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A B S T R A C T

We noticed that in literature, the term Pickering emulsion (PE) is used as soon as ingredients contain particles,
and in this review, we ask ourselves if that is done rightfully so. The basic behavior taking place in particle-
stabilized emulsions leads to the conclusion that the desorption energy of particles is generally high making
particles highly suited to physically stabilize emulsions. Exceptions are particles with extreme contact angles or
systems with very low interfacial tension.

Particles used in food and biobased applications are soft, can deform when adsorbed, and most probably have
molecules extending into both phases thus increasing desorption energy. Besides, surface-active components
will be present either in the ingredients or generated by the emulsification process used, which will reduce the
energy of desorption, either by reduced interfacial tension, or changes in the contact angle. In this paper, we
describe the relative relevance of these aspects, and how to distinguish them in practice.

Practical food emulsions may derive part of their stability from the presence of particles, but most likely have
mixed interfaces, and are thus not PEs. Especially when small particles are used to stabilize (sub)micrometer
droplets, emulsions may become unstable upon receiving a heat treatment. Stability can be enhanced by con-
necting the particles or creating network that spans the product, albeit this goes beyond classical Pickering
stabilization. Through the architecture of PEs, special functionalities can be created, such as reduction of lipid
oxidation, and controlled release features.

1. Introduction

Conventional emulsifiers have dominated emulsion science due to
their ease of use, and relatively low cost [1]. However, their future in-
dustrial use is under threat, because of changes in legislation and con-
sumer preferences. Emulsions stabilized with e.g., low molecular weight
surfactants can destabilize upon temperature changes as occur during
production and shelf-life, while so-called Pickering particles have the
potential to mitigate these issues (see theoretical aspects). As pointed
out in our review, when working with practical food emulsion formu-
lations, the situation may be less ideal than the theory predicts.

The current avalanche of emulsion papers that claim to revolve
around Pickering stabilization is impressive [2]. The interested reader is
referred to recent papers focusing on the particles used: inorganic

particles [3-6], and of biological origin [7-18], as well as purpose pre-
pared particles [12,19-22] and effects related to particle shape and
morphology [20,23-25]. Fundamental aspects are reported in
[23,24,26,27], including their stability and rheology [28-30] and com-
bined effects of particles and surfactants [31]. Also specific application
areas were reviewed such as: foods [13-15,32-36], pharma [37-40],
chemistry [41], water purification [42] biobased films [43], controlled
release [44-49], high internal phase emulsions [28,50]), gelled PEs [51-
53], water-in-oil emulsions [54], and multiple emulsions [34,41].

Despite the information available, PEs are not necessarily termed as
such based on solid arguments. The question that we are trying to
answer here, is if these emulsions are truly stabilized by particles, or,
whether other effects play a role (e.g., the presence of surface-active
components and their dynamic behavior during emulsion formation
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Contents lists available at ScienceDirect

Advances in Colloid and Interface Science

journal homepage: www.elsevier.com/locate/cis

https://doi.org/10.1016/j.cis.2024.103321
Received in revised form 17 October 2024;

Advances in Colloid and Interface Science 334 (2024) 103321 

Available online 24 October 2024 
0001-8686/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:karin.schroen@wur.nl
www.sciencedirect.com/science/journal/00018686
https://www.elsevier.com/locate/cis
https://doi.org/10.1016/j.cis.2024.103321
https://doi.org/10.1016/j.cis.2024.103321
https://doi.org/10.1016/j.cis.2024.103321
http://creativecommons.org/licenses/by/4.0/


and storage) [55,56]. Besides, food particles may be deformable [57],
and capable of forming interfacial or bulk networks [52,58-62] that
render additional stability at the droplet level, or at the level of the
product, respectively [13,22,53,63,64]. A gallant effort using deep
learning techniques to make sense of this was recently published [65].

In the current review, we first describe basic Pickering stabilization,
and under which conditions stable emulsions can be obtained. Next, we
consider surface-active components and distinguish effects that occur at
the liquid/liquid interface (interface adsorption), and solid/liquid
interface (adsorption at the particle), which are aspects that are gener-
ally disregarded in reviews, especially within the food realm. In food
applications, particles are expected to be deformable, and capable of
adjusting their contact angle by partial (de-)swelling, or partly merging
with other particles thus forming an interconnected interfacial layer,
and these effects are described next. We translate these findings to
emulsion formulations as would be used in practice and take the pro-
duction conditions into account. Depending on the field of application,
hardly any other components may be present (e.g., pharma formula-
tions), or very many (e.g., food, personal care applications), and this will
affect the opportunities to make stable emulsions greatly, as would be
their further application, e.g., in dry form (see outlook section) [50].

2. Theoretical aspects of pickering emulsions

2.1. Classical pickering stabilization

For effective emulsion stabilization, the particles need to be partly
wetted by both oil and water as shown in the pioneering work of
Ramsden [66] and Pickering [67]. For oil in water (O/W) emulsions,
particles that are preferentially wetted by water are used, and for W/O

emulsions particles are preferentially wetted by oil. After being brought
into the interface the particles assume a contact angle θ relative to the
two liquid phases (see Fig. 1), and acquire a high desorption energy (ΔE,
J) (Eq. (1)) [68,69,70]:

ΔE = πr2pσ(1 − |cosθ| )2 (1)

Where rp the particle radius (m) and σ the interfacial tension between
oil and water (N/m). The same equation can also be used for particle-
stabilized foams [12]. It is good to mention that the desorption energy
depends on the shape of the particles, with anisotropic particles having
much greater desorption energy e.g., [23,24], and thus higher potential
for stable emulsion preparation. For now, we keep our discussion limited
to spherical particles, and in the outlook section we elaborate on particle
morphology.

In Fig. 1c, we systematically varied the particle size and investigated
the effect of (a), interfacial tension, and (b), contact angle on desorption
energy. The dotted line corresponds to a typical thermal energy of
particles at room temperature. If this energy is higher than the desorp-
tion energy, particles may be released from the interface, as is the case
for very small particles, and particles with low contact angles. The
interfacial tension of the liquid interface only becomes relevant at low
values.

Particles need to overcome an energy barrier that is of the same order
of magnitude as the desorption energy, before being able to nest at the
interface [62,72]. Once this barrier is overcome, the particles will
remain practically irreversibly attached to the interface, since the
desorption energy greatly exceeds the thermal energy of the particles at
room temperature (this may become relevant during heat treatment,
which may also contribute to additional stability if e.g., gelation takes
place [52]). Conventional emulsifiers diffuse and spontaneously adsorb

Fig. 1. (a) Position of a small spherical particle at a planar oil-water interface for a contact angle less than 90◦, and corresponding positioning of particles at a curved
interface of an O/W emulsion, figure adapted from [68], with permission. (b) Polystyrene particles assembled on an oil droplet in water originally from [71].
Reprinted from [32] with permission. (c) Desorption energy as function of particle size for different (c1) interfacial tension at 30◦ contact angle, and (c2) different
contact angle at interfacial tension 30 mN/m. The dotted line represents the thermal energy at 25 ◦C (on the order of kBT).
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to interfaces, and to some extent desorb, leading to emulsion instabilities
over time.

