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Abstract: Red clover (Trifolium pratense L.) is a well-appreciated grassland crop in temperate climates
but suffers from increasingly frequent and severe drought periods. Molecular markers for drought
resilience (DR) would benefit breeding initiatives for red clover, as would a better understanding
of the genes involved in DR. Two previous studies, as follows, have: (1) identified phenotypic DR
traits in a diverse set of red clover accessions; and (2) produced genotypic data using a pooled
genotyping-by-sequencing (GBS) approach in the same collection. In the present study, we performed
genome-wide association studies (GWAS) for DR using the available phenotypic and genotypic data.
Single nucleotide polymorphism (SNP) calling was performed using GBS data and the following
two red clover genome assemblies: the recent HEN-17 assembly and the Milvus assembly. SNP
positions with significant associations were used to delineate flanking regions in both genome
assemblies, while functional annotations were retrieved from Medicago truncatula orthologs. GWAS
revealed 19 significant SNPs in the HEN-17-derived SNP set, explaining between 5.3 and 23.2% of
the phenotypic variation per SNP–trait combination for DR traits. Among the genes in the SNP-
flanking regions, we identified candidate genes related to cell wall structuring, genes encoding
sugar-modifying proteins, an ureide permease gene, and other genes linked to stress metabolism
pathways. GWAS revealed 29 SNPs in the Milvus-derived SNP set that explained substantially more
phenotypic variation for DR traits, between 5.3 and 42.3% per SNP–trait combination. Candidate
genes included a DEAD-box ATP-dependent RNA helicase gene, a P-loop nucleoside triphosphate
hydrolase gene, a Myb/SANT-like DNA-binding domain protein, and an ubiquitin–protein ligase
gene. Most accessions in this study are genetically more closely related to the Milvus genotype than
to HEN-17, possibly explaining how the Milvus-derived SNP set yielded more robust associations.
The Milvus-derived SNP set pinpointed 10 genomic regions that explained more than 25% of the
phenotypic variation for DR traits. A possible next step could be the implementation of these SNP
markers in practical breeding programs, which would help to improve DR in red clover. Candidate
genes could be further characterized in future research to unravel drought stress resilience in red
clover in more detail.

Keywords: Trifolium pratense; drought responses; GWAS; candidate genes

1. Introduction

Grasslands cover more than a third of the European agricultural area [1]. They play
important roles in livestock feeding and deliver valuable ecosystem services [1]. Red clover
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(T. pratense) is a short-lived perennial legume crop that is often included in grasslands for
its nitrogen fixation capacity, its protein-rich forage, and its high palatability [2]. Red clover
is naturally a diploid species (2n = 2x = 14) with the following two maturity types: the late
flowering single-cut type; and the early flowering, quickly re-growing double-cut type [3].
Red clover is a strictly outcrossing crop, and populations or accessions are genetically and
phenotypically highly diverse [4], rendering genetic work generally difficult [5].

Climate change is causing warmer summers with more frequent and more prolonged
drought periods in Europe [6]. Grasslands are particularly vulnerable to drought; studies in
European grasslands predict annual yield losses between 30% and 40% due to drought [7,8].
The general understanding of plant drought responses and the various coping mechanisms
for abiotic stress has advanced significantly in recent years. Comprehensive reviews are
available on the physiological basis of drought responses in plants [9] and on drought
signaling pathways [10]. Important pathways for drought responses include calcium sig-
naling pathways, MAPK-dependent pathways that control a wide range of developmental
and stress–response functions, and pathways involving abscisic acid (ABA) [10]. The
phytohormone ABA plays a key role in drought responses, influencing stomatal closure
and activating drought-responsive genes through specific pathways [10]. However, other
phytohormones, such as salicylic acid, auxin, ethylene, jasmonic acid, brassinosteroid and
gibberellin, are involved in drought responses, although their exact roles are often not
clear [11]. In addition, transcription factors are crucial components in drought responses as
regulators of stress-responsive genes [12].

