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A B S T R A C T

Priming effects can influence the efficiency with which organic amendments sequester carbon in the soil. Yet,
few soil models currently include priming effects. Those models that do are often based on operationally defined
soil pools and implicitly allow only for positive priming effects. This limits the verification of model processes
with experimental data and hinders the optimization of our carbon sequestration strategies. To address these
shortcomings, we developed MiPrime, which offers a framework for the mechanistic modelling of organic
amendment impacts on microbially mediated transformation of carbon fractions that are quantifiable through
parsimonious soil extraction methods. MiPrime allows for assessment of organic amendment impacts on soil
carbon dynamics, including priming effects, by simulating changes in mineralized, microbial biomass, dissolv-
able, hot water extractable and insoluble carbon fractions in soil exogenous (i.e. organic amendment-derived)
and endogenous (i.e. soil) pools. After calibration of model parameters using Markov Chain Monte Carlo
methods to incubation data of three types of isotopically labelled roadside grasses (a fresh grass product, a
compost thereof, and a Bokashi-fermented product thereof), MiPrime was able to simulate changes in carbon
fractions of the soil with a good degree of accuracy for five compositionally complex organic amendments,
namely the three types of roadside grasses, as well as non-isotopically labelled wood chips and water weeds and
reeds. Validation of the model results with experimental data demonstrates that changes in total carbon were
very well predicted but that there is room for improvement in predicting mineralization rates and changes in
dissolvable, hot water extractable and insoluble carbon fractions in the soil endogenous pool. MiPrime thus offers
an initial step towards the mechanistic modelling of organic amendment impacts on measurable soil carbon
fractions and can operate as a new tool for designing effective carbon sequestration strategies and understanding
organic amendment impacts.

1. Introduction

Soil organic matter (SOM) constitutes the largest pool of terrestrial
carbon on Earth (Smith, 2012; Stockmann et al., 2013). It regulates
several soil functions related to agricultural production and climate
change mitigation and is, therefore, of considerable interest in soil
management (Magdoff and Weil, 2004; Lal, 2016). The accumulation of
SOM is a long-term process, but it can be facilitated through the appli-
cation of organic amendments (Goyal et al., 1999; Paustian et al., 1992).
Especially in agricultural settings, organic amendments can substitute or
supplement soil-deprived influxes of organic matter due to crop residue
removal and offset carbon lost through decomposition (Blanco-Canqui

and Lal, 2009; Diacono and Montemurro, 2011). Furthermore, by
contributing to accumulating and preserving SOM, organic amendments
can recuperate soils degraded under conventional agro-industrial prac-
tices and sustainably improve agricultural productivity (Karlen and
Rice, 2015; Lal, 2016).
However, our limited ability to accurately predict the impacts of

organic amendments inhibits the design and implementation of effective
and efficient organic amendment application strategies. Organic
amendment impacts are difficult to predict, as they are influenced by
both the quantity (i.e. application rate) and quality (e.g. chemical and
physical properties) of the amendments applied and their complex
interaction with local soil fauna andmicroorganisms. Themany relevant
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soil biotic and abiotic factors affecting these microbial responses further
complicate the prediction of organic amendment impacts (Schimel and
Schaeffer, 2012; Allison et al., 2013; Benbi and Khosa, 2014; Kirkby
et al., 2014; Li et al., 2014; Sierra et al., 2015).
Recent technological and methodological advances in soil and

organic matter analysis (Kögel-Knabner, 2017; Kögel-Knabner and
Rumpel, 2018) have shed new light onto the intricate relationships be-
tween soil carbon dynamics, organic amendment composition, micro-
bial properties and processes, and environmental factors (e.g. soil
texture, acidity and humidity; Schimel and Weintraub, 2003; Moorhead
and Sinsabaugh, 2006; Allison et al., 2010; Manzoni et al., 2018). These
insights have considerably improved our understanding and ability to
predict the impact of different organic amendments in the field situa-
tion. A new generation of soil carbon models has since been developed,
which include explicit representations of microbial processes and
mechanisms. These models regulate decomposition through, for
instance, second-order decay dynamics, such as in DEMENT (Allison,
2014), DAMM (Davidson et al., 2014), BAMS1 (Riley et al., 2014;
Dwivedi et al., 2017), CORPSE (Sulman et al., 2014), MIMICS (Wieder
et al., 2014), MEND (Wang et al., 2015a), PRIM (Guenet et al., 2016),
Millennial (Abramoff et al., 2018), ORCHIMIC (Huang et al., 2018), and
C-Stability (Sainte-Marie et al., 2021).
The new generation of decomposition models is a milestone in the

development of our understanding of soil carbon dynamics and our
ability to predict changes therein. However, important mechanisms
driving organic amendment impacts on soil carbon dynamics are often
still elusive and, therefore, also remain neglected in most of these new
models. For instance, changes in the decomposition rate of endogenous
organic matter following the application of organic amendments, i.e.
priming effects, are often neglected or not explicit. Yet, priming effects
can affect the efficiency with which soil carbon is sequestered (Wang
et al., 2022). Priming effects can, for example, be positive, accelerating
the decomposition of endogenous organic matter, or negative, reducing
its decomposition rates (Hamer and Marschner, 2005; Guenet et al.,
2010; Bastida et al., 2017; Yu et al., 2020; Kok et al., 2022). For the
purpose of carbon sequestration and building SOM stocks, negative
priming effects are desirable. The direction and magnitude of priming
effects vary for different organic amendments, yet relationships of this
variation with the quantity and quality of the organic amendments and
other soil properties remain difficult to establish (Wang et al., 2015b).
Consequently, priming effects are poorly represented in soil models.
Where priming effects are included, it is often only implicitly, allowing
for solely positive priming effects through the natural increase in the
biomass pool as a result of a great abundance of feeding substrate. These
model limitations constrain their potential use for designing and
assessing optimal organic amendment application strategies.
In addition to predicting organic amendment impacts in the field

situation (practical application value), models can also offer important
insight into the potential biogeochemical mechanisms that drive
changes in soil properties (scientific value). Limiting a model’s potential
value in this regard, however, is the frequent adherence to operationally
defined characterizations of organic matter quality, i.e. as fractions of
‘slow’, ‘fast’ and ‘passive’ carbon. While simplifying model testing,
improving tractability and thereby benefiting model application, oper-
ationally defined organic matter pools diminish a model’s potential
contribution to developing our understanding of carbon dynamics
(Elliott et al., 1996; Abramoff et al., 2018). Despite calls to ‘model the
measurable’ and ‘measure the modellable’ already in the previous cen-
tury (Christensen, 1996; Elliott et al., 1996), operationally defining
organic matter fractions remains popular in model development. This is
exemplary of a growing “disconnect between those scientific commu-
nities working to understand the chemistry of SOM on a mechanistic
basis and those that are more concerned with applied questions of land
management and have a need for operational metrics” (Kleber and
Johnson, 2010).
Defining pool sizes, turnover rates, and transfer coefficients based on

