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A B S T R A C T

Uncertainty plays a key role in hydrological modeling and forecasting, which can have tremendous environ-
mental, economic, and social impacts. Therefore, it is crucial to comprehend the nature of this uncertainty and
identify its scope and effects in a way that enhances hydrological modeling and forecasting. During recent de-
cades, hydrological researchers investigated several approaches for reducing inherent uncertainty considering
the limitations of sensor measurement, calibration, parameter setting, model conceptualization, and validation.
Nevertheless, the scope and diversity of applications and methodologies, sometimes brought from other disci-
plines, call for an extensive review of the state-of-the-art in this field in a way that promotes a holistic view of the
proposed concepts and provides textbook-like guidelines to hydrology researchers and the community. This
paper contributes to this goal where a systematic review of the last decade’s research (2010 onward) is carried
out. It aims to synthesize the theories and tools for uncertainty reduction in surface hydrological forecasting,
providing insights into the limitations of the current state-of-the-art and laying down foundations for future
research. A special focus on remote sensing and multi-criteria-based approaches has been considered. In addition,
the paper reviews the current state of uncertainty ontology in hydrological studies and provides new categori-
zations of the reviewed techniques. Finally, a set of freely accessible remotely sensed data and tools useful for
uncertainty handling and hydrological forecasting are reviewed and pointed out.

1. Introduction

Climate change and anthropogenic activities are influencing the rise
in global temperature and altering precipitation occurrences. Conse-
quently, the intensity and frequency of floods and droughts are
increasing (IPCC, 2021). Besides, the global water demand is also
growing due to rapid population growth, urbanization, and industrial-
ization. Supplying water and diminishing the consequences of hydro-
logical extremes are major tasks for decision-makers in this modern era.
This requires a clear assessment of current and future water resource
availability and an understanding of the impacts of environmental
changes such as climate (Krysanova et al., 2018), land use, and land
cover (Chawla and Mujumdar, 2018) on hydrological systems. In these
regard, hydrological modeling and forecasting are widely used to

investigate, understand, and predict various natural processes of hy-
drology (Todini, 2007; Papacharalampous et al., 2020; Lakshmi and
Sudheer, 2021; Moges et al., 2021; Horton et al., 2022).

Hydrological modeling techniques (HMTs) are found useful in
various hydrological forecasting applications such as streamflow (e.g.,
Abbasi et al., 2021; Althoff et al., 2021; De Santis et al., 2021; Hassan
and Hassan, 2021; Lee et al., 2021; Liang et al., 2021) and floods (e.g.,
Adams and Dymond, 2019; Anandharuban et al., 2019; Bhola et al.,
2019; Rajib et al., 2020; Tran et al., 2020; Silvestro et al., 2021; Xu et al.,
2021). Similarly, HMTs are also applied to watershed assessment ap-
plications such as water balance, rainfall-runoff process, water avail-
ability, streamflow (e.g., Ashraf et al., 2019; Huang et al., 2020; Hui
et al., 2020; Lilhare et al., 2020; Papacharalampous et al., 2020; Papa-
charalampous et al., 2020b), and snow melt modeling (e.g., Di Marco
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et al., 2021; Dion et al., 2021; Thornton et al., 2021; Zaremehrjardy
et al., 2021). Other applications of HMTs include understanding, pre-
diction, and management of reservoir inflow, soil moisture, and
groundwater (e.g., Wu and Zeng, 2013; Fraga et al., 2019; Mustafa et al.,
2019; Amanambu et al., 2020; Chen et al., 2020; Kasiviswanathan et al.,
2020; Fathololoumi et al., 2021; Klotz et al., 2021; Valdez et al., 2021).
Overall, HMTs are used in various applications of water resources
management such as irrigation and drainage management, flood man-
agement and adaptation, reservoir inflow predictions and operations,
framing short-term and long-term water supply strategies, and miti-
gating the negative impacts of floods and droughts.

The hydrological models that are in use can be classified into two
major types: (i) data-driven and (ii) process-driven (conceptual models
and physically based models) (Papacharalampous et al., 2020; Lakshmi
and Sudheer, 2021). These models vary in providing solutions at
different levels of complexity (Horton et al., 2022; Moges et al., 2021;
Papacharalampous et al., 2020), e.g., data-type (Hassan and Hassan,
2021), conceptual-level (Thiboult et al., 2015; Humphrey et al., 2016),
physically-based (e.g., Fraga et al., 2019; Her et al., 2019a, 2019b),
semi-distributed level (Huang et al., 2020), fully distributed-level
(Abbott et al., 1986), and process integration-level (Van Steenbergen
et al., 2012; Habert et al., 2016). Although advancements have been
seen in hydrological modeling for the past four decades, handling un-
certainty in hydrological models is still pertinent to address new de-
velopments (Blöschl et al., 2019), for example, the development of
management scenarios in hydrological modeling.

These developments require at least three prerequisites: (1) objective
definition and input preparation, (2) parameter definition and model
conceptualization, and (3) model calibration and validation. All these
stages of development contain uncertainty in connection with the
measurement (e.g., Das Bhowmik et al., 2020; Piazzi et al., 2021; Yang
et al., 2020), the scope of inputs (e.g., Althoff et al., 2021; De Santis
et al., 2021; Hassan and Hassan, 2021), model parameters (e.g., Liu
et al., 2020; Tran et al., 2020; Liang et al., 2021), conceptualization (e.
g., Bhola et al., 2019; Lee et al., 2021; McInerney et al., 2021), and
simulation/forecasting platform employed (e.g., Siqueira et al., 2021;
Mazrooei et al., 2021; Xu et al., 2021). Therefore, efforts must be un-
dertaken to address these uncertainties and produce reliable hydrolog-
ical forecasting that can be communicated to decision-makers and the
public (Krzysztofowicz, 2001; Blöschl et al., 2019). Since the early work
in hydrological forecasting, several researchers have tried to account for
various facets of uncertainty using various techniques and tools
(Moradkhani et al., 2005; Pappenberger and Beven, 2006; Montanari,
2007). However, the site-specific nature and complexities involved in
developing such models have kept studies on uncertainty handling as
one of the unsolved problems in hydrology (Moges et al., 2021; Papa-
charalampous et al., 2020). Strictly speaking, there are inherent chal-
lenges in handling uncertainty linked to its nature, scope, and
perception when associated with the model under consideration (e.g.,
scale: spatial-temporal scales; lumped and distributed) and its expected
outcome. It is, for instance, open to debate whether this uncertainty is
static or dynamic.

In this respect, uncertainty in hydrological forecasting may evolve
due to one or more of the following reasons: (1) measurement error
(Tauro et al., 2018; Vema et al., 2020), (2) input error (Hrachowitz et al.,
2013; Tauro et al., 2018; Blöschl et al., 2019), (3) errors in model
conceptualization (McInerney et al., 2021), (4) initial setting of the
parameters (Vema et al., 2020), (5) simulation error (Tran et al., 2020;
Wang et al., 2017; Vema et al., 2020), (6) techniques and assumptions
used in calibration procedures (Sivapalan et al., 2003), (7) assumptions
used in the hydrological projections (Brigode et al., 2013), and (8)
modeler’s experience (Moges et al., 2021). Evaluation of recent studies
suggests that much progress has been made in addressing the mea-
surements, input, and conceptual uncertainties. This has been achieved
with the awareness of increased data availability, the arrival of remote
sensing and digital recording, the development of non-invasive

measurement systems, new tracer-based methods (Tauro et al., 2018),
and applications of Machine Learning and Artificial Intelligence in hy-
drological modeling. Advancements in hydrological modeling, such as
physically based and fully integrated models, require many parameters
depending on the assessed hydrological process. These parameters must
be adjusted compared to the measured data, e.g., for calibration pur-
poses (Shafii et al., 2015). However, parameter uncertainty also occurs
because of the initial setting and approximations that are part of the
employed modeling approach (Khoi and Thom, 2015). For this purpose,
many studies have attempted to reduce the parameter uncertainties in
hydrological forecasting while addressing the measurement, input, and
conceptual uncertainties (Chawla and Mujumdar, 2018; Lafaysse et al.,
2017; Meng et al., 2017; Mustafa et al., 2020; McInerney et al., 2021).

Although considerable progress has been accomplished in addressing
various uncertainties of hydrological modeling, model uncertainty (or
structural uncertainty) is still a major challenge in hydrology
(Pappenberger and Beven, 2006; Montanari, 2007; Mustafa et al., 2020)
and is more elusive than other uncertainties, e.g., parameter uncertainty
(Kirchner, 2006). Hence, a more consistent framework for addressing
different types of uncertainty is required while considering the context
(Bennett et al., 2013) and uniqueness of the study (Beven, 2000) in
hydrological forecasting despite developing a range of alternative
models (e.g., Clark et al., 2015; Blöschl et al., 2019).

In the past four decades, studies related to uncertainties in hydro-
logical forecasting have evolved in terms of methods of uncertainty
quantification, impacts of these uncertainties in hydrological fore-
casting, and sources involved in hydrological forecasting (Beck, 1987;
Morgan, 1994; Beven, 2009; Beven, 2002; Paul et al., 2021; Beven and
Lane, 2022; Gupta and Govindaraju, 2023; Beven, 2023). Because of the
importance of hydrological forecasting which supports irrigation and
drainage management, flood early warning, drought monitoring, snow
accumulation, and melting, recent studies related to uncertainty
handling have shifted towards improving hydrological forecasting by
devising methods for reducing uncertainty levels and improving the
model structure for reliable forecasts.

1.1. Motivation for this study

Our initial literature search in terms of existing review papers in this
field identified eleven survey papers investigating the aspects of un-
certainty in hydrological modeling and forecasting. These reviews can
be classified into three major classes: (1) data and input (Dong, 2018;
Maggioni andMassari, 2018; McMillan et al., 2018; Jose and Dwarakish,
2020), (2) developments on models and methodology for hydrological
forecasting (Rossa et al., 2011; Wu and Zeng, 2013; Li et al., 2017; Guo
et al., 2021; Moges et al., 2021; Troin et al., 2021), and (3) methodo-
logical developments in quantification and reduction of these un-
certainties in hydrological forecasting (Wu et al., 2020). However, our
scrutiny of these reviews also revealed the lack of global scope and
comprehensive analysis of alternative methods in dealing with uncer-
tainty, which calls for further research and updated reviews in this field.
To our knowledge, no review has focused on reducing uncertainty for
improving hydrological forecasting, which motivates our current work
in this paper.

1.2. Objectives

The main objective of this study is to compile the current progress
and challenges while categorizing existing solutions for reducing un-
certainty involved in hydrological forecasting by replying to the
following research questions:

Q1. What are the latest developments in reducing uncertainty in
hydrological forecasting?

Q2. How do various methods of hydrological forecasting address the
various uncertainties, and what are their advantages and disadvantages?

Q3. How does remotely sensed data impact uncertainty in
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hydrological forecasting?
Q4. What are the criteria for selecting a model to reduce the un-

certainties in hydrological forecasting?

1.3. Contributions and organization of the manuscript

The significant contributions from this review are threefold. First, it
synthesizes the methods and tools for reducing uncertainties in hydro-
logical forecasting. Second, it provides insights into the advantages and
limitations of the current developments/solutions for reducing uncer-
tainty in hydrological forecasting. Third, the role of remote sensing in
reducing uncertainties of hydrological forecasting is elucidated. Finally,
an extensive review of existing hydrological models has been carried out
with an emphasis on multi-criteria approaches for uncertainty handling
and open-source data sources in a way to simulate further studies in this
field. A high-level graphical summary of the paper content is depicted in
Fig. 1, while a concise list of abbreviations employed in this paper is
shown in Table 1 (a complete and extended list of abbreviations is reported as a supplementary file to this paper in Table S1). The

Fig. 1. Summary of the present review (Three columns represent the manuscript organization from Sections (Red) to sub-sections (Blue) and its content organization
(Green)). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
List of main abbreviations.

