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A B S T R A C T

The aim of this study was to determine the relative contributions of various potential food sources of human 
listeriosis and to identify source-specific risk factors, at exposure level, for human Listeria monocytogenes (Lm) 
infection. To achieve this, available Lm isolates from human cases (n = 756) and food/animal sources (n = 950) 
from national surveillance systems in the Netherlands (2010− 2020) were whole genome sequenced. Addition
ally, questionnaire-based exposure data for human cases was collected. Source attribution analysis was per
formed using a Random Forest model based on core-genome multilocus sequence typing (cgMLST). Risk factors 
for human Lm infection of cattle, chicken and seafood origin were determined using beta regression analysis on 
the cgMLST-based attribution estimates. Results indicated that the 756 human Lm isolates were mainly attributed 
to cattle (62.3 %), chicken (19.4 %), and seafood (16.9 %). Specifically, fresh meat (86.2 %), including fresh 
bovine meat (43.7 %) and fresh chicken meat (39.3 %), accounted for most cases. These attributions stemmed 
from Lm contamination of either the food products or their production environments. Consumption of steak 
tartare and smoked salmon was associated with an increased risk of human Lm infections attributed to cattle and 
seafood, respectively, while no specific risk factors for chicken-borne listeriosis were identified. This study 
indicated that Lm isolates of cattle origin, particularly those from fresh bovine meat and associated production 
environments, are estimated to be the primary cause of human listeriosis in the Netherlands. This aligns with 
several other European source attribution studies on Lm. Moreover, the identified risk factors for human Lm 
infection from cattle (i.e. steak tartare) and seafood (i.e. smoked salmon) clearly indicated their attributable 
sources. This joint analysis of core genome and epidemiological data provided novel insights into the origins and 
transmission pathways of human listeriosis.

1. Introduction

Listeria monocytogenes (Lm), the causative agent of listeriosis, is 
widespread in the environment, including food-processing facilities 
where it can contaminate various food products, leading to foodborne 
disease (Allerberger and Wagner, 2010; Buchanan et al., 2017; Ferreira 
et al., 2014). Besides gastroenteritis, listeriosis may lead to sepsis, 
meningoencephalitis, abortion, still-birth and perinatal infection 
(Allerberger and Wagner, 2010; Koopmans et al., 2013). Lm most 
commonly causes (severe) illness among pregnant women and new
borns, elderly and immunocompromised people (Friesema et al., 2015; 
Pohl et al., 2019). Listeriosis incidence shows a stable trend in the 

European Union (EU), except during the Coronavirus Disease 2019 
(COVID-19) pandemic years. Moreover, Lm prevalence is generally low 
in food samples taken at manufacturing and distribution stage for 
verification of food safety microbiological criteria according to Com
mission Regulation (EC) 2073/2005 (EFSA and ECDC, 2023). While 
contamination with Lm can occur at any point in the food supply chain, 
its ability to replicate in refrigerated conditions and to form biofilms on 
food-processing surfaces makes Lm a highly persistent pathogen in the 
food industry. This is particularly problematic for pre-packed, ready- 
made and ready-to-eat (RTE) food products (Hurley et al., 2019), as 
these products are prepared in advance, with no further cooking or 
preparation step required to kill Lm before being consumed.
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Whole genome sequencing (WGS) can help elucidate bacterial pop
ulation structures and identify sources of zoonotic infections by 
comparing bacterial genomes from human patients with those from 
potential sources of infection, such as animals, food, and the environ
ment (Franz et al., 2016; Lupolova et al., 2019; Mughini-Gras et al., 
2021). In particular, core-genome Multi-Locus Sequence Typing 
(cgMLST) has been used for source attribution of foodborne pathogens 
like Campylobacter (Mughini-Gras et al., 2021), allowing for fine-scale 
differentiation of closely related strains as compared to conventional 
Multi-Locus Sequence Typing (MLST) (Cody et al., 2017; Maiden et al., 
2013; Sheppard et al., 2012). Recently, machine-learning (ML) methods 
have been used on sequence data of Lm to perform source attribution of 
human listeriosis (Castelli et al., 2023; Gu et al., 2023; Tanui et al., 
2022). This follows the successful application of ML methods based on 
sequence data for source attribution of other pathogens, such as Sal
monella (Lupolova et al., 2017; Munck et al., 2020), Campylobacter 
(Arning et al., 2021) and Shiga toxin-producing E. coli (STEC) (Lupolova 
et al., 2021).

In the Netherlands, WGS has been used as a routine typing method 
for human and food Lm isolates since 2017. A retrospective genomic 
analysis of human (clinical) and food Lm isolates from the Netherlands 
in 2010–2020 has recently been performed (Coipan et al., 2023). This 
analysis revealed a high degree of temporal persistence of food, human 
and mixed (food-human) isolate clusters based on cgMLST, with more 
than half of the clusters spanning over more than one year and up to 10 
years (Coipan et al., 2023). Of the 583 human Lm sequences that could 
be attributed to food sources using the Hamming distance, the largest 
proportion was closest to Lm sequences from bovine products (25 %), 
followed by fish/shellfish (24 %), chicken (21 %) and small ruminants 
(12 %) (Coipan et al., 2023). The associations between human and food 
Lm isolates seemed less strong than those between human and specific 
food producers, suggesting that Lm is predominantly an environmental 
microorganism (Coipan et al., 2023). While the study of Coipan et al. 
(2023) examined Lm genetic clustering, including temporal distribution 
of clusters and their links to food sources, it primarily provided a 
descriptive analysis of the molecular epidemiology of Lm in the 
Netherlands, and did not include model-based source attribution 
analyses.

In the present study, a source attribution analysis of Lm was per
formed using a ML modelling approach based on the same cgMLST data 
set from the Netherlands between 2010 and 2020 as in Coipan et al. 
(2023). Moreover, the cgMLST-based attribution results were combined 
with available exposure (risk factor) data for the attributed human 
cases. This approach helped identify possible source-specific risk factors 
for Lm infection, providing insights into the potential transmission 
routes involved. Therefore, this study presents findings from both source 
attribution and risk factor analyses, complementing the work of Coipan 
et al. (2023), to which we refer for additional information on the mo
lecular epidemiology of Lm in the Netherlands.

2. Methods

2.1. Data sources

In the Netherlands, since 2008, laboratory-confirmed cases of liste
riosis have been mandatorily reported for regional public health ser
vices, medical practitioners and/or diagnostic laboratories. Notified 
cases originate from routine diagnostic activities of people seeking 
medical attention with mainly invasive disease, i.e., the most severe 
infections occurring in the population. The public health service con
tacts the patient or their relatives and enquires, using a questionnaire, 
about underlying health conditions and medicine use, clinical course of 
listeriosis and exposure to possible risk factors in the 30days before 
disease onset. This information is then registered in a national database 
for infectious disease surveillance. Mothers and their newborns with 
listeriosis are notified separately, but they are linked to each other in the 

database and are considered as one case in the analyses. In parallel to the 
notification, diagnostic laboratories send the respective Lm isolates from 
invasive listeriosis cases to the Netherlands Reference Laboratory for 
Bacterial Meningitis (NRLBM) on a voluntary basis, which forwards 
them to the National Institute for Public Health and the Environment 
(RIVM) for WGS analysis as part of national surveillance activities of 
human Lm infections.