The interfacial layer formed by particles has a thickness generally
similar to their size and is much thicker than emulsifier layers. When
assuming that all particles used are in the interface, the amount of
particles needed to stabilize droplets of size dd can be calculated using
Eq. (2) [27]:

dd =
4C ρp dpVd

mp
(2)

Where C is the degree of coverage, ρp the particle density (kg/m3), dp
the particle diameter (m), Vd the volume of dispersed phase (m3), andmp
the mass of particles (kg).

Since particles add to the overall droplet density, theoretically, this
can be used to density-match both phases, en create emulsions free of
gravitational separation (naturally buoyant droplets). This is only
possible for monodisperse droplets (e.g., made by microfluidics [73-
75]), and may be less relevant for classical emulsification technologies,
which lead to a wide range of droplet sizes [1,76,77].

The sections above relate to particles, and in practice other compo-
nents would be present, as discussed in the section on the effect of
surface-active components.

2.2. Destabilization of pickering emulsions

2.2.1. Ostwald ripening
The physical destabilization of emulsions may proceed through two

distinct mechanisms, known as Ostwald ripening (Fig. 2) and coales-
cence (see next section) [78]. Ostwald ripening occurs because of Lap-
lace pressure differences between droplets of different size [79]. The
interfacial tension at the microscopic level in particle-stabilized in-
terfaces is relatively high in the absence of amphiphilic stabilizers, and
even for a perfect hexagonal particle packing, approximately 10 % of the
interface area still experiences direct contact between the two fluids,
[80], thus allowing Ostwald ripening to take place [81]. Small droplets
possess higher Laplace pressure than larger droplets and tend to dissolve
faster. The rate at which this happens depends on the solubility in the
continuous phase [82,83].

The Ostwald ripening process halts when the interface between
neighboring particles adopts a saddle-shaped configuration, with cur-
vature radii R1 = -R2 (as illustrated in Fig. 2) becoming equal in
magnitude but opposite in sign. Consequently, Ostwald ripening is
‘arrested’ in such emulsions because the Laplace pressure in the droplets
is nearly zero (PLP = σ/(1/R1 + 1/R2) ≈ 0) [80,84]. When the ratio of
particle size to droplet size exceeds 1:10, specific faceted shapes can also

reduce the mean curvature to zero [85]. Complete particle coverage is
not needed for stability; instead, a percolated network of particles with
sufficient yield stress is adequate [86]. Please note that the presence of
the particles does not prevent component diffusion; rather, it reduces the
available space for diffusion [87]. In literature, this is often interpreted
as a barrier effect, while it would be better to interpret this as part of the
interface being fully permeable, while another part is not/hardly.
Whether soft particles can prevent Ostwald ripening is still under debate
[88,89], see also the application section.

Depending on the solubility of the droplet constituents in the
continuous phase Ostwald ripening will be a faster or slower process
[83,90] that may not even be relevant relative to the lifetime of an
emulsion when made with vegetable oil [90,91]. Ostwald ripening has
been reported to be suppressed or completely prevented in particle-
stabilized emulsions or foams (for which Ostwald ripening is more
relevant given the high diffusivity of gas) [92], even over years [93].
Although the droplet size may change because of ripening effects, it
eventually reaches a stable state [88,91,94-98], due to the formation of a
dense particle layer on the interface. In the presence of surface-active
components, Ostwald ripening will be reduced because of Laplace
pressure reduction, but particle displacement from the interface may
occur inducing instability (see application section).

2.2.2. Droplet coalescence
Droplet coalescence spans many length and time scales [99,100],

and that is affected e.g., by temperature. Work on the bulk level [101]
and on smaller length scales using microfluidic techniques [102-104]
also at elevated temperatures [105], and enhanced gravity [106,107]
has been reported. For surfactant-stabilized emulsions, coalescence
three stages have been identified: (i) droplet approach and formation of
liquid bridges between interfaces, (ii) growth of the liquid bridges, and
(iii) droplet reshaping during merging. The coalescence of particle-
coated droplets remains poorly understood due to the particle shell
that introduces fundamentally different mechanisms (limited and
arrested coalescence [49,108,109]).

Limited coalescence was first described in the 1920s [110], and in
the 1950s Wiley gave a theoretical explanation [111]. Limited coales-
cence occurs when insufficient particles are present to prevent coales-
cence, thus increasing particle coverage and eventually halting droplet
coalescence. This theory has been applied [111-117] and extended
[118-120] to predict the droplet size of PEs at equilibrium.

Arrested (a.k.a. partial) coalescence, happens whenmerging droplets
are incapable of forming a spherical droplet. Two opposing forces are at
work: the Laplace driving force, which aims to minimize the total
interfacial area, and an elastic resistance that opposes droplet defor-
mation. The elastic resistance can arise from an internal network or

Fig. 2. Schematic presentation of the Ostwald ripening arrest by solid particles: (a) droplet surface not completely covered by adsorbed particles (b) completely
covered with a dense adsorption layer of particles. Figure adapted from [84], with permission.
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interfacial particle jamming. Most studies related arrested coalescence
to dispersed phases that contain solids, such as fat crystals, which induce
a viscoelastic response [108], but also particle jamming at the fluid/
fluid interface in soft materials has been reported to provide mechanical
resistance against the relaxation of bubbles or droplets into a spherical
shape [24,121-125].

2.3. Effect of surface-active components on interaction energy

We discuss the individual effects of interfacial tension and contact
angle on desorption energy, fully knowing that interfacial tension (γow)
and contact angle (θ) cannot be varied independently. The interfacial
tension is one of the components that determine the contact angle,
together with the interfacial energies of the particle (s) with both liquids
γsw and γso as defined by Young’s law: cos θ = (γsw-γso)/ γow. We describe
combined effects in the practical application section.

2.3.1. Interfacial tension
For interfacial tensions as they occur in (food) practice (5-40mN/m),

the desorption energy of particles exceeds their thermal energy, unless
they are very small (<10 nm), or have extreme contact angles (close to
0 or 180◦). The hard particles used in literature are generally not that
small, but soft particles of this size have been suggested, including
proteins. For these particles, other effects play a role as described in
‘Special Effects of Particles at the Interface’. At very low interfacial
tension (0.01-1 mN/m), as would occur in micro-emulsions (not to
confuse with micrometer-sized droplets) or in aqueous two-phase sys-
tems, the energy of desorption is low, and particle stabilization would
not be expected to be effective. When exposed to high temperatures, e.
g., 120 ◦C the thermal energy would be ~35 % higher than shown in
Fig. 1c, thus narrowing the gap between both energies, possibly leading
to one exceeding the other.

In general, it is assumed that the interfacial tension of the interface is
not affected by the presence of particles (e.g., inorganic silica nano-
particles [126]) unless present at high concentrations and given suffi-
cient time to adsorb [127]. Still, in many papers dealing with PEs (we
refrain from using references), effects on interfacial tension are reported
under diffusion-controlled conditions e.g., occur during automated
droplet tensiometry. Since particles would need to be brought into the
interface using a force that greatly exceeds any force generated by
diffusion, these effects can safely be ascribed to the presence of surface-
active components that are able to diffuse. In emulsions produced with
these ingredients, most probably a dual stabilization process is at work,
leading to mixed interfaces, which is relevant when working with less
defined ingredients [128,129] as elaborated on in the application sec-
tion. Alternatively, when the particles are added to a pendant droplet,
the density difference of the particles with the oil will lead to a change in
interface shape, which has been misinterpreted as an interfacial tension
effect as demonstrated using (non-surface-active) glass beads and whey
protein [130]. Monitoring the Bond number as is standardly available in
droplet volume tensiometers would prevent this type of error.