Sl. No Abbreviations Expansion

1 DA Data Assimilation
2 ET Evapotranspiration
3 GCMs Global Climate Models
4 GWR Groundwater Recharge
5 HMTs Hydrological modeling techniques
6 IPCC Intergovernmental Panel on Climate Change
7 LAI Leaf Area Index
8 LST Land Surface Temperature
9 LULC Land Use Land Cover
10 NDVI Normalized Difference Vegetation Index
11 RCMs Regional Climate Models
12 RMSE Root Mean Square Error
13 SCE Snow Cover Extent
14 SM Soil Moisture
15 SWE Snow Water Equivalent
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organization of the paper is as follows. Section 2 reviews existing review
papers in the field. Section 3 outlines the review methodology employed
in this review. In Section 4, an overview of uncertainty handling in
hydrological forecasting is discussed. Subsequently, Section 5 shifts the
focus to various methods used for uncertainty reduction. Following this,
Section 6 delves into multi-criteria approaches for uncertainty handling
and provides insightful comments on both current practices and po-
tential future directions. Advancing further, Section 7 discusses the
applications of remote sensing in reducing uncertainties. Thereafter,
Section 8 provides a comprehensive summary of the criteria for choosing
hydrological models. Finally, the paper concludes with Section 9, which
draws conclusive statements and recommendations.

2. Existing review papers

The synthesis of scientific progress and challenges in managing un-
certainties within hydrological forecasting, spanning various facets of
captured processes as discussed in several review papers, is detailed in
Table 2.

McMillan et al. (2018) examined the use of hydrometeorological
data in model conceptualization and calibration, and the uncertainties
that arise from these processes. These uncertainties, which contribute to
10–40 % of the total uncertainties in hydrological forecasting, are
categorized into measurement, derived data, interpolation, scaling, and
data management-based uncertainty. Recent advancements in the ap-
plications of Global Climate Models (GCMs) have provided a fresh
perspective on forecasting uncertainties. Jose and Dwarakish (2020)
outlined these uncertainties, which involve scenario uncertainty,
climate scenario selection, and model uncertainty. The advent of new
sensor systems in hydrological modeling has opened new avenues for
exploration in terms of uncertainty handling and modeling. For
example, the applications of remotely sensed data products carry
inherent uncertainty due to variations in spatial and temporal coverage
as well as scale. Maggioni and Massari (2018) surveyed these factors for
satellite precipitation products (SPPs), while Dong (2018) examined the
impact of temperature data products, snow cover, soil moisture,
evapotranspiration (ET), and various environmentally related indices (e.
g., Leaf Area Index (LAI)), and their derived products. These products
are used in a range of tasks, from modeling data-scarce situations to
streamflow and flood modeling, paving the way for a detailed exami-
nation of these uncertainties. In particular, data scarcity and the
regionalization of model parameters have been found to significantly
impact input and model uncertainty, which in turn, affect forecasting
uncertainty. Ensemble forecast techniques, recognized for their ability
to utilize multiple sources and datasets in the forecasting process, can
positively impact the reduction of uncertainty. Troin et al. (2021) sur-
veyed this trend in streamflow forecasting over the past four decades.
They categorized streamflow ensemble forecast techniques into three
categories: statistics-based systems, climatology-based ensemble sys-
tems, and numerical weather prediction-based systems.

Similarly, Wu et al. (2020) reviewed ensemble prediction for flood
forecasting, and Li et al. (2017) reviewed statistical postprocessing
methods for hydrometeorological ensemble forecasting, distinguishing
between methods for single model forecasting and those for multiple
model forecasting. Moges et al. (2021) identified various levels of
addressing hydrological forecasting uncertainty, which stem frommodel
parameters, model structure, calibration, and input data, each requiring
special attention. However, these authors focused on optimization and
probabilistic-based uncertainty analysis, leaving qualitative and ill-
known factors unaccounted for. In their review, Guo et al. (2021)
focused on urban surface water flood modeling, highlighting four
distinct categories: drainage network models, shallow-water-based
models, hydrogeomorphic models, and other models. They empha-
sized the lack of reliable modeling of urban surface water flooding as the
main source of uncertainty. Rossa et al. (2011) reviewed the outcomes
and guidelines of the European Cost Action 731, which dealt with the

quantification of uncertainty in hydro-meteorological forecast systems.
For this purpose, the action promoted three development-based meth-
odologies: combining meteorological and hydrological models, chain-
based uncertainty propagation, and advancements in high-resolution
weather prediction precipitation forecasts. Wu and Zeng (2013)
focused on groundwater systems, employing numerical simulations to

Table 2
List of review papers and their advantages and limitations.

Sl.
No

Review paper Advantages Limitations

1 McMillan
et al., 2018

The uncertainties
associated with
hydrological data are
examined and categorized
into five types:
measurement, derived data,
interpolation, scaling, and
data management-based
uncertainty.

Other sources of
uncertainty in hydrological
modeling have not been
addressed. Furthermore,
the methods to mitigate
these additional sources of
uncertainty have not been
discussed.

2 Jose and
Dwarakish,
2020

Uncertainties associated
with GCMs are discussed in
detail.

The study focuses solely on
General Circulation Models
(GCMs) and the
uncertainties associated
with hydrological
modeling.

3 Maggioni and
Massari, 2018

A summary of common
satellite products, along
with their associated errors
and uncertainties is
provided.

This review is restricted to
the remotely sensed
precipitation products in
flood forecasting
applications.

4 Dong, 2018 The study focuses on
uncertainties associated
with the application of
remote sensing,
hydrological modeling, and
in situ measurements in
snow cover research. It also
provides a list of the pros
and cons of remote sensing.

This research work is
focused on snow cover
studies. The uncertainties
are discussed in the context
of remote-sensing
products.

5 Troin et al.,
2021

40 years of ensemble
streamflow forecast
research studies are
summarized in this review.

Uncertainties discussed in
this review are restricted to
the ensemble streamflow
forecast.

6 Moges et al.,
2021

This review summarizes the
different methods of
uncertainty analysis used in
hydrological modeling.

The discussion did not
cover the computational
efficiency of the
uncertainty analysis.
Furthermore, it did not
provide details on how to
address the uncertainties in
hydrological forecasting.

7 Guo et al.,
2021

Focus on improvement in
the regionalization of the
parameters and application
of remote sensing in this
field.

It has not brought the
broad spectrum of
uncertainties involved in
the hydrological modeling.

8 Li et al., 2017 A comprehensive review of
post-processing techniques
aimed at reducing
uncertainties is provided.

Other methods for
reducing uncertainties in
hydrological forecasting
have not been discussed.

9 Rossa et al.,
2011

Concise review of EU Cost
Action on hydrological
systems and uncertainties is
provided.

The review does not
include recent studies.
Limited to the groundwater
system.

10 Wu and Zeng,
2013

The uncertainties about the
groundwater systems are
summarized.

The review, which is
limited to the groundwater
system, does not include
recent studies.

11 Wu et al.,
2020

A comprehensive review of
ensemble flood forecasting
method is provided.

The discussion is restricted
to ensemble flood
forecasting. However,
methods for overcoming
hydrological forecasting
uncertainties have not
been discussed.
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model and distinguish uncertainty pervading groundwater model pa-
rameters, groundwater conceptual model uncertainty, and observation-
related uncertainty. In summary, previous review papers, lack a holistic
view on the issue of uncertainty handling in hydrological forecasting
systems and do not adequately address RQ1-RQ3. This gap calls for
further research in this field to assist both researchers and practitioners
in hydrology with state-of-the-art research and findings. Finally, the
review papers revealed the potential of a multicriteria approach to
reduce uncertainty, as well as the constraints imposed by the nature of
the hydrological forecast employed, model structure, and environmental
variables. These aspects will be further considered in the categorization
of the literature search in the following section.

3. Method of review

We have utilized the PRISMA (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses) (Page et al., 2021) protocol for a
systematic literature search for our review, as shown in Fig. 2. The
proposed research theme was to collect, organize, and categorize the
latest developments in uncertainty handling in hydrological forecasting
and comprehend how different approaches were used. The keywords
used as search terms are given in Table 3.

The search starts by crawling the results from three academic
research databases: Scopus, Web of Science, and Google Scholar when-
ever the keywords appear in the title, abstract, or keyword list of the
papers. The choice of these databases is justified by our desire to restrict
the search to peer-reviewed papers. Besides, we restricted our search to
papers published in the last decade (from 2010 to 2023). Research works
contributing to reducing uncertainty are then taken further for a full
screening and review. The scope of this review is narrowed down to
forecasting streamflow, flooding, snow, and other applications such as
rainfall-runoff processes and soil moisture. The groundwater modeling
and forecasting were not considered due to their high volume, which
would require a separate review by itself. Based on the selected criteria,
96 pieces of literature were chosen for conducting this review research.
The selection of literature is limited to provide an overview of latest
developments in reducing uncertainties. See Table 3 and Fig. 2 for a
high-level description of the review method carried out in this study.

Building on the findings from the review papers investigated in the

previous section, the reviewed literature is organized according to the
hydrological model used, the forecasting model, the multi-criteria
approach employed for uncertainty reduction, and the type of uncer-
tainty handled, along with a description of the study. Especially, the
classification of uncertainties involved in hydrological forecasting was
assessed according to methods and data used for reducing this uncer-
tainty. The outcome of this categorization is described in Tables S1 in
the supplementary file of this paper. The following section delves into
various aspects of handling uncertainty in hydrological forecasting. This
includes definitions of uncertainty, levels of analysis (such as initial
conditions, input, model structure, model parameters, calibration,
observation, and forecasting), applications related to hydrology, and
statistical analysis of the number of studies in each category or field.
Lastly, based on the results of this review, numerous resources and freely
accessible remotely sensed data have been prepared to aid future hy-
drological studies and guide subsequent research.

4. A comprehensive outlook of the uncertainty handling in
hydrological modeling

In hydrological modeling and forecasting, the term ‘uncertainty’
deals with the reliability of the data utilized, the accuracy of the
conceptualized model employed, the quality of the calibration and the
validation, and the accuracy of the predicted results (Montanari, 2007).

Fig. 2. PRISMA Literature screening process followed in this study.

Table 3
Characteristics list of review method employed in this study.

Overall aim Uncertainty handling in hydrological forecasting

Key Question How to classify the uncertainties and reduce uncertainties
using multi-source data?

Source Google Scholar, Web of Science, Scopus
Keywords &/ search
terms

“Uncertainties in hydrological modeling”, “hydrological
forecasting”, “uncertainty quantification in hydrological
modeling”, “multi-source data in hydrological modeling”,
“conceptual uncertainty in hydrological forecasting”,
“reducing uncertainties”, “improving hydrological
forecasting”

Evaluation method Comparative, critical evaluation
Synthesis Qualitative and quantitative in certain aspects
Inferences Evidence-based
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In other words, the uncertainty term is mainly used to quantify the
extent to which a particular input, model, or result matches or genuinely
represents reality (McMillan et al., 2018; Moges et al., 2021; Troin et al.,
2021). Indeed, a key difference between real-world data and measured
data manifests in the corresponding input uncertainty; a faithful repre-
sentation of a given hydrological system depends on the quality of the
various natural processes involved in the description of the hydrological
system, known as conceptual model uncertainty; parameter- related
uncertainty arises from an inherent conceptual simplification of the
model (Moges et al., 2021); finally, the difference between the simulated
hydrological model and the reality corresponds to predictive un-
certainties. The types of uncertainties, their sources, and examples are
given in Table 4.

4.1. Impacts of uncertainties on hydrological forecasting

Hydrological forecasting is the process of translating hydro-
meteorological inputs into useful hydrological parameters such as
discharge, runoff, and flood depth (Huang et al., 2020; Penny et al.,
2020; Lee et al., 2021; Adams and Dymond, 2019; Lee et al., 2019). This
process involves the application of different hydrological models at
various temporal scales from a few hours (i.e., flood forecasting) to daily
forecasts (i.e., streamflow predictions) or seasonal forecasting (e.g.,
snow and streamflow seasonal forecasting) (Poulin et al., 2011; Che
et al., 2014; Zarzar et al., 2018; Huang et al., 2020; Di Marco et al.,
2021). Depending upon the hydrological forecasting used, uncertainty
in the forecast does impact the decision-making process and can yield
catastrophic consequences. For example, a flood forecasting model with
high uncertainty may have severe social, economic, and human losses
(Habert et al., 2016; Lee et al., 2019). Similarly, unreliable streamflow
predictions for reservoir operations may have different impacts on
operational decisions (Di Marco et al., 2021). Hence, the uncertainties
involved in hydrological forecasting systems should be considered to
avoid severe negative consequences. Recently, different approaches
have been used and highlighted to address these issues and communi-
cate the uncertainties to decision-makers and stakeholders.