Red clover is regarded as a rather drought-resilient grassland crop [2], thanks to its
deep taproot development [3]. Nonetheless, in the light of climate change, breeding for
drought resilience (DR) becomes increasingly important in red clover. However, the cross-
pollinating reproduction system of red clover implies phenotyping numerous individual
plants under water-limited conditions, crossing the better individuals, and continuing
selection for multiple cycles [13,14]. Moreover, DR is a quantitatively inherited trait. As
a consequence, although some results have been achieved [15], breeding progress for DR
is generally slow in red clover. Knowing which genomic regions are associated with a
beneficial drought response can be the basis to develop molecular markers for DR in red
clover. Molecular markers would allow for the screening of large numbers of young plants
and genetically identify promising material at the start of a breeding trial, reducing the
need for a laborious phenotypic screening [13]. In addition, candidate genes related to DR
could be revealed, which may increase insights into the physiological mechanisms driving
drought responses in red clover. Genome-wide association studies (GWAS) are a widely
used approach with which to study the genetic basis of phenotypic variation in crops [16].
A prerequisite for GWAS is the availability of genome-wide molecular marker data. In
cross-pollinated crops, which include most grassland crops like red clover, phenotypic
data from field or greenhouse experiments and genotyping data are more relevant at the
population level than at the individual plant level [17]; reduced representation genome
sequencing methods, like genotyping-by-sequencing (GBS), are an effective method with
which to quantify allelic variants at the population level (genome-wide allele frequency
fingerprinting). GWAS have been used to elucidate the genetic control of complex traits in
various grassland legumes such as forage quality traits [18] and autumn dormancy [19]
in lucerne (Medicago sativa), and disease resistance [20] and freezing tolerance [21] in
red clover. Nonetheless, our knowledge on the genetic control of drought responses in
grassland legumes, and especially in red clover, remains limited.

In previous work [22], we investigated drought responses in 395 red clover accessions
of the EUCLEG collection in a two-year field trial with mobile rain-out shelters. Drought
caused substantial reductions in canopy cover (CC) and canopy height (CH), with visible
reductions starting roughly two weeks after the onset of drought and continuing during the
recovery period until late in the growing seasons. Plants reacted differently to drought in the
first and second year of production, as plants were older in year 2, and may have developed
deeper rooting that could alter drought responses. The same collection of 395 accessions



Genes 2024, 15, 1347 3 of 14

has been genotyped by Frey et al. [20] using a pooled GBS approach followed by single
nucleotide polymorphism (SNP) frequency profiling using the Milvus red clover genome
assembly [23]. Recently, a new, high-quality, long read-based assembly of the red clover
genome of a different red clover genotype (HEN-17) became available [5]. This HEN-17
genome assembly presents a substantially improved reference genome sequence, with
improved per-base quality, more than 500 times fewer contigs, and a three-fold increase in
contig N50 compared to the previous assembly [5]. The HEN-17 assembly is nearly 20%
longer than the Milvus assembly (413.5 Mbp vs. 350 Mbp), which is closer to the predicted
genome size of red clover. The Milvus genome annotation contains 39,948 protein coding
genes; the HEN-17 genome annotation contains 33,610 protein coding genes.

The present work was performed in the framework of the EUCLEG project that
focuses on legume crop breeding. In the present paper, we build further on the following
two studies: the study by Frey et al. [20], in which 395 red clover populations with relevance
for European breeding activities were genotyped by GBS; and the study by Vleugels
et al. [22], in which the phenotypic variation for DR was investigated in the same collection.
The objectives of the present study were, as follows: (i) to perform GWAS to identify
quantitative trait loci (QTLs) for DR in red clover; and (ii) to identify potential candidate
genes in the genomic regions underlying the QTL associated with DR in red clover. We
have performed GWAS analysis in parallel based on two SNP sets, using either the Milvus
assembly [23], or the HEN-17 assembly [5] as references for SNP calling.

2. Materials and Methods
2.1. Phenotypic Data for DR

Phenotypic data were used from our previous work [22], in which we phenotyped a
panel of 395 red clover accessions for drought responses in two parallel fields, as follows: a
‘drought-treated’ field where drought was simulated using rain-out shelters; and a ‘control
field’ that was irrigated and served to calculate relative performance indices. Four cuts
were taken per year, and drought periods lasting six to eight weeks were imposed between
the first and second cuts in two subsequent production years or growing seasons (Figure 1).
CC and CH were monitored throughout the two growing seasons. Subsequently, relative
performance indices (Yr), displaying the relative performance of the drought-treated plots
compared to the control plots, were obtained for each accession and each trait, using the
following formula:

Yr = (Control − Drought)/Control (1)
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association study (GWAS).

Positive Yr values for CC or CH indicate lower observed values of coverage or height
for that accession in the drought-treated field compared to the control field.

