 0.18, respectively) (Supplemental 
Table 3). Sensitivity analyses in Lifelines either controlling for BMI in 
the model or excluding those who had a desire to lose weight did not 
substantially alter the associations (Supplemental Table 4). Additional 
analyses on each MetS parameter in Lifelines, in general, confirmed the 
main finding (Supplemental Table 5).

Dose-response analysis provided strong evidence for a non-linear 
association between FJ intake and MetS (p non-linearity = 0.006) in 
Lifelines (Fig. 1). Analysis by intake categories indicated an inverse as-
sociation with MetS incidence for intake level of <7 servings/week 
when compared to no intake, after adjustment for demographic and 

Table 1 
General characteristics of Lifelines, NQPlus, and Feel4Diabetes participants.

Characteristicsa Lifelines NQPlusb Feel4Diabetesc

N 58220 1094 342
Age, years 45 ± 12 53 ± 11 43 ± 6
Women, n(%) 35820 (62) 559 (51) 213 (62)
Education, n(%)

Low 2019 (3) 8 (1) 24 (7)
Moderate 37046 (64) 457 (42) 196 (57)
High 19155 (33) 629 (57) 122 (36)

Smoking status, n(%)
Never 28254 (49) 577 (55) 143 (42)
Former 19706 (34) 400 (38) 84 (25)
Current 10260 (17) 68 (7) 115 (33)

Moderate physical activity, 
MET-min/week

1665 [820, 
2940]

825 [228, 
1680]

60 [0, 225]

Sedentary behaviour, min/ 
week

840 [630, 
1260]

1800 [1200, 
2640]

1680 [840, 
3360]

Alcohol use, n(%)
0 g/day 1267 (3) 43 (4) NA
>0-≤10 g/day 41968 (72) 619 (57) 
>10-≤20 g/day 11240 (19) 224 (20) 
>20 g/day 3745 (6) 208 (19) 

Metabolic markers
BMI, kg/m2 25.3 ± 3.7 24.9 ± 3.3 27.4 ± 4.7

BMI≥25, n(%) 28459 (49) 501 (46) 226 (66)
TG, mmol/l 1.0 ± 0.5 1.0 ± 0.4 0.9 ± 0.4
HDLc, mmol/l 1.6 ± 0.4 1.7 ± 0.4 1.4 ± 0.4
SBP, mmHg 124 ± 15 124 ± 15 109 ± 14
DBP, mmHg 73 ± 9 73 ± 10 71 ± 9
FPG, mmol/l 4.9 ± 0.5 5.3 ± 0.5 5.3 ± 0.4
Waist circumference, cm 87.9 ± 10.9 88.4 ± 10.6 91.3 ± 12.5
Dietary intakes
SSB, serving/day 0.1 [0.0, 0.6] 0.0 [0.0, 0.1] 0.0 [0.0, 0.2]
FJ, serving/day 0.2 [0.0, 0.6] 0.2 [0.0, 0.6] 0.2 [0.0, 0.7]
LNCB, serving/day 0.1 [0.0, 0.5] 0.0 [0.0, 0.0] 0.0 [0.0, 0.2]
Total energy, kcal/d 2045 ± 563 2068 ± 564 NA
Grains, g/d 181 [138, 

234]
190 [139, 
248]

120 [60, 310]

Potatoes, g/d 88 [55, 111] 61 [37, 95] NA
Vegetables, g/d 105 ± 58 161 ± 87 271 ± 284
Fruits, g/d 110 [42, 

220]
214 [86, 239] 71 [19, 135]

Meat, g/d 75 [55, 98] 66 [36, 92] 94 [71, 141]
Dairy, g/d 297 ± 180 305 ± 185 212 ± 265
Coffee, ml/d 418 ± 272 445 ± 298 346 ± 246
Tea, ml/d 232 [54, 

348]
174 [67, 406] 0 [0, 36]

Nuts, g/d 8 [3,17] 12 [6, 23] 6 [2, 6]
Legumes, g/d 11 [0, 29] 38 [21, 78] 57 [43, 114]
Fats and oils, g/d 23 ± 16 26 ± 17 NA
Sugary foods, g/d 73 [46, 108] 49 [31, 79] 20 [11, 28]