The conventional framework of a hydrological modeling and fore-
casting system is being improved with numerous advancements to
address these uncertainties and enhance the reliability of forecasting
(McMillan et al., 2023). These improvements contribute to enhance the
accuracy of input data as well as devising new methodological de-
velopments for the uncertainty quantification and integration of various
workflows associated with model calibration, and remote sensing data,
among others. These improvements provide effective decision-making
tools that can assist in real-time applications (De Santis et al., 2021;
Silvestro et al., 2021; Lee et al., 2019). Improved hydrological fore-
casting systems can provide fundamental support to deal with climate
change, especially for managing frequent hydrological extremes. Apart
from these improvements in hydrological forecasting, other factors such
as forecasting skill, assessment of water system services, risks involved
in finance, stakeholder’s level of risk aversion, availability of tools and
data to test the forecast-informed operations, and legacy guidance of
local issues may influence the decision-making results as well.

However, the hydrological community is continuously working to-
wards improving the hydrological forecasting systems at different stages
of the forecasting processes (Rajib et al., 2020; Thiboult et al., 2017).
Fig. 3 outlines these potential improvements in the hydrological fore-
casting systems to address uncertainty issues.

4.2. Uncertainties in hydrological forecasting

Since the early development of hydrological modeling, the reliability
of the simulated results is open to debate. Conventionally, the stream-
flow at the basin outlet was used as a reliable method for determining
the performances of hydrologic models. Meanwhile, the fine-tuning
development of the various forecasting stages not only increases the

Table 4
Types and definitions of uncertainties in hydrological forecasting.

Sl.
No

Types Source Definition Examples

1 Initial
conditions
uncertainty

The auxiliary
conditions required
at the start of a run
of a model to define
all initial model
states (Beven,
2009)

Uncertainties
arise from the
variations in
both the initial
and boundary
conditions
within a
modeling
framework

Uncertainties
arise due to the
initial
conditions
specified in a
forecast. For
instance, the
initial soil
moisture
conditions
provided in
flood
forecasting can
significantly
impact the final
results (Meng
et al., 2017).

2 Measurement
uncertainty

Errors in the
manual or
instruments during
the measurements

Uncertainty in
the value of the
measured
hydro-
climatological
data, compared
to the true
quantity at the
same scale of
measurement (
McMillan et al.,
2018).

Uncertainties
in the
precipitation,
temperature,
discharge, soil
moisture at a
given location

3 Input
uncertainty

Data that are
interpolated, data
that are scaled up/
down, derived data

Inaccuracies in
the model
inputs cause
input
uncertainties (
Moges et al.,
2021). Often
inputs in the
measurement
lead to greater
input
uncertainties.

Uncertainties
due to the
application of
derived data
such as
interpolated
rainfall data.

4 Parameter
uncertainty

Model calibration,
parameterizations,
conceptual
simplifications,
observation errors

Uncertainties
due to the
failure or
inability of the
model to
capture the
hydrological
process using a
set of
parameters.

Equifinality is
an example of
parameter
uncertainty

5 Conceptual
model
uncertainty

Numerical
simplification,
process
simplifications,
limitations of
theories, model
structure

Uncertainties
that are
cascade into
the results of
the
hydrological
forecasting due
to the deficient
representation
of the
hydrological
process in the
model.

Inaccurate
representation
of the
hydrological
system or
processes.

7 Forecast
uncertainty

All other sources of
uncertainties in the
hydrological
forecasting

Forecast
uncertainties
are the results
of the
combinations
of the above-
said
uncertainties
reflected in the

Uncertainties
in the different
forecasts such
as streamflow,
flood depth,
and snow
cover.

(continued on next page)
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model reliability but also the process complexity. Nevertheless,
increasing the complexity or using a multi-criteria-like approach is not
always in favor of uncertainty reduction. Therefore, there is a need to
select suitable combinations of modeling tools and approaches for a
specific case that will likely yield uncertainty reduction. A systematic
uncertainty analysis is required to find the sources of uncertainties and
their reduction in the forecasting processes (Demirel et al., 2013). Ul-
timately, this section should account for the various types of uncertainty
pointed out previously involved in hydrological forecasting tasks and
the aim of the research work. Fig. 4 shows the number of studies of
hydrological forecasting and uncertainties reviewed in this work. For
more details on the list of reviewed studies with various models,
methods, and techniques used in hydrological forecasting to reduce
uncertainties at different stages of modeling, refer to Table S2.

4.2.1. Measurements and inputs
Hydrological modeling and forecasting mainly depend on the mea-

surements of various catchment inputs such as hydrology, meteorology,
and topography. A developmental time frame for the measurements of
hydrological data is shown in Fig. 5. These inputs are used for model

conceptualization, calibration of the model parameters, and validation
of the results. The development of the basic datasets for hydrological
modeling is encouraged through different research agendas and
outreach activities of hydrological communities. Meanwhile, the global
hydrological system changes must be accounted for the modeling, as
highlighted in the water cycle diagram by USGS, 2022 (USGS, 2022).
Hydrological community is working towards developing process-based
approaches to accommodate the changes, and relevant processes and
address the data scarcity issues. The success of this task depends on the
improvements and integration of field measurements (Penny et al.,
2020). Continuous monitoring of the fields is made possible through
advancements in remotely sensed applications, developments of auto-
matic sensors, modern equipment, and multiple field investigations.
Through this continuous acquisition of data, it becomes possible to
improve the forecast (Brigode et al., 2013) and to explain the changes in
the catchment system.

The second important aspect of measurement acquisition is data
accuracy and availability. A degradation in accuracy and availability
can occur in modern sensor systems such as remote observation or
complex Internet of Things (IoT) sensor networks and the usage of
sensors. In such cases, any prior knowledge about measurement accu-
racy can be integrated into a qualitative /quantitative estimation of
errors (Das Bhowmik et al., 2020). This knowledge of measurement
error can help reduce measurement uncertainty, thereby, increasing the
forecasts’ reliability.

Reducing measurement uncertainty plays a significant role in
improving the forecasting task, especially in streamflow, where it
directly impacts the model conceptualization, calibration, and valida-
tion processes. The impact of initial conditions has been acknowledged
in several hydrological systems, e.g., flood forecasting (Meng et al.,
2017), snow-dominated hydrological processes (Leisenring and Mor-
adkhani, 2011; Singh and Sankarasubramanian, 2014), and soil mois-
ture studies. In this case, uncertainty on initial conditions in input
variables plays a major role in the quality of the forecasts, which stresses
the importance of appropriate handling of initial condition-related un-
certainty to improve the overall system accuracy.

The classification of types of data that are being used in hydrological
forecasting in recent times, ranging from conventional data sources (e.
g., streamflow measurements) to modern-day data sources (e.g., remote
sensing systems and, crowdsourcing), is outlined in Fig. 6. Uncertainty
in hydro-meteorological data input can cause a higher error in the
forecast estimate than uncertainties in model structure or parameters
(Singh and Sankarasubramanian, 2014; Xue et al., 2018; Thornton et al.,
2021; Zaremehrjardy et al., 2021). In this context, uncertainties are
mainly due to the lack of spatial coverage (Dechant and Moradkhani,
2011; Zappa et al., 2011) and higher data gap frequency in the temporal
scale (Thornton et al., 2021). In addition, the uncertainty in climate
change projection is found to be more significant than the parameter
uncertainty (Her et al., 2019a, 2019b). Topographical data sources such
as land use and land cover, soil information, slope, and elevation in-
formation must be cautiously chosen based on the forecasting applica-
tion. The non-stationarity nature of topographical data is an important
factor in reducing forecasting uncertainty. Similarly, remotely sensed
products are beneficial in data-scarce regions (Panchanathan et al.,
2023); nonetheless, accounting for such sources in hydrological appli-
cations requires ground verification for the reliabilities and application
to real-time forecasting. As listed in Fig. 6, the application of local
knowledge is new to the hydrological community. It has been success-
fully applied in recent studies due to the growing field of data
acquisition.

Nevertheless, it is essential to mention that comprehensive ac-
counting for all physical processes is almost impossible, and measure-
ment uncertainty is likely to prevail in all three types of sources (Gan
et al., 2018a, 2018b). This can be attributed to the complexity of the
hydrological processes and the inherent challenges in representing the
various facets of these processes (Helfricht et al., 2014). However, the

Table 4 (continued )

Sl.
No

Types Source Definition Examples

hydrological
forecasts (
Moges et al.,
2021).

8 Unknown
uncertainty

Uncertainties
remain inherent
even after the
quantification of all
uncertainties.

Unknown
uncertainties
are the results
of the lack of a
‘true’ model
due to natural
complexities
and limitations
of data (Moges
et al., 2021)

Uncertainties
remained in the
forecasts.

Fig. 3. Modern improvements in the hydrological forecasting system.
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hydrologic community is working towards synthesizing multiple data
sources to address measurement uncertainty. Recent studies built on the
foundation of multiple evidence to bring reliable forecasts demonstrate
such improvements (Helfricht et al., 2014; Hassan and Hassan, 2020;
Penny et al., 2020). Therefore, there is potential to further reduce such
uncertainty by enhancing our understanding of related challenges and
applying the right combination of datasets and models. For example,
hydro-meteorological data and its influence on uncertainty can be
tackled by considering meteorological bias and dispersion thresholds

(Klotz et al., 2021). The uncertainties sustained in the input dataset and
calibration data would influence the parameter uncertainties and the
results.

4.2.2. Parameter uncertainty
Parameter uncertainties are considered important due to their nature

in the hydrological modeling setup and their influence on the forecasts
(Vema et al., 2020). For instance, although the inputs are likely to
change according to spatial-temporal coverage, the model parameters

Fig. 4. Number of studies reviewed concerning their applications

Fig. 5. Evolution of instrumentation and measurements used in hydrological forecasting (Adapted from Tauro et al., 2018).

A. Panchanathan et al. Earth-Science Reviews 258 (2024) 104956 

8 



are often applied uniformly over the simulation period (Thornton et al.,
2021). So, the choice of model parameters is critical, as any distortion of
these parameters may lead to a misrepresentation of the hydrological
system (Piazzi et al., 2021). Trivially, this depends on the type of
datasets used (Montanari and Grossi, 2008), the model employed
(conceptual or physical model), and the forecast task (short term or
long-term forecast) being applied in the study (Sun et al., 2018). Espe-
cially for short-term forecasting, model parameters play amore vital role
(Tran et al., 2020). The parameters’ uncertainty has two main impli-
cations: parameter equifinality (Beven and Freer, 2001; Beven, 2006;
Xue et al., 2018; Ashraf et al., 2019), and dimensionality of the opti-
mization process (Lilhare et al., 2020). In some cases, increasing the
number of calibration parameters reduces the performance of the fore-
casts (Poulin et al., 2011) and reduces the forecast quality due to equi-
finality (Demirel et al., 2013). To overcome the parameter uncertainties
and equifinality, recent studies suggest limiting the number of param-
eters that control the major processes in the catchment (Lilhare et al.,
2020). This process requires experience, consideration of the hydro-
logical model structure, and understanding of the hydrological processes
within the basin (Zappa et al., 2011; Xue et al., 2018). However, suffi-
cient observations can regulate major parameters in the calibration
process, but special attention needs to be given to larger catchments
with varying landscape properties. It is also important to understand the
sensitivity of these parameters concerning each catchment scenario (He
et al., 2011).

4.2.3. Conceptualization of models
The conceptualization of complex models plays an important role,

and the associated uncertainties depend on the type of chosenmodels for
the specific problem at hand and the prior knowledge in the specific field
of hydrological forecasting. Typically, hydrological models have to be
assessed for their suitability by selecting the best-suited model that
represents the specific site or catchment. So, a comprehensive assess-
ment of the models is needed before the model selection (Paul et al.,

2021). The uncertainty of hydrological predictions from hydrological
modeling generally originates from the model structure and its inherent
parameters (Yuan et al., 2017). However, hydrological model structure
uncertainty is more significant than parameter uncertainty (Poulin et al.,
2011). Forecast skill is also closely linked to the hydrological model
performance (Siqueira et al., 2021). Errors in model structure can be
compensated by calibration, thus, parameter uncertainty and structural
uncertainty can be linked to concept model uncertainty as well (Essery
et al., 2013).