metrics that can be directly measured or acquired from empirical data
allows models to retain their field application potential while simulta-
neously providing much more insight into the underlying mechanisms
that drive changes in the soil (Todd-Brown et al., 2012). Empirical
findings, for instance, have demonstrated how the directly-measurable
chemical heterogeneity of organic matter inputs are directly related to
the degree and direction of priming effects (Chen et al., 2019; Liu et al.,
2020; Kok et al., 2022). Distinguishing differences in organic matter
quality based on suchmeasurable biogeochemical fractions (Wang et al.,
2015b) and/or potentially their depolymerization continuums
(Sainte-Marie et al., 2021) offers more meaningful insight into the in-
teractions between microorganisms and organic matter chemistry than
defining these relationships based on somewhat ambiguous pools of
‘labile’ and ‘recalcitrant’ carbon. Furthermore, as changes in different
organic matter quality pools can be monitored throughout decomposi-
tion, such characterizations also allow for more robust validation of
model processes. Yet, all of the aforementionedmodels that allow for the
explicit assessment of priming effects, i.e. PRIM and ORCHIMIC, do so
only through operationally defined characterizations of organic matter
fractions. These models follow a traditional CENTURY model frame-
work, distinguishing between differences in organic matter quality
based on ‘metabolic’ and ‘structural’ fractions for organic amendments
and ‘active’, ‘slow’ and ‘passive’ fractions for soil endogenous organic
matter (Parton et al., 1987; Guenet et al., 2016; Huang et al., 2018).
To address these shortcomings, we present the ‘MIcrobially mediated

PRIming effects model with MEasurable organic carbon pools’
(MiPrime). MiPrime allows for the simulation and prediction of the
immediate, microbially mediated impacts of different organic amend-
ments on soil carbon dynamics, including their priming effects, wherein
changes in different measurable organic matter fractions are largely
verifiable following parsimonious organic matter fractionation proced-
ures. Thereby, MiPrime contributes to bridging the gap between applied
and theoretic soil sciences, operating as a new potential tool for both
designing carbon sequestration strategies and understanding the
mechanisms driving organic amendment impacts.

2. Materials and methods

2.1. Model design

MiPrime employs a multi-compartmental framework that distin-
guishes between endogenous organic matter (EN) pools already present
in the soil and exogenous organic matter (EX) pools recently applied in
the form of litter or an organic amendment. The organic matter quality
of these pools is subsequently described based on the carbon concen-
trations in their readily dissolvable (D), hot-water extractable (H), and
insoluble/acid non-hydrolysable (I) fractions (Fig. 1). These fractions in
the EN and EX pools are experimentally measurable, where pool sepa-
ration can be realized through well-established isotope labelling tech-
niques (Amelung et al., 2008), and organic matter quality fractionation
can be achieved largely by applying a series of chemical extraction
protocols to isolate D, H and I (further described in Section 2.2.; Kok
et al., 2022).
In the MiPrime model, the decomposition of D, H and I fractions (see

Fig. 2) in both endogenous and exogenous organic matter is controlled
by biological processes following Michaelis-Menten-type functions.
Over time, as soil microorganisms interact with each fraction, a portion
of its mass is incorporated into microbial biomass, mineralized in the
form of microbial-growth respiration, and transformed into extracellular
microbial products (e.g. exoenzymes, polymers, proteins and/or muci-
lages). Priming effects are modelled to occur as a result of an increase in
microbial activity and the enzymatic preference for either endogenous
or exogenous carbon depending on the difference in concentration of the
H fraction between the exogenous and endogenous pools (Kok et al.,
2022). Model parameter values and uncertainties were determined
through Bayesian inference and Markov Chain Monte Carlo methods
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applied to data derived from a 160-day incubation experiment applying
natural, isotopically labelled organic amendments (Kok et al., 2022). We
present a comparison of simulated versus observed data from a dataset
for different amendments of the same incubation experiment and
perform a parameter sensitivity analysis using Fourier Amplitude
Sensitivity Testing (FAST).
MiPrime recalculates the mass of each organic matter fraction, per

pool, at a daily time step over the course of decomposition. A change in
the mass of each fraction is determined based on its state in the previous
time step and the difference between its influxes and effluxes. These
influxes and effluxes are defined differently per EX and EN pool, as, over
time, EX organic matter is allowed to gradually transform into EN
organic matter, but not the other way around (Fig. 1). This trans-
formation from EX to EN occurs through the assimilation of EX carbon

Fig. 1. MiPrime conceptual design. Solid lines illustrate carbon fluxes, and dotted lines illustrate moderation effects. Components with solid boundaries indicate
parametrization based on measured data. Den, Hen, and Ien,(1,2) and Dex, Hex, and Iex,(1,2) represent dissolvable, hot water extractable, and insoluble carbon fractions
(Ien/ex,1 being the rapid subcomponent and Ien/ex,2 the slower one) of the endogenous (EN) and exogenous (EX) organic matter pools, respectively; E represents the
extracellular microbial products mediating the decomposition of D, H and I fractions within each pool; Bact is the total active microbial biomass; Bdorm is the dormant
microbial biomass; and Mineralized is the sum of accumulated microbial growth (CO2,G) and maintenance (CO2,M) respiration.

Fig. 2. Conceptual illustration of the breakdown of different modelled carbon fractions and their components, as well as the parameters relevant to their initiali-
zation. The sizes of the boxes are arbitrary and do not reflect the actual sizes of these fractions and components.
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Table 1
Functions in the MiPrime model. Parameters are described in Table 2.

Flux description Equation

Decomposition of exogenous pool carbon fractions. F ∈ {D,H, I}

Fexdec = qF ⋅ Fex⋅
(
EF⋅

(
1∓ AF

))

(
EF⋅

(
1∓ AF

))
+ KF

(Eq. 8)

Decomposition of endogenous pool carbon fractions. F ∈ {D,H, I}

Fendec = qF ⋅ Fen⋅
(
EF⋅

(
1 − AF

))

(
EF⋅

(
1 − AF

))
+ KF

(Eq. 9)

Microbial affinity factor for fraction F ∈ {D,H, I} and in each pool
P ∈ {ex, en}.

AF = τ ⋅
[
Hex

Tex

/(
Hex

Tex +
Hen

Ten

)

− 0.5
]γ

And TP =
∑

FP (Eq. 10)

Dormancy (Bact
to dorm) and reactivation (B

dorm
to act) between active (Bact) and dormant (Bdorm) microbial biomass.

Bact
to dorm =

(

1 −
Tex + Ten

Tex + Ten + Kdorm

)

⋅ αB⋅Bact (Eq. 11)

Bdorm
to act =

(
Tex + Ten

Tex + Ten + Kdorm

)

⋅ αB⋅Bdorm (Eq. 12)

Respiration by active biomass (Bact
resp

)
during substrate consumption (Bact

resp G) and base maintenance (Bact
resp m). F ∈ {D,H, I}

Bact
resp =Bact

Resp G + Bact
Resp m (Eq. 13)

Bact
resp G =

∑

F
(1 − ηF) ⋅ (1 − ηE) ⋅

(
Fexdec + Fendec

)
(Eq. 14)

Bact
resp m = pR⋅mr⋅Bact (Eq. 15)

Respiration by dormant biomass (Bdorm
resp

)
for base maintenance.

