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Abbreviations used in this study 

 

Yp - Potential yield 

Yw - Water-limited yield 

Ya - Actual yield 

avg_cnp_cvr - Average canopy cover values 

NDVI- Normalised Difference Vegetation Index 

ndvi_interpolated - Interpolated NDVI values 

elevation - Ground elevation  

clay_est - Estimate of clay percentage in soil 

irri_quantity – total irrigation applied for the growing season 

cluster_name - Name of each cluster 

adj R2 – adjusted R2 

r.m.s.e. - root  mean square error 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 

Potato is an economically important crop in the Netherlands. Crop models are used often to estimate yields. 

WOFOST is one such well-known model commonly used to simulate potential (Yp) and water-limited (Yw) yields. 

Till date, a lot of variation in actual yield (Ya) cannot be captured by WOFOST. This study evaluates how much 

variation in fields can be captured by combining WOFOST, remote sensing and ancillary data. 

This study addresses four research questions. Simple linear regression models were developed to understand 

how the WOFOST results can be improved by incorporating remote sensing and ancillary data. Efforts were made 

to study the models for different field problem categories. Three field categories were studied in detail: fields 

with (almost) no limiting or reducing factors, fields with reducing factors and fields from all categories combined 

together. Ancillary data was added incrementally to the regression models. Finally, a random forest algorithm 

was used to evaluate how much field variation could be captured with and without ancillary data. 

I conclude that rational inclusion of satellite and ancillary data to WOFOST results can improve the estimation of 

actual yields (Ya), although it differed for each field problem category. This research clearly shows the potential 

of adding more data in future studies to further explain the variation in the actual yields (Ya). 
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1. Introduction 

1.1  Status of potato production in the Netherlands 
 
The potato crop originates from the mountains of South America, with the earliest records dating back to 2500BC 
in modern day Peru and Bolivia (“Potatoes on Mars,” n.d.), made its way to Europe in the 16th century (Beukema 
and Van Der Zaag, 1990). Currently, potato is the third most important global food crop after rice and wheat 
which is consumed by over a billion people (Gómez et al., 2019).  
 
Dutch agriculture changed dramatically from the 1960s with specialisation and intensification becoming the 
means in terms of production to achieve food self-sufficiency in the EU (Vos, 1992). The Netherlands produced 
6.7 million tonnes of potato in 2021 from 159 thousand ha of land (FAO, 2022), the ninth position among the top 
potato producing countries in the world. The Netherlands is also the leading exporter of ‘certified’ seed potatoes, 
accounting for 26.2% of the total potato production in the country (Goffart et al., 2022). Potato production occurs 
in 16% of the country’s arable land, which is the highest allocation fraction to potato crops among different 
countries of north-western Europe (Goffart et al., 2022). The provinces of Drenthe, Groningen, North Brabant, 
Zeeland, and Flevoland contribute to 70% of the potato production in the Netherlands. Ware potatoes are meant 
for direct human consumption, owing to their low starch content, high water content and firmer texture. Ware 
potato is predominantly grown on the sandy and loamy soils in the Polders and the south-east of the country 
(Vos, 1992). The global potato chips market is expected to increase at the rate of almost 4% per year 
(Edelenbosch and Munnichs, 2020), emphasizing a need for increasing the amount of current potato production. 
 
The farming of ware potato in the Netherlands is a highly productive crop with large among field heterogeneity 
(Ravensbergen et al., 2024). This indicates that there is a potential for improving yields and thus farmer’s income 
(Ravensbergen, 2024). 

1.2  Potato crop yield estimation 
 
Yield is often recognised as an indicator for the economic pillar for measuring sustainability of farming systems 
(as yield is directly related to the income of the farm). The often interchangeably used terms, estimation, and 
prediction, have a subtle difference in between them.  ‘Estimation’ refers to the process of determining the most 
appropriate values for model parameters or coefficients, such as regression coefficients in statistical models. 
‘Prediction’ refers to the value that is produced by the model. ‘Estimation’ of an event happens after the 
occurrence of the event whereas ‘prediction’ of an event happens before the event occurred. On the other hand, 
‘forecasting’ is a term which predicts an event definitely on the temporal scale. Yield estimation relies on current 
season crop monitoring using satellite data whereas yield prediction mostly on historical data. Yield estimation 
is often more accurate as it is based on the current field conditions. Yield estimation can be used for evaluating 
agricultural performance of crop, planning the post-harvest activities, etc.  
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Figure 1: Major crops grown in the Netherlands (ESA, 2020) The brown regions represent the potato growing 

regions in the Netherlands. 