In general, the conceptual model uncertainty arises due to the con-
flicts in the representation of the hydrological processes. This uncer-
tainty is more significant than other types of uncertainties because
misrepresentation may lead to completely different forecasting. Most
studies on forecasting uncertainties highlight the fact that the concep-
tualization of hydrological models is closely associated with forecasting
skills (Siqueira et al., 2021). Specifically, the hydrological modeling
uncertainties occur due to the following reasons: (a) propagation of
input uncertainties; (b) less suitable chosen model and its limitations on
the requirements (Patil and Ramsankaran, 2017); (c) parameterization
of the models; (d) the representation of stationarity or non-stationarity
(Chawla and Mujumdar, 2018); (e) complexities and catchment char-
acteristics; (f) initial conditions, model parameterizations, and numeri-
cal limitations (Zarzar et al., 2018); (g) spatial and temporal evaluation
of the modeling parameters; (h) modeler’s experience; (i) usage of “one
model fits all”.

To overcome the model structural uncertainties, recent studies have
shown the inherent link between model complexity and uncertainty.
However, this idea of increasing complexity led to both positive and
negative feedback (Ashraf et al., 2019). Indeed, increasing model
complexity increases the number of parameters as well, which, in turn,
calls for support from ground truth for the validation of the process.
Contrastingly, the usage of different hydrological models for the same
catchment would bring different results, which may influence the
forecasts (Her et al., 2019a, 2019b), but in a few other studies, this has

Fig. 6. Types of data used in hydrological forecasting.
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helped to reduce the model errors effectively (DeChant andMoradkhani,
2014). This approach of multi-modal approach can be useful as it cap-
tures the impact of models on reliability (Singh and Sankarasu-
bramanian, 2014). However, choosing the right processing flow and
supporting techniques such as data assimilation, calibration method,
ensemble methods, and post-processing methods would influence the
model performance in addition to the model structure (Krysanova et al.,
2018; Her et al., 2019a, 2019b; De Santis et al., 2021).

5. How are the uncertainties being handled in hydrological
forecasting?

The uncertainties in hydrological forecasting are handled in three
stages, as shown in Fig. 7. Initially, the measurement and input un-
certainties can be addressed at stage I with the help of preprocessing and
improving the data quality. Stage II is a model conceptualization and
setup. At this level, the uncertainties generated due to the model
conceptualization, model selection, and model setup will be dealt with
using multi-model approaches. Stage III consists of calibration and
validation strategies. At this level, the parameter uncertainties are
mainly handled by incorporating different strategies like applying multi-
objective calibration, multi-site calibration, data assimilation (DA)
techniques, and applications of remote sensing techniques.

5.1. Stage I: input preparation and pre-processing

The uncertainties involved in the measurements and inputs can be
reduced at this stage. This can be possible with the help of an under-
standing of measurement errors and pre-processing techniques
employed. The estimation of measurement errors within the modeling
framework will help to reduce these uncertainties (Das Bhowmik et al.,
2020). The accuracy level of the measurement error does matter in
influencing the outcomes according to the employed modeling frame-
work and type of measurement inputs. For example, gauge-specific
measurements can be accurate for the estimation of measurement er-
rors. However, the forecast variance may increase due to the consider-
ation of measurement errors. This can be tackled by a suitable model
structure to assess the tradeoff betweenmeasurement errors and forecast
performance. High frequent data collection can also support the mea-
surement and input uncertainties, as exemplified in the measurement of
the rating curve (Das et al., 2018).

Ensemble techniques such as Kalman filtering with nonlinear gain
and variance updating, extended & ensemble Kalman filter, and
sequential Monte Carlo methods are useful in reducing uncertainties in
real-time forecasting systems (Beven, 2009). Few studies found that soil

moisture, streamflow, and flood forecasting are sensitive to the initial
conditions, which calls for a model adjustment strategy before the
forecasting task to reduce such uncertainties (Meng et al., 2017). In this
case, ensemble techniques can be used to correct the model’s initial
states through the assimilation of additional data. For instance, applying
ensemble streamflow prediction would help enhance operational ca-
pacity (Muhammad et al., 2018). Similarly, hydrometeorological en-
sembles can help to reduce the uncertainties in modeler subjectivity and
improve flood inundation maps (Zarzar et al., 2018). Also, this depends
on the type of hydrologic model and the required hydrologic forecasting
(Mazrooei and Sankarasubramanian, 2019). However, the assimilation
of additional data and its positive influence may change the model
structure and type of forecasts (e.g., a seasonal forecast of streamflow
has shown a trade-off with model errors than the initial state) (DeChant
and Moradkhani, 2014).

Providing additional data and improving measurements’ temporal
and spatial resolution would help reduce these uncertainties. For
example, improvements in the additional bathymetry have improved
the performance of water level simulation (Habert et al., 2016), and
systematic errors in the spatial resolution of the Digital Elevation Model
were assessed for Ground Penetrating Radar techniques that assisted in
improving the measurement errors (Helfricht et al., 2014), snow DA has
shown improvements in snow modeling, such as assimilation of snow
cover area (Che et al., 2014). The application of suitable input data has a
greater impact on precipitation products. For example, the application
of global precipitation products and remotely sensed precipitation
products needs prior assessment and preprocessing of the data (Sun
et al., 2018). Similarly, the application of various GCMs, RCMs, and
climate change projections needs proper downscaling and prior esti-
mation of errors concerning ground observation for the suitability of the
catchments.

Preprocessing techniques can be chosen based on the linear and
nonlinear characteristics of the hydrologic variables (Abbasi et al.,
2021). The catchment-specific requirements also need to be considered
to reduce the measurements and input errors in hydrological forecasting
(Zaremehrjardy et al., 2021). For example, mountainous regions require
higher spatial resolution information for modeling, application of grid-
ded data needs more ground observation for the validation of the model
for the now simulation, and the inclusion of snow water equivalent has
improved the snow simulation in alpine areas (Schöber et al., 2014a,
2014b). Hence, improvements in historical data can enhance the reli-
ability of the model by reducing uncertainties.

Empirical correction factors can be applied to correct the biases in
the solid precipitation and other measurement deficiencies (Thornton
et al., 2021). The model’s performance can be evaluated with the

Fig. 7. Various uncertainties addressed in hydrological forecasting.
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provision of well-measured catchments. However, the model structure
plays a vital role in deciding its performance (Essery et al., 2013).
Therefore, reducing the input uncertainty first is critical before reducing
hydrologic model uncertainty (Singh and Sankarasubramanian, 2014).
Thiboult et al., 2015 showed that meteorological forecast and its de-
ficiencies can be solved by applying appropriate pre-processing
techniques.

5.2. Stage II: model conceptualization uncertainty

The model structural uncertainties are compensated or solved at this
stage. The selection of appropriate model structure and model flow
provides insights to solve the parameter uncertainty to a greater extent.
Applying multi-model approaches may help reduce the model structural
uncertainties depending upon the chosen models (Butts et al., 2004). It
must be chosen in a way that should comprehend the overall modeling
uncertainties. In this case, the extent of structural uncertainty captured
is more important than the number of models chosen for the study (Dion
et al., 2021). The importance of the model selection task is because
distributed or semi-distributed models can provide more insights into
the system’s functioning details than a lumped model. Data assimilation
in a multi-model approach helps to reduce uncertainties by reducing the
errors in the initial states (DeChant and Moradkhani, 2014). Hydro-
logical model structure largely influences the forecasting skill; however,
the forecast skill is also influenced by various other factors such as
process spatial representation, model calibration, and the application of
inputs especially the precipitation forecast used for the initial condi-
tions, which can potentially yield a complex model (Siqueira et al.,
2021).

One of the arguments that were extensively discussed in the hy-
drology community to produce reliable forecasts is model complexity.
Nevertheless, it is open to debate whether increased model complexity
always leads to an increase in forecast performance. For instance, Tran
et al. (2020) advocated the use of model complexity to deal with real-
time and ensemble flood forecasts. Whereas Essery et al. (2013)
claimed there is a limit beyond which we cannot expect higher model
complexity would help to increase the model performance. Appropriate
representations of the error components in the modeling flow can help in
improving the reliability of the hydrological forecasts (McInerney et al.,
2021). For instance, Liu et al. (2020) showed that temporally varied
error statistics with finer error models helped to improve forecasting
accuracy. Similarly, any additional information about the hydrological
processes within the catchment would reduce the model structural un-
certainties in the hydrological forecasts, e.g., the application of multi-
source data (Hassan and Hassan, 2020). Therefore, it is important to
prioritize model structure to fine-tune input measurement in the study
area (De Santis et al., 2021).

Model structures for snow modeling need a detailed energy balance
method for snow representation (Mazrooei and Sankarasubramanian,
2019). Forecast reliability depends on spatial resolution (DeChant and
Moradkhani, 2014), while ensemble streamflow prediction with DA is
found to help improve the forecasts (Dechant and Moradkhani, 2011).
Energy balance modules and temperature index modules share a large
portion of uncertainties in the snow modeling of the Hilly region
(Zaremehrjardy et al., 2021). The initial state of the model structure
plays a vital role and implementing an appropriate error reduction
scheme of this initial state is found to help reduce the uncertainties and
improve the forecasts (Mazrooei and Sankarasubramanian, 2019).

5.3. Stage III: calibration and validation strategies

Calibration and validation strategies at this stage of the hydrological
modeling setup are used to adjust the model parameters according to the
measured data. Eventually, this helps improve the model’s performance
(Moriasi et al., 2007). Especially, this procedure helps to resolve struc-
tural uncertainties to a reasonable extent, so that the parameters and

model structural uncertainties are connected (Essery et al., 2013).
However, care should be given to the potential problem of overfitting
the parameters through calibration procedures.

The conventional calibration procedure of streamflow calibration at
the outlet of the basin can provide significant information on the
streamflow pattern, but there are chances to misrepresent another
important hydrological phenomenon, which may lead to parameter and
prediction uncertainties. Eventually, this causes a bias towards esti-
mating hydrological components in the simulation. For example, a
biased estimation of evapotranspiration is reported by Rajib et al.
(2018). The equifinality can be reduced by reducing the number of pa-
rameters or increasing the number of observed variables in the cali-
bration procedure (Rajib et al., 2018). Calibration of additional
parameters helps to improve the forecast. For example, calibrating soil
moisture sensors and the corresponding spatial measurement sensors are
found to improve streamflow forecasts (Wang et al., 2017).

Calibrating hydrological parameters in multi-sites and constraining
the related parameters with different climatic conditions are found to
improve the model performance (Huang et al., 2020). However, studies
need further assessment to evaluate the extent of the uncertainty
reduction due to the improvements in the calibration procedures. On the
other hand, the spatial dependency of the hydrological parameters can
be resolved using spatial validation of multi-objective parameters and
uncertainty assessments. For example, constraining snow parameters
with snow ground measurements improves the parameters in snow
modeling (Di Marco et al., 2021). Historical evaluation of model per-
formance is necessary; however, it is not sufficient when looking into
future aspects of hydrological changes such as the prediction of climate
change, land use, and land cover changes (Krysanova et al., 2018).

Another aspect that impacts the calibration method is the period
during which this calibration is carried out. For instance, the selection of
calibration and validation time-periods in a catchment case study should
represent both the dry and wet climatic conditions for better model
performances (Brigode et al., 2013). The calibration performance also
depends on the method used, the objective function employed, and the
inherent constraints in the catchment area. Baseline information may be
used for the verification of model results in the case of no ground truth
information, as used by Zarzar et al. (2018) for the flood inundation
maps. However, this is subject to uncertainty in the forecast. Besides,
parameter sensitivity is highly variable from site to site, and parameter
uncertainties are higher than the input uncertainties (He et al., 2011;
Demirel et al., 2013). Therefore, the choice of calibration methods
straightforwardly influences the prediction uncertainty bounds (Brigode
et al., 2013).

In this respect, combinations of multimodal approaches with DA and
post-processing techniques are found to reduce uncertainties and
improve forecasts (Dion et al., 2021; Siqueira et al., 2021). For post-
processing or updating the forecasts, finer temporal granularity is rec-
ommended for better quantification of uncertainties. Coarser temporal
granularities are recommended in the case of a lower computational cost
(Liu et al., 2020). Bayes theorem-based ensemble streamflow prediction
models are used to produce a posterior mean which helps to update the
forecast (Seo et al., 2019).

