
Journal of Colloid and Interface Science 679 (2025) 124–134

Contents lists available at ScienceDirect

Journal of Colloid And Interface Science

journal homepage: www.elsevier.com/locate/jcis

Regular Article

No violations of critical-point wetting in ternary three fluid-phase systems 

with short range interactions

F.A.M. Leermakers a,∗, S.A.A. Egorov b

a Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, the Netherlands
b Dept. Chem. Univ. Virginia, Charlottesville, 22901, VA, USA

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O A B S T R A C T

Keywords:

Cahn wetting

Scheutjens Fleer Self-consistent field theory

Ternary three-fluid phase systems

Wetting phase diagrams with power-law wet-

ting transition lines

Bragg-Williams approximation parameterised 
by Flory-Huggins interaction parameters

Incompressible system

Freely jointed chain

Hypothesis: In ternary three-fluid phase systems one can have either three- or just two interfaces. In a wetting 
transition the system switches from partial to complete wetting, i.e., from having three- to two interfaces. The 
system can also undergo a bulk phase transition when the number of bulk phases changes from three to two. 
Upon varying the temperature one will find that first the system switches from having three interfaces to two, 
before it changes from having three phases to two. This order of events is predicted by Cahn.

SCF computations: We use a quasi-off lattice variant of the Scheutjens Fleer self-consistent field theory, which 
implements a mean field approximation with short-range interactions parameterised by Flory-Huggins interaction 
parameters, to generate a set of wetting phase diagrams for this system. There exists special coordinates such 
that each wetting phase diagrams has a power-law wetting transition line.

Findings: Overlooking the full set of wetting phase diagrams, it is concluded that no exceptions to the Cahn rule 
exists unless the system is exactly (ideally) molecularly symmetric, sometimes called ‘the neutral value’ where 
the contact angle remains 90◦ up to the bulk critical point. Importantly, all wetting transitions may be induced 
similarly, that is they all can be classified and understood from Cahn’s perspective.
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Introduction

Wetting characteristics, that is the way three equilibrated phases are 
spatially arranged, are important for many applications: the acceptance 
of particles in composite materials may depend on the wetting char-

acteristics; formulations in cosmetic products may rely on the wetting 
of these products on skin or hair; the formulation of active ingredients 
in crop protection agents should facilitate the spreading of the actives 
on leaves. In these (and many other) applications the known- or ap-

proximate locus of the wetting transition is of key importance and any 
rational argument to point in the direction from partial to complete wet-

ting is of key importance.

In classical wetting theory we have a solid substrate (S) in contact 
with a liquid (L) (minority component) and its vapour (V) (majority 
component). [1] In this system there can be up to three interfaces S-

L, S-V and L-V with associated interfacial free energies 𝛾SL , 𝛾SV and 
𝛾LV, respectively. To characterise the wetting state of the system it is 
convenient to define a spreading parameter

𝑆 ≡
𝛾𝑆𝑉 − (𝛾𝑆𝐿 + 𝛾𝐿𝑉 )

𝛾𝐿𝑉
(1)

(Usually our interest is in the sign of 𝑆 and then only the nomina-

tor may be considered as 𝑆) When 𝑆 > 0, the liquid wets the surface 
(complete wetting, and there are only two interfaces S-L and L-V) and 
when 𝑆 < 0, partial wetting occurs. Then the minority liquid sits as a 
‘drop’ in between the majority phase and the substrate. There exist a 
famous argument by Cahn which serves as a guide when and where 
to expect a wetting transition, that is when the system switches from 
a finite value of the spreading parameter to zero. Cahn noticed [2]

that when (𝛾𝑆𝑉 − 𝛾𝑆𝐿) < 𝛾𝐿𝑉 , the system is in the partial wet state. 
He further assumed that there exists a suitable control parameter 𝑇 in 
the system which can be use to systematically vary both the difference 
(𝛾𝑆𝑉 − 𝛾𝑆𝐿) and 𝛾𝐿𝑉 . Furthermore there exists a value for 𝑇 , 𝑇 cr , the 
critical value of 𝑇 , for which the L-V interface vanishes, that is, where 
the difference between the liquid an vapour disappears. In the vicinity 
of the critical point it is expected that Δ𝛾 ≡ (𝛾𝑆𝑉 − 𝛾𝑆𝐿) ∝ (𝑇 cr − 𝑇 )𝜏
and 𝛾LV ∝ (𝑇 cr − 𝑇 )𝜇 . He argued that Δ𝛾 ∼ 𝜌L − 𝜌V where 𝜌 is the den-

sity. Then, already known by Van der Waals, the value of the scaling 
coefficient 𝜇 is generally found to be larger than the value of 𝜏 (in mean 
field theory 𝜇 = 3∕2 and 𝜏 = 1∕2 [3]) and this implies that at some 𝑇
going towards 𝑇cr , we will find the situation that the spreading param-

eter 𝑆 = 0, that is, we find a wetting transition before the bulk suffers a 
critical point. This phenomenon is also known as critical point wetting. 
Only when Δ𝛾 = 0 also known as the ‘neutral value’, the contact angle 
remains 90◦ up to the bulk critical point -the surface is ‘neutral’ with 
respect to the two liquid components-. Indeed, the ‘neutral value’ is a 
pivoting point for which the system switches from going to either the 
complete ‘wet’ state or to the complete ‘dry’ state when the bulk criti-

cal point is approached. In the dry state, the V-phase wets the surface. 
At the neutral value the roles of L and V switch.

When instead we have no substrate but three fluid phases, one phase 
rich in component A, a second bulk phase rich in component B and a wet-

ting fluid (relatively) rich in component C, it is generally expected that 
we have a similar situation. Suppose we start at a partial wet state, that 
is, the C phase sits as a lens in between the two bulk phases, we should 
expect a wetting transition due to the change of a control parameter 𝑇 , 
before either the A-C or B-C critical point is reached (assuming that A-B 
remains far from critical). Careful experiments consistent with this are 
available in the literature, see e.g. ref. [4]. Again, when 𝛾𝐴𝐵 = 𝛾𝐴𝐶 for 
all values of the control parameter, we do not expect the wetting tran-

sition until the system looses one of its phases. For such ‘neutral value’ 
the contact angle remains 90◦ up to the bulk critical point. Again, this 
is not seen as a violation of the Cahn conjecture because such situation 
can only exist in theory. Indeed, this ‘neutral value’ is again expected to 
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have a pivoting role, at which there is a switch from the C-rich phase 
Journal of Colloid And Interface Science 679 (2025) 124–134

wetting the A-B interface to the B-rich phase wetting the A-C interface 
or the A-rich phase wetting the B-C interface.

In a recent report it was argued that for ternary three-fluid phase 
systems the above argument is apparently not followed and the Cahn 
argument does not apply in large parts of parameter space. [5]. These 
authors use their own mean field density functional theory and use two 
spatially varying densities, the third density can be replaced by a pres-

sure dependence. They argue that their functional is valid near bulk 
critical points. Importantly they can obtain both analytical and numer-

ical results that agree with each other. So we must accept that for their 
functional the Cahn argument does not always hold. Possible failures 
of the Cahn argument are known for systems with long range interac-

tions [6–8], but the recent claim explicitly was made for ternary systems 
with short range interactions. A few decades ago one of us used the 
Scheutjens-Fleer variant of the self-consistent field theory to study wet-

ting transitions in ternary three-fluid phase systems and found no such 
violations. [9] unfortunately, in this work not all possible scenario’s 
were considered and that is why we here revisit these systems using 
a slightly revised model which produces less artifacts. Below we will 
present wetting phase diagrams (see below) in special coordinates where 
the ‘neutral value’ plays a key role and conclude from these that no ex-

ceptions exist because the smallest deviation from this neutral value 
was shown to behave according to the Cahn conjecture. This must be 
contrasted to the results of Indekeu and Koga [5], who report that in a 
wide region of parameter space, specifically around the neutral value, 
the violation of the Cahn argument was found. It is not the goal of the 
present paper to specifically pin point to potential weak spots in e.g. the 
functional used by Indekeu and Koga. [5] or to potential flaws in their 
analysis; instead we want to contrast their results to ours.

The Self-consistent field approach for chain-like molecular compo-

nents has been introduced by Scheutjens and Fleer in the late 70’s of the 
previous century. This method can be seen as numerically exact (that is, 
on the mean field level) as it avoids Taylor series expansion altogether. 
It is numerically exact for all parameter settings, that is close to the tri-
critical point but also further away from it. Molecular interactions are 
parameterized by Flory-Huggins interaction parameters 𝜒𝑋𝑌 with 𝑋𝑌

= {AB, AC, BC} (see Eqn (2) for the definition of 𝜒 , which can essen-

tially be seen as the inverse temperature 𝑇 ), wherefore a positive value 
signals repulsion between unlike contacts driving segregation between 
components. Unfortunately our earlier work [9] was limited to special 
cases where 𝜒𝐵𝐶 = 𝜒𝐴𝐶 . In the present paper we target all relevant pa-

rameter settings for ternary systems and reach the conclusion that there 
are no exceptions to the Cahn argument. Even though the SCF method 
used in the current work is of the mean field type, has underlying Flory-

Huggins features (short-ranged interactions, as mentioned) and it makes 
use of a freely jointed chain approximation for the chain statistics, we 
argue that it implements fundamentally similar approximations as the 
work that is challenged. As the SF-SCF method is numerical in nature 
it is nontrivial to prove that there are no critical point wetting excep-

tions. We pick up the challenge to convincingly prove that there is no 
(hidden) parameter combination that may falsify our thesis. This is a rel-

evant statement because in ternary systems, there are various intricacies 
in having three phase equilibria. [10]

In our approach we have for given 𝜒𝐴𝐵 , both 𝜒𝐵𝐶 and 𝜒𝐴𝐶 as con-

trol parameters which we can vary independently to force the phase 
transitions in the system. Formally (cf. eqn (2) below) both parameters 
are inversely proportional to the temperature 𝑇 . Alternatively we thus 
could have opted for just one control parameter 𝑇 , similarly as Indekeu 
and Koga. [5] However, in the spirit of Flory-Huggins theory and com-

mon practise we treat the two parameter to be independent, that is, we 
take it that it is possible to, e.g., change one while keeping the other 
constant. Of course the implementation of this idea in practise may be 
hard to do.