For the present study, we defined drought resilient accessions as accessions that
display small differences in terms of CC or CH either during the drought period (cut 1–2)
or in two recovery periods (cuts 2–3 and 3–4). We used Yr indices for CC and CH for both
growing seasons, year 1 and year 2, from the middle of the drought treatments until the
middle of the 2nd growing periods after drought, further named recovery periods. To
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ensure meaningful Yr indices, only observations obtained at least 10 days after a cut were
included. A timeline visualizing the trial and the phenotypic data used in this paper are
given in Figure 1. For year 1, we included Yr indices for CC and CH at DOY(day-of-year)
165, 178, 198, 205, 218, 225, 238 and 245; for year 2, Yr indices for CC and CH at DOY 175,
189, 195, 212, 220, 225, 245 and 258 were used. This rendered a total of 32 traits, 16 in year 1
and 16 in year 2 (Table 1). GWAS was performed individually for each Yr index, further
named DR trait.

Table 1. Relative performance indices (Yr) for CC and CH used for GWAS, with their average and SD
over all 395 accessions observed in Vleugels et al. [22].

Period DOY
Yr (µ ± SD) for

Cut
CC CH

Year 1

Drought period 165 0.19 ± 0.02 0.31 ± 0.09
178 0.44 ± 0.11 0.37 ± 0.09 Cut 2

1st recovery period

198 0.30 ± 0.17 0.35 ± 0.07
205 0.28 ± 0.12 0.59 ± 0.09
218 0.15 ± 0.06 0.35 ± 0.12
225 0.22 ± 0.06 0.07 ± 0.16 Cut 3

2nd recovery period 238 0.12 ± 0.12 −0.59 ± 0.09
245 0.19 ± 0.09 0.09 ± 0.05

Year 2

Drought period
175 0.26 ± 0.08 −0.10 ± 0.14
189 0.27 ± 0.09 0.33 ± 0.09
195 0.14 ± 0.10 0.22 ± 0.10 Cut 2

1st recovery period

212 0.45 ± 0.09 0.27 ± 0.10
220 0.29 ± 0.08 0.31 ± 0.10
225 0.17 ± 0.08 0.21 ± 0.10
245 0.01 ± 0.03 −0.04 ± 0.11 Cut 3

2nd recovery period 258 0.06 ± 0.11 −2.75 ± 0.24
DOY: day-of-year; CC: canopy cover; CH: canopy height; Yr: relative performance index; SD: standard deviation.
Cuts are indicated with horizontal lines and drought periods are shaded.

2.2. GBS

A full description of the methods for GBS genotyping and SNP calling of the 395 red
clover accessions is provided in Frey et al. [20]. We used SNP data obtained with the Milvus
genome assembly [23] as a reference for read mapping, as available from Frey et al. [20].
In parallel, we ran the SNP calling analysis for the GBS data of the EUCLEG red clover
collection using the more recent HEN-17 genome assembly as reference sequence [5]. Read
mapping was performed using Bowtie (v2.4.4) [24], while SNP calling and filtering were
performed using bcftools (v1.16) [25]. SNP data were filtered for biallelic genotype calls
with a minimum read depth of 30 and at least 100 accessions genotyped per SNP position.

2.3. GWAS

GWAS was performed using the R-package ‘GAPIT’ in R version 4.2.2., implemented in
RStudio [26,27], applying the Bayesian-information and linkage-disequilibrium iteratively
nested keyway (BLINK) model [28,29]. BLINK was chosen as the preferred model for its
superior handling of genetic diversity and population structure, as well as its ability to
minimize redundant signals across linkage blocks. While other models such as the general
linear model (GLM) tests markers independently, BLINK offers a more refined and efficient
approach by retaining only the most significant SNP from each chromosomal region. This
allows for a clearer distinction of significant associations, avoiding noise from multiple
linked SNPs within the same region. A key strength of BLINK is its ability to merge
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marker–trait associations within a linkage block, reducing false positives and enhancing
the precision of detected associations. By focusing only on the most relevant SNP in each
region, BLINK avoids signal dilution that can occur when multiple linked markers are
considered, giving it a distinct advantage over other GWAS models.

For our analysis, BLINK was configured with default settings and a linkage dise-
quilibrium threshold of 0.2, ensuring that SNP–trait associations were both robust and
well-controlled. Associations were considered significant if they surpassed a threshold of
-Log10 (p-value) ≥ 6. To evaluate the contribution of each SNP, the phenotypic variance
explained (R2) was calculated via linear regression between phenotypic data and SNP
genotype data using the lm() function in R 4.2.2. SNPs were selected based on an R2

threshold of greater than 0.05 and a Minor Allele Frequency (MAF) above 0.05 within the
total association mapping panel. Closely linked SNPs were inspected carefully, and if one
SNP exhibited lower p-value, MAF, or R2 values compared to others, the lower-performing
SNP was removed. Effect sizes and the phenotypic variance explained by SNPs associated
with traits were represented by the regression coefficient (β) and R2, derived from a linear
model with Best Linear Unbiased Estimations (BLUEs) as the response variable, with SNPs
treated as fixed effects.