Bdorm
resp = pR ⋅mr⋅Bdorm⋅β (Eq. 16)

Mortality of active (Bact
mort) and dormant biomass (Bdorm

mort )
Bact
mort =(1 − pR − pE) ⋅mr ⋅Bact (Eq. 17)

Bdorm
mort =(1 − pR − pE) ⋅mr ⋅Bdorm⋅β (Eq. 18)

Extracellular product synthesis during substrate consumption (EF
Syn G) and basal extracellular product synthesis as maintenance (EF

Syn m)
EF
Synth =EF

Syn G + EF
Syn m (Eq. 19)

EF
Syn G =(1 − ηF) ⋅ ηE⋅

(
Fexdec + Fen

dec

)
(Eq. 20)

EF
Syn m = 0.33⋅pE⋅mr⋅Bact (Eq. 21)

Extracellular product loss. F ∈ {D,H, I}

EF
loss = rE⋅EF (Eq. 22)

D.D.Kok
etal.
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into microbial biomass and subsequent transformation into abiotic EN
organic matter as microbial necromass due to microbial mortality. A
system of non-linear differential equations was constructed to describe
the changes in the organic matter fractions for EX (Eq. (1)) and EN pools
(Eq. (2)), microbial biomass that is active (Eq. (3)) and dormant (Eq.
(4)), microbial extracellular products (Eq. (5)), microbial respiration
(Eq. (6)), and primed carbon (Eq. (7)).

dFex

dt
= − Fex

dec + Fex
in Fex ∈ {Dex,Hex, Iex} Eq. 1

dFen

dt
= − Fen

dec +
(
Bact
mort +Bdorm

mort
)
• pB,F +0.33*EF

loss Fen ∈ {Den,Hen, Ien}

Eq. 2

dBact

dt
=

∑

F=D,H,I

(
Fex
dec + Fen

dec
)
− Bact

to dorm +Bdorm
to act − Bact

resp −
∑

F=D,H,I
EF
synth Eq. 3

dBdorm

dt
=Bact

to dorm − Bdorm
to act − Bdorm

resp Eq. 4

dEF

dt
= EF

synth − EF
loss Eq. 5

dCO2
dt

=Bact
resp + Bdorm

resp Eq. 6

dPE
dt

=
dCO2en,amended

dt
−

dCO2en,control

dt
Eq. 7

The functions describing these changes are summarized in Table 1,
with 31 associated parameters, of which 28 are fitted and 3 are fixed,
whose description and prior information are summarized in Table 2.
Principally, the decomposition of each fraction is calculated by applying
a reverse Michaelis-Menten function (Eq. (8), Eq. (9)), which is
furthermore modified by the affinity of extracellular products (Eq. (10))
for either the EX or EN pool based on the difference in the hot-water
extractable carbon concentration of each pool (Kok et al., 2022). Pro-
portions of the microbial biomass that is active or dormant depends on
the total concentration of organic carbon (Eq. (11), Eq. (12)). Respira-
tion rate of active microorganisms (Eq. (13)) is driven by the rate of
decomposition (Eq. (14)) and microbial maintenance requirements (Eq.
(15)), whereas respiration rates for dormant microorganisms are only
driven by their maintenance (Eq. (16)). Microbial mortality is defined as
constant fraction of the total maintenance requirement for active (Eq.
(17)) and dormant microbial populations (Eq. (18)). By attributing a
constant use-efficiency to each carbon fraction, the model allows for a
dynamic assessment of amendment use-efficiency by microbes based on
differences in amendment composition and how this composition
changes over the course of decomposition. To avoid over-
parameterization and equifinality issues, we chose to fix three parame-
ters. These were selected because they are of relatively limited interest
in this study (β: dormant microbial modifier; r0: initial proportion of
active versus dormant microorganisms) and/or are easily deduced from
the data (SI2,ex: size of the I2 fraction in the amendments; deduced from
Appendix Figure B2). The 0.05 modifier for dormant microbes was
picked to be within the range for dormant versus active ratio of main-
tenance respiration reported by Wang et al. (2014; 0.025–0.351). The
MiPrime model is largely inspired by MEND and YASSO (Liski et al.,
2005), from which we have adopted and modified many functions to fit
the representation of organic matter and our interpretation of microbial
organic matter interactions.
MiPrime models the decomposition of total organic carbon as the

sum of changes in individual soil carbon solubility fractions (D, H and I).
These fractions, however, are not chemically homogeneous and can
contain components that are differently decomposable by microorgan-
isms. Experimental findings show the I fraction consists of a rapidly
decomposing component and a much slower one (Fig. 5). To account for
this heterogeneity, MiPrime separates the I pool into two parts, I1 and I2
each with its own decomposition parameters. A conceptual illustration
of the further componential breakdown of the carbon fractions in the
MiPrime model is presented in Fig. 2.
Due to lacking laboratory procedures for measuring the sizes of these

components, the MiPrime model initializes them by fitting parameters
for i) the microbial biomass attributed to each Den, Hen or Ien fraction
(pBD, pBH, pBI,1 and pBI,2

)
, ii) the initial extracellular product concen-

trations in D and H (pED, pEH) and iii) for the size of the I2 fraction in the
soil pool (pIen,2). The size of the I2 fraction in the amendment pool was
manually set based on observed asymptotes for the short-term decom-
position of I around 1800 μg C g− 1 soil for our three amendments
(Fig. 5). The following equations define MiPrime’s estimation of

Table 2
Parameters and prior information for the MiPrime model. U(a,b) denotes a
uniform distribution between limits ‘a’ and ‘b’.

Parameter Description Prior
range

Unit

qD Maximum specific decomposition rate for
D

U(0, 1) μg C μg− 1

soil d− 1

qH Maximum specific decomposition rate for
H

U(0, 1) μg C μg− 1

soil d− 1

qI,1 Maximum specific decomposition rate for
I1

U(0, 1) μg C μg− 1

soil d− 1

qI,2 Maximum specific decomposition rate for
I2

U(0,
0.01)

μg C μg− 1

soil d− 1

KD Half-saturation constant for D
decomposition

U(0,
500)

μg C g− 1 soil

KH Half-saturation constant for H
decomposition

U(0,
500)

μg C g− 1 soil

KI,1 Half-saturation constant for I1
decomposition

U(0,
500)

μg C g− 1 soil

KI,2 Half-saturation constant for I2
decomposition

U(0,
5000)