Statistical post-processing can improve the forecasting accuracy in
some studies, although this should be subject to testing the post-
processing techniques across multiple catchments, lead times, multiple
hydrological models, and various sample sizes. The accuracy of post-
processing techniques depends on the models used, ensemble size, the
complexity of the basin, and the time used for analysis. Regarding the
phase of the post-processing task, in contrast to calibration, the post-
processing task can generate relatively good quality results with a
relatively stationary hydrologic period for model training (Muhammad
et al., 2018).

The usage of post-processing techniques should be investigated
thoroughly before the application of multi-model approaches for better
forecast results. Among post-processing techniques, probabilistic
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approaches and ensemble predictions are increasingly popular in prac-
tice. An important aspect of post-processing includes communication of
uncertainties that may occur at different stages of the hydrological
forecasting pipeline. Indeed, communication uncertainty in hydrologi-
cal forecasting is equally important as the quantification of these un-
certainties, as it directly affects the lives of individuals, e.g., flood
forecasting. Uncertainty communication in different ways, such as lin-
guistic, graphical, numeric, or combinations of these (Van Steenbergen
et al., 2012).

5.4. Practical applications of reducing uncertainties in hydrological
forecasting

In practice, various organizations utilize different models, rules of
thumb, and recommendations for their hydrological forecasting appli-
cations (WMO, 2009). In the present review, 96 studies were reviewed
and more than 100 combinations of models, methods of uncertainty
quantifications, and uncertainty reductions were reported (Table 5).
These selections and the availability of data, instruments, and funds can
influence the forecasting results. However, following guidelines such as
the International Association of Hydrological Sciences, WMO, 2009, and
national hydrological institutions’ recommendations can be beneficial
in practical applications. As directed by the World Meteorological Or-
ganization in Report 168 (WMO, 2009), the randomness of the hydro-
logical phenomena should be accounted for in hydrological forecasting
as a probability distribution and estimation of parameters for the
transparency in the reliability of the results. In addition, it is recom-
mended to use one or more independent estimation methods to quantify
the uncertainties in hydrological forecasting. A more detailed analysis of
the types of uncertainties, models, and calibration techniques used is
summarized in Table 5. The taxonomy shown in Table 5 is based on the
decision tree for choosing uncertainty estimation method highlighted in
Beven (2009). The 96 reviewed studies are categorized into three main
groups: (i) real-time DA methods, which include the Kalman filter,
Kalman filtering with nonlinear gain and variance updating, the
extended Kalman filter, the ensemble Kalman filter, and sequential
Monte Carlo methods; (ii) methods for conditioning uncertainty on data,
which encompass nonlinear regression methods, Bayesian dynamic
methods, and GLUE methods; and (iii) forward uncertainty propagation
methods, which consist of fuzzy methods, error propagation methods,
and Monte Carlo methods (Fig. 8).

6. Multi-criteria approach for reducing the uncertainties in
hydrological forecasting

In this section, the multi-criteria approach or supporting techniques
used for reducing the uncertainties in the reviewed literature are sum-
marized. Figs. 9 and 10 show the list of approaches found in the liter-
ature as a measure of reducing uncertainties in hydrological forecasting.
Multi-site calibration and multi-objective calibration for the streamflow
have been increasingly in use since the last decade (Table S2). Knowing
the type of forecasts and the interconnections between the process
representation and the uncertainties will help to alleviate the un-
certainties. The process representation improvements through random
error components will help reduce the total hydrological uncertainties in
short forecast leads (McInerney et al., 2021). As discussed in the earlier
sections, the criteria followed in the reviewed studies are interrelated;
for example, when we apply multi-source data for improving model
conceptualization, the model parameters must be calibrated for better
performances of the hydrological model. Likewise, this section will
summarize the requirements for the multi-criteria used to reduce the
uncertainties and their applications and limitations. The advantages and
disadvantages can be found in Table S2.

6.1. Multi-data applications in reducing uncertainties

In multi-data applications, DA techniques are used to assimilate
additional data sources before the model conceptualization and update
the output variables using the real-time measured data during the
forecast period (Barbetta et al., 2017; Zarzar et al., 2018; De Santis et al.,
2021). Model performance and the forecast horizon (e.g., short-term, or
long-term forecasts like a 1-day forecast) are intrinsically connected,
and the forecast horizon can influence model performance (Krysanova
et al., 2018; Papacharalampous et al., 2020). For such cases, assimila-
tion of real-time measurements would assist in maintaining the standard
of the model performance (Mazrooei and Sankarasubramanian, 2019;
De Santis et al., 2021). Nonetheless, additional information on the hy-
drological process through supporting techniques is recommended to
reduce such uncertainties. For example, in contrast to conventional
outlet calibration, multi-site evaluation of parameters is one of the ways
employed to reduce the uncertainties (Lin et al., 2014), while accounting
for spatial variation in the hydrological processes. Krysanova et al.
(2018) showed that conventional modeling and validation of the hy-
drological modeling using historical data perform better than the multi-
model ensemble approach for the projections of the climate change data.
Wang et al., 2017 demonstrated that DA along with the uncertainty
quantification method can provide a robust hydroclimatic forecasting
framework. Thiboult et al. (2017) showed that different qualities of the
forecast system are intrinsically connected, and one should first attempt
to improve forecast accuracy to yield improvement in forecast reli-
ability. Table 6 shows a summary of the advantages and limitations of
multi-criteria approaches used for reducing uncertainties. Refer to
Table S2 for the detailed advantages and limitations of the reviewed
studies.

DA of additional data can be used to enhance the performance of low
(resp. high) flow simulations using the assimilation of streamflow (resp.
soil moisture) (Mazrooei and Sankarasubramanian, 2019). This is found
to be helpful in ungauged catchments (Meng et al., 2017). The authors
also showed that any minor improvement in deep soil layer represen-
tation improves the streamflow prediction after applying vertical error
correlation for soil moisture. Patil and Ramsankaran (2017) found that
the ensemble propagation method, along with ensemble generation
methods, can handle some types of uncertainty due to weak model
structure.

Data assimilation-based forecast estimations provide a comprehen-
sive representation of system uncertainties, although the predictive ac-
curacy is influenced by the choice of the DA method and modeling
scheme (Piazzi et al., 2021). Often additional information is required to
successfully perform the DA task depending on dominant hydrological
processes in the catchment. For example, a snow-dominated catchment
needs different Ensemble Kalman Filter implementations to combine the
streamflow and snow information (Abaza et al., 2014), while for flood
forecasting, the performance depends on the initial soil moisture (Meng
et al., 2017).

The effect of DA of Soil Moisture (SM) on hydrological models de-
pends on the model structure, and calibration practices (De Santis et al.,
2021). Also, the effect of DA may have different impacts on different
seasons. So, special care should be given to aspects of the ‘one model fits
all’ paradigm. The application of specific remotely sensed products and
their accuracy trivially have effects on DA techniques and outcomes (De
Santis et al., 2021; Piazzi et al., 2021; Rajib et al., 2018; Koster et al.,
2018). The accuracy of the products is influenced by factors such as the
local efficiency of satellite observations due to climatic factors such as
snow, and humid conditions (De Santis et al., 2021). The integration of
this additional information about the catchment in the modeling scheme
yields better outcomes than enforcing high NSE (Nash-Sutcliffe effi-
ciency) values or low statistical errors. The satellite-derived snow cover
area can serve as one of the predictors for streamflow estimation in the
snow-dominated region (Hassan and Hassan, 2020).

Ensemble Kalman Filter at the DA stage can reduce the difference
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Table. 5
Comparative Analysis of Uncertainty Assessment Methods in Hydrological Forecasting.

Types of Uncertainty Assessment Method Hydrological forecasting Uncertainties addressed Multi-criteria approach used to
reduce uncertainties

Studies

Conditioning uncertainty on data
methods-Bayesian dynamic methods

Flood forecasting Forecasting Multi-data Seo et al., 2019

Snow forecasting
Parameter, conceptual model Multi-data, multi-model Poulin et al., 2011

Multi-model Franz et al., 2010

Streamflow forecasting
Conceptual model, forecasting

Multi-data Chawla and Mujumdar, 2018
Multi-model, multi objective
function Arsenault et al., 2015

Observation and forecast Multi-data Yang et al., 2020
Observation, Input, Forecasting Multi-data Das Bhowmik et al., 2020
Parameter, conceptual model,
forecasting Multi-data, multi-model Humphrey et al., 2016
Parameter, forecasting Multi-model, post processing Muhammad et al., 2018

Conditioning uncertainty on data methods-
GLUE method

Flood forecasting Forecasting
Multi-data, multi-site
calibration Rajib et al., 2020

Rainfall-runoff process Input Multi-data Fraga et al., 2019
Runoff, snow Parameter, conceptual model Multi-data Xue et al., 2018

Snow forecasting
Parameter, conceptual model,
forecasting

Multi-data, multi-objective
function Di Marco et al., 2021

Parameter, forecasting Multi-data, multi-model Zaremehrjardy et al., 2021
Multi-data, Posterior function He et al., 2011

Streamflow forecasting

Conceptual model Multi-data Lee et al., 2021
Forecasting Multi-data Herman et al., 2018

Input
Multi-model, multi objective
function Lerat et al., 2020

Input, Parameter
Multi-data, multi-variate
calibration strategies Dembélé et al., 2020

Input, parameter, forecasting Multi-model
Demirel et al., 2013
Rajib et al., 2018

Parameter Multi-data, multi-optimization Hui et al., 2020

Parameter, conceptual model,
forecasting

Multi-data Panchanathan et al., 2023
Multi-model Brigode et al., 2013

Huang et al., 2020

Parameter, forecasting

Multi-data Uniyal et al., 2015
Multi-model Li et al., 2015

Yuan et al., 2017
Multi-model, multi objective
function Gan et al., 2018a, 2018b
Multi-objective function Liang et al., 2021
Multi-parameter, multi-GCM
ensemble Her et al., 2019a, 2019b
Multi-site evaluation, posterior
functions Lin et al., 2014

Parameter, simulation Multi-model Vema et al., 2020
Parameter, forecasting Multi-data Sun et al., 2018

Streamflow forecasting,
Water budgets Input, forecasting Multi-data Ashraf et al., 2019
Water budget Input, parameter Multi-objective function Lilhare et al., 2020

Conditioning uncertainty on data methods-
Nonlinear regression

Flood forecasting
Forecasting

Post processing, wisdom of
crowd Van Steenbergen et al., 2012

Observation, parameter,
conceptual model, forecasting Multi-data Bhola et al., 2019
Parameter, forecasting Multi-data, multi-model Bonakdari et al., 2019

Rainfall-runoff process Parameter Multi-data Klotz et al., 2021
Reservoir inflow Input, parameter Multi-data Kasiviswanathan et al., 2020

Snow forecasting

Conceptual model Multi-data Helfricht et al., 2014
Conceptual model, forecasting Multi-data Thackeray et al., 2016
Forecasting Multi-data Rittger et al., 2013
Input Multi-data Brown and Robinson, 2011
Observation, input, conceptual
model Multi-data Lafaysse et al., 2017
Observation, parameter,
conceptual model

Multi-data, multi-objective
function Schöber et al., 2014a, 2014b

Parameter, conceptual model Multi-data Slater et al., 2013

Parameter, forecasting
Multi-data, multi-objective
function Thornton et al., 2021

Soil moisture Input Multi-data Fathololoumi et al., 2021
Streamflow forecasting Conceptual model Multi-data Nayak et al., 2021

Forecasting Multi-model, Preprocessing Abbasi et al., 2021
Multi-data Liu et al., 2018

Input Preprocessing Hassan and Hassan, 2021
Input, Conceptual model Multi-data Althoff et al., 2021
Parameter Post processing Liu et al., 2020

(continued on next page)
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between the measurement and the ensemble streamflow predictions by
accounting for uncertainties in hydrometeorological measurements
(Dion et al., 2021). DA may not be able to reduce the model structural
deficiencies, and it may even in certain cases reduce the model perfor-
mances. So, care should be given to the selection of DA methods (De
Santis et al., 2021). Di Marco et al. (2021) found that remotely sensed
MODIS products for snow cover areas improve the identifiability of
combined melt factor parameters. Mazrooei and Sankarasubramanian
(2019) claimed that streamflow accuracy can be enhanced by using DA
of groundwater storage and soil moisture observations before the model
iterations using EnKF. Application of global satellite-gauge merged
precipitation products, and their ensembles have also been found to
improve decision-making through the reduction of the parameter and
model structural uncertainties (Sun et al., 2018). Model structural un-
certainty has been reduced by updating the soil water routing through
perturbed soil water storages (Patil and Ramsankaran, 2017). Additional

bathymetry data has helped to improve the floodplain friction coeffi-
cient. This procedure improves the relationship between water level
discharge and reduces the uncertainties concerning the time-dependent
friction coefficient (Habert et al., 2016).