2.4. Identification of Candidate Genes

For the 21 significant SNP–trait associations found in the HEN-17-derived SNP set,
flanking genes were identified within a 50 kb region upstream and downstream of the
significant SNP in the HEN-17 assembly [5] (GCF_020283565.1). Subsequently, we per-
formed a BLASTx search with the corresponding gene sequence against the M. truncatula
proteome to retrieve the functional gene annotations, using PLAZA5.0 [30]. Similarly, for
the significant SNP–trait associations from the Milvus-derived SNP set, we first identified
flanking genes in the Milvus assembly (50 kb flanking sequences upstream and down-
stream, assembly GCA_900079335.1; ensemble annotation v2.1 [31]). Subsequently, we used
the corresponding gene sequence to perform a BLASTx search against the predicted gene
set of the HEN-17 assembly, and the M. truncatula proteome, as described above, to retrieve
the corresponding functional annotation descriptions. For all significant associations, all
known genes in a flanking region of ±50 kb from each SNP, together with their orthologs
and functional annotations in M. truncatula (if available), are given in Supplementary Data
File S1. Given the low degree of linkage disequilibrium in red clover [21], in what follows
we only considered candidate genes within regions of ±5 kb upstream or downstream
from each significant SNP (Supplementary Data File S2).

3. Results

Mapping of the GBS read data on the Milvus genome assembly provided 20,137 SNP
markers, polymorphic at MAF ≥ 0.05, spread over the seven red clover chromosomes
and multiple unanchored scaffolds. The SNP calling on the HEN-17 assembly provided
59,343 SNP markers spread over the 7 chromosomes, and polymorphic at MAF ≥ 0.05.

As the recent long read-based HEN-17 assembly [5] presents an improved reference
genome sequence, with substantially more genes located on chromosomes instead of on
scaffolds compared to the Milvus assembly [23], we first performed GWAS using the
HEN-17-derived SNP set. This resulted in 19 SNPs that were significantly associated with
improved drought responses after Bonferroni correction (α = 5%), explaining between
5.3 and 23.2% of the phenotypic variation for various DR traits (Figure 2A, Table 2). Three
SNPs were associated with drought responses during the drought period, while the re-
maining 16 SNPs were associated with responses during the recovery periods. The full
results of the GWAS are shown in Supplementary Data File S1. The following two SNPs
explained more than 15%: NC_060063.1_4412473 on LG5; and NC_060064.1_36266159 on
LG6. No candidate genes were identified in the flanking regions (±5 kb) of these SNPs.
GWAS indicated additional SNPs with minor effect. First, two genes related to cell wall
structuring were highlighted as follows: genes with homology to arabinosyltransferase
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(year 1, CC_198: 9.2% of variation explained); and pectinase inhibitors (year 2, CC_212:
5.9% of variation explained). Second, associations were found with SNPs near genes encod-
ing sugar-modifying proteins, such as glycosyltransferase genes for CC_195 and CC_225 in
year 2, explaining 11.3% and 5.3% of the phenotypic variation, respectively. Additionally,
an SNP flanking a gene encoding an α-galactosidase was significantly associated to CC_198
in year 2, explaining 8.4% of the phenotypic variation. Third, an SNP significantly asso-
ciated to CH_225 in year 1, explaining 5.9% of the phenotypic variation, was located in a
gene encoding an ureide permease. Finally, we found associations with an SNP explaining
6.6% of the phenotypic variation for CC_258 in year 2, located in a gene containing an
Ma3-binding domain, and an SNP explaining 8.4% of the phenotypic variation for CC_198
in year 1, with its flanking gene encoding a MAP kinase.
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Table 2. Marker–trait associations from GWAS on DR in red clover, displaying significant associations using the HEN-17-derived and Milvus-derived SNP sets with
genes that are known to be involved in drought responses.