Sampling of animals and food products thereof for Lm detection is 
routinely performed, both randomly and risk-based throughout the food 
chain, by the Netherlands Food and Consumer Product Safety Authority 
(NVWA). Food samples collected by the NVWA are tested by Wagenin
gen Food Safety Research (WFSR) using methods equivalent to ISO 
11290-1 or 11290–2. For WGS, one colony per food Lm isolate, or a 
smear of colonies in case of a human Lm isolate, are used.

In this study, we used the same WGS data set used previously (Coipan 
et al., 2023). It includes all available Lm isolates obtained from human 
patients in 2010–2020 (n = 756) and from non-human isolates in 
2015–2020 (n = 950). The human isolates originated from patients with 
sepsis (24 %), meningitis (21 %), gastroenteritis (15 %), pneumonia (8 
%), neonatal infection (5 %), encephalitis (3 %) and endocarditis (2 %), 
whereas no clinical data was available for 34 % of patients. Note that the 
aforementioned percentages do not add up to 100 % because 91 patients 
had more than one of these conditions. Moreover, 10 % of cases were 
fatal.

The non-human isolates were obtained mainly from foods of animal 
origin (92 %), but also plant-based food products (2 %), animal feces (2 
%), and food products whose origin could not be determined unam
biguously (4 %) (Table 1). Because most non-human isolates originated 
from food products, for simplicity we refer generically to “food isolates” 
throughout the manuscript.

2.2. Listeria isolate whole genome sequencing

Since 2017, WGS has been adopted as the standard typing method for 
all Lm isolates collected within the Dutch national surveillance of human 
listeriosis and monitoring of Lm in food products. Lm isolates from 
human cases collected in 2016 have been sequenced retrospectively by 
the RIVM, while those collected in 2010–2015 have been sequenced 
within the ELiTE study (European Listeria Typing Exercise Extension to 
Whole Genome Sequencing) led by the European Centre for Disease 
Prevention and Control (ECDC) (Van Walle et al., 2018). For both 
human and food Lm isolates from 2016 to 2019, WGS was performed by 
a commercial sequencing company using Illumina HiSeq (2 × 100 bp) or 
Illumina NovaSeq (2 × 150 bp), and from 2020 onwards by the RIVM 
using Illumina MiSeq or NextSeq 500/550 (2 × 150 bp). All sequences 
were subjected to quality control and de novo assembled using an in- 
house developed pipeline (https://github.com/Papos92/assembly 
_pipeline). Raw data with phred score >30 and draft genomes with a 
total length of 2700,00 to 3,230,000bp, N50 > 10,000bp, GC% of 37.6 
to 38.2 %, and an average read coverage ≥10 were considered for 
further analysis. Yet, average read coverage was much higher: mean 153 
(range 37–267).

Determination of cgMLST (Ruppitsch et al., 2015) profiles was per
formed in Ridom SeqSphere+ version 5.0.0 (Ridom GmbH, Münster, 
Germany). All assembled genomes with 98.1–100 % of loci identified (i. 
e., <33 loci missing), were considered for further analyses.

2.3. Source categorization

Through the labelling information available in the metadata of food 
samples, food Lm isolates were categorized in three ways: 1) Source 1 
(S1) denoting the host in question, i.e. cattle, chicken, game (i.e., wild 
animals), pig, plants (vegetables, fruit, spices and herbs), small rumi
nants (goats and sheep), seafood (amphibians, fish and shellfish), and 
turkey; 2) Source 2 (S2) denoting the type of food product thereof, i.e. 
dairy, eel, fresh meat (any animal), frog, herring, lobster, mackerel, 
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mussel, plants, processed meat (any animal), salmon, shrimp, and trout; 
3) Source 3 (S3) denoting the food-processing establishments that pro
duced and/or packed the products (categorized through anonymized EC 
identification and health marks). An additional analysis was performed 
by combining S1 and S2 (hereafter referred to as S1 + 2).

In S2, processed meat was defined as any meat that has been modi
fied/transformed in order to improve its taste and/or extend its shelf life 
(through curing, fermenting, heating, salting or smoking). Processed 
meat did not include simple mechanical processes, such as cutting, 
grinding or mixing. Conversely, fresh meat was defined as any meat that 
has not been modified/transformed in order to improve its taste and/or 
extend its shelf life as described above: only simple mechanical pro
cesses, such as cutting, grinding or mixing were allowed.

The food isolates that could not be categorized unambiguously 
among the aforementioned food sources were excluded from the ana
lyses. These were mainly isolates from samples with only generic in
dications of their origin, such as “meat” or “sausage”. Also food sources 
with less than five isolates were excluded. This occurred only in S2 for 
amphibians, lobsters, mussels, and several food-processing establish
ments. No additional information about the food samples was available 
to further categorize them. In total, 947, 910, 484 and 904 food Lm 
isolates were included in the analyses for S1, S2, S3 and S1 + 2, 
respectively.

2.4. Random forest model

Source attribution analysis aimed at predicting the origin of human 
Lm isolates (i.e., to classify them) according to the aforementioned 
categorizations of food Lm isolates (S1, S2, S1 + 2, and S3). For each 
category separately, a Random Forest (RF) model was built using the 
Scikit (v1.3.0) library (Pedregosa et al., 2011) in Python (v3.9). All 1701 
loci of the cgMLST profiles were used as predictive features, excluding 
those with ≥5 % missing alleles; missing values were then imputed using 
K-Nearest Neighbors (KNN) algorithm. Each cgMLST allele was one-hot 
encoded using the OneHotEncoder function implemented in scikit-learn, 
yielding a total of 46,000 binary features. Features with the highest 
predictive power were selected by applying a multivariate unbiased 
variable selection method (Shi et al., 2018), as implemented in the py- 
MUVR package (v1.0.1), available at https://github.com/datarev 

enue-berlin/py-MUVR. A total of 1270, 833, 2619 and 492 binary fea
tures were selected for inclusion in the RF models for S1, S2, S1 + 2 and 
S3, respectively.

RF hyperparameters were optimized using a random search in a 
predefined search space. We performed 10-fold stratified cross- 
validation to assess the quality of hyperparameters combination by 
using the RandomizedSearchCV function from the Scikit-Learn library; 
optimum values were chosen based on model accuracy. Given the 
imbalanced data set, training sets in each fold were oversampled using 
the RandomOversampler function from the imblearn library (v0.11.0) 
(Lemaître et al., 2017). To evaluate the impact of this step, each model 
was also optimized without up-sampling the training data. Parameters 
optimized included the number of decision trees, the maximum depth of 
the tree and the number of features to consider when searching for the 
best split. The values of optimized hyperparameters for each model can 
be found in Supplementary Table 11. The overall performance of each 
optimized model was evaluated using precision, recall, F1 scores and a 
confusion matrix. All metrics were computed by aggregating the results 
from all cross-validation folds. For final source attribution of human 
isolates, RF models with optimized parameters were re-trained using all 
available food isolates. Final predictions obtained with RF models rely 
on the proportions of individual decision trees voting for each class (i.e., 
food source). The final classification of human isolates was determined 
by the most frequently voted class, considering all decision trees that 
compose the RF model.