It is a good habit to collect wetting results into so-called wetting 
phase diagrams. Below we will present such phase diagrams basically 

using 𝜒𝐵𝐶 vs 𝜒𝐴𝐶 coordinates, highlighting that we have two indepen-
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dent control parameters. A line in such a phase diagram indicates the 
combination of the value of the control parameter 𝜒𝐴𝐶 = 𝜒wet

𝐴𝐶
and the 

corresponding value of 𝜒𝐵𝐶 = 𝜒wet
𝐵𝐶

at which the wetting transition oc-

curs. We find a wetting phase diagram for each specified values of 𝜒𝐴𝐵 . 
A line in the wetting phase diagram splits the parameter space into two: 
those parameters that corresponding to systems in the partial wet state 
and those corresponding to the complete wet state. We understand that 
when 𝜒𝐴𝐵 = 𝜒𝐴𝐶 , that is, at the neutral value for the system, the wetting 
transition occurs exactly at the corresponding critical point 𝜒𝑐𝑟′

𝐵𝐶
(where 

the prime indicates the special critical point for systems with equal val-

ues for 𝜒𝐴𝐵 = 𝜒𝐴𝐶 ). This motivates us to use special coordinates for our 
wetting phase diagram, namely 𝜒𝐵𝐶 − 𝜒𝑐𝑟′

𝐵𝐶
versus 𝜒𝐴𝐵 − 𝜒𝐵𝐶 and use 

a double logarithmic scale. (In these coordinates the ‘neutral value’ and 
formally its wetting transition occur at minus infinity. It turns out that 
in these coordinates the wetting transition lines have a power-law de-

pendence (they show up as straight lines). This implies that all wetting 
transitions are intricately related to the value of the bulk critical point 
for the neutral value setting.

The structure of the paper is as follows. First subsection in the 
methodology section we will review where to find the three-phase re-

gions in systems that contain three fluid-like components. After this we 
outline the key characteristics of the SF-SCF method that is used. For the 
full details we refer to earlier literature. We will then mention the strate-

gies that have been used to localise wetting transitions in the system. In 
the result and discussion section we will focus on the various regions of 
three-phase coexistence and we will split this up into two parts: (i) the 
parameter settings relatively far from the tricritical point, notably above 
the triple point 𝜒𝐴𝐵 > 𝜒 tr = (4∕𝑁) ln 2. In this region of parameter space 
we find phenomenological power-law scaling relations that connects all 
wetting transitions to a corresponding critical point. The continuity of 
the fitting coefficients provide a strong argument that there is no hid-

den region of partial wetting that might persists until the critical point. 
The only exception is for the ‘neutral value’ condition. (ii) The parame-

ter settings in between the tricritical point 𝜒𝐴𝐵 = 18∕7𝑁 and the triple 
point 𝜒𝐴𝐵 = (4∕𝑁) ln 2. In this range of parameters we will argue and 
illustrated by giving selected results on worst case scenario’s, that there 
is no case of partial wetting; all parameters give complete wetting and 
thus there cannot be a Cahn violation in this part of parameter space. 
As this concludes our scan of parameter space we draw our conclusions 
(as expressed by our title) in the designated part of the paper.

Methodology

In the introduction we already have outlined the classical wetting 
theory, discussed the Cahn argument and mentioned that it has recently 
been challenged. In this section we will first go into details about the 
phase behaviour in ternary systems, and then elaborate on the SF-SCF 
method that is used to generate the wetting phase diagrams. At the end 
of this section we go into details how using the SF-SCF method wetting 
transitions may be located.

Three fluid-phase coexistence in ternary systems

Within SF-SCF modelling we can take any ternary system 𝐴𝑁𝐴
, 𝐵𝑁𝐵

and 𝐶𝑁𝐶
, where the 𝑁𝑋 is the degree of polymerisation of component 

𝑋 may be different for each component 𝑋 =𝐴, 𝐵, 𝐶 . We do not expect 
that the molar volume of each component is of key importance. Therefor 
we opt for a simplification, 𝑁𝐴 =𝑁𝐵 =𝑁𝐶 . This will allow us to cut 
the search for wetting transitions short by at least a factor of three. The 
work that is challenged here [5] also focused on the symmetric case with 
𝑁𝑋 = 1 for all 𝑋. SCF-like models that deal with 𝑁 = 1 may be referred 
to as regular solution models (or derived from this approach), those with 
larger values of 𝑁 are of the Flory-Huggins type or approaches that are 
derived from it. [11] Both approaches are lattice based and take the 
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system as incompressible. In these systems there are three Flory-Huggins 
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parameters 𝜒𝑋𝑌 which essentially are dimensionless nearest-neighbour 
exchange interaction parameters:

𝜒𝑋𝑌 = 𝑍

2𝑘𝐵𝑇
(
2𝑈𝑋𝑌 −𝑈𝑋𝑋 −𝑈𝑌 𝑌

)
(2)

where 𝑍 is the lattice coordination number and 𝑈𝑋𝑌 is the interac-

tion energy when two neighbouring sites are occupied by a 𝑋 and a 𝑌
component, respectively. A setting for the parameters 𝜒 in regular solu-

tion has the same effect as the parameter setting 𝑁𝜒 in Flory-Huggins 
(provided all molecules are of same length). Hence characteristic 𝜒 in 
regular solution translate to 𝑁𝜒 in Flory-Huggins. Stated otherwise, in 
Flory-Huggins models the relevant values of 𝜒 are 𝑁 times smaller than 
in regular solution. The structure of the interfaces will slightly depend 
on 𝑁 , but we believe that this difference is not fundamental. Work-

ing with lattice models has its limitations. For large values of 𝑁 it is 
expected that the mean field models become more accurate. Here and 
below we focus on 𝑁 = 4 for simplicity. As compared to regular solution, 
the increase of 𝑁 from 1 to 4 reduces the need to have large interaction 
parameters which give rise to so-called lattice artifacts (more about this 
below).

Let’s first set all interaction parameters to the same value 𝜒 ≡ 𝜒𝐴𝐵 =
𝜒𝐵𝐶 = 𝜒𝐴𝐶 . The advantage of using a regular-solution-like (or Flory-

Huggins-like) system is that we know all relevant regions in the phase 
diagrams. [10] In the symmetric situation the phase diagram has several 
one-phase regions, various two-phase regions, (surprisingly) more than 
1 three-phase regions and one (triple) point for which four phases coex-

ist. In slightly more detail, it is known that when 𝑁𝜒 < 18∕7 there can 
be no three-phase coexistence. [10] This point is known as the tricritical 
point as at this point two lines of critical points terminate. In the region 
18∕7 <𝑁𝜒 < 4 ln 2 we have (two separate regions of) three phase coex-

istence. Characteristic for these regions, the compositions of the three 
phases are not similar: two phases have a similar composition and the 
third phase is markedly different (you may find an example in Fig. 6). 
This must be distinguished from systems for which 𝑁𝜒 > 4 ln 2. [10] In 
this exact point (we refer to it as the triple point) there are three phases 
having a similar composition built-up (the majority component has vol-

ume fraction 2/3 and the other two components have volume fraction 
1/6), which coexist with a fourth phase which has equal volume frac-

tions of each component, 1/3) for an example see Fig. 5d below). When 
𝜒 > (4∕𝑁) ln 2 there is a single region of three-phase coexistence. Of 
course, as soon as the three 𝜒 -values are not equal to each other, the 
three phases will all have their own composition. Examples of such sit-
uation are given below in Fig. 1c,d.