2.3.2. Contact angle
From Fig. 1 c2, it is clear that particles with a contact angle of 90◦

have the highest desorption energy, and are preferred from a stability
point of view [131], and the geometry plays a relevant role in this as
well e.g., [23,24,25], as discussed in greater detail in the outlook sec-
tion. However, measuring the contact angles of particles is difficult due
to their size. Often, a small tablet is made, on which the contact angle is
measured (e.g., [132]), and this may give an impression of the contact
angle, but the roughness of the tablet (and possibly porosity as well) will
influence the measured value leading to misinterpretations [133]. In the
practical application section, a number of methods are discussed.

The contact angle is influenced by component adsorption, which
may (considerably) influence the energy of desorption of the particle. As
is immediately clear from Fig. 1 c2, and Eq. (1), any contact angle close

to 0 (or 180) degrees leads to the thermal energy exceeding that of
desorption, and thus emulsion destabilization. Surface modification
with octenyl succinic anhydride (OSA) is popular given its GRAS status
[134-134], and as summarized by Olawoye et al. [138] but cannot
prevent adsorption induced wettability changes.

The question that would need to be answered is to which extent
contact angles are affected by surface-active components, or swelling/
deswelling of either the particle or any deposited layer [22,139,140].
Besides, from Young’s law (cos θ = (γsw- γso)/ γow), it is also clear that a
change in interfacial tension will influence the contact angle, and
therefore influence the desorption energy, even without adsorption to
the particle. In the section dedicated to the application of PEs in food, we
will try to shed further light on this.

2.4. Special effects of particles at the interface

2.4.1. Interactions
When particles are present at the interface, they show interactions

amongst each other (this section), and deformation (next section). In the
application section, we discuss (interconnected) layers at the interface,
and network formation in the bulk. Upon particle adsorption, three
types of inter-particle interactions may arise [141]. These may be direct
interactions between particles, such as van der Waals, electrostatic, and
hydrophobic interactions, that depend on particle characteristics [142].
The second type relates to the confining influence exerted by the
interface (e.g., capillary interactions) [143]. The third interaction is
induced by external fields [144,145], which is very powerful for tuning
colloidal assembly at fluid interfaces [144-147], but not that relevant for
application in food.

For particles adsorbed at a fluid/fluid interface, the van der Waals
forces can be expressed by an effective Hamaker constant: Aeff = Ap1 + f
2(3-2f)(Ap1-Ap2), with AP1 and AP2 the particle Hamaker constants in
fluid 1 and 2, respectively, and the depth of submerging in fluid 2 (f= (1
- cos θ)/2 with θ the contact angle) [148]. Typical values are 0.1-1 kBT,
which indicates that these interparticle interactions are small [149].
Charged particles undergo mutual electrostatic interactions, and at the
oil/water interface dipoles are generated due to surface charge density
differences on the oil and water sides of the particle, possibly leading to
dipole-driven repulsion [150]. At high surface charge (ξ-potential >
±30 mV), mutual repulsion may reduce the maximum adsorbed amount
[151,152], at low surface charge, (< 30 mV) particles may aggregate
and form a network in the continuous phase [64]. Hydrophobic in-
teractions reduce unfavorable interactions between hydrophobic sur-
faces and water [153]. When hydrophobic patches are present, particles
could manifest end-to-end attraction (e.g., Janus-particles) [154].
Adsorbing polymers to the particle is a common way to prevent aggre-
gation caused by the mentioned attractive forces, because they exert a
steric repulsion [155], which is also relevant when using complex in-
gredients. If adsorption is not sufficiently permanent, this may lead to
the reduction of interfacial tension or bridging of particles (both at the
interface and in the bulk).

The Bond number: Bo = Δρgr2/ γ > 1, with g the gravitational con-
stant, Δρ the density difference, and γ the interfacial tension can be used
to determine if particles with radius r may deform the interface leading
to capillary forces. For the small particles used in food, this criterion is
generally not met, although surface roughness, chemical heterogeneity
[156,133,72,157,158,159], anisotropic shape [160,161,162,163,
164,165,166] and other factors may cause pinned contact lines, and
induce interface deformation at low Bond number, which is expected to
be relevant for food emulsions. Depending on the curvature of fluid/
fluid interfaces within an emulsion, particles move along gradient lines,
adhering to the principle of minimizing energy to form structures
[167,168,146,169,143]. Both in theory and practice [170,171] defor-
mation of an anisotropically curved interface was shown to result in
anisotropic capillary interactions amongst isotropic particles (e.g., cubic
arrangements of spherical particles) [172]. Particles with different
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shapes (disks, spheres, and cylinders), experience capillary forces and
migrate along the curvature gradient to sites of high deviatoric curva-
ture [160,173,143,166]. Capillary forces between anisotropic particles
are millions of times greater than the thermal energy (~ kBT) which
promotes particle aggregation at the interface, thus increasing filling
efficiency and fortifying the emulsion stability [64]. Further, colloidal
particles have been shown to nucleate into crystalline patches on a
liquid droplet surface [173] rather than forming large crystals
[174,175,176,177], as this morphology minimizes the elastic energy
induced by the curvature [174,175,176,177].

2.4.2. Deformation
Flexible particles, e.g., microgels, can adsorb and partly (de)swell at

liquid interfaces [178,179,180]. The adsorption energy of core-shell gel
particles was found similar to that of solid particles of the same size (~
106 kBT). Interestingly, these particles adsorb spontaneously, so similar
to polymers (and food components), and rather different from solid
particles (as discussed in the process section) [57]. Because of the high
desorption energy, the particles form dense packings [57], and are
significantly compressed compared to the bulk solution.

The combined effect of high desorption energy and the absence of an
energy barrier to adsorption is most probably the result of dangling
polymeric chains present at the surface of the particles, in combination
with solvent quality effects that determine the level of collapse of the
polymers inside the particle, which may be different for both phases as
illustrated in Fig. 3 and modeled by [181]. This affects the contact angle
as it occurs in these systems which can be different for the two phases
(right side of Fig. 3, and thus the energy of desorption. It was found that
softer particles exhibited greater interfacial activity than harder parti-
cles [182,183,184], with the softer particles assembled and stretched
more readily, thus increasing their adsorption energy. The interfacial
tension co-determines the shape of a flexible particle at the interface
[179]. A larger interfacial area can be covered when the interfacial
tension (γow) is high; if the surface free energies of the particle with the
liquids (γop, γwp) are large, the particle is close to a sphere. The fact that

soft particles are able to adsorb at much lower energy input compared to
solid particles makes them relevant for practical application (see
respective section) [185,186,187,188] that is as long as these food-grade
particles are able to withstand the emulsification process (see next
section).

3. Process considerations

To make stable PEs, small droplets need to be timely stabilized by
particles carried to the interface through the shear force applied. We
briefly describe various process conditions used during emulsification
(see Appendix A for an extensive overview [189,190], share relevant
time scales, and consider particle integrity during emulsification.

3.1. Droplet formation

Considerable shear is used to make emulsions, and depending on the
device this will be through laminar (lab- and small pilot-scale emulsi-
fication devices), or turbulent flow (full pilot-scale and really large-scale
emulsification homogenizers), which makes comparison far from trivial
[191]. Droplet breakup in laminar conditions can take place through
plain shear flow or extensional flow. In both cases, a critical Weber
number (We) can be defined for droplet breakup.