Because most food Lm isolates were obtained from food samples (i.e., 
from production facilities or retail), rather than directly from animals on 
farms, contamination of these foods from their production environments 
cannot be excluded. Consequently, the attribution estimates refer 
broadly to either the foods or their production environments as potential 
sources.

2.5. Risk factor analysis

Using data collected with the questionnaires administered to human 
listeriosis cases, a risk factor analysis was performed to identify risk 
factors for infection with Lm isolates attributable to specific sources 
(based on the results from the RF model with the highest accuracy). This 
risk factor analysis was performed as described previously (Mughini- 

Table 1 
Number of Lm isolates from non-human samples categorized by host (columns) and food group therein (rows).

Total Chicken Cattle Seafood1 Small ruminants2 Turkey Plants3 Pig Game Unknown4

Fresh meat5 449 248 149 13 23 11 5
Processed meat6 199 68 110 2 11 7 1
Salmon 87 87
Trout 51 51
Herring 41 41
Unknown4 36 28 2 4 2
Plants3 20 20
Feces7 19 3 16
Dairy 12 12
Mackerel 12 12
Eel 10 10
Shrimp 10 10
Frog 2 2
Lobster 1 1
Mussel 1 1
Total 950 347 271 217 35 34 20 18 5 3

1 Includes amphibians, fish and shellfish.
2 Includes sheep and goats.
3 Includes, fruit, herbs, spices and vegetables.
4 Includes isolates that could not be classified unambiguously.
5 Any meat that has been modified/transformed in order to improve its taste and/or extend its shelf life (through salting, curing, fermentation, heating or smoking). 

Processed meat did not include simple mechanical processes, such as cutting, grinding or mixing.
6 Any meat that has not been modified/transformed in order to improve its taste and/or extend its shelf life as described above: only simple mechanical processes, 

such as cutting, grinding or mixing were allowed.
7 Isolates from feces samples from chicken and small ruminants.
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Gras et al., 2021). In brief, the attribution estimates for each human Lm 
isolate, as estimated by the RF model (i.e., the proportion of trees voting 
for a specific source, or class probability), were used as outcome vari
able. This allowed us to identify source-specific risk factors for human 
listeriosis, i.e., factors associated with increased or decreased risk for 
human Lm isolates to originate from specific food sources. We first 
performed a preliminary significance testing of 43 candidate risk factors 
using beta regression models with logit link, which is appropriate where 
the variable of interest is continuous but restricted to 0–1 (Ferrari and 
Cribari-Neto, 2004). All analyses were adjusted for patients’ age (cate
gorical variable, ≤64, 65–79, ≥80 years), sex (male or female, this latter 
in interaction with pregnancy status), and foreign travel history. Factors 
with a p-value <0.10 for the association with the outcome in the uni
variable analysis were selected for inclusion in a multivariable model 
built in stepwise fashion to retain only variables with a p-value <0.05. 
Variables were dropped one by one only if their exclusion from the 
model did not change the coefficients of the other covariates by >10 %. 
Collinear variables were identified before multivariable analysis using 
the variance inflation factor (VIF) and selection between collinear var
iables (VIF > 5) was made based on improved model fit as revealed by 
the Akaike information criterion (AIC). Risk factor analysis was per
formed in Stata version 16.0 (StataCorp, College Station, USA).

3. Results

3.1. Random Forest model validation

The mean model accuracy for S1 was the highest (0.794, Standard 
Deviation [SD]: 0.028), while the accuracy of S2, S1 + 2 and S3 were 
0.704 (SD: 0.043), 0.603 (SD: 0.043) and 0.617 (SD: 0.065), respec
tively. For all models, a decrease in mean accuracy was observed when 
up-sampling the training data (Table 2).

In S1, we found that chicken, seafood and cattle were classified with 
an F1 score higher than 0.8 (Table 3). For these three classes, recall 
values were higher than precision. The remaining classes showed lower 
F1 scores, ranging from 0.000 (game) to 0.689 (turkey), and precision 
surpassed recall in all cases. Game, plants and small ruminants were 
classified with low precision and recall, while swine and turkey had high 
precision values (0.778 in both classes), but low recall (0.389 and 0.618, 
respectively). Up-sampling led to an increase in recall only for the 
classification of turkey isolates, while recall for the other classes 
remained constant or decreased.

Confusion matrix for S1 (Table 4) revealed that 29.4 % (10/34) of 
turkey isolates were frequently misclassified as chicken, contributing to 
the observed decrease in precision and recall values for this class. 
Similarly, 48.6 % (17/35) of isolates from small ruminants were mis
classified as cattle and 25.7 % (9/35) as chicken. Comparable results 
were obtained with the model trained with up-sampled data (Supple
mentary Table 1).

In S2, dairy, fresh meat, herring, salmon and trout showed high F1 

scores, ranging from 0.779 (herring) to 0.869 (trout) (Supplementary 
Table 2). Processed meat showed low recall (0.442) and precision 
(0.568), despite being the second most numerous class (21.8 %, 199/ 
910). Up-sampling led to moderate increases in F1 scores for processed 
meat and eel. For all other classes, up-sampling led to lower F1 scores. 
Precision and recall for mackerel were 0 for both models, indicating that 
the minority class was never predicted correctly. Classification metrics 
for all classes were negatively influenced by fresh meat, which was the 
majority class (Supplementary Table 3). Moreover, 50.25 % (100/199) 
of isolates from processed meat were misclassified as fresh meat. 
Conversely, 11.3 % (51/449) of fresh meat isolates were misclassified as 
processed meat. Similar results were observed in the up-sampled model 
(Supplementary Table 4). In S1 + 2, salmon, dairy from cattle and trout 
were classified with the highest F1 scores (~0.8 for all classes), followed 
by herring and fresh meat from chicken (~0.7) (Supplementary 
Table 5). The other classes were classified with F1 scores below 0.6. 
Models with up-sampled data achieved similar classification scores in 
most classes (Supplementary Table 5). Isolates of most classes were 
commonly misclassified as fresh meat from chicken or cattle, which 
negatively impacts precision and recall values. In the model without up- 
sampling, confusion with these classes reached 59 and 109 isolates, 
respectively (Supplementary Table 6). Comparable outcomes were 
observed in the up-sampled model, although confusion with chicken 
(fresh meat) decreased to 76 isolates (Supplementary Table 7). Notably, 
dairy from cattle consistently avoided confusion with these specific 
classes.

In S3 model, producers including bbb, dddd, gg, nnnn, s, v, wwww 
and x, achieved classification F1 scores exceeding 0.8 (Supplementary 
Table 8). Notably, the 78 isolates from the predominant class (producer 
jj) were classified with an F1 score of 0.73. The remaining classes 
showed F1 score values below 0.67. Similar results were obtained after 
up-sampling the data. Confusion with the majority class impacted the 
classification metrics of 50 % (15/30) and 43 % (13/30) classes before 
and after up-sampling, respectively. Although the number of classes was 
high, clearly some producers (e.g., ddd, hhh, iii, kkk, q) were mainly 
misclassified with others (e.g., ggg/hhhh, mmm, kkk/mmm, mmm, 
hhhh, respectively) in both models with and without up-sampling 
(Supplementary Tables 9 and 10). The optimized hyperparameter 
values for each model obtained through 10-fold cross validation are 
reported in Supplementary Table 11.