μg C g− 1 soil

ηD Yield efficiency for decomposition of D U(0, 1) μg C μg− 1 C
ηH Yield efficiency for decomposition of H U(0, 1) μg C μg− 1 C
ηI,1 Yield efficiency for decomposition of I1 U(0, 1) μg C μg− 1 C
ηI,2 Yield efficiency for decomposition of I2 U(0, 1) μg C μg− 1 C
ηE Enzyme production efficiency from

decomposition
U(0, 1) μg C μg− 1 C

mR Specific basal maintenance rate of Bact U(0, 1) μg C
μg− 1 C h− 1

pE Fraction of maintenance mR for
production of E

U(0, 1) –

pR Fraction of maintenance mR for
respiration

U(0, 1) –

pM Fraction of maintenance mR for mortality U(0, 1) –
β Dormant microbial maintenance modifier 0.05 –
rE Loss rate of E U(0,

0.5)
μg C
μg− 1 C d− 1

Kdorm Half-saturation constant for total organic
matter influencing reactivation and
dormancy

U(0,
5000)

μg C g− 1 soil

pBD Fraction of biomass that is D U(0, 1) μg C μg− 1 C
pBH Fraction of biomass that is H U(0, 1) μg C μg− 1 C
pBI,1 Fraction of biomass that is I1 U(0, 1) μg C μg− 1 C
pBI,2 Fraction of biomass that is I2 U(0, 1) μg C μg− 1 C
τ Sensitivity of E to calculated affinity for

ex or en pool
U(0, 2) –

γ Trend modifier to the influence of
concentration differences in H on affinity

U(0, 1) –

Parameters for initialization
r0 Initial proportion of active vs. dormant

microbes;
0.9 –

pED Initial fraction of extracellular product in
DN

U(0, 1) –

pEH Initial fraction of extracellular product in
HN

U(0, 1) –

SI2,ex Total size of the I2 fraction in the
amendments.

1800 μg C μg− 1 C

pI2,en Proportion of soil I that hardly
decomposes on short timescales (I2)

U(0.9,
1)

μg C μg− 1 C
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decomposable fractions based on these considerations (measured data is
emboldened):

Den =
[
Den,meas − B • pBD

]
• [1 − pEED] Eq. 23

Hen =
[
Hen,meas − B • pBH

]
• [1 − pEEH] Eq. 24

Ien = Ien,1 + Ien,2 Eq. 25

Ien,1=
[
Ien,meas*

(
1 − pI2,en

)
− B • pBI,2

]
Eq. 26

Ien,2=
[
Ien,meas*pI2,en − B • pBI,1

)]
Eq. 27

Dex =Dex,measured Eq. 28

Hex =Hex,measured Eq. 29

Iex = Iex,1 + Iex,2 Eq. 30

Iex,1=
(
Iex,measured − SI2,ex

)
Eq. 31

Iex,2 = SI2,ex Eq. 32

2.2. Experimental data for model calibration and validation

Model data for calibration and validation was derived from an
experiment described in Kok et al. (2022). In summary, Podzol soil was
acquired from an agricultural site in Haarlo, the Netherlands (52.10 N,
6.59 E) and incubated at 50 g per pot with 0.5 g (d.w.e.) of organic
amendments with isotopically enriched carbon (13C), namely i) roadside
grasses, ii) compost from roadside grasses and iii) Bokashi-fermented
roadside grasses, as well as with organic amendments of natural
isotope abundance: iv) wood chips and v) waterway weeds and reeds.
All amendments were cut or sieved to reduce their size to a maximum of
2 cm. Triplicate (n = 3) incubation pots, for each organic amendment
treatment and each sampling moment (t = 3, 7, 16, 30, 60 and 150
days), were destructively sampled in their entirety to determine i) total
microbial biomass carbon by chloroform-fumigation (Brookes et al.,
1985; Vance et al., 1987), ii) carbon respiration activity by headspace
sampling, and organic carbon fractions that are iii) dissolvable (D),
hot-water extractable (H), and insoluble (I) by stepwise, wet-chemical

Fig. 3. Outline of the wet-chemical extraction procedure.

Table 3
Endogenous and exogenous carbon concentrations per carbon fraction at the start of the experiment.

Endogenous Exogenous

Soil Calibration Amendments Validation Amendments

Base Unprocessed Grasses Compost Grasses Bokashi Grasses Wood Chips Waterway Residues

CTOT [μg g− 1 soil] 16,528± 536 3668± 143 2515± 38 3695± 122 4699± 66 3788± 83
CI [μg g− 1 soil] 1,5545± 544 2946± 147 1934± 43 3350± 123 4389± 66 3427± 84
CH [μg g− 1 soil] 929± 93 298± 16 331± 19 168± 3 265± 4 239± 6
CD [μg g− 1 soil] 54± 4 424± 30 249± 7 178± 7 45± 3 122± 9
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extraction, as outlined in Fig. 3.
Total carbon concentrations were calculated based on measurement

of the initial carbon concentration minus cumulative carbon respiration
rates. Priming rates were calculated as the difference in endogenous
carbon respired between the amended soils and an unamended control
soil. Isotopically labelled organic amendments were applied to get
model calibration data. Non-labelled organic amendments were applied
to get model validation data for prediction of total soil carbon, respired
carbon, microbial biomass, dissolvable, hot-water extractable and
insoluble carbon. Priming effects could not be validated as these cannot
be calculated from organic amendments that are not isotopically
labelled. Concentrations of exogenous and endogenous carbon in the
incubation pots at the start of the experiment are summarized in Table 3.

2.3. Bayesian calibration of model parameter values

Model parameters were calibrated through Bayesian methods using
the calibration dataset. Each model parameter was assigned an
approximated prior probability distribution p(θ) that was then combined
with a multi-objective Gaussian likelihood function to provide a poste-
rior distribution p(θ|y)∝p(θ)p(y|θ) = p(θ)

∏
ip
(
yi|θ

)
; where observed data

y constitutes our measured properties, namely the total, endogenous and
exogenous derived carbon in biomass, and D, H, I, fractions, the
mineralized pool and observed priming effects. Priming effects were
attributed extra weight (factor 5) to ensure its prioritization in the
parametrization. With 19 calibration variables of equal weight, the

model attributes a ~4% interest ( 119

)

to getting the trend right for each.