We =
ηcγ̇Rd

2σ (3)

Here, γ̇ is the shear rate applied (1/s), ηc the viscosity of the
continuous phase (Pa⋅s), Rd the droplet radius (m), and σ interfacial
tension (N/m). For both situations, so-called Grace curves (relationship
between the viscosity ratio and the critical capillary number for droplet
break-up) are derived [192,193]. Under turbulent conditions, the flow is
much more chaotic in nature and is characterized through typical eddy
lengths [194,193,191]. Very recently, some of these processes were
covered through a modelling approach [195]. Table A1 and A2 in the
appendix give a concise overview of the emulsification methods,

Fig. 3. Schematics of adsorption scenarios for an isolated microgel particle. Young (a) and Neumann (b). The left-side images correspond to a swollen state in both
aqueous and oil phases whereas the right-side images show a collapsed state in the oil phase and a swollen state in the water phase. The light green is the microgel
size in the swollen state. An alternative to these scenarios is a polymer-like adsorption (c). Figure adapted from [57], with permission. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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including typical time scales.

3.2. Force needed to bring particles to the interface

As mentioned earlier, the size, geometry, and contact angle
(including pinning) influence the desorption energy of particles, and
thus the stability of emulsions. Besides that, interfacial tension (in
combination with the deformability of particles) plays a role in
desorption. These considerations hold for particles that are nested in the
interface, but in order for solid particles to adhere to the interface they
need to be brought there through a shear force big enough to exceed the
energy barrier described in Eq. (4). As mentioned, flexible particles
behave more like molecules during adsorption through dangling chains.

It was investigated how much force was needed to push particles
(sodium caseinate-covered solid lipid particles), into an interface [62]
using a microfluidic coalescence cell (see Fig. 4). Given its relevance for
Pickering stabilization, we discuss this work in detail. The coalescence
cell consists of a droplet formation part (T-junction; red rectangle) of
which the continuous phase flow rate is changed to vary the force with
which particles are brought to the droplet interface. Droplet interaction
takes place in the coalescence channel that starts at the green rectangle
and continues to the blue rectangle. At different locations, the droplet
size is registered and compared to the droplet size at the time of for-
mation, and from this, the average number of coalescence events (N in
Fig. 4) is calculated. The snapshots shown in the right bottom part of
Fig. 4 show the highly diverse outcome.

Sunflower oil droplets made in the absence of particles did not
coalesce, unlike droplets formed in the presence of lipid nanoparticles
that showed a coalescence dependency on the continuous phase flow
rate. Coalescence was reduced to zero at high particle concentrations
and continuous phase flow rates >90 μl/min (Fig. 4). At lower flow
rates, particles induce coalescence and have a destabilizing effect,

caused by droplet bridging, with coalescence expected to continue until
‘fully’ covered droplets are obtained, as demonstrated for surfactant-
stabilized droplets and bubbles [196–198,56]. Because of that, drop-
lets may no longer be spherical [24,199,200,61]. To be complete,
depletion attraction was excluded as a cause of coalescence [201].

The energy barrier (Ea) that needs to be overcome for particles to
reach the interface has been described by an Eyring-type equation
derived from the transition state theory of Kramers [202]:

kad = ω0⋅e
− Ea
RT (4)

in which kad is the adsorption rate, and ω the attempt frequency that is
related to particle diffusion. Under flow, the drag exerted on the particle
can be estimated using Stokes law (F = 6πηrpv, with η the fluid viscosity,
rp the particle radius, and v the fluid flow velocity relative to the particle
[203,201]. These hydrodynamic forces affect the adsorption rate as
shown in:

kad = ω0⋅e
(− Ea+Fδ)

RT (5)

with δ the thickness of the interfacial region that needs to break for
particle adsorption to take place. The hydrodynamic forces lower the
energy barrier, leading to particle adsorption rate exponentially
increasing with continuous phase flow velocity, ultimately preventing
coalescence, as shown in the snapshots on the right, and the polarized
light image of an emulsion prepared by high-pressure homogenization
(Fig. 4).

The fact that emulsions can be destabilized by particle bridging, has
been noted in the literature [204], while it has also been reported that
bridging does not necessarily lead to instability [58]. For the emulsions
reported in this work, it was found that when sufficiently covered, the
bridged droplets could be disconnected by gentle shaking.

Fig. 4. (a) A polarized light image of a 1 wt% solid lipid particle, and 10 wt% sunflower oil emulsion produced by high-pressure homogenization (400 bar, 5 passes).
(b) Microfluidic coalescence cell, droplet formation takes place at the T-junction (red rectangle), droplets are investigated along the coalescence channel (green
rectangle to the blue rectangle). (c) Number of coalescence events as a function of continuous phase flow rate (μl/min) for sunflower oil-in-water emulsions formed
with various concentrations of sodium caseinate-coated solid lipid particles in the continuous phase. The dispersed phase flow rate was 1 μl/min. No coalescence was
observed for the 5 wt% dispersion. (d) selection of snapshots of the coalescence chamber. All images are reproduced with permission from [62]. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Droplet formation versus particle deposition

3.3.1. Time scale considerations
Because of continued droplet break-up and coalescence during

emulsification [190,83], the force applied to make small droplets ex-
ceeds the interfacial Gibbs free energy by a factor of 20 to 100, and even
more due to heat dissipation [205,206,207,208,209,210]. It has been
suggested that under turbulent conditions, components of which the size
is similar to that of eddies would be transported fastest [193,191], and
this could be beneficial for particles. In the work of Walstra, it is sug-
gested that the higher propensity of casein at the interface relative to the
much smaller whey proteins that in essence have much higher diffu-
sivity is caused by this. For more information on the characteristics of
emulsification processes, and equations see the appendix, Table A1 and
A2.

3.3.2. Particle integrity
The massive shear forces exerted during homogenization will impact

the integrity of particles, especially when these are soft particles, or
possibly aggregates, as would occur in food ingredients. For bacterial
cells [211], starch [6], and protein particles [212] this has been
reviewed. In general, shear will not be able to destroy the molecular
protein structure when dispersed in a liquid unless shear rates exceed
105 s-1 but the situation is expected to be quite different for proteins that
are present at an interface e.g., [213] where they may unfold e.g.,
[214,215,216], and thus become susceptible to shear. For starch gran-
ules various effects have been described in relation to their structure,
retrogradation, and digestive functionality [217,218,139,219
,220,221,6], while for protein gels this is still rather limited [222,25]. It
can be expected that insights on microbial cells could be used as
guidelines for the disruption of flexible particles in general [211]. Last
but not least, particle aggregation may be playing an important role that
prevents uniform distribution of the particles across the emulsion
[135,136]. In literature, suggestions were made to evaluate if a process
can break up aggregates [223,224,225,226]. Especially when used as
powders, rewetting of solid particles and their interaction strength
(hundreds of kJ/g) can be an issue [223].

4. Interface considerations

From the previous sections, it is clear that various effects play a role
in PE production. One would need to weigh the exerted shear force that
leads to droplet formation within typical time scales for particle adhe-
sion to the interface (see process considerations section). Furthermore,
in the formulation of food products, not only particles will be present,
but also molecular components that are expected to influence the

interfacial tension, rheology, and contact angle, thanks to a plethora of
effects that all influence the composition of the interface that we
consider a determining factor in emulsion stability together with effects
that occur in the bulk phase [128,129,227]. We begin by describing the
techniques to measure interfacial effects and describe their usefulness in
PE design.