The difference between potential yield (without any water or nutrient constraint) and the actual yield (in farmer’s 
field conditions) or the difference between water-limited yield (water constraint) and the actual yield represent 
the yield gap. This is important to identify to understand the reducing factors responsible for reducing the water-
limited yield and rectify to minimize the latter yield gap. The actual yield can be improved by yield increasing 
(using non-substitutable inputs like water and nutrients) and yield protecting (using substitutable inputs like 
pesticides, to some extent)  measures (Van Ittersum and Rabbinge, 1997).  

1.3 Production ecology 
 
In production ecology, there are three levels of production factors which influence the production. These factors 
that play an important role in the crop growth process. 
 
Growth defining factors determine the maximum production (i.e., potential yield) that can be achieved in a given 
physical environment and for a plant species. Such governing factors include radiation intensity, carbon dioxide 
concentrations and temperature (Van Ittersum et al., 2003). Potential Yield is referred to as Yp in this study. 

Growth limiting factors determine production possible with limitation in factors like water and/or nutrients 
(attainable yield) in a particular physical environment for a plant species. Proper management of water and 
nutrients can help to reach potential production levels. Water-limited Yield is referred to as Yw in this study. 

Growth reducing factors determine production levels which can reduce or hamper growth (actual yield). These 
factors are biotic include pests and diseases, weeds (biotic) and pollution. Crop protection measures can help 
reach the attainable yields. Actual Yield is referred to as Ya in this study. 
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Figure 2: Growth factors in the three production situations in production ecology (Van Ittersum et al., 2013) 

These production ecological situations form the basis for crop models like WOFOST. Currently, WOFOST can 
provide simulated yield values for the potential, water limited and nitrogen limited yields.  

1.4  Crop yield models and WOFOST 
 

1.4.1 Crop Yield Models 
Various approaches have been applied in history to estimate yield. Statistical models require fewer inputs than 

mechanistic models making it more suitable for data-limited applications. However, statistical models fail to 

explain yield due to the absence of knowledge about the underlying biological processes involved within the 

plant system (Divya et al., 2020). The mechanistic nature of crop simulation models works as a solution to this 

shortcoming. According to (Bouman et al., 1996), “Crop simulation models consists of non-linear mathematical 

equations and logic to analyse the crop production system”. The word ‘logic’ in the previous statement is of 

significant importance as it differentiates between statistical and mechanistic models. Thus to incorporate the 

information of both types of models, the integration of statistical and simulated outputs from mechanistic crop 

models requires further investigation. 

 

Crop growth models can capture field processes including soil water and nutrient dynamics, plant water and 
nutrient uptake, biomass development and final crop yield with much accuracy if average soil information is fed 
into the models. Models with nutrient dynamics are not as commonly found as with water dynamics and it is 
nitrogen that is simulated in these models.  

There are many crop models have been developed over the last few decades like DSSAT, APSIM, EPIC. There are 
also specialised crop models for potato like Lintul-Potato, INFOCROP-POTATO, SUBSTOR, POTATO, SWACO 
(Beukema and Van Der Zaag, 1990), etc. Recently , the WOFOST input parameters for new potato cultivars have 
been calibrated for WOFOST (Den et al., 2022). This was the reason for choosing WOFOST over other models for 
this study.  

1.4.2 WOFOST 

WOFOST is based on the principles of SUCROS model.  WOFOST is one of the many models developed by the 
Wageningen ‘School of de Wit’ models. This model has been used in the MARS crop yield forecasting system for 
more than 25 years (de Wit et al., 2019).  

WOrld FOod STudies (WOFOST) model was originally developed by the Centre of the World Food Studies in 

Wageningen for developing countries (Diepen et al., 1989). Eventually, it was utilised for Europe also (WOFOST 

version 6.0) as the biophysical part of the model remains the same in principle (Diepen et al., 1989). WOFOST 

explains daily growth on the basis of underlying processes like photosynthesis, respiration and their interaction 

with the environment. WOFOST has crop, soil and weather and ASTRO modules. Water limited yield  production 

simulation of WOFOST is attached to a soil water balance model to keep track of the moisture content of the soil. 