Abbreviation: BMI, body mass index; DBP, diastolic blood pressure; FJ, fruit 
juice; FPG, fasting plasma glucose; HDLc, high density lipoprotein cholesterol; 
LNCB, low/no-calorie sweetened beverages; MET, metabolic task equivalent; 
SBB, sugar-sweetened beverages; SBP, systolic blood pressure; TG, triglycerides.

a Values are mean ± SD, median [25th, 75th percentiles], or n (%) as 
indicated.

b n missing physical activity = 61, n missing sedentary activity = 61, n missing 
smoking status = 49.

c n missing physical activity = 7, n missing sedentary activity = 50, n missing 
vegetables = 3, n missing fruits = 3, n missing meat = 16, n missing coffee = 6, n 
missing tea = 11, n missing legumes = 10.

Table 2 
Adjusted associations of SSB, FJ, and LNCB intakes with MetS for each serving 
(150 ml) per day increment in participants of all cohorts.

IPR (95%CI) Pooled

Lifelines NQPlusa Feel4Diabetesa IPR (95%CI) I2, p 
value

N 
total/ 
N(%) 
cases

58220/ 
3853 (6.6)

1094/47 
(4.3)

342/39 (11.4)  

SSB
Model 

1
1.12 
(1.08–1.16)

0.86 
(0.38–1.92)

1.11 
(0.58–2.12)

1.12 
(1.08–1.16)

0 %, 
0.82

Model 
2

1.06 
(1.03–1.10)

0.83 
(0.40–1.73)

1.01 
(0.56–1.81)

1.06 
(1.03–1.09)

0 %, 
0.82

Model 
3

1.06 
(1.02–1.10)

0.74 
(0.31–1.77)

1.26 
(0.71–2.21)

1.06 
(1.02–1.10)

0 %, 
0.61

FJ
Model 

1
1.05 
(1.00–1.11)

0.99 
(0.66–1.49)

0.67 
(0.30–1.49)

1.05 
(1.00–1.10)

0 %, 
0.63

Model 
2

1.06 
(1.00–1.11)

1.02 
(0.70–1.49)

0.67 
(0.31–1.45)

1.06 
(1.00–1.11)

0 %, 
0.60

Model 
3

1.05 
(0.99–1.10)

1.07 
(0.70–1.63)

0.54 
(0.22–1.31)

1.05 
(1.00–1.10)

0 %, 
0.53

LNCB
Model 

1
1.22 
(1.19–1.25)

1.17 
(0.80–1.72)

1.80 
(1.28–2.53)

1.38 
(1.01–1.76)

82 %, 
<0.01

Model 
2

1.19 
(1.16–1.22)

1.14 
(0.75–1.75)

1.90 
(1.37–2.63)

1.41 
(0.93–1.88)

89 %, 
<0.01

Model 
3

1.17 
(1.14–1.21)

1.16 
(0.78–1.74)

2.48 
(1.60–3.86)

1.59 
(0.74–2.43)

94 %, 
<0.01

Model 1: adjusted for age and sex.
Model 2: model 1 + education background, moderate physical activity, seden-
tary behaviour, smoking status, alcohol intake.
Model 3: model 2 + grains, potatoes, fats and oil, vegetables, fruits, meat, dairy, 
coffee, tea, legumes, nuts, sugary foods, mutual adjustment for other beverages 
(SSB, FJ or LNCB), and energy intake.
Abbreviation: CI, confidence interval; FJ, fruit juices; IPR, incidence proportion 
ratio; LNCB, low/no-calorie sweetened beverages; MetS, metabolic syndrome; 
SSB, sugar-sweetened beverages.

a imputed with multiple imputation methods.