Additional field data and multi-temporal airborne laser scanning
data have improved hydrologic simulations of snow-dominated catch-
ments (Schöber et al., 2014a, 2014b). Especially, it enhanced the esti-
mation of snow density, which depends on various factors such as
elevation, terrain features, parameterization, precipitation gradients,
and accumulation pattern. Overall, it is stressed that in most DA tech-
niques, it is essential to know the uncertainty contribution before
applying any measurement data. If the uncertainties are larger in
quantity, they must be reconstructed with the following information: (1)
the final date of seasonal snow cover, (2) the potential snowmelt model,
(3) appropriate parameterization, and (4) the selection of relevant data
(Slater et al., 2013). Especially, DA methods showed significant

Table. 5 (continued )

Types of Uncertainty Assessment Method Hydrological forecasting Uncertainties addressed Multi-criteria approach used to
reduce uncertainties

Studies

Forward uncertainty propagation method

Flood forecasting Forecasting Multi-data Hu et al., 2019
Input, forecasting Multi-data Xu et al., 2021

Streamflow forecasting
Input Multi-data Penny et al., 2020

Parameter, forecasting Post processing, Posterior
function

Wang et al., 2017

Real time data assimilation methods

Flood forecasting

Conceptual model, forecasting Multi-data Lee et al., 2019
Forecasting Multi-model Barbetta et al., 2017
Input, forecasting Multi-data Adams and Dymond, 2019
Input, parameter, forecasting Multi-data, multi-model Zappa et al., 2011
Observation, Input Multi-data Silvestro et al., 2021
Observation, input, conceptual
model, forecasting Multi-data Meng et al., 2017
Observation, parameter Multi-data, Post processing Habert et al., 2016
Observation, parameter,
forecasting Multi-data, Post processing Zarzar et al., 2018
Parameter, conceptual model,
forecasting Multi-data, multi-model Thiboult et al., 2017
Parameter, forecasting Multi-data, Posterior function Tran et al., 2020

Precipitation forecast Input, forecasting Pre and post processing Chen et al., 2020
Observation, conceptual model Multi-model Valdez et al., 2021

Snow forecasting
Forecasting Multi-data Che et al., 2014

Multi-model Dion et al., 2021

Observation, parameter Multi-data
Leisenring and Moradkhani,
2011

Parameter, conceptual model Multi-model Essery et al., 2013

Streamflow forecasting

Conceptual model, forecasting
Multi-data

Abaza et al., 2014
DeChant and Moradkhani,
2014
McInerney et al., 2021

Multi-data, multi-model Thiboult et al., 2015

Forecasting

Multi-data Chen et al., 2016
De Santis et al., 2021
Dechant and Moradkhani, 2011
Mazrooei et al., 2021

Multi-data, Post processing
Papacharalampous et al.,
2020b

Post processing Siqueira et al., 2021

Input, forecasting

Multi-data
Das et al., 2018
Massari et al., 2015
Mazrooei and
Sankarasubramanian, 2019

Multi-data, multi-model
Singh and
Sankarasubramanian, 2014

Multi-data, multi-objective
function Budhathoki et al., 2020

Input, forecasting Multi-data Hassan and Hassan, 2020
Observation, Input, Forecasting Multi-data Piazzi et al., 2021
Observation, parameter,
conceptual model, forecasting Multi-data Patil and Ramsankaran, 2017

Parameter, forecasting
Post processing, wisdom of
crowd Papacharalampous et al., 2020

Streamflow, water
balance parameters Forecasting Multi-model Krysanova et al., 2018
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improvements in seasonal accumulation and ablation of SWE pre-
dictions in the SNOW-17 model (Leisenring and Moradkhani, 2011).

6.2. Multi-model applications in reducing uncertainties

To deal with the conceptual deficiencies in a single model, it has
recently been proposed to have a multi-model approach. This can be
carried out using different complexities of the same model and the
application of different hydrologic models for the same studies using, for
instance, ensemble techniques. This helps to enhance the performance of
the forecasts by reducing model error. Multi-model ensembles are useful
for large basins for the applications of climate change on streamflow. For
communication, the ensemble results must be verified and compared
with the individual performance of the models (Krysanova et al., 2018).
In the forecasting context, the economic values of using multi-model
approaches instead of a single model should be transparent. The
choice of models and selection of the best model to deliver the forecast
not only depends on model performance criteria but also on the reli-
ability and accuracy of the forecast. For this purpose, Thiboult et al.
(2015) advocate the use of ensemble methods for a probabilistic

meteorological forecast to reduce the accumulation of errors in the
initial conditions.

6.3. Other applications in reducing uncertainties

The multi-objective approach helps to enhance the identification of
the hydrological model (Gupta et al., 1998; Gupta et al., 2009). It also
helps identify the best choice in a multi-model approach to streamflow
forecast (Arsenault et al., 2015). It essentially helps to reduce the biases
in the simulation of streamflow. For example, in snow-dominated
catchments, streamflow measurements can be simultaneously used
with the measurements of snow or remotely sensed data (Di Marco et al.,
2021). Multi-variate calibration can reveal the interconnection between
the variables, possibly providing insights regarding whether the uncer-
tainty originated from input, model structure, or lack of knowledge
about the hydrological system.

The objective functions or the model performance indicators are
subject to the modeler’s choice. However, numerous available indices
/tools can assist in this task. This includes Nash-Sutcliffe efficiency
(Nash and Sutcliffe, 1970) Root Mean Square Error (RMSE) (Willmott

Fig. 8. A decision tree for choosing an uncertainty estimation method (Source: Beven, 2009).
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and Matsuura, 2005; Willmott et al., 2009), and Klinge-Gupta efficiency
index (Gupta et al., 2009; Kling et al., 2012). These indices can be
chosen based on the literature and the subject of interest (streamflow,
snow, flood forecast), the types of models used, and the application
constraints for the selected process of hydrological modeling (Di Marco
et al., 2021). Applying a combination of these indicators helps alleviate
the deficiencies in other indices and enhances the parameter selection
and predictive performance (Wang et al., 2017). In a multi-model
framework, the identified best models can benefit from applying the

multi-objective function. Sometimes for a high value of Nash-Sutcliffe
efficiency, the representation of high and low flows may not be
captured, and the biases may be higher than 10 %. This is due to the
limitations of a single index score. The application of a multi-objective
function can overcome this (Brigode et al., 2013).

Multi-site observation and calibration of streamflow have revealed
unique responses to climate change (Chien et al., 2013). Accounting for
other variables, such as ET, soil moisture, and groundwater, can be
added to model calibration, yielding improved representation of the

Fig. 9. Synthesis of various techniques used to reduce uncertainties in hydrological forecasting (clockwise indexed numbers from 1 to 21 indicate the types of multi-
criteria approach studied, the counts from 0 to 25 along the 0 deg-line refer to the number of studies about types of multi-criteria approach employed per types of
forecasting).

Fig. 10. Multi-criteria approaches involved in the hydrological forecasting.
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system and model performance. Rajib et al. (2018) found that the
application of Moderate-resolution Imaging Spectroradiometer (MODIS)
ET data in the calibration has improved the simulation performance.
Similarly, introducing groundwater storage in the calibration has helped
to improve the model performance (Qiao et al., 2013). Researchers also
showed that the predictability of hydrological models can be signifi-
cantly improved when jointly calibrating with streamflow and satellite-
based ET data (Rajib et al., 2018; Panchanathan et al., 2023).

Pre-processing helps to reduce the uncertainties accumulated in the
datasets before the conceptualizations (Abbasi et al., 2021). Depending
upon the type of forecast, models used, and variable of interest, the input
uncertainties shall be addressed using pre-processing techniques, uti-
lizing, e.g., precipitation data for streamflow prediction (Abbasi et al.,
2021), bathymetry for flood studies (Meng et al., 2017), and snow
density for the snow modeling (Dion et al., 2021). A combination of pre-

Table 6
A summary of multi-criteria approaches used for reducing the uncertainties its
advantages and limitations/challenges.

Sl.
No

Multi-criteria
approach
employed

Uncertainty
addressed

Advantages Limitations/
challenges

1 Multi-data Observation,
Input,
Conceptual,
Forecasting

Helps to reduce
equifinality and
input uncertainties.
Additional data
increases the
forecasting skill/
accuracy.
In general model
performance is
increasing.
Real-time updating
of multi-data
compensates for
the time delay in
data assimilation
techniques.
Considering non-
stationarity in data
helps to reduce
parameter
uncertainties.

Potential cost
increase.
The application of
open-source data
sources may
overfit the test
data.
Uncertainties in
the inputs may
influence the
model
performance.
The selection of
remotely sensed
products needs
initial assessment
before application.
Many of the
studies using
multi-data
approaches are
tailored to
catchment. It
needs more
analysis for the
wider applications.

2 Multi-models Input,
Parameter,
Conceptual,
Forecasting

Different
combinations of
uncertainties can
be accounted for
and tested in the
case of a multi-
model approach to
select the best
model.
It improves the
forecast by
reducing
uncertainties in the
forecast.
Multi-model
combined with
multi-data,
posterior function
helps to reduce
Input, parameter,
and forecast
uncertainties.
Multi-model using
hybrid models
helps to improve
the representation
of the system.
The economic
value of the hydro-
meteorological
forecast can be
increased.

More expensive
than conventional
modeling.
Increasing the
complexity of the
models needs
careful
consideration of
uncertainties. It
may reduce the
performance in
some cases.
The application of
different models
may bring
differences in
results which need
further evaluation.
Different
catchments may
also bring
differences in
results due to
changes in climatic
regions.
Selecting the single
best model for
increasing the
forecast value is
challenging

3 Multi-
objective
function/
multi-
parameter
calibration

Observation,
Parameter,
Conceptual,
Forecasting

Calibrating more
than one parameter
or calibration of
parameters at
multiple locations
improves the
spatial accuracy of
representations.
This improves the
model’s
performance.
It reduces the
number of

A lack of field
observations may
need reliability
analysis.
Trying to improve
the model
accuracy only
using parameter
calibration is
challenging.
The lack of
accurate
parameters

Table 6 (continued )

Sl.
No

Multi-criteria
approach
employed

Uncertainty
addressed

Advantages Limitations/
challenges

parameters and
parameter
uncertainty.
The multi-objective
function may be
useful in case of
lack of data e.g., in
case of lack of daily
flow data, monthly
analysis can be
used to understand
the catchment
processes.
Uncertainties in the
prediction or
forecast is reduced.

regionalized using
multi-objective
function may
influence the
model
performance.
Applicability of the
studies is limited
to the tested case,
and it needs to be
verified for other
catchments.
The accuracy of
this approach
depends on the
data used for the
calibration.
Inherent
uncertainties in
the data may affect
the overall
performance of the
model.

4 Pre-
processing,
Post-
processing

Observation,
Input,
Forecast

Post-processing
helps to improve
the forecast
accuracy in real-
time forecasting
systems.
Pre-processing
helps to reduce the
input uncertainties
and improve the
model
performance.
The combination of
post-processing
with the
application of
multi-data helps to
reduce the
uncertainties. It is
used in flood
forecasting
systems.
The combination of
post-processing
and additional
crowd-sourcing
information is
simple, and it helps
to communicate
uncertainties
easily.

Post-processing
techniques in real-
time forecasts are
subject to the
limitations of
several models,
ensemble sample
size, basin
complexity, and
study period.
The performance
of the combination
of pre- and post-
processing may
vary in different
regions of study.
Computational
costs may be
higher, and
procedures are
intensive.
Usage of crowd-
sourcing
information can’t
be used in the
decision-making
system.
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processing methods and non-linear models has improved the prediction
accuracy to a significant extent (Abbasi et al., 2021). Typically, pre-
processing helps to reduce the number of predictor variables. For
instance, dimensionality reduction and variable selections contribute to
improving the accuracy of prediction (Her et al., 2019a, 2019b).