When there are three phases in the system, we should be on the 
outlook of wetting phenomena. [1] To theoretically study wetting tran-

sitions in the system, it is not enough to be able to compute the com-

positions of the three coexisting phases, but one also needs to evaluate 
the structure and thermodynamics of the interfaces. We use the self-

consistent field theoretical framework of Scheutjens and Fleer (SF-SCF) 
for this task. SF-SCF can be seen as an extension of the Flory-Huggins 
theory accounting for inhomogeneous systems. That is, the approach 
is targeted to compute the structure and thermodynamics of interfacial 
systems. In the following section we present the basic ingredients of 
this modelling technique. This includes the discussion of the premises 
and it provides the SCF rules for computing the potentials and volume 
fraction profiles of the molecules. For full details we refer to the litera-

ture. [12–15,9]

SF-SCF protocol

Similarly as the Flory Huggins theory, the SF-SCF is lattice based. 
Classically, the molecules occupy lattice sites such that each segment 
fills a particular site. Below we employ a grit-refinement strategy which 
deviates from the classical approach, but first we outline the classical 
Ansatz. We use the variable 𝑁 to denote to the number of lattice sites 

occupied by a given molecule, that is the number of segments per chain. 
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Here we have three components and thus we take 𝐴𝑁 , 𝐵𝑁 and 𝐶𝑁 . 
Also following Flory-Huggins theory the system is filled to capacity, 
that is another way to say that the system is incompressible. The in-

compressibility relation is reasonable for liquid systems and has a few 
not so elegant side-effects: (i) the volume is not an independent ther-

modynamic variable and the intensive parameter 𝑝 (pressure) is not 
operational. (ii) there is no vapour phase. Interactions in this model 
are accounted for using a mean field approximation (Bragg-Williams 
approximations) and as mentioned already the interactions are param-

eterised by Flory-Huggins interaction parameters. As there are three 
components in the system, we also have three independent interaction 
parameters 𝜒𝐴𝐵 , 𝜒𝐵𝐶 and 𝜒𝐴𝐶 . To select the 𝐴|𝐶|𝐵 scenario (that is the 
C-phase is in between the A and B phase) we insist the following rules 
according to the values of the three interaction parameters. As 𝐴 is the 
substitute for the substrate we want 𝜒𝐴𝐵 to be the largest of the three. 
As 𝐶 should go preferentially in between the A-B interface, we need 
𝜒𝐵𝐶 ≤ 𝜒𝐴𝐶 . Hence we have 𝜒𝐴𝐵 ≥ 𝜒𝐴𝐶 ≥ 𝜒𝐵𝐶 , and obviously all val-

ues should be above some threshold value to allow for three coexisting 
phases. As known for a long time the lowest possible interaction param-

eter to have three-phase coexistence is in the molecularly symmetric 
system given by 𝜒 tc𝑁 = 18∕7. [10] We note that wetting transitions in 
other parts of the phase triangle can be found by cyclic iterative renam-

ing of the components.

The SF-SCF machinery is targeted to compute interfacial characteris-

tics of the system. To do so for polymeric components, we need a suitable 
chain model to estimate the conformational entropy of the molecular 
components in the interfaces. In SF-SCF the so-called freely jointed chain 
(FJC) model is adopted for this basically because in this model there 
exists a computationally inexpensive way to evaluate chain partition 
functions. In the FJC model two neighbouring segments along the chain 
occupy neighbouring sites on the lattice. However, longer ranged corre-

lations are ignored: segments have ranking numbers 𝑠 = 1, 2, ⋯ , 𝑁 and 
segments 𝑠 − 1 and 𝑠 + 1 may occupy the same site. This might occurs 
when the chain performs so-called back folding steps. This excluded vol-

ume problem is counteracted by the incompressibility condition which 
states that each site (on average) must be filled exactly once. We note 
in passing that in the limit of 𝑁 → 1, the SF-SCF method is identical to 
the regular solution model, which for homogeneous systems the (dimen-

sionless) free energy 𝐺 of mixing per unit area, which features spatially 
varying densities (volume fractions) 𝜑𝑋 , 𝑋 =A, B, C:

𝐺 =
∑
𝑧

[
𝜑𝐴(𝑧) ln𝜑𝐴(𝑧) +𝜑𝐵(𝑧) ln𝜑𝐵(𝑧) +𝜑𝐶 (𝑧) ln𝜑𝐶 (𝑧)+

𝜒𝐴𝐵𝜑𝐴(𝑧)⟨𝜑𝐵(𝑧)⟩+ 𝜒𝐴𝐶𝜑𝐴(𝑧)⟨𝜑𝐶 (𝑧)⟩+ 𝜒𝐵𝐶𝜑𝐵(𝑧)⟨𝜑𝐶 (𝑧)⟩] (3)

As outlined by Safran [3] the angular brackets, which should accurately 
account for the interactions when there are density gradients, have a 
continuous approximation ⟨𝑋(𝑧)⟩ ≈𝑋(𝑧) + 𝜆

𝜕2𝑋(𝑧)
𝜕𝑧2

, where 𝜆 is a lattice 
parameter. This second derivative can, after partial integration be trans-

formed in Cahn-Hilliard square gradient terms. Taylor series expansion 
of the logarithmic terms (using the tricritical densities), basically leads 
to the two-density functional of Indekeu and Koga. [5] However, it must 
be noted that Indekeu and Koga have only two square gradient terms 
(i.e. accounting for gradients for A-C and B-C interactions but those for 
the A-B ones is missing) where in our approach we have all three. At 
this point we can not oversee all consequences of this. The fact that In-

dekeu and Koga used Taylor series expansion makes their method work 
as long as there are no large density differences in the system, and it be-

comes progressively less accurate when the density differences between 
the phases grow. Below we will see that there easily large density dif-

ferences exist in three-fluid phase systems. Indekeu and Koga [5] have 
realised this and specified that their analysis should be strictly used near 
the tricritical point.

At the basis of the SF-SCF theory there is an equivalent mean field 
free energy functional which also can be used for chain-like molecules. 
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This SF-SCF free energy expression is given in terms of three types 
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of functions: (i) volume fractions 𝜑𝑋 (𝑧), where 𝑋 = 𝐴, 𝐵, 𝐶 and 
𝑧 = 1, 2, ⋯ , 𝑀 is a spatial coordinate with 𝑀 sets the system size. 
Volume fractions are dimensionless segment concentrations. (ii) 𝑢𝑋 (𝑧), 
so-called segment potentials; the value of the segment potential is given 
by the work needed to bring a segment from the bulk (where the poten-

tial is zero) to the coordinate 𝑧, and thus the potential is dependent on 
the spatial coordinate. (iii) a so-called Lagrange field 𝛼(𝑧); this field is 
independent of the segment type. It’s value is tuned such that the system 
obeys to the incompressibility relation locally, that is 

∑
𝑋 𝜑𝑋 (𝑧) = 1. As 

a unique value for 𝛼 is needed for each coordinate 𝑧, we again see that 
this quantity is a function of the spatial coordinate.

The best mean field free energy is found by optimising the free en-

ergy function with respect to its variables. This extremisation procedure 
leads to the self-consistent field rules. Without going into too much 
details we mention that the optimisation with respect to the volume 
fractions give a rule which insist on the way the potentials are com-

puted:

𝑢𝑋 (𝑧) = 𝛼(𝑧) +
∑
𝑌

𝜒𝑋𝑌

(⟨𝜑𝑦(𝑧)⟩−𝜑𝑏
𝑌

)
(4)

where it is understood that the potential is typically expressed in units 
of the thermal energy 𝑘𝐵𝑇 .

In this equation (eq. (4)) we choose 𝜑𝑏
𝑌

to be the bulk concen-

tration in the phase rich in component 𝐵 (below we will outline the 
way these bulk concentrations are found). The angular brackets are 
needed to correctly count the interactions in regions where the density 
is not homogeneous. It is specified by a three-layer average ⟨𝑋(𝑧)⟩ =
1
4 (𝑋(𝑧− 1) + 2𝑋(𝑧) +𝑋(𝑧+ 1)), which implies a hexagonal configura-

tion of lattice sites. The non-local counting (as mentioned equivalent 
to the square gradient terms in Cahn Hilliard) of the interactions is 
important in interfacial systems where the volume fractions are not ho-

mogeneous.

The extremisation of the free energy with respect to the segment po-

tential leads to the rules how to compute the volume fraction profiles 
and the chain partition functions. Consistent with this step we imple-

ment these evaluations using a propagator formalism (implying the FJC 
chain model). In this formalism we define end-point distribution func-

tions 𝐺𝑖 for chain number 𝑖. In its most general form 𝐺𝑖(𝑧, 𝑠|𝑧′, 𝑠′) it 
represents the statistical weight for chain walks that start at segment 𝑠′
and at coordinate 𝑧′ and end at with segment 𝑠 at position 𝑧. We use 
these distribution functions for 𝑠′ either 𝑠 = 1 (forward case) or 𝑠 =𝑁

(backward case) and we integrate over the starting coordinate, and find 
𝐺𝑖(𝑧, 𝑠|1) or 𝐺𝑖(𝑧, 𝑠|𝑁). These once integrated end point distribution 
function generated recursively:

𝐺𝑖(𝑧, 𝑠|1) =𝐺𝑖(𝑧, 𝑠)⟨𝐺𝑖(𝑧, 𝑠− 1|1)⟩
𝐺𝑖(𝑧, 𝑠|𝑁) =𝐺𝑖(𝑧, 𝑠)⟨𝐺)𝑖(𝑧, 𝑠+ 1|𝑁)⟩ (5)

where 𝐺𝑖(𝑧, 𝑠) is known as a free segment distribution function. When 
segment 𝑠 of molecule 𝑖 is of type 𝑋 we find 𝐺𝑖(𝑧, 𝑠) = 𝐺𝑋 (𝑧) ≡
exp−𝑢𝑋 (𝑧). These propagators, which are discrete variants of the Ed-

wards diffusion equation [16], need initial conditions, that is they are 
started by 𝐺𝑖(𝑧, 1|1) = 𝐺𝑖(𝑧, 1) and 𝐺𝑖(𝑧, 𝑁|𝑁) = 𝐺𝑖(𝑧, 𝑁). The first 
propagator (cf eqn (5)) thus starts at 𝑠 = 1 and runs towards 𝑠 =𝑁 , while 
the second one goes in the reversed direction, it starts at 𝑠 =𝑁 and runs 
backward to 𝑠 = 1. After 𝑁 −1 propagator steps we arrive at 𝐺𝑖(𝑧, 𝑁|1)
or 𝐺𝑖(𝑧, 1|𝑁). These quantities can be integrated over the 𝑧-coordinate 
to find the chain partition function 𝑞𝑖 =