Increasing the weight of the priming variable in the likelihood function

by a factor of five results in a 22% interest ( 5
18+1*5

)

in getting priming

right and 78% for the combined other variables. For fractional param-
eters (e.g. microbial biomass composition pBD, pBH, etc.), values were
used as parameters of a Dirichlet distribution whereby the mean values
of these Dirichlet distributions (which always sum to 1) were taken as
the actual parameter values implemented in the model. In the parame-
trization, the prior distribution of each model parameter was kept
general and non-informative to attribute maximum power to the
sampler and the data in determining the posterior. To derive useful in-
formation from our posterior distribution, we evaluated the posterior
probability density function by Markov Chain Monte Carlo (MCMC)
methods. By generating an ensemble of ten sampling chains that sto-
chastically explore the parameter space through a random walk, we
collected solutions of stable frequency to steer the walk in the direction
of the posterior’s better-fitting parameter values. To steer this random
walk, we applied the DiffeRential Evolution Adaptive Metropolis with
discrete sampling (DREAM) algorithm, a metropolis-type sampler spe-
cifically designed to explore complex, potentially multimodal, posterior
distributions for models of highly nonlinear water, energy, nutrient, and
vegetation processes (Vrugt et al., 2008; Vrugt and Braak, 2011). The
DREAM sampler updated the state of each sampling chain with each
draw, until convergence was achieved for each parameter across the ten
chains. This convergence was tested through the Gelman-Rubin diag-
nostic, where convergence is considered achieved at diagnostic values
lower than 1.01 (Vehtari et al., 2021). Once all parameters for all
sampling chains had converged, 1000 additional samples were drawn.
We then determined the final parameter distributions based on samples
with the highest likelihoods (top 10%) drawn after convergence. Finally,
subsequent to parameter inference, we evaluated parameter sensitivity
through a Fourier Amplitude Sensitivity Test (FAST). The Bayesian
inference and sensitivity tests were implemented in Python using the
Statistical Parameter Optimization Tool for Python (SPOTPY; Houska
et al., 2015). The resulting distributions for each parameter are pre-
sented in Table 4. Associated graphs of the parameter trace and histo-
grams of parameter values are presented in Supplementary Figure S1.

2.4. Simulating the effect of only dissolvable, hot water extractable or
insoluble carbon applications

Following model calibration and validation, we ran three simula-
tions to explore the hypothetical impacts of applying either pure D, H or
I substances to the soil. We simulated the application of 150 mg (3 mg
g− 1 soil) for each fraction to investigate their individual contributions to
changes in carbon pools and fractions, microbial biomass changes and
priming effects. This provided insight into the power that the model
attributes to these components in driving soil carbon dynamics.

2.5. Fourier Amplitude Sensitivity Testing

We performed a global sensitivity analysis via Fourier Amplitude
Sensitivity Testing (FAST). FAST is a variance-based method that effi-
ciently explores the impact that parameter variations have on the per-
formance of nonlinear mathematical models (Reusser et al., 2011;
Henkel et al., 2012). This sensitivity test allowed further insight into the
model behaviour and the relative importance of different parameters in
determining model predictions. This information was used to identify
which of the mechanisms included in the MiPrime conceptual frame-
work are the most important drivers of soil carbon dynamics.
Reliable parameter sensitivity information with FAST requires a

sufficient number of FAST iterations. To determine the number of iter-
ations required, we applied the following equation (Henkel et al., 2012):

N=
(
1+ 4M2(1+(k − 2)d)

)
k Eq. 33

Where N is the minimum number of parameter iterations; M is the
inference factor (default M = 4); d is the frequency step (default d = 2)
and k is the number of model parameters (Houska, 2015). With k = 28

Table 4
Posterior mean, 95% Bayesian credibility intervals, and best parameter estimate
for MiPrime model parameters. The ‘Best’ parameter value is the value that was
assigned to a parameter which produced the highest likelihood value from all
model runs.

Par. (θ) Units 2.5% mean 97.5% Best

qD μgC μg− 1d− 1 0.270 0.683 0.943 0.795
qH μgC μg− 1d− 1 0.020 0.088 0.356 0.063
qI1 μgC μg− 1d− 1 0.075 0.272 0.560 0.348
qI2 μgC μg− 1d− 1 0.0001 0.003 0.007 0.003
KD μgC g− 1 23 194 379 171
KH μgC g− 1 45 160 454 208
KI1 μgC g− 1 376 442 492 498
KI2 μgC g− 1 5966 8321 9886 9624
ηD μgC μg− 1C 0.029 0.358 0.867 0.572
ηH μgC μg− 1C 0.552 0.855 0.987 0.892
ηI1 μgC μg− 1C 0.011 0.246 0.655 0.011
ηI2 μgC μg− 1C 0.009 0.156 0.427 0.0005
ηE μgC μg− 1C 0.009 0.121 0.379 0.045
mR μgC μg− 1C d− 1 0.032 0.192 0.542 0.147
pEa – 3.233 7.033 9.638 8.445
pRa – 3.233 6.353 9.456 9.898
pMa – 0.248 1.569 4.960 1.554
rE μgCμg− 1Cd− 1 0.036 0.193 0.402 0.188
Kdorm μgC g− 1 1467 3140 4866 4242
pBDa μgC μg− 1C 2.341 6.157 9.598 6.992
pBHa μgC μg− 1C 2.811 6.447 9.525 6.595
pBI1a μgC μg− 1C 0.275 2.963 6.516 0.712
pBI2a μgC μg− 1C 3.662 7.125 9.798 7.680
γ – 0.196 0.972 2.325 1.143
τ – 0.627 1.411 1.948 1.659
pED – 0.800 0.917 0.988 0.852
pEH – 0.014 0.139 0.382 0.029
pI2,en – 0.080 1.121 3.012 1.449
r0 – fixed fixed fixed 0.9
β – fixed fixed fixed 0.05
SI2,ex μgC g− 1 fixed fixed fixed 1800

a The parameter depends on other parameters in a Dirichlet distribution.

D.D. Kok et al. Soil Biology and Biochemistry 200 (2025) 109618 

7 



for the 28 free parameters described in Table 4, we calculated that we
needed N = 95,004 iterations for reliable results with FAST.

3. Results

3.1. Model performance on data used to calibrate the model

Model predictions for data used in model calibration (i.e. data from
grasses, fermented grasses and composted grass treatments) demon-
strate a generally close fit with the observed total, mineralized, micro-
bial biomass and primed carbon concentrations (Fig. 4) and the
Dissolvable (D), Hot water extractable (H) and Insoluble (I) carbon
concentrations (Fig. 5). Model accuracy is evidenced by the relatively
low mean average error (MAE) and root mean squared error (RMSE)
when comparing the model-simulated data to the experimentally
observed data (Fig. 5).
The reverse Michaelis-Menten functions can reproduce changes in

total carbon accurately, but the simulation of respired and primed car-
bon appears to lose accuracy at later time steps. Model simulations of

microbial biomass are relatively accurate for the simpler trends
observed for the control and fermented grasses treatments, which
display an initial sharp increase followed by a decline. The model has
more difficulty capturing the more complex behaviour observed for
biomass growth in grasses and composted grasses treatments, which
additionally exhibit a second phase of microbial biomass growth around
day 60 (Fig. 4).
The model is well able to simulate changes in individual D, H and I

carbon concentrations, though generally missing the initial peak in-
crease in the H fraction for grasses and composted grasses in the first few
days of the experiment (Fig. 5). Prediction of changes in the H fraction
also loses accuracy in later timesteps (Fig. 5).
Simulation of the calibration data shows that the model is able to

better simulate changes in exogenous carbon concentrations than
endogenous carbon concentrations (Supplementary Figures S2-S5). For
the endogenous pool, especially changes in total and respired carbon
concentrations appear significantly more linear over time than the
model is able to predict with its Michaelis-Menten-type functions
(Figure S4).