Over the entire growing period, the attainable crop growth, biomass and water use can be simulated.  
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WOFOST uses a time step of one day for its own calculations (de Wit et al., 2019). It generates output data for 
an entire growing season, right from emergence till maturity (Diepen et al., 1989). The potential production 
simulation output results are listed for every tenth day of the growth cycle. WOFOST has only one spatial 
dimension and is considered as a point analysis (Diepen et al., 1989). It is, therefore, essential to scale all the 
parameters to the same spatial resolution before inputting them in the crop model. In table 1, it is possible to 
see which approach was used in the WOFOST model to simulate different yield levels. For the nutrient limited 
yield simulation, QUEFTS is applied to the simulation results and hence not part of the WOFOST model directly. 

Table 1: The three production situations in WOFOST and their main governing principle (Van Ittersum et al., 2003) 

Production situation  Governing approach 

Potential  Photosynthesis 

Water limited  Tipping bucket 

NPK limited QUEFTS 

 

SUCROS was mainly used for research purposes, WOFOST was designed more rigorous, having clear version 

control and proper documentation. WOFOST can simulate different crop types by changing parameter values 

external to the model itself (de Wit et al., 2019). The WOFOST model is being developed continuously and there 

will be an effort to make the simulations are close as Ya.  

1.5  Satellite data to estimate yield 
 
The sole use of crop growth models for yield estimation is often costly and time consuming owing to the 
requirement of large amount of inputs for the model employment, which relies on extensive data collection (Luo 
et al., 2020), (Kasampalis et al., 2018). Crop models can be used for tactical decision making (Bouman et al., 
1996). Linear regression models along with crop model outputs, and remote sensing (RS) indicators are 
extensively used in crop forecasting studies due to their simplicity and interpretability (Paudel et al., 2023). 
Computational modelling for estimating yield is much dependent on the past data and is unable to detect when 
there are sudden changes in climate, soil, irrigation, and cultivation. Moreover, WOFOST does not take into 
account the yield variability due to pest attack or different agronomic management changes (Diepen and de Wit, 
n.d.). Remotely sensed data can provide valuable information to crop models to improve yield predictions 
(Kasampalis et al., 2018). Remote sensing data can give more accurate description of the crop’s actual condition 
during different stages of the crop growing period (Kasampalis et al., 2018). This can be attributed to multiple 
reasons including agronomic management practices, pests and diseases, which are not simulated by crop models 
like WOFOST. Remote sensing is attractive to the scientific world owing to its ‘non-destructive, high -throughput, 
and having large spatial coverage’ (Lin et al., 2023). Handheld multispectral sensors, used for yield prediction, 
remains a challenge when yield variability of fields needs to be studied (Lin et al., 2023). Potato crop biomass is 
a function of Leaf Area Index (LAI). Lower LAI values indicate reduction in yield due to low defining or limiting 
factors or some form of stress. 
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Figure 3: Spectral response of typical vegetation (Moroni et al., 2019) 

 
LAI is an important biophysical parameter that controls canopy processes (Herrmann et al., 2011). Normalised 
Difference Vegetation Index (NDVI) is strongly related to various biophysical characteristics of plant like leaf area 
index (LAI), chlorophyll content, fractional cover, dry and wet biomass and physiological processes which depend 
on light interception like yield, net and gross primary productivity (Glenn et al., 2011).  (Herrmann et al., 2012) 
studied Partial Least Square analysis for predicting LAI, where Sentinel-2 NDVI predicted LAI with high r-value of 
0.89 for potato crop. The LAI prediction was evaluated by the correlation coefficient (r) value of the relation 
between the predicted and the observed LAI values. Satellite data can capture the variability for wheat yield at 
farm level (Nain et al., 2012). (Nguyen et al., 2022) used NDVI and NDWI indices derived from the Sentinel 2 data 
to predict yield in canola. However, the limitation of using NDVI is that it reaches ‘saturation’ with LAI more than 
2. Thus, it might be impossible to predict very high values of LAI using NDVI (Herrmann et al., 2012). At the same 
time, even if NDVI has been used as a proxy for ground cover in many studies (Schut et al., 2018), there are more 
processes that determine yield which needs to be combined with crop models to capture processes at play during 
the grain filling stage. 

 

Figure 4: The variation in reflection spectra for four potato crop phenological stages (Liu et al., 2022). This 
explains the usefulness of NIR bands to predict yield. 
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NDVI is highly sensitive to soil background, playing a large role at low LAI and becomes less sensitive to soil 
background when LAI is usually around three when soil coverage is nearly complete (Wu et al., 2007). Although 
soil-adjusted vegetation index can reduce the effect of soil variability for low LAI and increase the sensitivity of 
high LAI, determining the optimal value of soil adjustment factor L in the formula requires the field information 
about LAI or vegetation density. 