3.2. Attributable sources of human listeriosis cases

RF models without up-sampling (S1, S2, S1 + 2 and S3) were 
employed to predict the source of human Lm isolates. A summary of the 
attributed sources is presented in Table 5. Human Lm isolates were 
attributed to five classes based on S1: most human Lm isolates were 
attributed to cattle (62.3 %, 471/756), chicken (19.4 %, 147/756) and 
seafood (16.9 %, 128/756). In S2, human Lm isolates were attributed to 
9 classes: fresh meat predominated (86.2 %, 652/756), followed by 
processed meat (7.4 %, 56/756) and salmon (3.8 %, 29/756). In S1 + 2, 
most human Lm isolates were attributed to fresh meat from cattle (43.7 
%, 331/756), fresh chicken meat (39.3 %, 297/756), salmon (6.2 %, 47/ 
756) and processed meat from cattle (5.8 %, 44/756). In S3, three 
producers (jj, dddd and rr) accounted together for most human Lm iso
lates (60.6 %, 460/756).

The RF class probability predictions of each human Lm isolate based 
on S1 are illustrated in Fig. 1. For the human Lm isolates classified as 
originating from cattle, the second most likely source was chicken (63.7 
%, 300/471). Conversely, for the majority of human Lm isolates 
attributed to chicken, cattle was the second most likely source (92.5 %, 
136/147). The second most probable sources for human Lm isolates 
attributed to seafood, plants or small ruminants were cattle and chicken 
as well (94.9 %, 131/138, for cattle and chicken combined).

The RF class probability predictions of human Lm isolates based on 
S2, S1 + 2 and S3 models are reported in Supplementary Figs. 1–3. In S2, 

Table 2 
Accuracy of Random Forest model validation with and without up-sampling.

Number of 
classes

Without up- 
sampling

With up-sampling

Mean 
accuracy

SD Mean 
accuracy

SD

Source 1 (“host 
level”)

8 0.794 0.028 0.765 0.035

Source 2 (“food 
product level”)

11 0.704 0.043 0.674 0.05

Source 1 + 2 (“host 
+ food product 
level”)

19 0.603 0.045 0.574 0.043

Source 3 (“producer 
level”)

30 0.617 0.065 0.547 0.061
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human Lm isolates classified as originating from fresh meat had pro
cessed meat as the second most likely source (84.35 %, 550/652). For 
most other isolates (89.5 %, 43/48), fresh meat predominated as the 
second most likely source. In S1 + 2, human Lm isolates classified as 
originating from fresh cattle meat had fresh chicken meat as the second 
most likely source (44.1 %, 146/331), followed by processed cattle 
meat, which appeared as the second most likely source in 29.39 % (99/ 
337) of isolates. Fresh cattle meat was the second most likely source in 
86.9 % (258/297) of isolates classified as originating from fresh chicken 
meat. For isolates classified as originating from processed cattle meat, 
fresh chicken meat was the second most likely source in 54.5 % of cases, 
thereby surpassing the number of cases in which fresh cattle meat was 
the second most probable class (36.4 %, 16/44). In S3, human Lm iso
lates estimated to originate from the main producers dddd, jj and rr had 
a generally homogeneous distribution of class probabilities across other 
producers.

3.3. Source specific risk factors

Model validation showed that S1 had the highest accuracy; thus, 
further exploration of potential risk factors for human listeriosis origi
nating from specific sources was conducted using class probabilities at 
host level. All 756 human listeriosis cases were included in the risk 
factor analysis. Mean class probabilities from the RF model for these 
cases were as follows: cattle 37.0 %, chicken 26.2 %, seafood 21.5 %, 
small ruminants 6.9 %, plants 2.6 %, pig 2.5 %, turkey 2.5 % and game 
0.7 %. Given the relatively low probabilities for sources other than 
cattle, chicken and seafood, risk factors were presented only for these 
three main sources.

As shown in Table 6, the only factor significantly associated with 
increased risk for a human Lm isolate to originate from cattle, was 
consumption of steak tartare, whereas consumption of smoked salmon 
was significantly associated with decreased risk for a human Lm isolate 

to originate from cattle. However, smoked salmon consumption was 
significantly associated with increased risk for a human Lm isolate to be 
attributed to seafood, whereas consumption of roast beef was signifi
cantly associated with decreased risk to originate from seafood. Finally, 
consuming steak tartare and soft cheese were significantly associated 
with decreased risk for a human Lm isolate to originate from chicken. No 
other significant factors were identified. Also the a-priori confounders 
(age, sex and travel history), as well as several underlying conditions 
and medicines, were not significant.

4. Discussion

In this study, RF-based modelling of cgMLST data was used to 
attribute human Lm isolates to various food sources in the Netherlands. 
In total, 756 human Lm isolates were attributed, with S1 (host level) 
source categorization providing the most accurate predictions. Yet, re
sults were consistent across attribution levels, with cattle accounting for 
most human Lm isolates (62.3 %) at host level (S1), fresh meat at food 
level (86.2 %, S2) and fresh bovine meat at host and food levels com
bined (43.8 %, S1 + 2). Other important sources were chicken and 
seafood in S1 (19.4 % and 16.9 %). These results aligned well also with 
those from the S2 and S1 + 2 models, as the sources ranking second and 
third after fresh meat in S2 were processed meat (7.4 %) and salmon 
(3.8 %), and those in S1 + 2 were fresh chicken meat and salmon (39.2 
% and 6.2 %), respectively. These results largely agree with those of 
Coipan et al. (2023) based on the same data where another approach 
was used based on Hamming distance clustering of Lm sequences, 
showing that most human Lm isolates might originate in almost equal 
proportions from cattle, chicken and seafood, and about 10 % from small 
ruminants.

In the present study, a picture emerged in which cattle, and partic
ularly fresh meat of bovine origin, appeared to be the predominant 
source of human listeriosis cases. In the Netherlands, a meta-analysis of 

Table 3 
Random Forest model validation statistics for host level classes (S1), with and without up-sampling.

Source Number of isolates Without up-sampling With up-sampling

Precision Recall F1 Precision Recall F1

Seafood1 217 0.813 0.880 0.845 0.803 0.866 0.834
Cattle 271 0.783 0.827 0.804 0.802 0.808 0.805
Chicken 347 0.839 0.859 0.849 0.862 0.793 0.826
Game 5 0.000 0.000 0.000 0.000 0.000 0.000
Plants3 20 0.417 0.250 0.313 0.294 0.250 0.270
Small ruminants2 35 0.300 0.171 0.218 0.171 0.171 0.171
Pig 18 0.778 0.389 0.519 0.538 0.389 0.452
Turkey 34 0.778 0.618 0.689 0.481 0.735 0.581
Average 0.588 0.499 0.530 0.494 0.502 0.492
Weighted Average 0.781 0.794 0.784 0.770 0.766 0.766

1 Includes fish, shellfish and amphibians.
2 Includes sheep and goats.
3 Includes vegetables, fruit, spices and herbs.

Table 4 
Confusion matrix of the Random Forest model for host level classes (S1) without up-sampling.