Fig. 4. Model simulation and observed data for total, mineralized, microbial biomass and cumulative primed carbon concentrations (per gram soil) over time after
amending a podzol with grasses, composted grasses, fermented grasses and no organic amendment (control). These concentrations do not distinguish between
contributions from EX and EN pools, but rather represent their combined contribution. Supplementary Figures S2 and S4 show the EX and EN contributions,
respectively. The shaded area denotes the 5% and 95% certainty quantiles. The dashed line in observed vs. simulated plots is the line of perfect fit (1:1 match of
observed to simulated data).
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3.2. Model performance on data not used for model calibration

Validation of model performance by comparing model predictions to
a testing dataset not used for model calibration (i.e. data from wood
chips and waterway residues treatments) shows that the model is able to
predict changes in total, mineralized, microbial biomass and primed
carbon concentrations with some accuracy (Fig. 6). The model does,
however, overestimate microbial biomass growth and respiration rates
for the wood chips application. For wood chips, the model struggles to
predict the linear response of the microbial respiration over time. Pre-
dicted changes in total carbon concentrations, mineralization rates, and
biomass growth are generally more accurate for waterway residues
(Fig. 6).
As with the calibration data, the model is able to predict changes in

D, H and I fractions with reasonable accuracy for the validation data
(Fig. 7). Initial declines in the D fraction appear more difficult to predict
for the validation data than the calibration data. For the wood chip
treatment, the model incorrectly predicts D to increase and predicts a
convex instead of a concave decomposition trend for the I fraction
(Fig. 7). The model is again better able to simulate the data observed for
the waterway residue treatment. Decompositions of exogenous and
endogenous carbon pools are predicted to be generally similar for both
wood chips and waterway residues (Supplementary Figures S6-S9).

3.3. Effect of hypothetical pure D, H and I amendments

Simulation of applying pure D, H and I substances reveal differences
in the model-predicted impacts on carbon pools and fractions, microbial
biomass and primed carbon (Fig. 8). Notable differences are that the
application of the D-substance resulted in slightly higher biomass
growth and greater priming effects, whereas the H-substance was the
only substance to induce a strong negative priming effect.

3.4. Sensitivity analysis

FAST shows strong variations in the influence of different parameters
on model predictions but highlights that model results are particularly
sensitive to the parameters related to the insoluble (I) carbon pool, such
as the maximum decomposition rates of I1 and I2 (QI1, QI2), the
Michaelis-Menten constant for I2 (KI2), and the initial size of the I2
fraction in amendments (SIex,2; Fig. 9). Also, the relative loss rate of
extracellular products such as enzymes (rE) has a relatively stronger
influence on model predictions. Notable is also the model’s relative
insensitivity to variations in the parameters related to the dissolvable
(D) fraction.

4. Discussion

Calibration and validation of MiPrime, based on the application of
five compositionally distinct organic amendments, demonstrates that

Fig. 5. Model simulation and observed data for Dissolvable (D), Hot water extractable (H) and Insoluble (I) carbon concentrations (per gram soil) over time after
amending a podzol with grasses, composted grasses, fermented grasses and no organic amendment (control). These concentrations do not distinguish between
contributions from EX and EN pools, but rather represent their combined contribution. Supplementary Figures S3 and S5 show the EX and EN contributions,
respectively. The shaded area denotes the 5% and 95% certainty quantiles. The dashed line in observed vs. simulated plots is the line of perfect fit (1:1 match of
observed to simulated data).
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the model is able to describe soil carbon dynamics in terms of changes
over time in (i) total, mineralized, microbial biomass and primed carbon
and (ii) dissolvable (D), Hot water extractable (H) and Insoluble (I)
carbon fractions, with good accuracy for a diversity of organic amend-
ments (Figs. 4–6, Figure 7). These results suggest that the MiPrime
model can be a good alternative to many existing carbon models by
allowing for an assessment of short-term organic amendment impacts on
multiple, measurable carbon fractions through mechanistic processes.
Yet, the model also exhibits weaknesses that lie especially in predicting
changes in carbon mineralization rates and changes in endogenous
carbon fractions. The experimental data demonstrate that changes in
these components have, in contrast to other pools and fractions and at

least in the short term, a more linear response than the Michaelis-
Menten-type response imposed in MiPrime. The model is also weaker
in predicting changes for wood chips compared to the other organic
amendments. These shortcomings, as well as model successes, however,
provide several interesting insights into key soil processes related to soil
carbon dynamics that are further discussed below.

4.1. Use of measurable organic carbon fractions

The MiPrime model distinguishes differences and changes in organic
matter based on differences in the decomposability of measurable
dissolvable (D), hot water extractable (H) and insoluble (I) carbon

Fig. 6. Model predictions and observed data for total, mineralized, microbial biomass and primed carbon concentrations (per gram soil) over time after amending a
podzol with wood chips and waterway residues. These concentrations do not distinguish between contributions from EX and EN pools, but rather represent their
combined contribution. Supplementary Figures S6 and S8 show the EX and EN contributions, respectively. The shaded area denotes the 5% and 95% certainty
quantiles. The dashed line in observed vs. simulated plots is the line of perfect fit (1:1 match of observed to simulated data). There is no observed data for the
cumulative primed carbon.
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fractions. The choice for these fractions was inspired by the forest litter
decomposition model YASSO, wherein different carbon fractions are
discerned, aimed at isolating different biogeochemical components of
forest litter (Liski et al., 2005). However, experimental studies have
shown that wet chemical extractions designed to isolate specific organic
components often include a wide range of other substances as well,
depending on the fraction and the organic amendment type (Preston
et al., 1997; McKee et al., 2016 Preston and Trofymow, 2015). For
example, lignin extractions, based on the same wet-chemical extraction
principles applied here, evidentially include other types of compounds
such as tannins, cutin or suberin (Preston and Trofymow, 2015). Results
from the MiPrime model could similarly be interpreted to indicate a
chemical heterogeneity of D, H and I fractions. Noticeable points of in-
flection for some of the curves, especially for the D and I fractions, could
indicate that these fractions might contain components that decompose
much more rapidly and components that barely decompose at all
(Fig. 5). For the I fraction, the slower parts were separated by the model
from the fast-decomposing parts through the SI2,ex and pI2,en parameters,
allowing the model to function quite well. Validation with wood chips
and waterway residues (Fig. 7) shows that the size of the
non-decomposing part of the I fraction is, as expected, not constant for

all organic amendments and is likely much smaller for these non-grass
derived organic amendments. These findings suggest that further
dissection of the I fraction is necessary to avoid the need for these
artificial parameters.
The D pool similarly displays behaviour suggestive of chemical

heterogeneity. In the endogenous pool, for instance, the D fraction ex-
hibits a phase of rapid increase for the duration that the decomposition
in the exogenous pool is greatest (Figure S5). This contrasts observations
for the D fraction in the exogenous pool where the D fraction is rapidly
decomposed (Figure S3). The increase in D in the endogenous pool hints
at a rapid release of enzymes from the soil pool aimed at degrading the
freshly introduced organic amendments. The rapid decrease of endog-
enous I, in all except for control soils, suggests that the increase in D is
derived from a transformation of I, which contradicts the notion that the
entirety of soil I present at the start of the experiment is relatively
inaccessible or difficult to decompose.
The inability of MiPrime to accurately capture these dynamics sug-

gests that the representation of D, H and I pools is likely too simplistic
still and that other or additional pools are required for a yet more ac-
curate simulation of changes in all soil carbon fractions. Nevertheless,
the current modelling exercise demonstrates that, even though the