4.1. Interfacial tension and rheology measurement

The classical interfacial tension measurement techniques are based
on diffusion leading to the reduction of the interfacial tension (please see
the following reviews [228,229]. These methods have shown their
value, and allowed the identification of various regimes e.g., [230,228].
However, it is questionable if these methods are suited to shed light on
processes happening at time scales relevant to large scale emulsification.
For that, microfluidic devices may be better suited
[82,231,232,233,234,235,236,56] since they allow capturing effects
occurring within a sub-millisecond time range.

If particles are relatively large, as would be the case in many PEs,
diffusion is slow, and the diffusive force of particles to break into the
surface is not sufficient to allow them to nest there, making diffusion-
based interfacial tension measurement not that relevant. When dealing
with inert particles that can diffuse to the interface, no effect on inter-
facial tension is expected [24]. Still, in many papers, one can find a
reported effect of ‘particles’ on interfacial tension. Most probably that is
the result of either particle preparation methods leaving unreacted
molecular surface-active species behind that even after repeated
washing cannot be removed [187,237], or particle disruption by emul-
sification [60], or the weight of particles disturbing the shape of the
droplet as discussed later.

Assuming that particles can be brought into an interface, interfacial
rheology data can be gathered using the volume expansion/reduction
cycle-mode of a droplet volume tensiometer that allows the identifica-
tion of linear and non-linear behavior by using so-called Lissajous plots
[238,239,240,241]. The elasticity of the interface is directly connected
to its ability to prevent coalescence e.g., [242], and can amongst others
be used to investigate mixed layers [243,244,245,20], including their
interfacial displacement as recently reviewed by Hinderink [246]. For
particles both at the air/water as well as oil/water interface, information
has been gathered using step deformation, and the results were
compared with e.g., protein-stabilized interfaces [213]. Dynamic het-
erogeneity was reported for many interfaces with stress relaxation
following a stretched exponential decay (values of 0.4–0.6 for extension
and 0.6–1.0 for compression as described by a Kohlrausch-Williams-
Watts function), with the highest values corresponding to interfaces
that contain particles. This indicates (slow) transfer between interface

Table 1
Contact angle measurement techniques.

Technique Principle Pros Cons Reference

1. Sessile drop (including
advancing and receding values)

Placing droplet on target surface Simple
Available

Sensitive to roughness and porosity leading to big
differences in advancing and receiving angle
Target surface preparation may affect properties

[251]

2. Tilted Plate Droplet shape at various tilting
angles

As simple as sessile drop More sensitive to interpretation
Target surface preparation may affect properties

[250]

3. Wilhelmy Plate Force experienced by the Wilhelmy
plate

Available Target surface preparation may affect properties
Sensitive to interpretation

[251]

4. Capillary rise Height difference of liquid inside
and outside capillary

As available as Wilhelmy plate
Easy to interpret

Surface of interest needs to be deposited in a
capillary which may affect properties

[252,253]

5. Sticking bubble Air bubbles sticking to a target
surface

Analysis in liquid
Easy to interpret
Insensitive to roughness

Target surface preparation may affect properties
Elaborate method

[254]

6. Peel-off imprinting Polymerization of the interfacial
layer, analysis through AFM

Good impression of the contact
angle in a liquid-like state

Elaborate method
Limited observations

[131,255]

7. Super-resolution microscopy Direct observation of the contact
angle

Precise values for liquid/liquid
High resolution
Versatility
Easy sample preparation

Highly specialized equipment needed
Limited observations

[256,257]
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and bulk during deformation, which was confirmed through molecular
dynamics simulations [213]. A microfluidic method [238,247] to
investigate interfacial rheology through analysis of droplet deformation
under flow while passing through a constriction [248] showed that the
onset of film formation for proteins is within seconds, and much faster
than previously assumed and analyzed [249]; for particles, this still
needs to be tested.

4.2. Contact angle measurement and impression thereof

There are methods available to measure contact angles, but whether
that leads to accurate values is a bit of a question, especially when seen
in the light of particles that would be used in the production of food
emulsions [14] that are typically non-spherical and often rough. We
have put the methods in Table 1, and listed their pros and cons. For more
information including protocols, please see [250,251].

Contact angle measurement is often carried out at the air/water
interface, and only limitedly at the oil/water interface. For a number of
methods (1-5), a target surface needs to be prepared [133,153], which is
often done by compressing the particles into a tablet, or depositing them
onto a carrier (film casting) and to which they may need to be attached.
Typical food particles may include low molecular weight components
that are released from a tablet, thus influencing the contact angle.
Furthermore, methods 1-4 are sensitive to roughness, while this is not
the case for method 5, that actually performs better on porous and rough
surfaces. The fact that in methods 1-4, dry surfaces are used leads away
from the completely wetted state that particles would have in food
products. Polymerization has been used to create a peel-off imprint of
the particles, which besides being time intensive is not always that
straightforward to interpret [131]. Recently, an exciting new technique
was proposed for particles observation at a liquid/liquid interface [257]
using a super-resolution microscope in highly specialized labs. A more
accessible method (albeit not trivial) is the so-called sticking bubble
method that was developed for comparing the wettability of membranes
(porous and rough surface) [254], or fibers [258], and shown to be
instrumental in identifying surfactant-induced wettability changes in
membranes [259]. Methods 6 and 7 are closest to observing the particles
at the location of interest, with the super-resolution being closest and a
great step forward [260]. The method is versatile and has been applied
in liquid/liquid systems, including deformable particles [257], and
particles with varying surface chemistry [261], and more in general, to
get insights into the topology of interfaces [256] in various systems
including emulsions and bubbles [260]. The fact that the method has
high spatial resolution, low invasiveness, high sensitivity, simple sample
preparation and so on, are all big pros, but getting it to work with the
much less defined samples used for food emulsion preparation is the
next challenge, especially in relation to emulating interfaces as created
by emulsification devices.

4.3. Particle, interface, and droplet impressions

The question we ask ourselves is whether images, or more general
characterization techniques, do justice to the situation as it would occur
in food-related PEs and whether all aspects of the emulsions and parti-
cles also truly come to the foreground. Droplet size distributions are
often measured through static and dynamic light scattering techniques,
but this will not cover the full range of ‘structures’ present, be it parti-
cles, droplets, or even free molecules. Various fractions can be
measured, but the question how to appropriately overlap the size dis-
tributions obtained, is not easy to answer [262]. This also implies that it
is inherently difficult to follow the stability of PE emulsions, that is
unless major instabilities such as massive creaming or oiling of occurs,
but that would be far beyond the acceptability limit.

In the review of Low [109], various visualization methods for
droplets, and particles have been summarized. Bright-field optical mi-
croscopy gives a quick impression of the emulsion, while phase contrast

microscopy distinguishes particles and droplets, and that also holds for
polarization microscopy if particles show crystallinity (see Fig. 4). For
confocal laser scanning microscopy, either the inherent fluorescence of
components present or that of the fluorophores attached for this purpose
can be used to get an in-depth understanding of the localization of e.g.,
particles, including food particles [263]. The added fluorophore may
change component behavior, and that needs to be taken into account
consistently. Scanning and Transmission Electron Microscopy (TEM) is
used to generate images of both particles and droplets e.g., [136,14],
with the first technique requiring sputter coating of a dried sample
which may affect the sample greatly, while TEM can be used in a (cryo-
treated) liquid state to elucidate morphological differences [61]. Atomic
force microscopy has been used not only to investigate droplets (and
capsules) but also interfacial layers (Langmuir-Blodgett) e.g., of soft
particles of which the behavior could be modeled [181].