Seafood1 Cattle Chicken Game Plants3 Small ruminants2 Pig Turkey

Seafood1 191 13 7 1 3 2 0 0
Cattle 14 224 22 2 1 5 2 1
Chicken 17 21 298 0 2 5 0 4
Game 0 4 1 0 0 0 0 0
Plants3 6 2 7 0 5 0 0 0
Small ruminants2 2 17 9 0 0 6 0 1
Pig 4 4 1 0 1 1 7 0
Turkey 1 1 10 0 0 1 0 21

1 Includes amphibians, fish and shellfish.
2 Includes goats and sheep.
3 Includes fruit, herbs, spices and vegetables.
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source attribution studies based on subtyping and epidemiological data 
(Mughini-Gras et al., 2022), including an expert elicitation (Havelaar 
et al., 2008), also pointed to cattle as the main source of human liste
riosis. This is also in agreement with findings reported elsewhere. For 
instance, a study in eleven European countries in 2010–2013 using five 
different source attribution models based on different MLST and cgMLST 
schemes also identified cattle as the main source of human listeriosis 
(38–64 %) (Nielsen et al., 2017). In the UK, a study based on Lm sero
typing and amplified fragment length polymorphism (AFLP) data for 
2004–2007 also identified cattle as an important source, particularly 
RTE beef products (15 %), which were preceded by plant-based foods, 

including sandwiches and prepacked mixed vegetable salads (23 %), and 
finfish (17 %) (Little et al., 2010). Yet, for pregnancy-associated liste
riosis, beef (12 %), dairy (12 %) and finfish (11 %) were the most 
important sources (Little et al., 2010).

A source attribution study from Northern Italy based on MLST and 
Multi-Virulence Locus Sequence Typing (MVLST) data for 2005–2016 
attributed 50 % of listeriosis cases to dairy products, followed by poultry 
and pork (15 % each), and mixed foods (15 %) (Filipello et al., 2020). 
Moreover, dairy products and plants have been found to be important 
sources of human listeriosis in a more recent study in the United States of 
America (USA) that also used a ML model (logit boost) based on cgMLST 
data (Tanui et al., 2022). However, the training data set in this USA 
study had a higher number of Lm isolates from plant and dairy sources, 
which probably reflect the importance of these sources in certain 
countries and therefore the differences in attribution estimates between 
studies. Dairy products have also been emphasized as a primary source 
of human listeriosis in other studies (Greig and Ravel, 2009), and veg
etables are a known source of Lm, whose presence in, e.g., vegetable 
salads was confirmed as the cause of several documented Lm outbreaks 
(Ajayeoba et al., 2016; Ponniah et al., 2010; Stephan et al., 2015; Truong 
et al., 2021). Especially in the USA, foodborne outbreaks, including 
those caused by Lm, are often liked to produce items, including canta
loupes, celery, sprouts, and leafy greens among others (Cartwright et al., 
2013; Garner and Kathariou, 2016; Pomeroy et al., 2021), as well as 
frozen vegetables and fruit (Madad et al., 2023).

Cross-contamination of vegetables from fresh meat might also 
explain the observed predominance of fresh meat found in this study, as 
our analysis is not able to discern whether meat processing or prepa
ration was responsible for the Lm isolates of plant origin. This could have 
happened even before at primary production through spread/run-off of 
bovine manure in the environment causing Lm contamination of vege
tables (Martín et al., 2014; Muhterem-Uyar et al., 2015; Zwirzitz et al., 
2021). Cattle farm environments usually show high prevalence of Lm 
(Rocha et al., 2013), and ruminants do appear to contribute to ampli
fication and spread of Lm in the farm environment (Nightingale et al., 
2004). Poultry is also a recognized reservoir of Lm, and raw chicken 
meat can pose a risk to consumers when handled unhygienically or 
consumed insufficiently cooked (Dhama et al., 2013). Several studies 
have found high Lm prevalence in seafood and related environments, 
with RTE seafood in particular being most often involved as the source 
of outbreaks, although the concentrations of Lm in seafood are usually 
low (<10 colony-forming units [CFU]/g) (Jami et al., 2014).

Previous source attribution studies on listeriosis have included pre
dominantly RTE products (Filipello et al., 2020; Little et al., 2010; 
Nielsen et al., 2017), as these foods are usually consumed without 
additional processing by the consumer, and their properties and refrig
erated storage conditions often makes bacterial growth likely. This is 
less common for, e.g., campylobacteriosis or salmonellosis, which are 
often attributed at animal reservoir or primary production levels 
(Mossong et al., 2016; Mughini-Gras et al., 2014a; Mughini-Gras et al., 
2014b; Mughini-Gras et al., 2016; Mughini-Gras et al., 2021; Pires et al., 
2009; Pires and Hald, 2010). Ideally, control activities for foodborne 
pathogens in general should target reservoirs at primary production to 
prevent pathogen spread as soon as possible in the food supply chain. 
Indeed, effective management of cross-contamination at food- 
processing (e.g., sliced cold cut manufacturing), distribution (e.g., deli 
meat counters) and household level (e.g., food preparation/storage) is 
more achievable when contamination is minimized already at reservoir 
level (Filipello et al., 2020). This is particularly challenging for Lm, as it 
is still largely unclear how Lm is transmitted among animals, humans 
and the environment (Walland et al., 2015). Moreover, Lm is ubiquitous 
and can become established in food production facilities, resulting in 
(cross-)contamination of a variety of food products (Gupta and Adhikari, 
2022).

Here we performed attribution analyses at different levels (host, food 
product, and producer), but because most Lm isolates originated from 

Table 5 
Attribution estimates for human Lm isolates from the four Random Forest 
models fitted with different source categorizations.

Attributed human Listeria isolates

Number Percentage

Source categorization 1 (“host level”)
Cattle 471 62.3
Chicken 147 19.44
Seafood1 128 16.93
Small ruminants2 6 0.79
Plants3 4 0.53

Source categorization 2 (“food level”)
Fresh meat5 (any animal) 652 86.24
Processed meat4 (any animal) 56 7.41
Salmon 29 3.84
Trout 11 1.46
Feces (small ruminants)2 5 0.66
Dairy 2 0.26
Herring 1 0.13

Source categorization 1 + 2 (“host-food level”)
Fresh meat5 from cattle 331 43.78
Fresh meat5 from chicken 297 39.29
Salmon 47 6.22
Processed meat4 from cattle 44 5.82
Feces from small ruminants2 20 2.65
Trout 11 1.46
Plants 4 0.53
Herring 1 0.13
Dairy from cattle 1 0.13

Source categorization 3 (“producer level”)
jj 255 33.73
dddd 110 14.55
rr 95 12.57
ggg 67 8.86
ddd 56 7.41
bbbbb 54 7.14
ccc 21 2.78
uuuu 18 2.38
hhh 16 2.12
aaaa 15 1.98
hhhh 11 1.46
qq 11 1.46
gg 8 1.06
tt 5 0.66
mmm 4 0.53
q 3 0.4
xxxx 2 0.26
nnnn 2 0.26
iiii 1 0.13
j 1 0.13
kk 1 0.13

1 Includes amphibians, fish and shellfish.
2 Includes goats and sheep.
3 Includes fruit, herbs, spices and vegetables.
4 Any meat that has been modified/transformed in order to improve its taste 

and/or extend its shelf life (through curing, fermentation, heating, salting or 
smoking). Processed meat did not include simple mechanical processes, such as 
cutting, grinding or mixing.