Trait Year Period SNP ID Chr Pos Var Expl (%) Effect (β) Candidate GeneKnown
for DR Distance (bp) Protein Annotationin

PLAZA 5.0 Reference

Associations using the HEN-17-derived SNP set [5]

CH_165 19 D NC_060060.1 34138967 LG2 34,138,967 9.1 −0.14
CH_178 19 D NC_060065.1 42224330 LG7 42,224,330 5.6 −0.19
CC_238 19 R NC_060059.1 25418144 LG1 25,418,144 8.1 −0.34
CH_238 19 R NC_060059.1 39822546 LG1 39,822,546 7.1 0.42
CC_218 19 R NC_060059.1 45472125 LG1 45,472,125 11.7 −0.13
CC_245 19 R NC_060060.1 18680074 LG2 18,680,074 7.2 0.19
CH_225 19 R NC_060060.1 24894651 LG2 24,894,651 5.9 −0.27 ureide permease 1-like SNP in gene ureide permease-like protein [32]
CC_205 19 R NC_060060.1 37047857 LG2 37,047,857 6.0 0.25

CC_198 19 R NC_060061.1 9267342 LG3 9,267,342 8.4 0.33 uncharacterized LOC123917029 +1664 α-galactosidase [33]
protein-tyrosine-phosphatase

MKP1-like −3852 MAP kinase phosphatase [10]
CH_205 19 R NC_060061.1 26803013 LG3 26,803,013 11.4 −0.16
CH_205 19 R NC_060061.1 29630157 LG3 29,630,157 6.9 0.25 uncharacterized LOC123915918 −171 transmembrane protein,

putative [34]
CH_238 19 R NC_060062.1 52642219 LG4 52,642,219 11.0 0.67
CH_225 19 R NC_060063.1 4412473 LG5 4,412,473 16.4 0.24

CC_198 19 R NC_060063.1 6098087 LG5 6,098,087 9.2 0.26 probable arabinosyltransferase
ARAD1 SNP in gene

secondary cell wall
glycosyltransferase family

47 protein
[35]

CH_238 19 R NC_060064.1 36266159 LG6 36,266,159 23.2 0.74
CC_195 20 D NC_060062.1 53931991 LG4 53,931,991 11.3 −0.18 N-acetyl-α-D-glucosaminyl

L-malate synthase +616 glycosyltransferase family
4 protein [35]

CC_212 20 R NC_060062.1 20504973 LG4 20,504,973 5.9 0.23 pectinesterase/pectinesterase
inhibitor-like SNP in gene pectinesterase/pectinesterase

inhibitor [36]

CC_225 20 R NC_060062.1 42084107 LG4 42,084,107 5.3 0.14 probable glycosyltransferase
At5g20260 −278 glycosyltransferase [35]

CC_258 20 R NC_060063.1 49890749 LG5 49,890,749 6.6 0.23 MA3 domain-containing
translation regulatory factor 1-like SNP in gene topoisomerase-like protein [37]

Associations using the Milvus-derived SNP set [23]

CC_178 19 D LG1_3190272 LG1 3,190,272 27.5 −0.46

CH_178 19 D LG1_4925141 LG1 4,925,141 26.5 −0.12 DEAD-box ATP-dependent RNA
helicase 41 +352 DEAD-box ATP-dependent

RNA helicase [38]

CC_178 19 D LG1_24162580 LG1 24,162,580 31.1 −0.13
CC_178 19 D LG3_1774487 LG3 1,774,487 40.3 −0.11 uncharacterized LOC123918397 SNP in gene transmembrane protein,

putative [34]
CH_178 19 D LG3_3530352 LG3 3,530,352 31.1 −0.14
CH_165 19 D LG4_2357602 LG4 2,357,602 5.8 0.29
CH_165 19 D scaf_21186_400 scaf_21186 400 10.7 0.15 no genes on scaffold
CC_178 19 D scaf_282_123440 scaf_282 123,440 13.1 0.25
CC_178 19 D scaf_569_145336 scaf_569 145,336 14.9 −0.04
CH_218 19 R LG1_4970479 LG1 4,970,479 21.9 0.25
CC_218 19 R LG1_8876185 LG1 8,876,185 5.9 −0.12
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Table 2. Cont.

Trait Year Period SNP ID Chr Pos Var Expl (%) Effect (β) Candidate GeneKnown
for DR Distance (bp) Protein Annotationin

PLAZA 5.0 Reference

CC_218 19 R LG2_16875234 LG2 16,875,234 12.6 0.07 E3 ubiquitin–protein ligase HOS1 SNP in gene E3 ubiquitin–protein
ligase HOS1 [39,40]

CH_225 19 R LG6_9239088 LG6 9,239,088 32.9 −0.25 uncharacterized LOC123889235 SNP in gene transmembrane protein,
putative [34]

CH_218 19 R LG6_9239175 LG6 9,239,175 34.4 −0.14 uncharacterized LOC123889235 SNP in gene transmembrane protein,
putative [34]