5. Considerations for application of pickering emulsions

5.1. General aspects

To prevent gravitational separation, emulsion droplets need to be
small, as follows immediately from Stokes’ formula for the sedimenta-
tion velocity of freely dispersed droplets:

v = −
2gr2 (ρ2 − ρ1)

9η1
(6)

with v the sedimentation rate (m/s), g the (gravitational) acceleration
(m/s2), r the droplet radius (m), ρ1 and ρ2 the densities of the dispersed
and continuous phase, respectively (kg/m3), and η1 the continuous
phase viscosity (Pa⋅s). Depending on the effective density difference of
the droplets, which is affected by adsorbed particles, droplets will either
cream or sediment.

As shown in Appendix A, a high-pressure homogenizer generates
droplets of typically 0.1 μm, which reduces the creaming rate greatly
given its squared dependency (typically in the order of 1 mm per year).
When particles are to be used to stabilize these droplets, they would
typically need to be 1/10th of the droplet size, which makes them in the
order of 10’s of nanometers. These particles are most probably in the
danger zone for being released from the interface (see Fig. A1 in the
appendix that are revised versions for Fig. 1 c1 and Fig 2, taking 5mN/m
as interfacial tension as a realistic value in food emulsions, and an
‘average’ contact angle of 60◦). From this figure, it is clear that for an
interfacial tension of 5 mN/m, strict requirements for particle size and
contact angle are needed. For non-spherical or rough particles, there
may be additional effects [172,161,154] compared to the base-case
described in Fig. A1, but in essence, the trends will not be that
different. Even if the particles do not cover the whole interface [23,24],
stable emulsions can still be achieved. It is thought that approximately
30 % uniform coverage would suffice.

The biggest difference with the scenario sketched earlier, would hold
for soft particles that can swell/de-swell when present at the interface,
thus changing their interaction energy. This would most probably lead
to a low effective interfacial tension (at the lowest 2-5 mN/m) as would
be the case for interface stabilized with proteins [264,57], and for which
the scenario is given in Fig. A1.

The situation described earlier relates to a specific food product with
a long shelf life, hence requiring small droplets. Alternatively, viscosity
enhancement has been used to reduce sedimentation or creaming, for
example by gelling or network formation [204,58,63,13,52,61,53]. The
dispersibility of particles (or lack thereof) can be an indication of their
propensity to form a network in the bulk phase e.g., [11,13,61]), or
emulsions that obtain their physical stability through a network of
particles and connected droplets [60]. Furthermore, components pre-
sent at the interface can form a film [265,247,266,213], a process that
can be speeded up by heat treatment [267] as well as result in
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displacement and subsequent destabilization [268,81,269,244,245].
Besides, stable emulsions have been reported through bridging mecha-
nisms [270,271,58], for which particles need a strong continuous phase
affinity, and cover a low amount of interface due to the extreme contact
angle [204]. Many examples are available in the reviews mentioned in
the introduction.

5.2. Choice of particles and emulsification process

5.2.1. Purpose-made versus existing particles
When deciding which particles to use for the production of PEs, two

options are available: 1. starting from particles that are purpose-
prepared e.g., [61] or 2. to work with particles as they happen to be
available in many bio-based processes either without further treatment
[128,129,8,13,14], or after receiving a surface treatment on purpose
[134,135,136,137,138,272,22], or that occurs as part of the treatment
given during component preparation [273], which may even lead to
additional functionality (see added functionality section). Obviously,
option 1, leads to better control over the particles and thus the emulsion,
but option 2 is of greater practical relevance since, this would add value
to streams that are currently termed by-products, or even waste
[11,14,60], and thus contribute to sustainability.

Irrespective of the particles used, their structural integrity upon
receiving a homogenization treatment needs to be investigated. This can
be done by checking their size, which may require investigating various
fractions, which is not trivial as described earlier, especially when par-
ticles of various sizes and geometries are present [274]. Alternatively,
one could measure the interfacial tension of a particle dispersion after
receiving a homogenization treatment. If only particles are present, the
reduction in interfacial tension would be slow, or not occur, while if low
molecular weight components are present because of disruption of the

particles, interfacial tension would decrease much more and much
faster. For soft particles, a similar reduction of interfacial tension has
been reported as for molecules, albeit at a slower rate [127]. Further-
more, some papers discuss the exchange of particles, although this seems
a minor effect, and if it occurs at all, it may be induced by the fact that
particles are small in combination with wettability changes induced by
molecular components present [275].

The insoluble part of food ingredients, as abundantly present in plant
ingredients (protein, starch granules) can serve as ‘particles’ that sta-
bilize emulsions, even at high oil volume fractions, albeit that oxidative
stability needs to be taken into account [276] (see additional function-
ality section). These particles would need to remain insoluble upon
receiving processing (e.g., emulsification or heat treatment), but if they
do, they can be effective stabilizers [11,135,136,277].

5.2.2. Emulsification and other process requirements
In many cases, we feel that particle stabilization is part of the

explanation for reported emulsion stabilities found, and that may be a
small part due to the presence of molecular components that may have
been part of the ingredient, or the result of loss of particle integrity. In
essence, many of the food emulsions that are claimed to be PEs have
mixed interfaces as investigated in depth by [186,187,188] who found
that repeated rinsing of microgel dispersions still did not fully remove
molecular components. Due to the focus on particles, other components
in the interface are not that well documented, and it is often not realized
that they are there given the focus on the visualization of particles in the
interface as described in the section on particle, interface, and droplet
impressions. Besides, continuous phase effects take place that can lead to
enhanced stability due to increased viscosity of network formation
[128,129,11,13,53]. For more information on mixed interfaces and the
resulting effects, we refer to the review by McClements and Jafari [278].

Fig. 5. Formation of (a) conjugated diene hydroperoxides (CD LOOH) and (b) aldehydes (pAV), and (c) stability of α-tocopherol during incubation of concept and
control PEs (red circles and blue squares, respectively; see schematic illustrations at the bottom left) initially containing 200 μmol kg-1 α-tocopherol. CLSM images of
the PEs with α-tocopherol initially added to the CLPs (d, concept PE) or the oil (e, control PE), taken over 0–72 h. The scale bar on all images is 10 μm. Adapted, with
permission from Elsevier. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To make a true PE, solid particles need to be pushed toward the
interface, for soft particles this value is considerably lower which may
imply that alternative emulsification processes become relevant. Espe-
cially microfluidic techniques that allow manipulation of the droplet
formation process at a very small scale have been suggested for this
[73,210,4], and that also includes direct and pre-mix membrane emul-
sification [279,207,280]. These techniques have been recommended for
their low energy input compared to homogenization [281,282,283], and
may thus be less detrimental to the particles. Because of the more
defined, and in some cases even uniform droplet size, these emulsions
are also more stable against Ostwald ripening. For microfluidics,
obtaining submicron droplets, as well as upscaling are still challenges
that need to be addressed [284,285,286,74,75].