5 Any meat that has not been modified/transformed in order to improve its 
taste and/or extend its shelf life as described above: only simple mechanical 
processes, such as cutting, grinding or mixing were allowed.
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food samples (from production facility or retail), we cannot exclude that 
they were the result of contamination from the production environment. 
Therefore, we cannot talk here about animal reservoirs of Lm. Consistent 
with this hypothesis, we found that our food product-level model (S2) 
struggled to classify isolates from processed meat, despite this being the 
second most abundant class. This finding is significant, as it indicates 
that the signal for source attribution diminishes when meat is processed. 
As contamination of production environments must have come from 
somewhere, it is conceivable that a given food production facility is 
(mainly) contaminated with Lm strains originally coming from the main 
raw materials processed. Our producer-based model (S3) was able to 
identify a few food producers processing different food categories that 
accounted altogether for most human Lm isolates. However, these re
sults should be interpreted with caution, as the S3 model exhibited the 
lowest accuracy among all models. Moreover, there are of course many 
other producers that were not in the sample. Previous analyses based on 
Lm genetic clustering based on cgMLST demonstrated stronger signals 
and a higher degree of temporal persistence of clusters at the food 
producer level compared to the food source level (Coipan et al., 2023). 
Moreover, some genetic clusters involved food categories from multiple 
food producers, which is compatible with the hypothesis of contami
nated raw materials, but some clusters also involved different food 
categories from the same food producers, which is compatible with 
cross-contamination (Coipan et al., 2023). Overall, our findings indicate 
that attributions at the food level can also be accurate and offer valuable 
insights, similar to those from previous studies (Coipan et al., 2023).

We also performed a risk factor analysis combining the attribution 
estimates from S1 with case exposure data to identify source-specific risk 
factors for human listeriosis of cattle, chicken and seafood origin. This 
approach has been applied previously for salmonellosis and campylo
bacteriosis, using either a source-assigned case-control (Mossong et al., 
2016; Mughini-Gras et al., 2014b; Mughini-Gras et al., 2012; Mughini- 
Gras et al., 2018; Rosner et al., 2017) or case-case (Bessell et al., 2012; 
Levesque et al., 2013; Mullner et al., 2010) study design. In these 

studies, groups of cases were first assigned to specific sources based on 
their majority attributable source and then the exposures of these groups 
of cases were compared with one another or with a control group. Here, 
instead, we modelled the attributions directly as an outcome variable 
with the corresponding exposure data for cases only, as described in a 
recent study (Mughini-Gras et al., 2021). This approach has the 
advantage to capture more fine-grain differences in associations and to 
optimize data use, as no observation is excluded due to human case 
grouping by majority attributable source. The combined source attri
bution and risk factor analysis allowed for the identification of possible 
pathways (in this case foodborne) by which the infecting Lm isolates 
might have reached humans, including specific food products involved 
in the transmission of Lm strains originating from specific animal 
sources.

We found that consuming steak tartare increased the risk for a 
human Lm isolate to originate from cattle, and consuming smoked 
salmon increased the risk for those Lm isolates to originate from seafood. 
Clearly, these associations are highly plausible. Steak tartare is a dish 
which main ingredient is raw ground (minced) beef, and smoked salmon 
is a fish preparation, typically a salmon fillet that has been cured and 
(hot or cold) smoked. Both these products have a high likelihood of 
being contaminated with Lm isolates originating from cattle and seafood 
(i.e., a source category including fish and shellfish here), respectively. In 
general, red meats and particularly beef, is more likely to be (inten
tionally) consumed raw or undercooked, and thus more likely to harbor 
viable Lm isolates due to incomplete cooking, than other types of meats. 
For instance, among 3165 control participants in a case-control study of 
human salmonellosis in the Netherlands, those reporting to have 
consumed raw or undercooked meat were 24.6 %, 8.8 % and 7.7 % for 
beef, pork, and chicken, respectively (Mughini-Gras et al., 2014b). 
Indeed, several popular dishes containing raw or undercooked meat are 
based on beef (e.g., carpaccio, steak tartare and similar dishes like 
yukhoe, filet Americain or other raw meat spreads like ossenworst and 
ciğ köfte, etc.). This is different for, e.g., chicken meat, which is most 

Fig. 1. Random Forest model class probability of each human Lm isolate (x-axis) attributed to sources (y-axis) according to host level source categorization (S1).
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often accidentally (rather than intentionally) consumed undercooked, 
although it can contribute substantially to human infections through 
cross-contamination and consumption of contaminated RTE products 
(Lomonaco et al., 2013). This might be also be a reason as to why no 
significant risk factors were identified for human infection with chicken- 
borne Lm isolates.

Only two protective factors were identified for human infection with 
chicken-borne Lm isolates: consumption of steak tartare and consump
tion of soft cheese. Protective factors were also found for human 

infection with Lm isolates of seafood origin (consumption of roast beef) 
and of cattle origin (consumption of smoked salmon). These associations 
mean that having consumed these products was associated with 
decreased risk for human Lm isolates to originate from these sources. 
Also these negative associations are highly plausible, as people 
consuming these products would be less at risk of infection with Lm 
isolates originating from other, different sources, as observed previously 
as well (Mossong et al., 2016; Mughini-Gras et al., 2014b; Mughini-Gras 
et al., 2021; Mughini-Gras et al., 2012; Mughini-Gras et al., 2018). 
Overall, these results indicate that the exposure matches the source in 
question. Because the exposure data on risk factors were independently 
generated (i.e., independent from the sequence data used for attribu
tion), the fact that they point to the most logical outcomes of the RF 
predictions can be seen as a validation of the attributions themselves. 
Moreover, the a-priori confounders included in the models (age, gender 
and travel history) were always non-significant, and the same was true 
for underlying diseases and medicine use, indicating that these are 
common risk factors to all Lm infections, regardless of the origin of the 
isolates.