∑
𝑧 𝐺𝑖(𝑧, 𝑁|1) =∑

𝑧 𝐺𝑖(𝑧, 1|𝑁).
The end-point distribution functions generated by eqn (5) are used 

to compute the volume fraction with an equation known as the compo-

sition law:

𝜑𝑖(𝑧, 𝑠) = 𝐶𝑖

𝐺𝑖(𝑧, 𝑠|1)𝐺𝑖(𝑧, 𝑠|𝑁)
𝐺𝑖(𝑧, 𝑠)

(6)

Here the division by 𝐺𝑖(𝑧, 𝑠) is needed because the statistical weight 

for segment 𝑠 should be accounted for just once. In the limit of 𝑁 →
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1 the composition law reduces to the Boltzmann equation. Next, the 
normalisation constant 𝐶𝑖 can be shown to obey

𝐶𝑖 =
𝑛𝑖

𝑞𝑖
(7)

𝐶𝑖 =
𝜑𝑏
𝑖

𝑁
(8)

the first of these eqns is used when the number of molecule 𝑛𝑖 is speci-

fied in the system (canonical calculations). The second one is used when 
the bulk concentration is given (grand canonical calculations). In the 
current setting the number of molecules is typically known from the 
input. In this case we compute the partition function and predict the 
bulk concentration: 𝜑𝑏

𝑖
= 𝑁𝑛𝑖

𝑞𝑖
. These bulk concentrations are needed to 

normalise the segment potentials (cf. eqn. (4)). Obviously we can find 
the overall volume fraction of component 𝑖 by summing over the seg-

ments, that is, 𝜑𝑖(𝑧) =
∑

𝑠 𝜑𝑖(𝑧, 𝑠) where the sum runs over all segments 
of molecule 𝑖. In a typical calculation we compute the bulk volume frac-

tions for component A and C from the values of 𝑛𝐴 and 𝑛𝐵 using the 
computed partition functions. For the B-component, however, the vol-

ume fraction of the bulk phase is set by 𝜑𝑏
𝐵
= 1 −𝜑𝑏

𝐴
−𝜑𝑏

𝐶
. This setting 

makes sure that the reference bulk phase obeys the incompressibility 
relation.

As potentials and densities mutually depend on each other, a fixed 
point -the so called scf solution- is found by numerical iterative searches. 
In such procedure, the implemented values of 𝛼(𝑧)-values are modified 
until the system obeys to the incompressibility conditions. A possible 
strategy for this update is to simply use 𝛼𝑘+1(𝑧) = 𝛼𝑘(𝑧) + (

∑
𝑋 𝜑𝑋 (𝑧) −

1), where 𝑘 is the 𝑘𝑡ℎ estimate for the Lagrange field during the iter-

ative search. In practise, however, we solve the SCF equations using a 
numerical method presented by Evers and coworkers. [15] Routinely a 
precision of at least 7 significant digits is reached in order 100 iterations 
and this accuracy is sufficient to accurately evaluation the grand poten-

tial Ω = 𝐹 −
∑

𝑖 𝑛𝑖𝜇𝑖, where 𝜇𝑖 is the chemical potential of component 
𝑖 and 𝐹 is the Helmholtz energy. Because of its importance we specify 
how the grand potential is computed and refer to the literature for the 
free energy and chemical potentials. The grand potential Ω =

∑
𝑧 𝜔(𝑧), 

where 𝜔(𝑧) is the grand potential density which can be written as [15]

𝜔(𝑧) = −
∑
𝑖

(
𝜑𝑖(𝑧) −𝜑𝑏

𝑖

𝑁𝑖

)
− 𝛼(𝑧)

− 1
2
∑
𝑋

∑
𝑌

𝜒𝑋𝑌

(
𝜑𝑋 (𝑧)⟨𝜑𝑌 (𝑧)⟩−𝜑𝑏

𝑋
𝜑𝑏
𝑌

)
(9)

when there is just one interface in the system, we identify the grand 
potential with this interfacial tension. However when multiple interfaces 
are present in the system, the grand potential will obviously collect the 
sum of the interfacial tensions of all these interfaces.

With the presented SCF-protocol we can study many features of 
interfaces that exist between coexisting phases. However the classical 
approach has its problems as soon as the width of the interface is of the 
same size of the segments (equivalent to the lattice site length -called 
grit size-). Then the discretisation (use of the lattice) becomes noticeable 
(typically referred to lattice artifacts) and this complicates for example 
the identification whether or not a system is wet. To effectively solve 
for this issue we use the quasi-off lattice implementation of de Lange 
and coworkers [17]. Their strategy has many similarities with the quasi 
off lattice method of Romeis and coworkers. [18] These authors use a 
protocol wherein the segments are twice or three (etc) times larger than 
the grit size. There are various implementation details; one of these is 
that the propagator formalism is modified. Formally this means that 
the chain model depends systematically (chain become progressively 
more flexible) on the grit-refinement. This poses potential challenges 
related to the mapping of particular molecular components to theoret-

ical (Kuhn-segment) models, but there are no fundamental issues with 
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respect to the phase diagrams and the location of wetting transitions. 
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Of course the computation time increases upon increasing the ratio be-

tween the segment and grit sizes. This is not so much of an issue as 
these times are well within the sub-minute time scale. Typically, the re-

finement level is adjusted until the result becomes sufficiently invariant 
with respect to the grit-size. Below we have implemented this approach 
to avoid lattice artifact problems which present themselves in systems 
far from the tricritical point. In the current work the segment size was 
set to twice the grit size.”

Wetting transitions

There are several ways to study the wetting characteristics and to 
accurately probe wetting transitions in a system. The first and most nat-

ural route is to focus on the interfacial tension of the interfaces and how 
these change when the wetting control parameter is varied in the sys-

tem. These quantities feature in Young’s law and this naturally leads to 
the spreading parameter 𝑆 , cf. eqn (1).

𝑆 = cos𝜃 − 1 =
𝛾𝑆𝑉 − (𝛾𝑆𝐿 + 𝛾𝐿𝑉 )

𝛾𝐿𝑉
=

𝛾thin − 𝛾thick
𝛾𝐿𝑉

(10)

which relates the three-phase contact angle 𝜃 to the spreading parame-

ter 𝑆 and it defined both 𝛾thin and 𝛾thick . These latter two interfacial free 
energies are computationally available when adsorption isotherms are 
generated as discussed below. The 𝛾𝐿𝑉 is usually computed in a separate 
calculation. When the interest is in finding the locus of a wetting transi-

tion it suffices to know 𝛾thin and 𝛾thick . Also in ternary systems without a 
solid substrate it is possible to locate the wetting transition by searching 
for the condition 𝛾thin = 𝛾thick .

Another intuitive route to study wetting is to consider so-called 
adsorption isotherms. In an adsorption isotherm one computes the ad-

sorbed amount (of the C-component) at the A-B interface. To quantify 
the adsorbed amount we need to choose a Gibbs plane. This is chosen 
with respect to the solvent (that is, the profile of the B-component). 
For the specified Gibbs plane the excess adsorption of the solvent is per 
definition zero. (cf eqn (11) below) Adsorption isotherms present the ex-

cess amount of C (with respect to this Gibbs plane, which is minus the 
excess amount of A) is presented as a function of the volume fraction 
of C in the B-rich phase. When the adsorption isotherm is a monotoni-

cally increasing function and diverges at the bulk binodal (of C in B-rich 
phase), we know the system (the A-B interface) is wet (by C). Alterna-

tively, when the isotherm features a ‘loop’ in the super-saturated region, 
such that the equal area construction is impossible, we find that the sys-

tem (A-B-interface) is partial wetted by C. Then the isotherm crosses 
the bulk binodal in a region of the isotherm that there is only a little 
C at the A-B interface. The interfacial tension at this first crossing of 
the binodal is called 𝛾thin. Invariable the isotherms return to the bulk 
binodal at high C loading of the interface. The interfacial tension in 
this region is referred to as 𝛾thick (for obvious reasons). (See Fig. 2a 
for an illustration) Again, when upon the change of a control parame-

ters the system suffers a wetting transition, this is found as the condition 
𝛾thin = 𝛾thick . Wetting transitions can be found to be first-order or second 
order. [1] In a first-order wetting transition the isotherms merge toward 
the binodal at high C-coverage from the sub-saturated side, whereas in 
the second order case the wetting isotherm merge toward the binodal 
at the super-saturated side. In practise the first-order wetting transitions 
are identified by the presence of a pre-wetting transition. Then a loop 
in the isotherm is found before the system reaches the bulk binodal. In 
this paper we are not per se interested in the order of the wetting tran-

sition, but in passing we mention that we found first-order wetting only 
when 𝜒𝐴𝐵 is sufficiently large. Wetting transitions near 𝜒𝑁 = ln2 are 
found to be of the second order type (critical wetting).