CH_238 19 R LG7_16795407 LG7 16,795,407 42.3 0.75
CC_205 19 R scaf_17454_702 scaf_17454 702 12.3 0.13 no genes on scaffold
CH_225 19 R scaf_215_44822 scaf_215 44,822 22.4 0.47
CC_205 19 R scaf_298_215478 scaf_298 215,478 11.1 −0.08
CH_238 19 R scaf_677_20023 scaf_677 20,023 12.7 0.42
CH_238 19 R scaf_678_58484 scaf_678 58,484 25.0 0.36
CH_218 19 R scaf_802_53097 scaf_802 53,097 10.8 −0.17
CC_218 19 R scaf_918_18614 scaf_918 18,614 11.9 −0.10

CH_189 20 D LG1_4925076 LG1 4,925,076 29.1 −0.13 DEAD-box ATP-dependent RNA
helicase 41 +287 DEAD-box ATP-dependent

RNA helicase [38]

CH_189 20 D LG1_12991269 LG1 12,991,269 36.6 −0.14 flowering time control protein FPA SNP in gene RNA recognition motif
(RRM) containing protein [41]

CC_189 20 D LG1_26956262 LG1 26,956,262 8.6 −0.09

CC_189 20 D LG3_11998225 LG3 11,998,225 18.8 0.17 uncharacterized LOC123913798 SNP in gene
Myb/SANT-like

DNA-binding domain
protein

[42]

CC_195 20 D LG3_11998225 LG3 11,998,225 22.2 0.23 uncharacterized LOC123913798 SNP in gene
Myb/SANT-like

DNA-binding domain
protein

[42]

CC_220 20 R LG3_2451723 LG3 2,451,723 5.3 −0.15
CC_245 20 R LG6_21196281 LG6 21,196,281 8.7 −0.04

Trait with day-of-year of observation; Trial year; Period: drought (D) or recovery (R); SNP ID; Chromosome (Chr); Position on chromosome (Pos); phenotypic variance explained by that
SNP allele (%); Effect size on the phenotype as regression coefficient (β) of the allele frequency; Gene of interest known to be involved in drought responses flanking the significant
SNP in the HEN-17 reference genome [5]; Distance (bp) between the SNP and the gene of interest if the gene is upstream (+) or downstream (−) from the SNP; Annotation, functional
description of the closest M. truncatula ortholog of the candidate gene, and literature references explaining the function of the genes of interest in the context of drought stress.
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As the associations revealed using the HEN-17-derived SNP set explained only minor
percentages of phenotypic variation, we decided to re-run our GWAS using the Milvus-
derived SNP set. GWAS analysis with the Milvus-derived SNP set yielded 29 SNPs that
were significantly associated with DR: 14 SNPs in the drought period and 15 SNPs in
the recovery period (Figure 2B, Table 2). Considerably larger percentages of phenotypic
variation were explained compared to the HEN-17-derived SNP set, up to 42.3%. Eleven
SNPs on LG1, LG3, LG6, LG7 and an unanchored scaffold (LG1_12991269, LG1_24162580,
LG1_3190272, LG1_4925076, LG1_4925141, LG3_1774487, LG3_3530352, LG6_9239088,
LG6_9239175, LG7_16795407, and scaf_678_58484), among which were two closely linked
SNPs on LG1, explained more than 25% of the phenotypic variation for DR traits. The full
results of the GWAS analysis are shown in Supplementary Data File S1. Next, we located
the closest flanking candidate genes for the Milvus-derived SNPs that were significantly
associated to DR traits. First, three associations that explained large percentages of phe-
notypic variation in year 1 (40.3% for CC_178, 34.4% for CH_218, and 32.9% for CH_225)
were found with SNPs located in genes encoding transmembrane proteins. During the
drought periods, we found associations with SNPs flanking four candidate genes. The first
association was found in year 2 between CH_189 and an SNP in a flowering control gene,
explaining 36.6% of the phenotypic variation. Furthermore, CH_178 and CH_189 were
associated with two SNPs flanking a DEAD-box ATP-dependent RNA helicase gene (26.5%
and 29.1% of the phenotypic variation explained, respectively). Also, an association was
found between CC_178 and an SNP flanking a P-loop nucleoside triphosphate hydrolase
gene, which explained 31.1% of the phenotypic variation. Finally, two associations were
found between CC_189 and CC_195 in year 2 and an SNP in a gene encoding a Myb/SANT-
like DNA-binding domain protein, explaining 18.8% and 22.2% of the phenotypic variation,
respectively. In the recovery periods, an additional association was observed between
CC_218 and an SNP in an ubiquitin–protein ligase gene, which explained 12.6% of the
phenotypic variation.