N.D. Naomi et al.                                                                                                                                                                                                                               Nutrition, Metabolism and Cardiovascular Diseases xxx (xxxx) xxx 

4 



lifestyle factors (IPR 0-<2 servings/week 0.90, 95%CI 0.83–0.97 and IPR 2-<7 

servings/week 0.86, 95%CI 0.79–0.94) (Table 3). After further adjustment 
for other dietary factors, the inverse association remained for the intake 
level of 2-<7 servings/week (IPR 0.89, 95%CI 0.82–0.96). The associ-
ation between FJ and MetS was modified by sex (p = 0.01) and BMI (p =
0.02). Stratified analyses revealed that the statistically significant in-
verse associations for intake level of 2-<7 servings/week only remained 
among women (IPR 0.86, 95%CI 0.77–0.97) and those with BMI<25 kg/ 
m2 (IPR 0.78, 95%CI 0.63–0.97) (Supplemental Table 3). At higher 
intake levels, an adverse association was observed among men (IPR 
1.16, 95%CI 1.00–1.36), but not among women (IPR 0.95, 95%CI 
0.79–1.13). In Lifelines, additional adjustment for BMI did not sub-
stantially change the main findings, while exclusion of those who had 
the desire to lose weight showed that significant association was 
observed among those with BMI<25 (IPR 1.14, 95%CI 1.00–1.31) but 
not among those with higher BMI (IPR 1.02, 95%CI 0.90–1.17) 
(Supplemental Table 4). Replacing SSB with FJ did not yield evidence of 
an association with MetS incidence (IPR 0.99, 95%CI 0.93–1.06) 
(Table 4).

Dose-response analysis in Lifelines showed evidence of a non-linear 
association of LNCB and MetS incidence after adjustment for de-
mographic, lifestyle factors, and other dietary intake factors (p non- 
linearity = <0.001) (Fig. 1). However, analysis by intake categories in 
Lifelines did not indicate a clear trend of non-linearity, with risk esti-
mates increasing with higher intakes (IPR >0-2 servings/week 1.07, 95%CI 
0.99–1.17, IPR 2-<7 servings/week 1.22, 95%CI 1.13–1.32, and IPR ≥7 serv-

ings/week 1.57, 95%CI 1.43–1.71; p linear trend = <0.001) (Table 3). 
Pooled analyses of three cohorts showed an adverse association between 
each serving of LNCB and MetS incidence after adjustment for age and 
sex (IPR 1.38, 95%CI 1.01–1.76), which became non-significant after 
further adjustment for demographic, lifestyle and other dietary factors 
(IPR 1.59, 95%CI 0.74–2.43) (Table 2). High heterogeneity was 
observed for this association (I2 94 %, p < 0.01). When looking into the 
individual studies, adverse associations were observed in Lifelines (IPR 
1.17, 95%CI 1.14–1.21) and Feel4Diabetes (IPR 2.48, 95%CI 1.60–3.86) 
while no significant association was observed in NQplus (IPR 1.16, 95% 
CI 0.78–1.74). Adjustment by BMI further attenuated the associations in 
all cohorts (Supplemental Table 4). In Lifelines, additional analyses on 

each MetS parameter confirmed the main finding (Supplemental 
Table 5). When excluding those who had a desire to lose weight in 
Lifelines, a stronger adverse association was observed in people with a 
BMI<25 kg/m2 (IPR 1.15, 95%CI 1.02–1.30). Additional analyses in 
Lifelines did not show any interaction with sex or BMI categories 
(Supplemental Table 3). Theoretical substitution analyses revealed an 
adverse association with MetS risk when SSB was replaced with LNCB 
(IPR 1.11, 95%CI 1.06–1.16), which attenuated after additional 
adjustment for BMI (IPR 0.99, 95%CI 0.94–1.04) (Supplemental 
Table 4).

4. Discussion

In this prospective study, pooled analyses showed that each addi-
tional serving/day of SSB was associated with a 6 % higher risk of MetS 
incidence. A potential J-shaped association was observed between FJ 
and MetS risk as displayed by an inverse association at intake levels of 2- 
<7 servings/week and no associations at lower or higher intake levels. 
Based on the pooled results, LNCB intake or replacing SSB with LNCB 
were not significantly associated with MetS risks, but findings across 
studies were inconsistent indicating adverse associations in Lifelines and 
Feel4Diabetes and no association in NQplus.