To warrant food safety, products are heated, cooled, or frozen, which
may cause instability. Besides thermal energy increase (Fig. A1), this
may induce (interfacial) gelation [19,63], which has been investigated
in depth for starches e.g., [217] and protein [287], including continuous
phase, and digestion effects, as discussed in the respective section.
Furthermore, crystallization and network formation as occurs in ice
cream through partial coalescence of stabilizing crystals on air bubbles
was reported [288,289].

5.3. Additional functionality of pickering emulsions

Besides physical stability, PEs also are known for the additional
functionality they may have e.g., chemical stability (lipid oxidation), or
digestive stability, and how they can serve as a basis for other products.

5.3.1. Lipid oxidation mitigation
Lipid oxidation in emulsions is initiated at the oil-water interface

[290], and implies that putting antioxidant (containing) particles at the
interface yields an opportunity to enhance physical and chemical sta-
bility [273]. This was proven for emulsions stabilized with solid lipid
nanoparticles. Emulsions that were identical in composition, but in
which the antioxidant α-tocopherol was either delivered through the oil
droplets or was incorporated in solid lipid particles (Fig. 5; [200,61])
had different oxidative behavior. Fig. 5 shows that lipid oxidation
products (both primary conjugated dienes (a), and secondary aldehydes
(b)) were suppressed in emulsions with the antioxidant incorporated in
the particles. The drop in α-tocopherol (c) is in line with this, as are the
CLSM images (Fig. 5d and e) that show an exchange of α-tocopherol
starting from the interface (d, t = 0) to the droplet, from which it is
consumed away. When added to the continuous phase, the α-tocopherol-
loaded particles had no effect on oxidation, clearly indicating that par-
ticle localization was key [200].

Other examples of antioxidant-loaded Pickering particles have been
published, e.g., epigallocatechin gallate (a common plant-derived anti-
oxidant) was incorporated into mesoporous silica nanospheres, which
lowered oxidation of emulsified essential oil better compared to the
standard emulsifier Tween 80 [291]. Hydrophobic zein and hydrophilic
phenolics were used to create composite particles that rendered rela-
tively high oxidative stability to emulsions compared to protein-
stabilized control emulsions [292,293]. These examples demonstrate
the viability of Pickering particles as interfacial antioxidant reservoirs,
thus providing dual (physical and oxidative) stability to emulsions.

Particles added to the continuous phase can lead to antioxidant ef-
fects, albeit through another mechanism. Maillard reaction products
have been found to affect lipid oxidation in emulsions due to binding of
metal and radical scavenging [294,295,296]. Starch particles [273]
were claimed to form thick interfacial layers with an ability to scavenge
free radicals in conjunction with regular emulsifiers [272]. It is good to
mention that the differences for emulsions of comparable droplet size
were actually not that big, and that the claim that thick layers would
reduce oxygen diffusion is not valid given the fact that interfacial layers
contain many holes. Even if perfect these layers would not be thick and
dense enough to slow down gas diffusion as demonstrated extensively

for edible coatings [297,298], also not when gelled, and oxygen diffu-
sion in oil is so fast that no gradients would occur [299,300].

5.3.2. Digestive stability
Emulsions can be used for controlled release through the loss of

interface stability under digestive conditions. For emulsions stabilized
with proteins and other surface-active components, this is expected to
happen early on in the digestive tract [301,302]. This may lipolysis rates
through droplet coalescence (reduced surface area), and not by a direct
effect of the interfacial layer, unless specific combinations of surface-
active components are used [278,303]. For PEs, digestive effects have
been reported [19,304,51,46,47,15,48,287,305]. For indigestible par-
ticles, the findings were very nicely summarized in the review by Sarkar
[48] who concluded that the ability of Pickering particles to prevent
displacement by bile salts leads to a reduced oil droplet area available
for lipid hydrolysis to take place, and thus reduced formation of free
fatty acids and extent of digestion. If the particles are displaced, the
emulsions are no longer protected, and either are digested very rapidly
or coalesce. Biodegradable particles add complexity to the digestive
behavior, leading to a reduction in particle size, and most probably
production of low molecular weight components of which the effect is
covered in Figs. 1c and A1 (smaller particles, lower interfacial tension,
and an unpredictable effect on contact angle), thus leading to lower
desorption energy and emulsion stability.

When particles form a gel layer, first gel digestion by abrasion needs
to take place, before lipid digestion can take place [306,307]. Further-
more, gelled layers may slow down lipase diffusion through their mesh
size [287,48], which is in line with findings for gel beads containing oil
droplets [308,309]. This effect was dependent on the temperature
treatment given to starch particle-stabilized emulsions [267], thus also
affecting the encapsulation efficiency of bioactives [219]. To be com-
plete, droplet aggregation is expected to influence digestion by effec-
tively enlarging the diffusive distance of digestive enzymes.

5.3.3. Other products
PEs are products in their own right, as well as starting points for

other products such as high internal phase emulsions, both oil-in-water
[28,310], and water-in-oil [54] and encapsulates e.g., [311], that can be
strengthened and further functionalized by the addition of other layers
that consist of spherical as well as fibrous particles [312,313]. Some of
these systems have been shown to exhibit a strong pH response that can
be relevant for delayed digestion [312] either of the oil or of components
that are dissolved in the oil. Most of the work reported on food PEs re-
lates to simple micrometer-sized emulsions, but also nano-emulsions
have been reported [314,315], as well as double emulsions as
reviewed in [310,314]. Furthermore, PEs have formed the basis for
encapsulates [45,304], powders [316,317], foams [2,12] in which in
some cases particles were formed at the site [318], and even more
complex systems [95], that have been reported for their heat e.g., [267]
as well as cold stability e.g., [319]. Besides, Pickering foams have been
reported [318,95,2,12], and anti-bubbles [320] with excellent stability
thanks to the previously mentioned curvature effects typical of particle-
stabilized systems (see Fig. 2).

When taking inspiration from fundamental studies, it is clear that
typical particles as occur in food ingredients have their benefits. They
are generally not spherical and rough, and may be heterogeneous in
their surface composition which may increase their desorption energy,
thus making them less likely to be removed from the interface that they
are stabilizing [23,20,24]. This holds even more strongly for deformable
particles that are expected to be amply present in foods, or be formed
upon rehydration of powders [321,322,323]. There are also a number of
effects that go beyond the actual Pickering mechanism. Through their
multiple charges, these particles may enhance connectivity in the
interfacial layer [29,24]. Besides, particles may form a network in the
bulk that adds to the stability of emulsions e.g., [61], or one that is
formed upon gelling [217,52,267,53], or upon rehydration of particles
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[321,322,60]), which also effectively reduces the volume fraction of free
water, thus adding to viscosity of the continuous phase, and possibly
network formation even at high volume fractions of the dispersed phase
[54,276]. This positions emulsions made with particles well for the
formation of foods and food elements with special properties as very
recently reviewed in [50].

6. Conclusion/outlook

Although often claimed to lead to Pickering emulsions (PE), emul-
sion formulations that contain (solid) particles, mostly do not lead to
emulsions that derive their stability (solely) from particles at the inter-
face, a prerequisite for the term PE. In most practical ‘Pickering’ food
emulsions, mixed interfaces will be present, either as a result of the
composition of the ingredients, or of the emulsification technique used
that may reduce particles to smaller entities (e.g., during homogeniza-
tion). This leads to a reduction in interfacial tension, and possibly a
change in contact angle, that both reduce the desorption energy of the
particles, and thus emulsion stability. Soft particles show behavior be-
tween that of polymers and solid particles, with dangling chains readily
adsorbing, and particle deformation leading to relatively high desorp-
tion energy, and high emulsion stability. As long as particles remain at
the interface in sufficient amounts, droplets will be physically stable
against coalescence, and Ostwald ripening even when an oil with
appreciable solubility in the water phase is used. These emulsions may
not be stable against gravitational separation, for which one may
consider network formation of the particles in the bulk phase including
particle-covered droplets as part thereof, thus making use of aggregation
behavior to enhance stability.