Fig. 7. Model predictions and observed data for total Dissolvable (D), Hot water extractable (H) and Insoluble (I) carbon concentrations (per gram soil) over time
after amending a podzol with wood chips and waterway residues. These concentrations do not distinguish between contributions from EX and EN sources, but rather
represent their combined contribution. Supplementary Figures S7 and S9 show the EX and EN contributions, respectively. The shaded area denotes the 5% and 95%
certainty quantiles. The dashed line in observed vs. simulated plots is the line of perfect fit (1:1 match of observed to simulated data).
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different solubility fractions may capture more compounds than origi-
nally intended, these fractions still provide a good characterization of
organic matter for the adequate prediction of general SOM degradation
kinetics for many organic amendments.

4.2. Labile versus recalcitrant

Studies have generally emphasized the importance of what is tradi-
tionally referred to as labile carbon fractions (i.e. D and H) in driving
decomposition trends (Bradford et al., 2008; De Graaff et al., 2010).
Fourier Amplitude Sensitivity Testing of our model shows, however, that
model results are especially sensitive to variations in parameters related
to the I fraction (QI1, QI2, KI2, SIex,2). This sensitivity likely derives partly
from the relative size of the I fraction, as this is on the order of 10–15
times greater than combined D and H fractions. Nevertheless, the high
sensitivity of model performance to variations in parameters related to

the I fraction suggests that potentially more attention is warranted for
microbial interactions with resistant carbon fractions than is done so far.

4.3. Priming effects

Priming effects could not be assessed for the organic amendments of
natural isotopic abundance. Nevertheless, the calibration results show
that MiPrime was able to capture differences in the direction of priming
effects for the various organic amendments, simulating positive priming
effects for grasses and Bokashi and negative priming effects for compost.
Defining the microbial preferentiality for carbon within either the
exogenous or endogenous pool based on the difference in the hot-water
carbon concentrations between each pool (Kok et al., 2022) was thus
sufficient to determine the direction of the priming effect. This is
confirmed in the simulation of hypothetical pure applications of D, H
and I substances, where negative priming effects were observed for H

Fig. 8. Model predictions for total, mineralized, microbial biomass and primed carbon concentrations (per gram soil) over time after hypothetical application of pure
Dex, Hex and Iex substances to the podzol. These concentrations do not distinguish between contributions from EX and EN sources, but rather represent their combined
contribution. Supplementary Figures S10 and S11 show the EX and EN contributions, respectively. The shaded area denotes the 5% and 95% certainty quantiles.
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substances, and minor positive priming effects for D and I substances.
For pure D substances (e.g. sugar), both negative priming effects
(Kuzyakov and Bol, 2006) and positive priming effects have been
observed in other studies (Nottingham et al., 2009). The amount of
amendment applied (Zhu et al., 2022) and soil properties (Liu et al.,
2020; Yan et al., 2023) may explain this variation, as the amount
applied, the concentration of soil carbon fractions and the presence or
absence of other fractions in the amendments (thereby reducing or
increasing the H concentration) also influence the direction and
magnitude of the priming effect.
While priming effects are generally well captured, the model also

demonstrates some inaccuracies in its predictions. For wood chips and
waterway residues, the model shows only minor differences in their
priming effects. While not measured, this is unlikely to be realistic given
their distinctly different chemical compositions. MiPrime does not ac-
count for nitrogen, and therefore, it likely underestimates microbial
biomass growth and overestimates carbon mineralization for wood
chips, given that microorganisms in the simulated wood chip treatment
are not constrained by the usual lack of nitrogen due to the high C:N
ratio of wood. This may also influence the actual priming effect. Finally,
because the model has a bias towards better predicting changes shortly
after organic amendment application (due to the higher sampling den-
sity in the early phases of the experiment), MiPrime largely un-
derestimates the magnitude of late-stage priming effects (i.e. t > 50
days).
Priming is complex, and even models based on operationally defined

pools (e.g. PRIM) are “not able to fully catch the observed variability of
priming” (Guenet et al., 2016). ORCHIMIC performs better in estimating
the priming effect, though this has been tested only against the addition
of pure cellulose (Huang et al., 2018). ORCHIMIC’s validation data
demonstrates a brief negative priming effect (t < 25 days) for cellulose
before becoming positive for the remainder of the experiment
(Blagodatskaya et al., 2014). This is similar to our observations for
compost, though we observed our compost’s negative priming phase to
last longer, until approximately t = 60 days. While ORCHIMIC captures
this trend, it largely underestimates the magnitude of the negative phase
of cellulose’s priming effect. For a similar time period as ORCHIMIC,
MiPrime was able to capture the direction and magnitude of the priming
effect for three compositionally diverse organic amendments using 31
parameters (as opposed to ORCHIMIC’s 61 parameters - though
ORCHIMIC includes temperature effects, among others).

4.4. Static linearity

Decomposition in MiPrime is described through a reverse Michaelis-
Menten function (Buchkowski et al., 2017). However, changes in
endogenous carbon fractions and late-stage carbon respiration rates
(and thus also priming rates), in several cases, appear insensitive to
changes in microbial biomass and enzyme concentrations, demon-
strating linear rather than asymptotic trends over time (Fig. 6 and
Figures S4 and S5). The model is unable to rationalize how respiration
rates are not near exponential when the decomposition rates and
changes in biomass are. There are several mechanisms that might
explain this disconnect, such as i) the establishment of two or more
separate microbial communities that have limited interaction with each
other, or ii) the growth of different, specialized microbial populations
within the larger community.
By the first mechanism, the colonization of the organic amendment

might result in the establishment of a new, organic amendment-
constrained microcolony that has very little interaction with the old
soil community. This can be rationalized considering the spatial scales at
which microorganisms operate, and given that microorganisms are
strongly influenced only by the physical and chemical environment
directly adjacent to them (Parkin, 1993). These interactions likely take
place in the order of micrometres (~10 μm) to nanometres, and thus, a
community rapidly colonizing organic amendment particles may
become spatially isolated from the old soil community. Only for those
microorganisms operating at the interface between both endogenous
(soil) and exogenous (amendment) pools, or when soil moisture diffuses
this interface and forces an exchange of microorganisms and nutrients
between both pools, there is some interaction of the organic amendment
with the old community resulting in priming effects. Implementing such
a mechanism in MiPrime would imply that at least two biomass and
enzyme pools would need to be introduced to represent a separate mi-
crobial community for the endogenous and exogenous pools,
respectively.
By the second mechanism, an exchange of nutrients might take place