Similar to other studies of this kind, this study has some limitations. 
Firstly, the risk factor analysis included only case exposure data. 
Although this eliminated issues related to, e.g. differential recall bias, 
selection bias, misclassification, etc. between cases and controls, it 
might be less sensitive in identifying common risk factors for listeriosis 
in general, such as underlying diseases among others. Other limitations 
were related to different isolation media and multiple hypothesis 
testing. However, this study was explorative in nature and meant to 
generate hypotheses rather than test them conclusively. As cases origi
nated from routine diagnostic activities of people seeking medical care, 
including isolates from invasive cases, they represent the most severe, 
symptomatic infections occurring in the population. Thus, the attribu
tions and source-specific risk factors identified here pertained to severe 
listeriosis cases. As data was limited to one country, the generalizability 
of findings is constrained by factors such as local eating habits, pro
duction practices and regulations. While there is substantial uniformity 
within the European Union (EU) regarding production practices and 
regulations thanks to European common market policies, EU Member 
State retain the flexibility to implement regulations in ways that suit 
their local contexts (e.g., varying testing frequencies for high-risk foods), 
and variations in production practices might require tailored risk man
agement approaches. Accordingly, the results from the present study 
agree to a major extent with those of studies in other European coun
tries, suggesting that the Dutch situation is unlikely to be unique.

There were also limitations inherent to ML methods. The training 
data set for S1 model exhibited class imbalance, with under- 
representation of plants, small ruminants, pig, turkey and game- 
derived isolates. This imbalance challenges the ability of the algorithm 
to correctly classify the minority classes, probably due to lack of infor
mation, class overlapping or small disjunct in the minority classes (Ali 
et al., 2015). Despite employing random up-sampling to artificially 
balance the training data set, no improvements in classification metrics 
were observed in most cases. Furthermore, optimal validation of all RF 
models would ideally involve testing on an external data set (Tanui 
et al., 2022). Finally, a previous study (Castelli et al., 2023) demon
strated superior performance in Lm source attribution using accessory 
genome content as input for a RF model compared to a cgMLST-based 
model. Although our S1 model outperformed the cgMLST-based RF 
model from Castelli et al. (2023), the potential benefits of incorporating 
accessory genome content into future studies warrant further 
evaluation.

In conclusion, cattle, and specifically fresh bovine meat, appeared to 
be the main attributable source of human listeriosis in the Netherlands, 
followed by (fresh meat from) chicken and seafood, particularly 
(smoked) salmon. These sources were identified using a RF-based source 
attribution analysis based on cgMLST data, suggesting that Lm isolates 
from either these foods or their production environments are likely main 

Table 6 
Factors associated with increased or decreased risk for human Lm isolates to 
originate from cattle, chicken or seafood.

N Attributable source probability 
Exponentiated β-coefficient (95 % Confidence Interval)

Cattle Chicken Seafood

Age group
≤64 years 196 Reference Reference Reference
65–79 

years
293 0.911 

(0.813–1.020)
1.046 
(0.919–1.191)

1.041 
(0.899–1.205)

≥80 years 195 0.949 
(0.839–1.073)

0.932 
(0.809–1.074)

1.010 
(0.861–1.185)

Unknown 72 0.628 
(0.357–1.107)

1.133 
(0.653–1.965)

1.603 
(0.816–3.152)

Sex
Male 391 Reference Reference Reference
Female 

(non- 
pregnant)

251 1.006 
(0.917–1.103)

1.062 
(0.956–1.180)

0.996 
(0.884–1.123)

Female 
(pregnant)

41 1.099 
(0.894–1.351)

1.015 
(0.800–1.288)

0.812 
(0.615–1.073)

Female 
(unknown 
pregnancy)

2 1.850 
(0.840–4.073)

0.706 
(0.261–1.910)

0.607 
(0.193–1.913)

Unknown 
sex

71 1.172 
(0.659–2.084)

0.854 
(0.486–1.502)

0.823 
(0.412–1.644)

Travel 
history

No 635 Reference Reference Reference
Yes 28 0.990 

(0.792–1.237)
0.883 
(0.679–1.147)

1.075 
(0.804–1.437)

Unknown 93 1.011 
(0.869–1.176)

1.018 
(0.853–1.214)

0.983 
(0.809–1.195)

Ate smoked 
salmon

No 362 Reference Reference Reference
Yes 164 0.842 

(0.754–0.939)**
ns 1.276 

(1.111–1.465)***
Unknown 230 1.065 

(0.865–1.312)
ns 0.937 

(0.705–1.247)
Ate steak 
tartare

No 448 Reference Reference ns
Yes 60 1.314 

(1.125–1.534)***
0.831 
(0.691–0.998)*

ns

Unknown 248 0.931 
(0.762–1.137)

0.944 
(0.763–1.168)

ns

Ate roast 
beef

No 399 ns ns Reference
Yes 109 ns ns 0.795 

(0.675–0.936)**
Unknown 248 ns ns 1.118 

(0.850–1.472)
Ate soft 
cheese

No 406 ns Reference ns
Yes 127 ns 0.871 

(0.761–0.997)*
ns

Unknown 223 ns 0.962 
(0.766–1.209)

ns

ns = not significant (p-value>0.05).
* p-value <0.05.
** p-value <0.01.
*** p-value <0.001.
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contributors to human Lm infection. Moreover, risk factors at exposure 
level for human Lm infection clearly pointed towards those food sources 
that were most likely involved as the origin of the Lm isolates in ques
tion. Indeed, these factors pertained to consumption of food products 
derived from the same hosts from which the human Lm isolates were 
likely to originate based on cgMLST. This further confirmed the reli
ability of the attribution estimates. Attributions were also generally 
consistent with foodborne transmission, as suggested by the risk factor 
analysis as well. Overall, we showed that risk factors for human Lm 
infection may differ depending on the attributable source and that a 
joint analysis of core genome and epidemiological data may provide 
insights into the origins and transmission pathways of human listeriosis.
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Radomski, N., 2023. Harmonization of supervised machine learning practices for 
efficient source attribution of Listeria monocytogenes based on genomic data. BMC 
Genomics 24, 560.

Cody, A.J., Bray, J.E., Jolley, K.A., McCarthy, N.D., Maiden, M.C.J., 2017. Core genome 
multilocus sequence typing scheme for stable, comparative analyses of <span 
class=“named-content genus-species” id=“named-content-1”>Campylobacter 
jejuni</span> and <span class=“named-content genus-species” id=“named- 
content-2”>C. coli</span> human disease isolates. J. Clin. Microbiol. 55, 
2086–2097.

Coipan, C.E., Friesema, I.H.M., van Hoek, A., van den Bosch, T., van den Beld, M., 
Kuiling, S., Gras, L.M., Bergval, I., Bosch, T., Wullings, B., van der Voort, M., 
Franz, E., 2023. New insights into the epidemiology of Listeria monocytogenes - a 
cross-sectoral retrospective genomic analysis in the Netherlands (2010− 2020). 
Front. Microbiol. 14, 1147137.

Dhama, K., Verma, A.K., Rajagunalan, S., Kumar, A., Tiwari, R., Chakraborty, S., 
Kumar, R., 2013. Listeria monocytogenes infection in poultry and its public health 
importance with special reference to food borne zoonoses. Pak. J. Biol. Sci. 16, 
301–308.

EFSA, ECDC, 2023. The European Union one health 2022 zoonoses report. EFSA J. 21, 
e8442.

Ferrari, S., Cribari-Neto, F., 2004. Beta regression for modelling rates and proportions. 
J. Appl. Stat. 31, 799–815.