Our findings on the adverse association between SSB and MetS 
incidence are in line with previous meta-analyses [18,19,39–41]. To 
illustrate, a meta-analysis of six prospective cohort studies showed an 
adverse linear association with a 14 % higher incidence of MetS for each 
335 ml/day increment of SSB intake (95%CI 1.05–1.23) [39]. Similar 
findings were observed in a meta-analysis of 15 studies (nine 
cross-sectional, one case-control, and five prospective studies), which 
showed a 19 % higher MetS risk for each additional 250 ml/day of SSB 
[19]. Effect estimates in our study were relatively small as compared to 
the pooled risk estimate of this meta-analysis, though comparable to the 
results of included prospective studies. Adverse associations between 
SSB and disease risks including MetS may be explained by several bio-
logical mechanisms, including inducing de novo lipogenesis due to high 
fructose content and incomplete compensation after liquid calorie 
intake, which contributes to weight gain [14].

We observed a J-shaped association between moderate FJ intake and 

Fig. 1. Dose-response association between servings/day of SSB, FJ, and LNCB intakes and the incidence proportion ratio of MetS in participants of Lifelines. The solid 
line is the risk estimates evaluated using restricted cubic splines indicating the shape of the associations, whereas the grey areas indicate 95 % confidence intervals. 
Three knots with 0 g/day as a reference value was placed and model was adjusted for age, sex, education background, moderate physical activity, sedentary 
behaviour, smoking status, alcohol intake, grains, potatoes, vegetables, fruits, meat, dairy, coffee, tea, legumes, nuts, fats and oils, sugary foods, mutual adjustment 
for other beverages (SSB, FJ, or LNCB), and energy intake.
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MetS incidence, which is in agreement with previous studies [39,
42–44]. For example, a meta-analysis by Semnani-Azad et al. (2020) 
including three cohorts on mixed FJ and two cohorts on 100%FJ showed 
an inverse association between moderate intake of each type of FJ (125 
ml/day) and MetS incidences with RRs of 0.58 (95%CI 0.42–0.79) and 
0.77 (95%CI 0.61–0.97) [39]. Although underlying pathways explaining 
associations between FJ and disease outcomes required further investi-
gation, one of the answers may relate to the fact that in addition to sugar, 
FJ also contains vitamins, minerals, fibres and polyphenols [42,43]. It 
may be postulated that these nutritive compounds explain the inverse 
association at lower FJ intake levels whereas the impact of sugar may 
overrule that inverse association at higher intake levels.

Our pooled analyses indicate no significant association between 
LNCB intake - or replacement of SSB by LNCB - with MetS risks. Evidence 
from observational studies generally showed adverse associations be-
tween LNCB and metabolic outcomes [18–20,45]. A meta-analysis of 
three prospective cohort studies showed a 32 % higher MetS risk (95%CI 
1.21–1.44) when comparing the highest vs lowest LNCB intake group 
[18]. Another meta-analysis including four studies (two cross-sectional 
and two prospective studies) also showed a 31 % higher MetS risk for 
each 250 ml/day increment of LNCB intake (95%CI 1.05–1.65) [19]. To 
our knowledge, replacing SSB with LNCB in association with MetS 
incidence specifically - as performed in our study - has not been done 
before. However, a recent meta-analysis of three cohorts substituting 