4. Discussion

GWAS yielded surprisingly different results depending on the genome assembly that
was used for SNP calling. Although the HEN-17 reference genome assembly is more
complete than the Milvus genome assembly [5], it resulted in fewer significant associations
and SNPs that explained lower percentages of phenotypic variation. Multiple strong
associations that were detected in the Milvus-derived SNP set, were not detected in the
HEN-17-derived SNP set. One possible explanation may be that red clover is a genetically
diverse species [3]; the primary sequence of the genome assemblies of divergent genotypes
reflects that diversity. If a major QTL locus is present in a set of accessions but absent in
the genotype used for the genome assembly, no reads can map to that locus, and no SNPs
are called, even if GBS data from the GWAS panel accessions contains reads derived from
that locus. On a more subtle level, if the QTL locus is present but the reference sequence
is divergent from the alleles present in the GWAS panel accessions, a mapping bias is
created against increasingly more divergent alleles. While this allows for the identification
of SNPs, it may cause a shift in observed allele frequencies (divergent alleles are lost from
the alternative allele frequency count). As a consequence, the power to detect significant
markers for that QTL is reduced or lost entirely. Thus, a particular genome assembly may
be fit for read mapping and SNP frequency profiling for certain genotypes or populations,
while not for others. The set of accessions used for this study comprised mostly European
material [22]. The cultivar ‘Milvus’ originates from Switzerland, whereas ‘HEN-17’ is a
North American genotype. Possibly, the majority of accessions in this study may have
been genetically closer to the Milvus genotype than to HEN-17, which could explain
why the Milvus-derived SNP set yielded more and stronger associations. Such within-
species genome diversity has previously been described in pan-genome studies, as well
as the consequences of a reference bias for quantitative genetics studies, in rice (Oryza
sativa) [43,44], barley (Hordeum vulgare) [45], maize (Zea mays) [46], and in the human
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genome [47]. Notably, such a bias may only be noticed when multiple reference genomes
are used in parallel for SNP calling and in subsequent GWAS analysis, which is not routinely
conducted in published GWAS studies.

Briefly, when using the HEN-17 assembly for SNP calling, a number of associated
SNPs were found flanking genes that have been suggested to be involved in drought
responses. Glycosyltransferases and other genes related to cell wall structuring are known
to be involved in drought responses [35,36]. In particular, rice plants with over-expression
of certain glycosyltransferases display enhanced drought tolerance at the seedling and at
the mature stage [35]. The expression of certain α-galactosidase genes increases tolerance to
abiotic stress [33], and to drought stress in particular, for example, in New Zealand spinach
(Tetragonia tetragonioides) [48]. Ureides accumulate under drought and play important roles
in drought responses in legume species [48]. Finally, Ma3-binding domains and MAP
kinases have been suggested to be involved in stress metabolism [10,37]. It would be
interesting to further study these associations in future research.

In what follows, we focus only on the results obtained with the Milvus genome as-
sembly for SNP calling. We performed GWAS for CC and CH, phenotyped during the
drought periods and the recovery periods of two growing seasons. This revealed 10 ge-
nomic regions on LG1, LG3, LG6, LG7, and scaf_678 that explained more than 25% of the
phenotypic variation for DR per SNP–trait combination at various time points during and
after drought (Table 2). These SNPs could be used as molecular markers for DR breeding in
red clover, and may help to speed up breeding for DR. We uncovered 10 and 13 associations
in the Milvus-derived SNP set, explaining on average 18.4% and 25.5% of the phenotypic
variation for CC and CH, respectively. First, we identified an SNP in an ubiquitin–protein
ligase gene [39]. Ubiquitin–protein ligases are known to negatively regulate ABA-mediated
drought responses by ubiquitinating receptor-like protein kinases [39,40]. Furthermore,
we identified transcription factors such as MYB transcription factors. The MYB family
represents a large, functionally diverse class of proteins that act as transcription factors [42].
In plants, ABA regulates drought responses following a pathway that involves MYB tran-
scription factors [42]. In addition, we found associations with SNPs in drought-responsive
genes such as a DEAD-box ATP-dependent RNA helicase gene, and an SNP flanking a P-
loop nucleoside triphosphate hydrolase gene [38,49]. DEAD-box RNA helicases are a large
family of genes that play key roles in abiotic stress responses through regulating membrane
lipid peroxidation [38]. Their involvement in drought responses has been well documented
in species including Arabidopsis thaliana, rice, and wheat (Triticum aestivum) [38,50]. In addi-
tion, we found three associations with SNPs in genes encoding transmembrane proteins.
Although only few transmembrane proteins have been functionally characterized, various
transmembrane proteins have been shown to be involved in drought responses, e.g., in A.
thaliana, banana (Musa sp.) and tobacco (Nicotiana tabacum) [34]. Up to 30% of all eukaryote
genes are predicted to encode transmembrane proteins, fulfilling functions in signal trans-
mission, the transport of nutrients, energy conversion, and stress response [34]. Finally, we
found an interesting association with a flowering control gene, which may control plant
development and/or the timing of maturity. This association may explain why two distinct
drought response strategies exist in red clover, ‘drought tolerance’ and ‘drought survival’,
which largely coincide with the maturity type [22,41]. The set of accessions screened here
comprised both maturity types that may exhibit allelic variations in the flowering control
gene alongside their different drought response strategies.