between pools, and the community may operate as a single entity, but
differences in community composition may arise due to the growth of
microbial populations with physiological features that are functionally
distinct from the original microbial population. In this situation, the
community existing prior to organic amendment application, consisting
mostly of specialized microorganisms able to survive under the possibly
limited nutrient conditions, will mostly ignore the organic amendments
introduced, as they cannot compete with the growth of opportunist
microorganisms that rapidly feed off the newly available substrate.
These fast growers, in turn, likely ignore the potentially limited or
difficult-to-access original nutrients still in the soil. These mechanisms
are well explored conceptually (Fierer et al., 2007; Roller and Schmidt,
2015; Ho et al., 2017), yet are limitedly applied in models given their
added complexity. In MiPrime, for instance, distinguishing between
different microbial populations and their unique behaviours in response
to the various soil carbon fractions would imply adding at least a second
pool of biomass, one for each physiologically distinct subpopulation, as
well as the definition of a second set of QF, KF, ηF, ηE parameters and all
others characterizing the behaviour of each. Including some dimension
of microbial diversity, at either a biomass level (Blagodatsky and
Richter, 1998), an enzymatic level (Allison, 2012) or otherwise, unde-
niably results in a model that better reflects the realistic complexity of
decomposer communities. However, this comes at a trade-off in com-
pounding the number of model parameters.

4.5. Relationships with the POM-MAOM conceptualization of soil organic
matter

Recent years have seen the popular adoption of SOM separation into
particulate (POM) and mineral-associated (MAOM) fractions (Cotrufo
et al., 2019; Liu and Chen, 2024). Here, POM is generally defined as

Fig. 9. Fourier Amplitude Sensitivity Test (FAST) with the top five most
influential parameters highlighted in orange. Values show the contribution of
each parameter to the overall variation in the model output and thus provide an
indication of the importance of each parameter to model performance.

D.D. Kok et al. Soil Biology and Biochemistry 200 (2025) 109618 

13 



consisting of organic fragments that are relatively undecomposed, while
MAOM consists of predominantly mineral-associated derivative prod-
ucts created through the chemical transformation of POM by soil mi-
croorganisms (Lavallee et al., 2020). POM-MAOM separation is
generally achieved by separating SOM into physical size fractions rather
than chemical fractions - as is done for MiPrime. Though MiPrime em-
ploys a different conceptual framework, it shares many similar processes
defined in the POM-MAOM framework. MAOM, for instance, is created
through one of two pathways. Firstly, the “ex vivo modification
pathway”, where MAOM forms as plant litter leachate or depolymerized
exoenzymes directly associated with the mineral phase (Liang et al.,
2017). This pathway partially coincides with MiPrime’s ‘enzyme loss
flux’ from the enzyme pool to the soil pool in the MiPrime schematic,
where a portion of exo-enzymes is lost each day and subsequently in-
tegrated into the D and H fractions of the soil pool (Fig. 1). MAOM also
forms through “in vivo microbial turnover pathways”, such as through
necromass accumulation (Liang et al., 2017). This coincides with
MiPrime’s microbial mortality flux from the biomass pool to the soil
pool (Fig. 1). Importantly, however, MiPrime does not stabilize these
compounds through mineral associations and is in that way different
from MAOM. Mineral association can saturate, and MiPrime does not
allow for a saturation of the soil pool. Rather, MiPrime stabilizes
transformed compounds through the Michaelis-Menten function where,
essentially, if the concentration in enzymes is too low due to a lack of
readily available substrates, then decomposition becomes strongly
inhibited and organic matter is ‘stabilized’. MiPrime pool definitions
similarly do not contradict the POM-MAOM framework either. The
MiPrime amendment pool largely consists of POM that can be preserved
for decades due to the chemical resistance of the I2 fraction of organic
amendments. In this regard, MiPrime reflects the understanding of the
POM-MAOM framework in that it allows for carbon stabilization
through ex vivo modification and in vivo turnover pathways, as well as
the selective preservation of POM. To conclude, because POM-MAOM
are often applauded as the best way forward to understand and pre-
dict broad-scale SOM dynamics (Lavallee et al., 2020), it would be
interesting for future investigations to explore how MiPrime’s fractions
relate to POM-MAOM fractions, and/or to include well established
POM-MAOM mechanisms (e.g. mineral associations and their satura-
tion) in the MiPrime framework.

4.6. Further development

MiPrime offers an initial step towards the mechanistic modelling of
changes in measurable soil carbon fractions and associated priming ef-
fects, but it can be further improved in numerous respects. The field
application of this model would benefit from the inclusion of, for
instance, i) a nitrogen component, as decomposition is influenced by the
stoichiometric balance between the nutrients and microorganisms
(Manzoni and Porporato, 2009; Sinsabaugh and Follstad Shah, 2012;
Mooshammer et al., 2014; Goll et al., 2017); ii) an expression of mi-
crobial diversity, given that different microorganisms exhibit different
life strategies that can contrastingly affect decomposition (Bending
et al., 2002; Condron et al., 2010; Allison et al., 2013; Creamer et al.,
2015); iii) the inclusion of soil physical protection mechanisms and
mineral associations (e.g. MAOM), as also the physical accessibility of
microorganism to carbon will influence the rate of decomposition (von
Lützow et al., 2008; Cotrufo et al., 2013; Lehmann and Kleber, 2015; Luo
et al., 2017; Wang et al., 2022); iv) further dissection of the I pool to
remove the need for artificial parameters separating I1 and I2; and
finally, v) the inclusion of environmental parameters, defined by prop-
erties such as soil type, soil moisture and temperature, which can also
affect microbial activity. The consideration of including such compo-
nents, however, will warrant a careful weighing of trade-offs between
increasing model parameters and complexity versus gains in model
performance. The complexity of the soil system is, after all, difficult
enough to incorporate into a single conceptual model, let alone into a

tractable yet accurate numerical model (Schmidt et al., 2011).

5. Conclusion

MiPrime introduces a mechanistic approach to modelling micro-
bially mediated soil carbon dynamics, including priming effects, based
on empirical pools that are quantifiable through parsimonious soil
extraction methods. The model was able to simulate changes in carbon
fractions in both exogenous (i.e. organic amendment-derived) and
endogenous (i.e. soil-derived) pools with reasonable accuracy for five
compositionally diverse organic amendments, including three types of
roadside grasses, wood chips and water weeds and reeds. For the
isotopically labelled organic amendments, the model performed well in
capturing variations in the magnitude and direction of short-term
priming effects. MiPrime contributes to understanding carbon dy-
namics following the application of a variety of complex organic
amendments by modeling their effects on largely measurable carbon
fractions. Thereby, MiPrime offers a step towards bridging the divide
between models developed to understand the mechanisms governing
soil carbon dynamics andmodels designed to address practical questions
regarding the design of effective land management strategies.
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