7. Role of remote sensing applications in reducing uncertainties
of hydrological forecasting

The development of remote sensing data such as Landsat products,
soil moisture data, evapotranspiration data, and various products of
snow data such as snow cover data, snow water equivalent, and snow
water estimation are used widely to improve hydrological forecasting.
Table S3 shows the list of studies reviewed that apply remotely sensed
data and relevant derived products to reduce uncertainties in hydro-
logical forecasting. The application of remotely sensed data is reported
to help address input uncertainty (Dembélé et al., 2020; Hassan and
Hassan, 2020), parameter uncertainty (Gan et al., 2018a, 2018b;
Dembélé et al., 2020; Liu et al., 2020; Papacharalampous et al., 2020),
forecast uncertainty (Gan et al., 2018a, 2018b; Hassan and Hassan,
2020; Papacharalampous et al., 2020; Abbasi et al., 2021; De Santis
et al., 2021; Mazrooei et al., 2021), conceptual model uncertainty (Lee
et al., 2021; Nayak et al., 2021). The availability of remotely sensed data
makes this application feasible even in data-scarce conditions for
improving hydrological modeling. For detailed information on the ap-
plications, and limitations of remotely sensed data products, we illus-
trated in Table S3 the detailed review of the studies. Table S4 shows the
list of open-source data available in vegetation, soil, evapotranspiration,
and climate that can contribute to this task. The web addresses provide
more information on the availability, usage, and limitations of the data
products.

8. Recommendations for the model selections and reducing
uncertainties in hydrological forecasting

Selecting a suitable hydrological model and understanding the
catchment play a vital role in reducing uncertainties (Wagener and
Gupta, 2005). These two factors are interconnected and influence each
other in forecasting results. This section will discuss the key aspects of
hydrological models and catchment characteristics that have been
highlighted in the reviewed studies.

8.1. Choice of models

One of the key aspects is the selection of models for hydrological
forecasting. As the choices are plenty, choosing a model needs to be
given careful consideration. Here we summarize some of the key points
for choosing a model. The models utilized in the reviewed studies are
organized into Tables 7 and 8. Table 7 presents the frequency of model
usage across various regions, while Table 8 provides a comprehensive
list of the models, the uncertainties they address, and the number of
catchments investigated.

1. Recent studies suggest that devising different combinations of model
structures can effectively reduce model errors and forecast uncer-
tainty (DeChant and Moradkhani, 2014).

2. Knowing the watershed characteristics is important to select a hy-
drological model, for example, to choose a simple ABCD model, the
watershed’s hydrological response could be reproduced concerning a
given rainfall and temperature (Her et al., 2019a, 2019b).

3. The performance can degrade when we have not chosen an appro-
priate hydrological model or model structure. This situation cannot
be considered uncertain; rather, it can be the result of model selec-
tion in some cases (Lin et al., 2014). Low flows were not able to be
simulated well in this study due to the selection of the model or
model structure (Lin et al., 2014).

4. Care should be given when we use any model for extreme rainfall
events. A few models cannot capture those events well, e.g., VIC
(Chawla and Mujumdar, 2018).

5. Similarly, for low flows, the GR4J model overestimates, whereas
HBV is prone to underestimate low flows (Demirel et al., 2013).

8.2. Model complexity

Secondly, for a selected model how much we can increase the model
complexity to improve the performance of the model is a key question.
Some of the important aspects of choosing the model complexities are
listed as follows,

1. The application of multi-level complex model implementation can be
considered for a given study to identify the suitable model structure
and improve forecasting (He et al., 2011; Huang et al., 2020).
However, we cannot assume that model performance will improve if
we only increase the model complexity. For example, well-known
empirical parameterizations can perform as well as physically
based models (Essery et al., 2013).

2. So, the selection of model structure in terms of complexity, model
structure, and parameters may influence the results of the supporting
applications such as data assimilation, and remote sensing (De Santis
et al., 2021).

3. The explicit assessment of the influence of data errors (Franz et al.,
2010), modeling structures, and parameters (He et al., 2011) is
required for a more comprehensive understanding of the total
uncertainty.

4. The field data should support increasing the model complexity to
reduce these uncertainties.

Table. 7
The frequency of models used across different regions of the world.

Sl.
No

Region Model used (Number of studies used the
same model)

1 Australia GR4J (1)
2 Asia

(China, India, Iran, Japan,
Pakistan, India, Tibet, South
Korea, Vietnam)

ANN-based (5), VIC (3), SWAT (3),
CREST (1), CUE model (1), TOPMODEL
(1), XAJ (1), Conceptual hydrological
model (1), Remote sensing data (1),
Tank model (1), NAM (1), Common
Land Model (CoLM) (1)

3 Europe
(Austria, Belgium, France,
Germany, Italy, Norway, Spain,
Switzerland)

HBV (2), GR4J (2), MISDc (2), Remote
sensing data (1), Snow and ice melt
model (SES) (1), MIKE 11 (1), NAM (1),
MASCARET (1), Data-driven model (1),
GR5J (1), SnowMIP (1), SURFEX/ISBA
(1), TOPMo (1), TOPMODEL (1), HEC-
RAS 2D (1), ICHYMOD (1), STAFOM-
RCM (1), TOPMELT (1), Hydrological
Model Continuum (HMC) (1), HEC-HMS
(1), PREVAH (1), WaSiM (1)

4 North America (Canada, USA) SWAT (4), GR4J (2), VIC (2), Hydrotel
(2), HYMOD (2), SAC-SMA (2), HSAMI
(1), MOHYSE (1), BUCKET (1),
CEQUEAU (1), CREC (1), DFM (1),
GARDENIA (1), HBV (1),, IHACRES (1),
MARTINE (1), MESH (1), MOHYSE (1),
MORDOR (1), NAM (1), SACRAMENTO
(1), SIMHYD (1), SMAR (1), Tank model
(1), TOPMODEL (1), WAGENINGEN (1),
WATFLOOD (1), XAJ (1), HOOPLA (1),
Dynamic Budyko (1), abcd model (1),
ANN based (1), BDHM (1), GR2M (1),
HEC-RAS 2D (1), LISFLOOD-FP,
Probability Distributed Model (1), Snow
cover retrieval models (1), SNOW-17(1),
SNOW-18 (1), Remote sensing data (1),
SWIM (1),

5 South America (Brazil,
Continental-scale study)

ANN-based (1), MGB (1)
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5. It is crucial to meet the balancing hydrological model structure that
can represent the near real-time complexity as well as to meet the
computational requirements (Di Marco et al., 2021).

6. Hydrological modeling and its reliability in snow-dominated catch-
ments depend on the capability of simulating snow accumulation
and melting as it affects the runoff and streamflow.

Table. 8
The comprehensive list of models used, uncertainties addressed, and the number of catchments investigated.

Sl.
No

Hydrological forecasting The model used (Number of studies used) Combinations of Uncertainties addressed Studies (Sum of Number of catchments
investigated)

1 Streamflow forecasting Dynamic Budyko (1), SWIM (1), abcd
model (3), ANN based (8), BDHM (1),
BUCKET (1), CEQUEAU (1), Conceptual
hydrological model (1), CREC (1), CREST
(1), CUE model (1), DFM (1), GARDENIA
(1), GR2M (2), GR4J (8), GR5J (1), HBV
(3), Hydrotel (1), HYMOD(1), IHACRES
(1), MARTINE (1), MESH (1), mesoscale
Hydrologic Model (mHM) (1), MGB (1),
MISDc (1), MOHYSE (1), MORDOR (1),
NAM (1), Probability Distributed Model
(1), SACRAMENTO (1), SAC-SMA (2),
SIMHYD (1), SMAR (1), SNOW-17 (1),
SNOW-18 (1), SWAT (9), Tank model (1),
TOPMo (1), TOPMODEL (2), VIC (7),
WAGENINGEN (1), WATFLOOD (1), XAJ
(3)

(Input),
(Input, forecasting),
(Input, conceptual model), (Input,
parameter),
(Input, parameter, forecasting),
(Conceptual model), (Conceptual model,
forecasting), (Forecasting),
(Parameter, conceptual model,
forecasting),
(Parameter, forecasting)

De Santis et al., 2021 (700), Lerat et al., 2020
(508), Arsenault et al.,2015 (429), Mazrooei and
Sankarasubramanian, 2019 (340),
Papacharalampous et al., 2020b (270), Her
et al., 2019a, 2019b (156), Brigode et al., 2013
(89), Nayak et al., 2021 (43), Thiboult et al.,
2015 (20), McInerney et al., 2021 (11), Gan
et al., 2018a, 2018b (10), Massari et al., 2015
(5), Das Bhowmik et al., 2020 (4), Huang et al.,
2020 (3), Humphrey et al., 2016 (3), DeChant
and Moradkhani, 2014 (3), Singh and
Sankarasubramanian, 2014 (2), Yuan et al.,
2018 (2), Abbasi et al., 2021 (1), Liu et al., 2018
(1), Hassan and Hassan, 2021 (1), Althoff et al.,
2021 (1), Hassan and Hassan, 2020 (1), Yang
et al., 2020 (1), Wang et al., 2017 (1), Vema
et al., 2020 (1), Penny et al., 2020 (1), Chen
et al., 2016 (1), Papacharalampous et al., 2020,
Demirel et al., 2013 (1), Demirel et al., 2013 (1),
Li et al., 2015 (1), Abaza et al., 2014 (1),
Budhathoki et al., 2020 (1), Dembélé et al., 2020
(1), Siqueira et al., 2021 (1), Dechant and
Moradkhani, 2011 (1), Lee et al., 2021 (1),
Herman et al., 2018 (1), Rajib et al., 2018 (1),
Patil and Ramsankaran, 2017 (1), Hui et al.,
2020 (1), Panchanathan et al., 2023 (1), Liang
et al., 2021 (1), Uniyal et al., 2015 (1),
Muhammad et al., 2018 (1), Chawla and
Mujumdar, 2018 (1), Mazrooei et al., 2021 (1),
Das et al., 2018 (1), Liu et al., 2020 (1), Yuan
et al., 2017 (1), Sun et al., 2018 (1), Muhammad
et al., 2018 (1), Lin et al., 2014 (1)

2 Flood forecasting MASCARET (1), MIKE 11 (1), ANN-based
(4),
BUCKET (1), CEQUEAU (1), CREC (1),
Data-driven model (1), DFM (1),
GARDENIA (1), GR4J (1), HBV (1), HEC-
RAS 2D (2), Hydrological Model
Continuum (HMC) (1),
HYMOD (1), IHACRES (1), LISFLOOD-FP
(1), MARTINE (1), MISDc (1), MOHYSE
(1), MORDOR (1), NAM (3), PREVAH (1),
SACRAMENTO (1), SAC-SMA model (1),
SIMHYD (1), SMAR (1), STAFOM-RCM (1),
SWAT (1), Tank model (2), TOPMODEL
(1),
WAGENINGEN (1), XAJ (2)

(Input, parameter),
(Input, parameter, forecasting),
(Input, conceptual model, forecasting),
(Observation, parameter), (Parameter,
conceptual model, forecasting),
(Parameter, forecasting), (Observation,
parameter, conceptual model,
forecasting), (Forecasting)

Adams and Dymond, 2019 (796), Seo et al.,
2019 (35), Thiboult et al., 2017(20), Lee et al.,
2019 (10), Bonakdari et al., 2019 (6), Van
Steenbergen et al., 2012 (3), Meng et al., 2017
(2), Habert et al., 2016 (1), Hu et al., 2019 (1),
Xu et al., 2021 (1), Bhola et al., 2019(1), Zarzar
et al., 2018(1), Silvestro et al., 2021(1), Rajib
et al., 2020 (1), Barbetta et al., 2017 (1),), Tran
et al., 2020 (1), Zappa et al., 2011 (1), Barbetta
et al., 2017(1), Rajib et al., 2020 (1)