Different associations were found for the different traits (CC and CH) and the different
growing seasons, with remarkably little overlap. In year 2, CC_189 and CC_195 were
associated with a single SNP in a Myb/SANT-like DNA-binding domain gene. One SNP–
trait association appeared in the two growing seasons: CH_178 and CH_189, respectively
phenotyped at the end of the drought periods in years 1 and 2, were associated with
SNPs located in a DEAD-box ATP-dependent RNA helicase gene. This poor overlap is
not entirely unexpected, as we showed in our previous study that CC and CH act largely
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independent, and that the overall phenotypic response of the screened red clover accessions
differed throughout the growing seasons, and between the two growing seasons [22].

Drought responses have also been studied in other grassland legumes. In lucerne, var-
ious putative genes related to drought responses were identified, including genes encoding
transcription factors, protein receptor-like kinases, DNA-binding domain proteins, and
phospholipase-like proteins [51–54]. In lucerne, DR is linked to the capacity for sustaining
photosynthetic activity, optimizing root development, enhancing water use efficiency, reg-
ulating osmotic potential, accumulating minerals (such as potassium) or organic solutes
like proline, and adjusting carbohydrate metabolism to favor the accumulation of soluble
sugars [55]. Further research is required to unravel the specific mechanisms driving DR
in red clover. An important remark in this context is that we conducted GWAS on allele
frequencies per accession, unveiling the substantial genetic variation across populations in
outcrossing species, such as red clover, and eliminating the necessity to sequence thousands
of individuals [17]. When sequencing resources are limited, population-level association
studies are a valuable and effective approach for identifying key SNPs. However, to val-
idate significant SNPs and thoroughly characterize allelic variation in candidate genes,
genotyping individual genotypes is essential [20].

We have identified a number of candidate genes that are associated with drought
responses in the whole set of 395 red clover EUCLEG accessions. However, it is likely that
many more drought response genes are present in these accessions. In GWAS, associations
that are present in a smaller fraction of accessions only, but uncommon in the total set
of accessions, are unlikely to be detected. Therefore, GWAS typically will produce false-
negative results, rather than false-positive results. Due to the large genetic diversity in the
set of accessions screened in this study, we expect that numerous, more rare associations
will be present in a limited set of (related) accessions only. To identify such associations,
a separate GWAS study should be conducted with the accessions of interest only. While
our study suggested a number of candidate genes, no functional validation was conducted.
Future research should perform functional validation of the candidate genes suggested in
this study, so that the specific mechanisms driving DR in red clover can be further studied.

5. Conclusions

The present study applied GWAS to investigate the genetic control of DR in the
EUCLEG red clover collection, relevant for European breeding initiatives. The GWAS
identified 48 significant SNP–trait associations for DR traits but depended on the red clover
genome assembly used for SNP calling. Based on these SNP–trait associations, we proposed
a total of 16 candidate genes for DR in red clover. Several genes known to be involved
in drought responses, such as a MYB transcription factor and an ubiquitin–protein ligase,
were found by our GWAS. Our results also suggest a link between a flowering control
gene, possibly related to the maturity type, and drought responses. A next step could be
the implementation of molecular markers for DR in practical breeding programs, which
would enable breeders to speed up breeding progress. The genomic regions uncovered in
this study can be further investigated to validate their potential contribution to genomic-
assisted breeding, or to further characterize important genes associated with DR. This
would help to uncover the physiological mechanisms driving DR in red clover.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15101347/s1, Supplementary Data File S1: Known genes
in a flanking region of ±50,000 bp from each SNP, together with their orthologs and functional
annotations in M. truncatula (if available) for all significant associations found using the HEN-17-
derived and the Milvus-derived SNP sets; Supplementary Data File S2: Known genes in a flanking
region of ±5000 bp from each SNP, together with their orthologs and functional annotations in
M. truncatula (if available) for all significant associations found using the HEN-17-derived and the
Milvus-derived SNP sets.
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