The use of particles in food emulsion products can generate

additional functionality, e.g., oxidative stability, and enhanced
controlled digestion and release of components compared to regular
emulsions. Besides, the use of particles is a versatile option to create food
products with increased shelf-life, can contribute to health, as well as
sustainable food products [129] (see Fig. 6).
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Appendix A. Appendix

Table A1
Some features of common methods and machines to produce emulsions.

Homogenizer Types Flow
Regime

(Un)-Bounded
Flow

Energy Density
(J⋅m− 3)

Relative Energy
Efficiency

Droplet sizes
Achieved

Viscosity Typical Volumes

Stirred tanks TI, TV, LV U Low–High Low 2 μm
and larger

low to medium batches up to
several m3

Colloid mill LV (TV) B Low–High
103 to 108

Inter-mediate 1 to 5 μm medium to
high

4 to 20,000 l⋅h− 1

Tooth disc disperser (e.g.
Ultraturrax) TV B

Low–High
103 to 108 Inter-mediate 1–10 μm low to medium

batches cm3

up to several m3

High-pressure homogenizer
TI, TV,
(CI), LV U

Medium–High
106 to 108 High 0.1 μm low to medium 100 to 20,000 l⋅h− 1

Ultrasonic probe CI U Medium–High
106 to 108

Low 0.1 μm low to medium batches <100 cm3

Ultrasonic jet CI U Medium–High
106 to 108

High 1 μm low to medium 1 to 500,000 l⋅h− 1

Micro-fluidization TI, TV B/U
Medium–High
106 to 108 High <0.1 μm low to medium up to 12,000 l⋅h− 1

Membrane and Micro-channel Injection
STB

B Low
103

Exceptionally
high

0.3 μm—
often larger

low to medium
batch or semi-
continuous 10’s
l⋅h− 1

Table from Rayner [189,190]; reprinted with permission from CRC Press. The flow regimes are: LV= laminar–viscous, TV= turbulent–viscous, TI= turbulent–inertial,
CI = cavitation–inertial, STB = spontaneous transformation based. Low viscosity = like water, medium viscosity = like cream, high viscosity = like honey.

Table A2
Equations for estimating stresses exerted on droplets, expected mean particle diameters, adsorption times of surfactants, droplet deformation times, and collision times
for emulsion droplets under laminar and turbulent flow conditions.

Flow Regime Laminar—Viscous Shear or Elongational (LV) Turbulent–Viscous Shear Forces (TV) Turbulent–Inertial Forces (TI)

Re—flow <1000 >approx. 2000 >approx. 2000
Re-droplet <1 <1 >1 *

Mean Diameter (d ≈) # 2 γ Wecr
ηc G

γ
̅̅̅̅̅̅̅̅ε ηc

√

(
γ3

ε2 ρc

)
1 /5

External stress acting on droplets (σ) ηc G
̅̅̅̅̅̅̅̅ε ηc

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε2 d2 ρc3

√

Droplet deformation time scale (τDEF) ηD
ηc G

ηD
̅̅̅̅̅̅̅̅ε ηc

√
ηD̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ε2 d2 ρc3
√

Duration of disruptive stresses (τDIS) 1
G

̅̅̅̅̅
ηc
ε

√
1
2

(
γ2ρc
ε3

)
1 /5

Surfactant adsorption time scale (τADS) 6 π Γ
d mc G

6 π Γ
d mc

̅̅̅̅̅
ηc
ε

√
Γ
mc

̅̅̅̅̅̅
ρc
d ε

3

√

Droplet collision time scale (τCOL)
π

8 G ϕ –
1

15 ϕ

̅̅̅̅̅̅̅̅̅̅̅
d2 ρc

ε
3

√

Adapted from: ([1]; [193]; [191]). Symbols: We=Weber number (see text); Re= Reynolds number (see text); Re-droplet= Reynolds number but with the droplet size
as characteristic dimension; Γ = surface excess of surfactant (mol m− 2); ε = power density (J⋅s− 1⋅m− 3); d = droplet diameter (m); γ = interfacial tension (J⋅m− 2); η =

viscosity (Pa⋅s); G = velocity gradient (s− 1); mc = surfactant concentration in the continuous phase (mol⋅m− 3); τ = characteristic time (s); σ = stress (Pa); ρ = density
(kg⋅m− 3). Subscripts: d= dispersed phase; c= continuous phase; cr= critical value for droplet break-up; DEF= deformation; DIS= disruptive, ADS= adsorption; COL
= collision. Notes: * For d > η2c/(γ ρc). # Only if ηd≫ηc. Table reprinted with permission from CRC Press [189].

Fig. A1. Revisited version of Fig. 2, with 5 mN/m as interfacial tension in the left graph, and a contact angle of 60 ◦for the right graph. The thermal desorption
energy has been taken as during a heat treatment (120 ◦C).
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[128] Berton-Carabin CC, Sagis L, Schroën K. Formation, structure, and functionality of
interfacial layers in food emulsions. Ann. Rev. Food Sci Technol 2018;24(1).
https://doi.org/10.1146/annurev-food-030117.
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[196] Deng B, Schroën K, de Ruiter J. Effects of dynamic adsorption on bubble
formation and coalescence in partitioned-EDGE devices. J Colloid Interface Sci
2021;602:316–24. https://doi.org/10.1016/j.jcis.2021.06.014.
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[282] Nazir A, Schroën CGPH, Boom RM. High-throughput premix membrane
emulsification using nickel sieves having straight-through pores. J Membr Sci
2011;383(1–2):116–23. http://edepot.wur.nl/187857.
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of Pickering emulsions stabilized by starch granules. Colloids Surf A Physicochem
Eng Asp 2013;436:512–20. https://doi.org/10.1016/j.colsurfa.2013.07.015.

[320] Poortinga AT. Long-lived antibubbles: stable antibubbles through Pickering
stabilization. Langmuir 2011;27(6):2138–41. https://doi.org/10.1021/
la1048419.

[321] Hollestelle C, Divoux L, Michon C, Huc-Mathis D. Unravelling the emulsifying
properties of unfractionated plant powders: from interface to bulk. Food
Hydrocoll 2024;157. https://doi.org/10.1016/j.foodhyd.2024.110348.

[322] Hollestelle C, Michon C, Fayolle N, Huc-Mathis D. Co-stabilization mechanisms of
solid particles and soluble compounds in hybrid Pickering emulsions stabilized by
unrefined apple pomace powder. Food Hydrocoll 2024;146. https://doi.org/
10.1016/j.foodhyd.2023.109184.

[323] Joseph C, Savoire R, Harscoat-Schiavo C, Pintori D, Monteil J, Faure C, et al.
Pickering emulsions stabilized by various plant materials: cocoa, rapeseed press
cake and lupin hulls. LWT 2020;130. https://doi.org/10.1016/j.
lwt.2020.109621.
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