SSB with LNCB reported lower body weight (three cohorts; MD -0.12 
kg/y, 95%CI -0.14, − 0.10) [46]. Conversely, our previous meta-analyses 
using four European studies, including Lifelines, showed no association 
between replacing SSB with LNCB -or water- and weight and waist 
circumference change [20]. Yet, it should be noted that despite efforts to 
harmonize datasets and standardize covariate adjustments, notable in-
consistencies were observed across studies. We observed adverse asso-
ciations in Lifelines and Feel4Diabetes, which attenuated after 
additional adjustment for baseline BMI. This attenuation may be 
attributed to the strong correlation between BMI and waist circumfer-
ence, a key parameter in metabolic syndrome, as also observed in a 
study by Nettleton et al. (2009) [47]. However, as we did not observe 
this attenuation for SSB and FJ, it may also be speculated that BMI acts 
as an intermediate in the association between LNCB and MetS specif-
ically. Finally, the observed association may also be the result of reverse 
causality, i.e., participants with higher waist circumference and over-
weight/obesity may use more LNCB to limit sugar intake, which may in 
turn explain the substantially stronger adverse association observed in 
Feel4Diabetes than in Lifelines and NQPlus. The biological explanation 
for the association between LNCB and MetS, if present, remains unclear. 
The most prevailing hypothesis suggests that low/no-caloric sweeteners 
may induce gut microbiota dysbiosis, leading to insulin resistance and 
metabolic disease development [48,49]. However, this preliminary 
observation warrants further investigation, particularly in human 
studies, to confirm or refute this hypothesis [45,50].

An important strength of this study includes the use of harmonized 
data from several European population-based studies, with the possi-
bility to control for a wide range of relevant confounders. In addition, 
the large sample size of Lifelines allowed us to conduct well-powered 
stratified analyses. A limitation is the use of self-reported FFQs, which 

Table 3 
Adjusted associations between SSB, FJ, and LNCB intakes and MetS incidence for 
categories of intake in participants of Lifelines.

IPR (95%CI) p-trend

No 
intake

0-<2 
servings/ 
week

2-<7 
servings/ 
week

≥7 servings/ 
week

SSB
N total/ 
N(%) 
cases

21306/ 
1479 
(6.9)

15660/870 
(5.6)

12651/864 
(6.8)

8603/640 
(7.4)



Model 1 1 (ref) 0.82 
(0.75–0.89)

1.06 
(0.97–1.15)

1.22 
(1.11–1.34)

<0.001

Model 2 1 (ref) 0.84 
(0.77–0.91)

1.04 
(0.95–1.13)

1.10 
(1.00–1.22)

<0.001

Model 3 1 (ref) 0.94 
(0.86–1.02)

1.07 
(0.98–1.17)

1.13 
(1.02–1.26)

0.002

FJ
N total/ 

N(%) 
cases

12832/ 
1004 
(7.8)

19576/1222 
(6.2)

19719/1185 
(6.0)

6093/442 
(7.3)



Model 1 1 (ref) 0.83 
(0.76–0.90)

0.79 
(0.73–0.86)

1.00 
(0.90–1.12)

0.5

Model 2 1 (ref) 0.90 
(0.83–0.97)

0.86 
(0.79–0.94)

1.06 
(0.95–1.18)

0.26

Model 3 1 (ref) 0.93 
(0.86–1.01)

0.89 
(0.82–0.96)

1.06 
(0.94–1.18)

0.34

LNCB
N total/ 

N(%) 
cases

25588/ 
1557 
(6.1)

12679/751 
(5.9)

12519/865 
(6.9)

7434/680 
(9.1)



Model 1 1 (ref) 0.99 
(0.91–1.08)

1.22 
(1.13–1.32)

1.68 
(1.54–1.83)

<0.001

Model 2 1 (ref) 1.04 
(0.96–1.13)

1.23 
(1.14–1.33)

1.62 
(1.49–1.77)

<0.001

Model 3 1 (ref) 1.07 
(0.99–1.17)

1.22 
(1.12–1.32)

1.57 
(1.43–1.71)

<0.001

Model 1: adjusted for age and sex.
Model 2: model 1 + education background, moderate physical activity, seden-
tary behaviour, smoking status, alcohol intake.
Model 3: model 2 + grains, potatoes, fats and oil, vegetable, fruit, meat, dairy, 
coffee, tea, legumes, nuts, sugary foods, mutual adjustment for other beverages 
(SSB, FJ or LNCB) + energy intake.
Abbreviation: CI, confidence interval; FJ, fruit juices; IPR, incidence proportion 
ratio; LNCB, low/no-calorie sweetened beverages; MetS, metabolic syndrome; 
SSB, sugar-sweetened beverages.

Table 4 
Adjusted associations of between substitution of SSB with FJ or LNCB with MetS 
for each serving (150 ml) per day increment in participants of all cohorts.