Ferreira, V., Wiedmann, M., Teixeira, P., Stasiewicz, M.J., 2014. Listeria monocytogenes 
persistence in food-associated environments: epidemiology, strain characteristics, 
and implications for public health. J. Food Prot. 77, 150–170.

Filipello, V., Mughini-Gras, L., Gallina, S., Vitale, N., Mannelli, A., Pontello, M., 
Decastelli, L., Allard, M.W., Brown, E.W., Lomonaco, S., 2020. Attribution of Listeria 
monocytogenes human infections to food and animal sources in Northern Italy. Food 
Microbiol. 89, 103433.

Franz, E., Gras, L.M., Dallman, T., 2016. Significance of whole genome sequencing for 
surveillance, source attribution and microbial risk assessment of foodborne 
pathogens. Curr. Opin. Food Sci. 8, 74–79.

Friesema, I.H., Kuiling, S., van der Ende, A., Heck, M.E., Spanjaard, L., van Pelt, W., 
2015. Risk factors for sporadic listeriosis in the Netherlands, 2008 to 2013. Euro 
Surveill 20.

Garner, D., Kathariou, S., 2016. Fresh produce-associated listeriosis outbreaks, sources of 
concern, teachable moments, and insights. J. Food Prot. 79, 337–344.

Greig, J.D., Ravel, A., 2009. Analysis of foodborne outbreak data reported internationally 
for source attribution. Int. J. Food Microbiol. 130, 77–87.

Gu, W., Cui, Z., Stroika, S., Carleton, H.A., Conrad, A., Katz, L.S., Richardson, L.C., 
Hunter, J., Click, E.S., Bruce, B.B., 2023. Predicting food sources of listeria 
monocytogenes based on genomic profiling using random forest model. Foodborne 
Pathog. 20, 579–586.

Gupta, P., Adhikari, A., 2022. Novel approaches to environmental monitoring and 
control of listeria monocytogenes in food production facilities. Foods 11.

Havelaar, A.H., Galindo, A.V., Kurowicka, D., Cooke, R.M., 2008. Attribution of 
foodborne pathogens using structured expert elicitation. Foodborne Pathog. Dis. 5, 
649–659.

Hurley, D., Luque-Sastre, L., Parker, C.T., Huynh, S., Eshwar, A.K., Nguyen, S.V., 
Andrews, N., Moura, A., Fox, E.M., Jordan, K., Lehner, A., Stephan, R., Fanning, S., 
2019. Whole-genome sequencing-based characterization of 100 Listeria 
monocytogenes isolates collected from food processing environments over a four-year 
period. mSphere 4.

Jami, M., Ghanbari, M., Zunabovic, M., Domig, K.J., Kneifel, W., 2014. Listeria 
monocytogenes in aquatic food products—a review. Compr. Rev. Food Sci. Food Saf. 
13, 798–813.

Koopmans, M.M., Brouwer, M.C., Bijlsma, M.W., Bovenkerk, S., Keijzers, W., van der 
Ende, A., van de Beek, D., 2013. Listeria monocytogenes sequence type 6 and 
increased rate of unfavorable outcome in meningitis: epidemiologic cohort study. 
Clin. Infect. Dis. 57, 247–253.

Lemaître, G., Nogueira, F., Aridas, C.K., 2017. Imbalanced-learn: a python toolbox to 
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18, 
559–563.

Levesque, S., Fournier, E., Carrier, N., Frost, E., Arbeit, R.D., Michaud, S., 2013. 
Campylobacteriosis in urban versus rural areas: a case-case study integrated with 
molecular typing to validate risk factors and to attribute sources of infection. PloS 
One 8, e83731.

Little, C.L., Pires, S.M., Gillespie, I.A., Grant, K., Nichols, G.L., 2010. Attribution of 
human Listeria monocytogenes infections in England and Wales to ready-to-eat food 

L. Mughini-Gras et al.                                                                                                                                                                                                                          International Journal of Food Microbiology 427 (2025) 110953 

9 

https://doi.org/10.1016/j.ijfoodmicro.2024.110953
https://doi.org/10.1016/j.ijfoodmicro.2024.110953
https://github.com/jpaganini/listeria_source_attribution
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0005
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0005
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0005
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0010
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0010
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0015
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0015
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0020
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0020
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0020
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0025
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0025
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0025
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0025
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0030
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0030
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0030
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0030
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0035
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0035
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0035
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0040
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0040
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0040
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0040
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0045
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0045
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0045
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0045
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0045
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0045
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0050
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0050
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0050
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0050
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0050
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0055
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0055
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0055
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0055
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0060
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0060
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0065
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0065
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0070
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0070
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0070
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0075
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0075
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0075
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0075
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0080
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0080
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0080
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0085
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0085
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0085
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0090
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0090
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0095
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0095
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0100
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0100
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0100
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0100
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0105
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0105
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0110
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0110
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0110
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0115
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0115
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0115
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0115
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0115
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0120
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0120
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0120
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0125
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0125
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0125
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0125
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0130
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0130
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0130
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0135
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0135
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0135
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0135
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0140
http://refhub.elsevier.com/S0168-1605(24)00397-0/rf0140


sources placed on the market: adaptation of the Hald Salmonella source attribution 
model. Foodborne Pathog. Dis. 7, 749–756.

Lomonaco, S., Verghese, B., Gerner-Smidt, P., Tarr, C., Gladney, L., Joseph, L., Katz, L., 
Turnsek, M., Frace, M., Chen, Y., Brown, E., Meinersmann, R., Berrang, M., 
Knabel, S., 2013. Novel epidemic clones of Listeria monocytogenes, United States, 
2011. Emerg. Infect. Dis. 19, 147–150.

Lupolova, N., Dallman, T.J., Holden, N.J., Gally, D.L., 2017. Patchy promiscuity: 
machine learning applied to predict the host specificity of Salmonella enterica and 
Escherichia coli. Microb. Genom. 3, e000135.

Lupolova, N., Lycett, S.J., Gally, D.L., 2019. A guide to machine learning for bacterial 
host attribution using genome sequence data. Microb. Genom. 5.

Lupolova, N., Chalka, A., Gally, D.L., 2021. Predicting host association for Shiga toxin- 
producing E. coli serogroups by machine learning. Methods Mol. Biol. 2291, 99–117.

Madad, A., Marshall, K.E., Blessington, T., Hardy, C., Salter, M., Basler, C., Conrad, A., 
Stroika, S., Luo, Y., Dwarka, A., Gerhardt, T., Rosa, Y., Cibulskas, K., Rosen, H.E., 
Adcock, B., Kiang, D., Hutton, S., Parish, M., Podoski, B., Patel, B., Viazis, S., 2023. 
Investigation of a multistate outbreak of listeria monocytogenes infections linked to 
frozen vegetables produced at individually quick-frozen vegetable manufacturing 
facilities. J. Food Prot. 86, 100117.

Maiden, M.C.J., Jansen van Rensburg, M.J., Bray, J.E., Earle, S.G., Ford, S.A., Jolley, K. 
A., McCarthy, N.D., 2013. MLST revisited: the gene-by-gene approach to bacterial 
genomics. Nat. Rev. Microbiol. 11, 728–736.
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