We found that it is laborious to compute a full isotherm before we 
can know whether or not the system is wet. That is why in practise 
we implemented a time saving short-cut. To understand this alternative 
criterion for wetting we must know about the interaction between in-
terfaces. Two ‘surfaces’ or interfaces that are far apart can be seen as 
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independent. At fixed chemical potentials, upon bringing the interfaces 
closer and closer to each other, we can either find that the grand poten-

tial goes up (then the surfaces repel each other), or the grand potential 
goes down (then the surfaces attract each other). For obvious reasons 
these two scenarios correspond to the wet and the partial wet case, re-

spectively. In other words, we need a switch from attraction between 
the A-C interface and the C-B interfaces to repulsion to witness a wet-

ting transition from partial wet to wet.

We follow ideas forwarded by Marçelja and Radic, who based their 
approach on the Landau expansion of the local Gibbs energy density 
and the symmetry behaviour of the order parameter in the system. [19]

Implementing their approach for the location of wetting transitions, we 
understand that the profile of the C-component (order parameter) is of 
interest. At the B-C interface, the density of C invariably goes from a 
value characteristic of the C-rich phase and falls monotonically off to 
the density of C in the B-rich phase. When the same happens at the C-A 
interface, that is when the density of C in the C-rich phase monotoni-

cally decreases towards the density of C in the A-rich phase, we have 
the situation that the density behaves ‘symmetrically’ on both sides of 
the C-rich domain. In this case the A-C and C-B interfaces attract each 
other (partial wetting). When C has ‘enough’ (relative) affinity for the 
A-rich phase, it may happen that the profile of C has a non-monotonous 
behaviour at the A-C interface. More specifically, going from the C-rich 
phase to the A-rich phase the C density goes through a local maximum 
before it falls off to the low density of C in the A-rich phase. This asym-

metric behaviour of the C-profile at the A-C and C-B interfaces signals 
repulsion between these interfaces. Then this signals the complete wet 
scenario. We can study the C-profile best when the C-phase is large, that 
is when the A-C and B-C interfaces are far apart, more specifically when 
the distance between the interfaces exceed by far the widths of the B-C 
and A-C interfaces. The non-monotonic C-profile can trivially be picked 
up as a function of the wetting control parameter and this is the quickest 
way to find the wetting transitions in the system. We carefully checked 
that this method gives identical results to the more laborious approaches 
sketched above.

Results and discussion

As explained in the introduction we focus on the case that the three 
molecular components have segments A, B and C, respectively, and that 
all molecular components have the same chain length 𝑁 . The value of 
𝑁 appears not so important as 𝜒𝑁 appears the effective interaction pa-

rameter. A small value of 𝑁 needs large 𝜒 -values and these in turn give 
occasionally problems with convergence of the SCF equations. Compu-

tation times, however, scale with 𝑁 and thus we are not keen to take 
vary large values for 𝑁 . Here we use the rather low value of 𝑁 = 4
throughout the calculations. In a previous study of three-phase coexis-

tence systems studied by SF-SCF we presented results with larger values 
of 𝑁 , [9]. All trend do not depend on the specific choice of 𝑁 (universal 
behaviour).

In Fig. 1 we show some typical three-phase density profiles. As an ex-

ample we show in panel 𝑎 a typical plot for the density profiles 𝜑𝐴(𝑧), 
𝜑𝐵(𝑧) and 𝜑𝐶 (𝑧), for the symmetric choice of the interaction param-

eters 𝜒𝐴𝐵 = 𝜒𝐴𝐶 = 𝜒𝐵𝐶 = 1, which is a relatively strong segregation 
case. By way of initial guess we put the C-rich phase in between the 
A- and B-rich phases. In panel 𝑏 we show a similar result, now for 
𝜒𝐴𝐵 = 𝜒𝐴𝐶 = 𝜒𝐵𝐶 = 0.6935 which is close to, but slightly above, the 
triple point value (4∕𝑁) ln 2. Close inspect shows that the B molecules 
accumulate a little at the A-C interface and the A molecules accumulate 
at the C-B interface. This adsorption effect becomes relatively larger 
when the 𝜒 -values are reduced as will be discussed below (cf Fig. 5). In 
panels 𝑐 and 𝑑, we give examples for the density profiles for some asym-

metric choice of the interaction parameters. In both cases 𝜒𝐴𝐵 = 0.8, 
𝜒𝐴𝐶 = 0.7. The third variable is 𝜒𝐵𝐶 = 0.6 in panel 𝑐 and slightly smaller 
(closer to the critical value) 0.59 in panel 𝑑. We like to draw attention to 
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the profile of C at the A-C interface. The small inset in panel c shows that 
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the profile increases monotonically. In 𝑑 the C-profile goes through a lo-

cal maximum. As we argued above, our conclusion is that the C-phase 
does not wet the A-B interface in conditions for panel 𝑐, whereas the 
A-B interface is wet by C in conditions in panel 𝑑. A closer inspection 
reveals a wetting transition at 𝜒𝐵𝐶 ≈ 0.597. Note that the interface A-C 
is much ‘sharper’ than the B-C interface, and the B-C interface in panel 
𝑑 is even wider than the B-C interface in panel 𝑐. The widening of the 
B-C interface is a visual indication that one approaches the B-C critical 
point. In line with the Cahn argument, upon the approach towards the 
bulk critical point (where B and C phases become the ‘BC’ phase) the 
system suffers a wetting transition.

It is somewhat unconventional to decide on the wetting state of a 
system based on the observation of a single ‘bump’ in the profile of 
the wetting component. That is why we present (as an example) a more 
classical analysis based on adsorption isotherms in Fig. 2. In an isotherm 
the adsorbed amount (Gibbs excess) Γ𝐶 as a function of the bulk volume 
fraction 𝜑𝑏

𝐶
(bulk is defined as the B-rich phase). The Gibbs excess for 

component 𝑋 is found by:

Γ𝑋 = (𝜑𝑋 [𝑀] −𝜑𝑋 [1])𝑅Gibbs +
∑
𝑧

(𝜑𝑋 (𝑧) −𝜑𝑏
𝑋
) (11)

In Eqn (11) 𝜑𝑋 [1] is the volume fraction of 𝑋 near the lower-bound and 
𝜑𝑋 [𝑀] is the volume fraction of 𝑋 near the upper-bound of the system. 
𝑅Gibbs is defined by setting Γ𝐵 = 0.

In Fig. 2 the adsorption isotherms (bottom panels) are accompanied 
by a corresponding plot of the grand potential per unit area (interfa-

cial tension) as a function of the logarithm of the bulk concentration 
of 𝐶 (bulk phase is defined as the phase rich in 𝐵) (top panels). In 
Fig. 2a the results for 𝜒𝐴𝐵 = 0.8, 𝜒𝐴𝐶 = 0.7 and 𝜒𝐵𝐶 = 0.6 are given. 
Both the isotherms and the grand potential plot are indicating that C 
does not wet the interface. This is concluded because the isotherm has 
a super-saturated excursion, and the grand potential has a cusp in the 
super-saturated region. The conclusion is in line with the profile result 
discussed above in Fig. 1c. As there is no indication of a pre-wetting 
step, the corresponding wetting transition is second order. For higher 
values of 𝜒𝐴𝐵 = 1 we did record a first-order wetting transition (not 
presented). The partial wetting situation is understood from the grand 
potential curve because the grand potential at the end-point of the curve 
(at the bulk binodal) is above the grand potential at the first crossing of 
the bulk binodal (the spreading parameter 𝑆 < 0 cf. Eqn (10)).

The results for Fig. 2b are for 𝜒𝐴𝐵 = 0.8, 𝜒𝐴𝐶 = 0.7 and 𝜒𝐵𝐶 = 0.59. 
Both the adsorption isotherm and the grand potential curve indicate that 
in this case 𝐶 wets the 𝐴-𝐵 interface. The isotherm increases monoton-

ically and diverges at the bulk binodal. The grand potential monotoni-

cally decreases and terminates at the bulk binodal. Again this result is 
consistent with the profiles discussed above in Fig. 1d.

At this point we established that there is a strong correlation between 
the adsorption isotherm characteristics (Fig. 2) and the profile charac-

teristics (Fig. 1c,d) and that both routes can be used to locate wetting 
transitions. As the profile route is computationally more efficient, we 
have use this approach below in most cases. However, it must be men-

tioned that the isotherm route is the most general. In particular it was 
found that for a symmetric setting 𝜒𝐵𝐶 = 𝜒𝐴𝐶 the profile information 
generally signals partial wetting, as a local maximum in the C-profile 
can not develop, while the isotherm route is indicating either partial 
or complete wetting. For this reason, we used the isotherm route when 
𝜒𝐵𝐶 ≈ 𝜒𝐴𝐶 . Indeed, routinely we used alternative ways to determine the 
location of the wetting transitions, simply to be sure that results that are 
reported are accurate.