IPR (95%CI) Pooled

Lifelines NQPlusa Feel4Diabetesa IPR (95%CI) I2, p 
value

N 
total/ 
N(%) 
cases

58220/ 
3853 (6.6)

1094/47 
(4.3)

342/39 (11.4)  

SSB by LNCB
Model 

1
1.09 
(1.04–1.13)

1.42 
(0.53–3.81)

1.51 
(0.85–2.67)

1.20 
(0.90–1.51)

19 %, 
0.29

Model 
2

1.11 
(1.07–1.16)

1.47 
(0.55–3.98)

1.69 
(0.97–2.96)

1.33 
(0.90–1.75)

57 %, 
0.10

Model 
3

1.11 
(1.06–1.16)

1.57 
(0.54–4.43)

1.98 
(1.15–3.39)

1.49 
(0.89–2.10)

81 %, 
<0.01

Model 
4

1.11 
(1.06–1.16)

1.56 
(0.55–4.45)

NA  

SSB by FJ
Model 

1
0.91 
(0.85–0.98)

1.18 
(0.44–3.15)

0.57 
(0.21–1.57)

0.91 
(0.84–0.98)

0 %, 
0.69

Model 
2

0.97 
(0.91–1.04)

1.30 
(0.48–3.98)

0.57 
(0.20–1.68)

0.97 
(0.90–1.04)

0 %, 
0.63

Model 
3

0.99 
(0.93–1.06)

1.44 
(0.52–4.00)

0.43 
(0.12–1.51)

0.99 
(0.93–1.06)

0 %, 
0.47

Model 
4

0.99 
(0.93–1.06)

1.44 
(0.55–3.99)

NA  

Model 1: adjusted for age and sex.
Model 2: model 1 + education background, moderate physical activity, seden-
tary behaviour, smoking status, alcohol intake.
Model 3: model 2 + grains, potatoes, fats and oil, vegetables, fruits, meat, dairy, 
coffee, tea, legumes, nuts, sugary foods.
Model 4: model 3 + energy intake.
Abbreviation: CI, confidence interval; FJ, fruit juices; IPR, incidence proportion 
ratio; LNCB, low/no-calorie sweetened beverages; MetS, metabolic syndrome; 
SSB, sugar-sweetened beverages.

a imputed with multiple imputation methods.

N.D. Naomi et al.                                                                                                                                                                                                                               Nutrition, Metabolism and Cardiovascular Diseases xxx (xxxx) xxx 

6 



were not specifically designed for assessing sweetened beverages or 
sweeteners intake, preventing the distinction between various products 
and sweeteners with potentially different metabolic effects [45]. We 
were also unable to differentiate between types of juice i.e., freshly 
squeezed vs commercial which may have varying nutrient content, 
especially fibre, due to industrial processing. Additionally, we were 
unable to distinguish between 100 % juice and those with added sugar, 
which may have distinct impact on health given the sugar level. 
Furthermore, dietary intake was estimated solely at baseline. Repeated 
assessment could have resulted in more precise and robust risk estimates 
and reduced the possibility of reverse causality [46]. Moreover, data on 
medication use at follow-up was not available in Lifelines, which may 
have resulted in misclassification of those having MetS but not being 
classified as such. Finally, while we adjusted for numerous confounders, 
residual confounders may still have occurred. However, sensitivity an-
alyses in Lifelines using the E-value indicate that this is unlikely (data 
not shown). To nullify the association, any unmeasured confounder 
should be strongly associated with both exposure and outcome, which 
we consider unlikely given the wide range of confounders already 
considered.

To conclude, this study showed an association between SSB intake 
and a higher risk of MetS incidence. A J-shaped association was 
observed between moderate intake of FJ and MetS when compared to no 
intake. Our findings for LNCB revealed a notable degree of inconsistency 
across studies, making it difficult to determine if LNCB can be a bene-
ficial alternative to SSB. Therefore, further study on this topic with 
longer follow-up, repeated dietary intake, and more detailed dietary 
data and biomarkers, is required.
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