3 Snow forecasting HSAMI (1), HYMOD (1),
MOHYSE (1), CEQUEAU (1), Common
Land Model (CoLM) (1), GR4J (1),
HBV (1), Hydrotel (1),
ICHYMOD (1), IHACRES (1), Remote
sensing data (4), SIMHYD (1), Snow and
ice melt model (SES) (1),
Snow cover retrieval models (1), SNOW-17
(3),
SnowMIP (1), URFEX/ISBA (1), SWAT (1),
TOPMELT(1),
TOPMODEL(1), WaSiM (1)

(Input), (Forecasting), (Parameter,
conceptual model, forecasting),
(Parameter, conceptual model),
(Observation, parameter), (Observation,
input, conceptual model), (Parameter,
forecasting),

Che et al., 2014 (9), He et al., 2011 (8), Franz
et al., 2010 (6), Dion et al., 2021 (5), Poulin
et al., 2011 (1), Di Marco et al., 2021 (1),
Helfricht et al., 2014 (1), Thackeray et al., 2016
(1), Brown and Robinson, 2011 (1), Slater et al.,
2013 (1), Schöber et al., 2014a, 2014b (1),
Rittger et al., 2013 (1), Leisenring and
Moradkhani, 2011 (1), Essery et al., 2013 (1),
Lafaysse et al., 2017 (1), Zaremehrjardy et al.,
2021 (1), Di Marco et al., 2021 (1), Thornton
et al., 2021 (1)

4 Other applications (Soil
moisture, water budget,
water, rainfall runoff,
reservoir inflow,
Precipitation forecast)

SWAT, VIC, Global and regional
hydrological models, Remote sensing data,
Ann based,

(Input),
(Observation, conceptual model)
(Parameter),
(Input, parameter),
(Parameter, conceptual model), (Input,
forecasting),
(Forecasting)

Klotz et al., 2021 (531)
Valdez et al., 2021 (30)
Ashraf et al., 2019 (17)
Krysanova et al., 2018 (1)
Lilhare et al., 2020 (1), Fathololoumi et al., 2021
(1), Chen et al., 2020 (1)
Fraga et al., 2019 (1)
Kasiviswanathan et al., 2020 (1)
Xue et al., 2018 (1)
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8.3. Supporting techniques

Thirdly, the developments in supporting techniques for reducing
uncertainties needed a comparative evaluation for the selection. Some of
the key points are listed below, for a detailed comparison, refer to Ta-
bles 5, 6, and S2.

1. Hydrological models tend to have lower efficiency in representing
both low and high flows because of climate change (Brigode et al.,
2013). This is also rooted back to various infelicitous parameters
resulting from the calibration processes (Lin et al., 2014). The
alternative option to avoid parameter equifinality can be the appli-
cation of multi-criteria approaches.

2. Selection of appropriate processing flow such as pre-processing,
model structure, parameter selections, calibration techniques, and
post-processing enhances hydrological forecasting performance
(Abbasi et al., 2021; Patil and Ramsankaran, 2017).

3. In some cases, an individual model can produce better performance
than ensemble models of streamflow. In this case, it is important to
select an appropriate forecasting model (Thiboult et al., 2015; Thi-
boult et al., 2017).

4. In addition, reducing various uncertainties requires the application
of allied techniques such as sampling distributions, ensemble means,
and probabilistic approaches in the prediction task together with
multi-criteria-based approaches as discussed in Klotz et al. (2021).

5. The accuracy of remotely sensed products in data assimilation plays
a vital role in the quantification and reduction of uncertainties in the
forecasted results. Depending on the model structure used, the
impact of application remotely sensed data can have a different
outcome (Loizu et al., 2018).

8.4. Model calibration

Choosing a method of calibration plays a vital role in terms of
parameterization, equifinality, and the performance of the calibrations.
Hence, it is important to analyze the previously used techniques, and
some of the key aspects are listed as follows:

1. Any developed technique or methodology to reduce the uncertainties
in one study cannot be directly assumed to provide similar results. In
some cases, it may downgrade the accuracy of the models (Seo et al.,
2019).

2. For any modeling structure, flow, techniques, tools, and established
methodology, the application of the same technique to a new study
or region requires detailed investigations and understanding before
the selection of processes (Klotz et al., 2021).

3. Previously published works are always cautious about the final
recommendation of their work, highlighting the factors involved in
the study and the replication of the same method can produce
different results for different requirements. For example, high-
performing lower lead-time forecasts may not be suitable for the
higher lead-time forecast requirements. However, the developed
approaches can be considered as the base of the specific problem we
are trying to address (Habert et al., 2016; Seo et al., 2019; Tran et al.,
2020; Dion et al., 2021).

4. Care should be undertaken for using the specific published tech-
niques: ensemble methods, and DA techniques (Seo et al., 2019). All
individual techniques contain different challenges, which should be
considered before the selection.

5. Spatial analysis of uncertainties is a more sophisticated process to
consider. However, recent studies suggest promising results for the
enhancement of hydrological model performances when using the
appropriate spatial dataset (Zaremehrjardy et al., 2021).

8.5. Characteristics of the basins in the uncertainty studies

For a hydrologic modeling framework, characteristics of the catch-
ments being investigated may influence the performance. Here we list
the identified key aspects in this regard,

1. Hydrological forecast skill depends on the catchment characteristics
such as the area of the basin, geography, topography, hydro-climatic
features, and flow regimes. With larger catchments, the complexity
of the catchment increases. Thereby, the forecast skill is expected to
be lower (Krysanova et al., 2018; Siqueira et al., 2021).

2. The role of the catchment characteristics has to be well evaluated for
hydrological forecasting. Depending upon the applications of the
forecast, influencing factors should be emphasized as follows:

• Streamflow forecasting should include the size of the catchments and
dominant catchment processes.

• Snow-based catchments should be given importance in the aspects of
snow accumulation and melt, liquid water storage, and refreezing
(Essery et al., 2013) (Di Marco et al., 2021). Additionally, the snow
accumulation and melting abilities of a hydrological model
contribute largely to modeling the snow-dominated catchments.

• For flood forecasting, sensitive parameters should be adjusted prior
to forecasting such as initial soil moisture to reduce the uncertainty
in the forecast (Bonakdari et al., 2019; Bhola et al., 2019; Thiboult
et al., 2017).

• Forest thickness may affect the land surface state information
derived from remotely sensed data for the DA techniques, in which
case ground observation data are important to improve the modeling
(DeChant and Moradkhani, 2014).

• Non-stationarity should be considered in hydrological modeling,
such as land use and land cover (Chawla and Mujumdar, 2018).

3. A catchment’s dominant process identification is a key factor in
conceptualizing the right combination of the model (Paiva et al.,
2012). This helps to identify the uncertainties potentially
involved in the modeling framework (Chawla and Mujumdar,
2018). This procedure requires various analyses at different
stages of the hydrological modeling.

4. For rainfall-runoff-dominated basins, the accuracy of the high
flow events influences the performances of the streamflow pre-
dictions (Wang et al., 2017). For such basins, reducing the un-
certainties in seasonal climate forecasts requires more care for the
higher rainfall seasons (Singh and Sankarasubramanian, 2014).

5. The catchments responding to floods quickly need to be studied
in finer spatial and temporal scales to reduce the uncertainty of
flood forecasting (Thiboult et al., 2017).

6. The applications of GCMs, RCMs, downscalingmethods, and their
interactions influence the uncertainty of hydrological modeling.
Since meteorological factors influence these, the regions with less
temperature variability e.g., colder seasons in mountainous re-
gions have less impact on snow formation (Zaremehrjardy et al.,
2021), whereas the impact of wind is higher (Thornton et al.,
2021).

7. The estimation of air temperature at higher elevations may pro-
duce biases if it contains any incorrect assumptions with lapse
rate (Zaremehrjardy et al., 2021).

8. The uncertainty evaluation also should be categorized in terms of
the hydroclimatic conditions (Brigode et al., 2013), as it in-
fluences a specific hydrological process according to the seasons
of the considered catchment. For example, monsoon-based
catchments have higher rainfall in a shorter duration, while
snow-based catchments (Brigode et al., 2013) should be consid-
ered more carefully in winter months (Essery et al., 2013).
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9. In special cases like high-elevation areas, climate data inputs are
likely to be more important than the model selection and process
representation (Zaremehrjardy et al., 2021).

10. It is suggested that for regions with an intensive distribution of
topographical index, high runoff accumulations and improved
temperature indicators would help to improve the snow melt
process (Xue et al., 2018).

11. The number of catchments studied in a particular study and the
region of those catchments influence the results of any developed
methodology (KlemeŠ, 1986) (Table 8). Different regions and
even the area of the catchments in some cases can influence hy-
drological forecasting (Dion et al., 2021). The parameter un-
certainties in hydrological forecasting cannot be justified or
generalized in the case of larger catchments with a variety of
landscape properties.

12. Various studies suggest that techniques should be tested, vali-
dated, and standardized against multiple catchments (Table 8) (e.
g., see (Liu et al., 2020) for statistical post-processing techniques;
(Essery et al.,2013; Meng et al.,2017; Huang et al., 2020; De
Santis et al., 2021) for now-based studies; (Patil and Ramsan-
karan, 2017) for soil-water routing; (Humphrey et al., 2016) for
soil-moisture driven).

13. Seasonal flow predictions should consider the region of highly
changing weather patterns in the catchment from summer to
snowfall in the winter (Abbasi et al., 2021).

To our best understanding from this review work, we would like to
suggest that the application and the usage of more than one hydrological
model structure or models with different levels of complexities in
combination with the application of different catchments are needed to
develop a unified methodology for reducing uncertainties. This
approach requires widespread cooperation among the hydrologic
communities.

9. Conclusions and the way forward

This study reviewed 96 representative studies to explore the latest
developments in reducing uncertainty in hydrological forecasting. Ap-
plications of multi-criteria-based approaches in hydrological forecasting
studies have seen a wide share of the collected studies, as evidenced by
the fact that 73 studies advocate a combination of multiple data with
multi-parameter calibration and objective functions. On the other hand,
27 studies utilized more than one model, and 35 studies utilized more
than one catchment to test their hypotheses for the improvement in
hydrological forecasting. These applications helped to reduce un-
certainties at different levels to enhance the reliability of the forecast.
We have listed the advantages and disadvantages of each reviewed
study. We have summarized the application of remotely sensed data in
reducing these uncertainties. Based on the reviewed literature, we have
summarized the criteria for selecting a hydrological model to reduce
uncertainty in hydrological forecasting. Thus, our review work provides
a comprehensive understanding of the current state-of-the-art tech-
niques for handling uncertainty in hydrological forecasting together
with their associated advantages and limitations in a way to guides both
researcher and practitioner.

Finally, it is also worth asking, “Is it essential to address all the un-
certainties in hydrological forecasting?” Without claiming a full answer
to this question, it is worth pointing out that this depends on the context
and study requirement. This review highlights various classes of un-
certainty associated with hydrological forecasting, including input,
model parameter, structural, model conceptual, calibration, and vali-
dation uncertainty. Besides, the interlink between these uncertainties
cannot be neglected. Therefore, estimating a single type of uncertainty
may not be suitable in many real-world case studies. On the other hand,
the link between the system’s complexity and uncertainty has also been
highlighted. This complexity explains the challenge of replication in the

hydrological forecast due to its large-scale temporal horizon, emerging
constraints related to study area and its specificities. Because “unknown
factors” are the key elements to explore in a way that improves our
understanding regarding hydrological process forecast. For instance, the
debate over the selection of methods for quantifying uncertainties re-
mains unresolved, as the true uncertainties are still unknown (Gupta and
Govindaraju, 2023). In this regard, we support Blöschl et al. (2019)’s
note regarding “the importance of local or regional works to be done
effectively for reducing uncertainties in hydrological predictions or
forecasting”.

9.1. The way forward

Understanding uncertainties in the process-based hydrological
models during hydrological forecasting is essential. These un-
derstandings and quantification of uncertainties in the process should
evolve together with the advancements in modeling techniques, such as
machine learning (ML), Artificial Intelligence (AI), for the better use of
the available datasets. In addition to the techniques and technological
developments, international associations such as IAHS (International
Association for Hydrological Sciences) are engaging researchers and
stakeholders across the globe in developing various solutions for global
water issues through digital water globe, and science for solutions ini-
tiatives, such as Hydrology Engaging Local People IN one Global world
(HELPING). These developments are encouraging the participation of
stakeholders in developing the solutions. Engaging in such de-
velopments will likely improve the quality of hydrological forecasting.
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