Wetting transitions for 𝜒 > (4∕𝑁) ln 2

In the symmetric system 𝐴4, 𝐵4, 𝐶4, without loosing generality we 
can choose the interaction parameters 𝜒𝐴𝐵 ≥ 𝜒𝐴𝐶 ≥ 𝜒𝐵𝐶 . Hence we con-

sider the situation that a decrease of 𝜒𝐵𝐶 will eventually merge the two 

phases (B-rich and C-rich) into one homogeneous ‘BC’ phase. This is the 
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Fig. 1. Segment density profiles 𝜑𝑋 (𝑧) for 𝑋 =𝐴, 𝐵, 𝐶 , showing two interfaces, A-C and C-B, for systems with equal composition 𝜃𝐴 = 𝜃𝐵 = 𝜃𝐶 = 200. (𝜃𝑋 = 𝑛𝑋𝑁) 
All molecular components are equally long 𝑁 = 4. At the system boundary we have reflecting boundary conditions. a) 𝜒𝐴𝐵 = 𝜒𝐴𝐶 = 𝜒𝐵𝐶 = 1.0. b) 𝜒𝐴𝐵 = 𝜒𝐴𝐶 = 𝜒𝐵𝐶 =
0.6935 slightly above the triple point value ln 2. c) A system for which C is partially wetting the A-B interface. As a ‘proof’, the inset shows that the profile grows 
monotonically. d) A system for which C is complete wetting the A-B interface. As a ‘proof’, the inset shows that the profile has a local maximum.

Fig. 2. (i) bottom graphs: the Gibbs adsorbed amount Γ𝐶 with the Gibbs plane determined by component 𝐵 (in units amount of segments per lattice site) (ii) 
top graphs: the grand potential (in units of 𝑘𝐵𝑇 per lattice site), as a function of the bulk volume fraction 𝜑𝑏

𝐶
(in the B-rich phase) for the systems presented in 

Fig. 1c,d: 𝜒𝐴𝐵 = 0.8, 𝜒𝐴𝐶=0.7. a) 𝜒𝐵𝐶 = 0.6; the isotherm is characteristic for partial wetting as the bulk concentration enters the super-saturated region and the 
grand potential has a cusp. The ‘thin’ and ‘thick’ terminology is illustrated by arrows pointing to the first crossing of the binodal (thin) and the high Γ region (thick). 
The red dotted line is the binodal volume fraction. b) 𝜒𝐵𝐶 = 0.59; the isotherm is characteristic for complete wetting; the isotherm increases monotonically and grand 
potential decreases monotonically. As no pre-wetting step is detected, it is concluded that the wetting transition which occurs between conditions for 𝑎 and 𝑏 is of 
second order type. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
bulk critical point that we will approach in order to induce a wetting 
transition according to the Cahn conjecture. Again, when 𝜒𝐴𝐵 = 𝜒𝐴𝐶

the wetting transition is maximally postponed (this is the neutral value 
for which the contact angle remains 90 degrees until the bulk critical 
point is reached). This motivates us to introduce Δ𝜒 ≡ 𝜒𝐴𝐵 −𝜒𝐴𝐶 a dis-

parity of interactions between the (no-critical) phase components away 
from the ‘neutral value’. For each combination of 𝜒𝐴𝐵 and 𝜒𝐴𝐶 there 
is a critical value for 𝜒𝐵𝐶 . Our interest is in the critical value of 𝜒𝐵𝐶

when the other two parameters are equal to each other (that is, the neu-

tral value condition). Let’s refer to this one as 𝜒cr′
𝐵𝐶

. We record the value 
for 𝜒𝐵𝐶 for which the wetting transition occurs as 𝜒wet

𝐵𝐶
. We expect that 

𝜒wet
𝐵𝐶

> 𝜒𝑐𝑟
𝐵𝐶

and thus also 𝜒wet
𝐵𝐶

> 𝜒𝑐𝑟′
𝐵𝐶

. The latter turns into an equal 
sign when we have the situation that Δ𝜒 = 0. (𝜒𝐴𝐵 = 𝜒𝐴𝐶 -the neutral 
value-). This motivates to define Δ𝜒𝑊 ≡ 𝜒wet

𝐵𝐶
− 𝜒cr′

𝐵𝐶
to give a measure 

for how far from the critical point (that is the special critical point where 
𝜒𝐴𝐵 = 𝜒𝐴𝐶 ) the system suffers the wetting transition. These coordinates 
(Δ𝜒𝑊 , Δ𝜒) ware used for the wetting phase diagrams.

In Fig. 3 we present a set of wetting phase diagrams (each one for a 
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different value of 𝜒𝐴𝐵 as indicated in double logarithmic scale. In these 
coordinates the wetting transition lines are straight implying power-law 
dependencies. Again a line in a wetting phase diagram divides the pa-

rameter space into two regions (one representing partial wetting and 
the other representing complete wetting). When the combination of 𝜒 -

parameter is such that the system is above this line, it is in the partial 
wet regime; inversely, systems with 𝜒 -parameters below this line are in 
the complete wet state. We present only a piece of each of the wetting 
transition lines (that is, we show the lines connected the wetting tran-

sitions that we explicitly computed; we did not extrapolate the curves 
yet) but it is expected that all presented wetting phase transition lines 
continue as straight lines all the way up to Δ𝜒 → 0 and Δ𝜒𝑊 → 0. The 
lines to not arbitrarily continue to higher values of Δ𝜒 . They ‘start’ when 
𝜒𝐵𝐶 = 𝜒𝐴𝐶 . We have plotted the lines to (approximately) this point.

We find a wetting phase diagram for each specified 𝜒𝐴𝐵 -value and 
this value was varied from very far from-, to relatively close to the 
triple point value 𝜒 = (4∕𝑁) ln 2. The wetting transition lines obey to 
the power-law dependence Δ𝜒𝑊 ∝ (Δ𝜒)𝛼 . The slopes 𝛼 of these curves 
vary from case to case and thus the slope is not universal. The closer 

𝜒𝐴𝐵 to the value (4∕𝑁) ln 2, the lower the value is of the slope 𝛼. Again, 
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Fig. 3. Set of wetting phase diagrams for systems with specified value of 𝜒𝐴𝐵 as 
indicated. The coordinates in these wetting phase diagrams are Δ𝜒𝑊 ≡ 𝜒𝐵𝐶 −
𝜒cr′
𝐵𝐶

as a function of Δ𝜒 ≡ 𝜒𝐴𝐵 − 𝜒𝐴𝐶 (double logarithmic scale). Each curve 
represents the location of the wetting transition, i.e., 𝜒wet

𝐵𝐶
, 𝜒wet

𝐴𝐶
) as for each curve 

both 𝜒𝐴𝐵 and 𝜒cr′
𝐵𝐶

are constants. The curves obey the scaling relation Δ𝜒𝑊 ∝
(Δ𝜒)𝛼 and this power-law scaling is expected to hold up to the ‘neutral value’ 
conditions (which are at negative infinity) The bulk critical point when 𝜒𝐴𝐵 =
𝜒𝐵𝐶 (the neutral value) is indicated by 𝜒cr′

𝐵𝐶
. In Fig. 4 the power-law coefficients 

𝛼 and the (fitted) value for 𝜒cr′
𝐵𝐶

are presented as a function of 𝜒𝐴𝐵 .

all lines in Fig. 3 are expected to follow the power-law scaling in the 
limit Δ𝜒 → 0.

As mentioned above, at high values of Δ𝜒 the curves approach the 
limit that 𝜒wet

𝐵𝐶
= 𝜒wet

𝐴𝐶
(starting point of the curves). These wetting tran-

sitions (found by the isotherm route) have been discussed earlier. [9]

For sufficiently large values of 𝜒𝐴𝐵 , the wetting transition is expected 
when 𝜒𝐴𝐵 = 2𝜒𝐴𝐶 as in this limit the interfacial tension is proportional 
to the interaction parameter 𝛾 ∝ 𝜒 .

One benefit of collecting a full set of wetting transition lines into one 
graph is that it becomes possible to see how these curves are positioned 
with respect to each other. We mentioned already that the wetting phase 
transition lines extend towards the neutral value where the wetting tran-

sition is at 𝜒𝐵𝐶 = 𝜒cr′ but not to larger values, because these parts of 
the parameter space correspond to a different order of the values of 
the 𝜒 -parameters (role of A, B and C components are iteratively cyclic 
changed). It then is relevant to notice that the wetting curves do not 
cross each other. A crossing of lines would have implied that two sys-

tems may have similar values for the control parameters for wetting 
while their value for 𝜒𝐴𝐵 would be different. This does not happen.

The fact that all wetting transitions can systematically be collected 
in power-law dependencies (cf Fig. 3) implies that all wetting transi-

tions are (mathematically) linked to a critical point 𝜒𝑐𝑟′
𝐵𝐶

and as such we 
can say that all wetting transitions are critical point related and can be 
rationalised using the Cahn conjecture.

It must be noted that these power-law curves were constructed with 
a limited number of points and one may know from experience that the 
fitted values for 𝛼 do depend on the exact value for 𝜒𝑐𝑟′

𝐵𝐶
chosen (or vice 

versa). For this reason we present the collected fitting values in Fig. 4

in an attempt to show that the fitting values are not random.

The critical values 𝜒𝑐𝑟′
𝐵𝐶

-equal AB and AC interactions- was estimated 
(in 4 significant digits) in a separate calculation and presented by the 
solid line in Fig. 4a. The points in this graph are the 𝜒𝑐𝑟′

𝐵𝐶
-values that 

gave the best power-law fits in the phase diagrams of Fig. 3. The corre-

spondence is satisfactory albeit that near the triple point there are minor 
deviations which are attributed to fitting uncertainties. For very large 
values of 𝜒𝐴𝐵 , the limiting value 𝜒cr′

𝐵𝐶
= 2∕𝑁 , or 𝜒cr′

𝐵𝐶
= 0.5 as 𝑁 = 4 in 

our case. The curve terminates at a value 𝜒 ≈ 0.693 where (for our sym-

metric system) all 𝜒 -values are equal to each other. We believe that this 
fitted and extrapolated value is a numerical approximation of the triple 
point value 𝜒 tr = (4∕𝑁) ln 2 = ln2 as 𝑁 = 4. [10]

In Fig. 4b the corresponding 𝛼 values, the slopes of the power-law 
fits in Fig. 3, are presented as a function of 𝜒𝐴𝐵 . Again, the exact values 
131

for 𝛼 does depend on fitting details and the relative uncertainty in 𝛼 is 
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significant especially for small values of 𝛼. At large values of 𝜒𝐴𝐵 , 𝛼 ≈ 2. 
In the limit of weak segregation 𝛼 ≈ 0. This seems to take place in the 
vicinity of 𝜒 = 0.693 (indicated by the vertical dotted line).

As there is no analytical method available to pinpoint the wetting 
transitions, we can use the fitting values for presented in Fig. 4 to pre-

dict the wetting transition 𝜒wet
𝐵𝐶

for any specified set of 𝜒𝐴𝐵 and 𝜒𝐴𝐶

values. With confidence we can say that the Cahn conjecture appears op-

erational for all conditions that we have encountered for 𝜒 > (4∕𝑁) ln 2. 
This means that up to the neutral value all systems obey to the Cahn con-

jecture. Beyond the neutral value we should rename the phase names 
because then the role of the B-rich phase is taken over by either the 
A-rich or C-rich phase. Hence the neutral value is where the system 
switches to another wetting component.

We have discussed above that 𝜒 = 0.69 is not the lowest possible 
value to have three-phase coexistence. Indeed the lowest point (the 
tri-critical value) is at 𝑁𝜒 = 18∕7. We will address this weak segre-

gation regime below in a separate section. But first we will discuss what 
happens near the triple point (where the three phases give way to a 
homogeneous ABC phase).

When we insist that the three coexisting phases are compositionally 
similar (iterative renaming components), we have a limiting value for 
the 𝜒 = (4∕𝑁) ln 2 (all components have the same interaction parame-

ter). It thus is of interest to study what happens ‘wetting-wise’ in the fully 
symmetric system, that is with all compounds having the same amount 
in the system, and all interaction parameters are kept the same in this 
specific limit. To this end we consider 𝜒 ≡ 𝜒𝐴𝐵 = 𝜒𝐵𝐶 = 𝜒𝐴𝐶 (recall all 
𝑁 the same as well). A few density profiles for these systems are shown 
in Fig. 5 for different values of the interaction parameter 𝜒 . In these 
graphs we have taken periodic boundary conditions and the system has 
three interfaces: A-B, A-C and C-B. When the interaction parameters are 
sufficiently high, the interfaces are as expected: at the A-B interface a 
little of C is ‘adsorbed’, and the similar adsorption are found at other in-

terfaces, cf Fig. 5a. Upon the approach towards the 𝜒 = (4∕𝑁) ln 2, the 
adsorbed amounts gradually increase (panel b, c). When the adsorbed 
densities approach the value 1/3, we see a sudden growth of these ad-

sorption layers, turning into wetting layers (cf Fig. 5d). Indeed in this 
situation we have 4 phases that coexist. (i) An A-rich phase (density of 
A = 2/3 and both B and C have density 1/6), (ii) an B-rich phase with 
similar densities and (iii) a C-rich phase (also with similar densities) and 
(iv) an ABC-phase (wherein all components have the same density value 
1/3). As anticipated this occurs at 𝜒 = ln2 ≈ 0.693). It is easily checked 
numerically that the (Flory-Huggins) free energy density for the ABC 
homogeneous phase is identical to the free energy density of the A-rich, 
B-rich or C-rich phases at this particular case (𝜒 = ln2) and mentioned 
densities.

An additional argument in favour of this idea is that the wetting 
layers found for 𝜒𝐴𝐵 = 0.7 (wetting transitions presented in Fig. 3) are 
composition-wise very similar to the ones reported in Fig. 5, that is the 
densities of A,B and C approach the value of 1/3 gradually when 𝜒𝐴𝐵 →
𝑙𝑛2. So the wetting transitions in asymmetric cases smoothly converge 
to the symmetric wetting layers with ideal composition that all densities 
are equal to 1/3. With respect to the applicability of the Cahn argument, 
the triple point may have the same ‘exception’ status as the ‘neutral 
value’ systems discussed earlier.

There are no wetting transitions for 187 <𝑁𝜒 < 4 ln 2

As mentioned above there are yet other ways to have three phase 
coexistence in three-fluid phase systems and these cases occur when 
18∕7 < 𝑁𝜒 <

4
𝑁
ln 2. We refer to this as the weak segregation region. 

Characteristic for this range of parameters is that the three phases when 
in mutual equilibrium not all have the similar composition. The A and B 
phases are composition-like the same but phase relatively rich in C has a 
distinctly different composition. In order to consider possible violations 
of the Cahn conjecture in these systems we need to search for parameter 

settings that correspond to partial wetting first and then we can change 
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Fig. 4. a) The critical value 𝜒cr′
𝐵𝐶

, obtained in four significant digits, as a function of

fitting procedure leading to power-law dependencies in Fig. 3). The dotted lines repr

obtained from the power-law fits of the data presented in Fig. 3 (points) as a functio

Fig. 5. Volume fraction profiles of A, B and C components for the symmetric system

conditions are applied. a) 𝜒 = 0.696, b) 𝜒 = 0.6935; the adsorption of the homogen

𝜒 = 0.69312 = ln2: the A-rich, B-rich and C-rich phases have densities 𝜑(majority) =
parameters systematically to induce a wetting transition (for example 
using the Cahn strategy). This search strategy is frustrated because as it 
appears, in this regime there is no parameter setting that correspond to 
partial wetting!

To rationalise this we should elaborate that the phenomenological 
power-law lines of Fig. 3 can be seen as lines of wetting transitions in 
corresponding wetting phase diagrams, with 𝜒𝐵𝐶 − 𝜒𝑐𝑟′ as the tuning 
parameter on the y-axis. So for given 𝜒𝐴𝐵 and 𝜒𝐴𝐶 one can consider 
the variation of 𝜒𝐵𝐶 : when 𝜒𝐵𝐶 > 𝜒wet

𝐵𝐶
(above the line) we have partial 

wetting, when 𝜒𝐵𝐶 < 𝜒wet
𝐵𝐶

(below the line), the system is wet. As 𝜒𝐵𝐶

by choice of our parameter setting is necessarily smaller than 𝜒𝐴𝐵 , so 
the range for 𝜒𝐵𝐶 -values is limited. Indeed, the closer 𝛼 become to zero 
the more narrow the 𝜒𝐵𝐶 -range is for which the system is found in the 
partial wet state. We believe that when 𝛼 = 0 this coincides with 𝜒𝐴𝐵 =
𝜒𝐵𝐶 = 𝜒𝐴𝐶 = 𝜒 tr = (4∕𝑁) ln 2 the window 𝜒𝐵𝐶 which causes the par-

tial wetting to disappears completely from the wetting options. Stated 
otherwise, the system looses the ability to have partial wetting when 
𝛼 = 0. Consequently, one can expect that for 𝑁𝜒𝐴𝐵 < 4 ln 2, we have 
complete wetting for all relevant parameter settings 𝜒𝐴𝐵 ≥ 𝜒𝐴𝐶 ≥ 𝜒𝐵𝐶 . 
To illustrate that this is exactly what happens we decided to illustrate 
that the complete wet case is found for arbitrary 18∕7 <𝑁𝜒𝐴𝐵 <

4
𝑁
ln 2

for relevant arbitrary choices for the other two parameters.

Fig. 6 gives for three cases for (systematically chosen values) 𝜒𝐴𝐵 =
132

0.67, 0.66 and 0.65 the volume fraction profiles for a three-phase coexis-
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 𝜒𝐴𝐵 = 𝜒𝐴𝐶 (line). The points are the values of 𝜒cr′
𝐵𝐶

which were found from the 
esents the estimate value for the triple point 𝜒 tr = ln2. b) The fitted values of 𝛼
n of 𝜒𝐴𝐵 . The line is to guide the eye.

 for various values of the 𝜒 ≡ 𝜒𝐴𝐵 = 𝜒𝐴𝐶 = 𝜒𝐵𝐶 as indicated. Periodic boundary 
eous ABC-phase reaches the value 𝜑 = 1∕3 for A, B and C. c) 𝜒 = 0.69315, d) 
2∕3 and 𝜑(minorities) = 1∕6.

Fig. 6. Proof that the phase rich in C wets the A-B interface in the tricritical 
region. (a), (c), (e) Volume fraction profiles for A, B and C. (b), (d), (f) Volume 
fraction profile for the wetting component C zoomed in onto the part near the 
A-C interface. The x-axis have the same range of 200 layers. (a),(b) 𝜒𝐴𝐵 = 0.67, 
𝜒𝐵𝐶 = 0.599, 𝜒𝐴𝐶 = 0.66, (c),(d) 𝜒𝐴𝐵 = 0.66, 𝜒𝐵𝐶 = 0.5499, 𝜒𝐴𝐶 = 0.65, (e),(f) 

𝜒𝐴𝐵 = 0.65, 𝜒𝐵𝐶 = 0.5489, 𝜒𝐴𝐶 = 0.649.
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tence cases. In the legend it is mentioned that the other two parameters 
are chosen below the 𝜒𝐴𝐵 value, and relatively close to each other. 
This is the optimal choice to find partial wetting if this could exist in 
this region. However, as the panels b, d and f show, the profile for the 
wetting component C has a local maximum near the A-rich phase. As 
argued above this is characteristic for complete wetting. The adsorption 
isotherms for these cases (not shown) are in line with this result. In the 
phase triangle the value 𝑁𝜒 = 8∕3, or for 𝑁 = 4, 𝜒 = 2∕3, is special 
as here two three-phase coexistence regions touch. [10] Both slightly 
above, 0.67, or slightly below, 0.66, this value there is no sign whatso-

ever that partial wetting is possible, let-alone that it could persist until 
the critical point.

Although only three example 𝜒𝐴𝐵 -values are presented in Fig. 6, 
other values that have been tested give corresponding results. Engels et 
al. [9] presented wetting transitions for parameters 𝜒𝐴𝐶 = 𝜒𝐵𝐶 . Their 
results fully support our findings: parameters in the weak segregation 
region invariably are below their line of wetting transitions and thus 
all these systems are in the wet-state. As in these symmetric parameter 
choice the system is already wet, we again conclude that in this weak 
segregation region all systems are wet by the C-rich phase: there exist no 
parameter choice for which there is partial wetting and thus the system 
can not be partial wet when the system suffers a critical point.

Upon close inspection of Fig. 6, we see that the width of the interfaces 
grows dramatically when 𝑁𝜒𝐴𝐵 → 18∕7 (when 𝑁 = 4, 𝜒𝐴𝐵 ≈ 0.64286) 
and the phase relatively rich in C disappears. When this happens the 
density difference of C between the C-rich phase and that in the other 
phases has disappeared. Upon lowering the amount of C in the system 
the two-phase window between A and B rich phases may open up again 
and this two phase region vanishes when the C concentration is zero and 
𝜒𝐴𝐵 = 2∕𝑁 . Hence there are no lower values of 𝜒𝐴𝐵 which need to be 
examined to find possible violations of the Cahn argument. In line with 
the data in the literature [10] the lowest possible value for 𝜒𝐴𝐵 to find 
three-phase coexistence is found at this tricritical point.

Conclusions

Recently a suggestion appeared in the literature that in ternary sys-

tems with three fluid phases having short-ranged interactions, one can 
find large ranges of parameter space wherefore the Cahn argument to 
predict wetting transitions does not apply [5]. More specifically they 
report that in the vicinity of the neutral value, one can find a range of 
parameter settings that give partial wetting even up to the bulk critical 
point. In our set of results the only exception for the Cahn rule is at ex-

actly the ‘neutral value’. This trivial exception is usually not seen as a 
violation of the Cahn conjecture. Even the smallest of deviations from 
the neutral value will lead to a wetting transition before the bulk crit-

ical point is reached. This effect is beautifully captured by power-law 
wetting transition lines in our wetting phase diagrams: when you are 
infinitesimally below the neutral value, the wetting transition will be 
obviously very close to, but strictly below, the bulk critical point.

Here we used the Scheutjens-Fleer self-consistent field SF-SCF the-

ory to study wetting transitions in similar ternary three-fluid phase 
equilibria. This method avoids Taylor-series expansions and therefore 
generates numerically exact results not only close to but also further 
away from the tricritical point. The quasi off-lattice version of the SF-

SCF method implements a mean-field approximation wherein the short-

range interactions are parameterised by Flory-Huggins 𝜒 -parameters. 
As such SF-SCF can be seen as a generalised Flory-Huggins theory ex-

tended to account for inhomogeneities as these occur at interfaces. We 
considered incompressible systems and zoomed in onto the choice that 
all three components have the same degree of polymerisation (we took 
𝑁 = 4, but results are expected to hold for any other combinations 
of values of 𝑁). This symmetric choice of 𝑁 -values is of interest be-

cause it suffices to study the wetting characteristics in one corner of 
the phase triangle and by cyclic renaming of the components we know 
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the results in the other two corners. The neutral value points (known 
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to formally escape the Cahn conjecture) are the pivoting points for the 
cyclic renaming procedure (moving to another corner). Here we took 
the C-rich phase as the wetting component, which sits in between the 
A-rich and B-rich phases. In line with this, we focused on parameters 
𝜒𝐴𝐵 ≥ 𝜒𝐴𝐶 ≥ 𝜒𝐵𝐶 > 𝜒𝑡𝑐 = 18∕(7𝑁). We record the value of 𝜒𝐵𝐶 at the 
wetting transition and use the value of 𝜒𝐴𝐶 (or 𝜒𝐵𝐶 as our wetting con-

trol parameter(s) (for given value of 𝜒𝐴𝐵 .

Our key result is presented in Fig. 3, wherein we show power-law 
scaling relations that connect wetting transitions 𝜒wet

𝐵𝐶
in the system to 

specified values for the other two parameters 𝜒𝐴𝐵 and 𝜒𝐴𝐶 . In this scal-

ing relation the critical 𝜒𝑐𝑟′
𝐵𝐶

, that is the critical value of 𝜒𝐵𝐶 in the 
special situation that 𝜒𝐴𝐵 = 𝜒𝐴𝐶 , plays a key role. It is found that 𝜒𝑐𝑟′

𝐵𝐶
→

(4∕𝑁) ln 2 when 𝜒𝐴𝐵 = 𝜒𝐴𝐶 = (4∕𝑁) ln 2. Furthermore, in this limit the 
power-law coefficient 𝛼 = 0 (cf Fig. 4) and 𝛼 > 0 for 𝜒𝐴𝐵 > (4∕𝑁) ln 2. 
There are two important consequences of these trends: (i) because of the 
continuity of the fitting parameters, we understand that all wetting tran-

sitions in the system, that are found for relatively strong segregation, i.e. 
𝜒|𝐴𝐵 > (4∕𝑁) ln 2, are under control of nearby critical points. Hence, in 
this range of parameters there is no escape from critical point wetting. 
There cannot be a system that is partial wet when the system suffers 
a critical point; (ii) as the natural limiting value for 𝛼 = 0 is reached 
at 𝜒 = (4∕𝑁) ln 2, we conjectured that in the weak segregation region 
18∕7 <𝑁𝜒 < 4 ln 2 we cannot have any parameter setting correspond-

ing to partial wetting. In line with this, although we tried hard to find 
partial wetting, we did not find any exception. So also in this regime of 
parameter space there is no partial wetting situation when the system 
suffers a critical point.

Knowing how one can switch in multi-component systems from hav-

ing three- to two interfaces, that is inducing a wetting transition in a 
system, is important for many applications. In general one can do this 
by choosing a path toward the bulk critical point as suggested by Cahn. 
For example, if the molten wax would not wet the wick of a candle 
flame, the wax would not fill its capillaries and there would simply not 
be enough wax evaporation and subsequent oxidation to fuel the flame. 
However, we understand that when the molten wax is heated it will 
approach its critical point; the contact angle is lowered, triggering a 
Cassie Baxter- to Wenzel-state ‘wetting’ transition [20,21] upon its way 
towards the (true) wetting transition and then the wax will penetrate 
the wick (in the wet state is guaranteed to do so) for a wide variety of 
wick materials. Depending on porosity sufficient transport of wax into 
the flame is spontaneously established and the candle flame exists. Many 
other examples with large practical relevance can be listed: rinsing off 
dirt from interfaces is easier with, e.g., acetone (closer to it’s critical 
point and therefore tends to wet a surface and lift off dirt) than with 
water (further from its critical point, and therefore rarely wets a surface 
and leaves on dirt), membrane fouling correlates with wettibility (or 
non-wettibility) [22], solder with good wettability will improve solder-

ability. [23], the dispersion–aggregation transition of particles in a poly-

mer matrix often correlates with the wetting/dewetting transition, [24]. 
More ‘abstract’ examples may trigger novel research directions, e.g. in 
medical science / biology, the amount of uptake of apolar molecules 
(drug) in the lipid bilayer membrane (relevant for anaesthesia) is either 
bounded (partial ‘wetting’) or unbounded (complete ‘wetting’) when the 
saturation concentration of the drug in water is reached. In formulation 
science, the transition from micelles swollen by oil-like molecules to 
(micro)emulsion-like droplets is governed by wetting-like transition.

Even though the true reason for the disparity in wetting predictions 
between the work of Indekeu and Koga [5] and the current SF-SCF ones 
remains to some extend unresolved, we argue that the ‘old-fashioned’ 
believe in the Cahn argument should not be put aside as yet.
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