Several spectral indices have been used to study agricultural crops in different aspects. In table 2, NDVI is used 
to study overall crop vigour while NDWI is used to study water stress. NDWI is sensitive to changes in liquid water 
content of vegetation canopies (Gao, 1996). Lower NDWI values indicate water stress. There are specific spectral 
indices being developed for potato crop. (Gómez et al., 2021) developed a Potato Productivity index (PPI) which 
represents photosynthetic activity and water stress together. The water band in the PPI index is band 9 of Sentinel 
2 (R945). Higher PPI values indicate less stressing conditions for potato plants. 

Table 2: Spectral indices, their functions, equations and their relationship to WOFOST. Note: B, G , R, NIR, RE1, 
WA represents Blue, Green, Red, Near infrared, Red Edge 1, and Water bands respectively. 

Satellite data 

vegetation 

indices 

Function Equation WOFOST parameter/output 

related to it 

NDVI General crop 

vigour 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Biomass through LAI 

NDWI Water stress 
𝑁𝐷𝑊𝐼 =

𝐺 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
 

Water limited crop growth 

PPI Photosynthetic 

ability and water 

stress 

𝑃𝑃𝐼 =
𝐺

𝐵 + 𝑅
+

𝑊𝐴𝑇𝐸𝑅

𝑁𝐼𝑅 
×

𝐺

𝑅𝐸 1
  

Combined effect of NDVI 

and NDWI on WOFOST 

 

(Al-Gaadi et al., 2016) utilised satellite vegetation indices NDVI and Soil Adjusted Vegetation Index (SAVI) to 
develop empirical models to determine yield. A lower prediction error range was demonstrated by Sentinel 2 
(3.8-10.2%) with 10m spatial resolution, as compared to Landsat 8 (7.9-13.5%), having 30m spatial resolution, 
for predicting potato yield although there was not any improvement in the R2 value for the models.  

Potato spectral reflectance has been used as a representation for plant health in earlier studies (Po et al., 2010). 
Red and NIR are the commonly used bands for vegetation spectral indices as they are related to the 
photosynthetic process of the crop. Differences in vegetation cover can be often related to the difference in 
planting dates. Spectral bands can capture a difference of 2 week in planting dates in two fields (Po et al., 2010). 
Thus, inclusion of satellite data can add information through various means.  

1.6 Ancillary Data 
 
Ancillary data refers to any supplementary data apart from the primary data. In this study, ancillary data refers 
to all data apart from crop model outputs and satellite data. Integration of agronomic, management and 
meteorological information with remote sensing data can improve yield estimation capability (Lin et al., 2023). 
For example, potato yield depends on the characteristics of soil significantly. A lot of data has been used 
previously to understand the drivers of yield gap in the Netherlands (Silva et al., 2020). Soil compaction has been 
mentioned to be one of the significant drivers of yield heterogeneity. This can be included in the models to 
improve the estimation results.  

Yield was less responsive to irrigation when the rainfall is relatively high and the supplemental irrigations were 
late (Porter et al., 1999). According to (Po et al., 2010), the reason for the earlier senescence in one of the fields 
is not only because of early planting but also due to moisture stress. Potato tuber is a commodity with a high 
moisture content and hence soil moisture and precipitation patterns remain as important factors attributed to 
yield variability (Po et al., 2010). Potato crop differs from other crops as the economically useful harvest is found 
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underground (Lin et al., 2023). This makes the study challenging as optical satellite data can capture information 
for aboveground objects. 

1.7 Problem definition 
 
SWAP-WOFOST model has been used to simulate potato yield in the Netherlands. However, some sources of 
temporal and spatial variability cannot be captured by crop growth models. Remotely sensed vegetation indices, 
such as NDVI respond to variations caused by pest attack or agronomic management practices that are not 
accounted for in SWAP-WOFOST like crop growth models. This study will investigate whether remote sensing 
and ancillary data can help to capture information which cannot be explained by SWAP-WOFOST.  
 
This study will also investigate whether non-linear models can really bring in light things that cannot be explained 
by simple regression models. Random forest is such a way among many others that might help us to find out 
informative insights in the data and help to understand the drivers even better. However, it is important to 
analyse whether the need of non-linear models is required, or linear models are enough to represent the data. 
If non-linear models are used when not required, there can be overfitting issues which can negatively affect the 
model performance (Desloires et al., 2023). 

 

1.8  Aim and Research questions 
 
The aim of this research is to better capture yield variation in fields using combinations of SWAP-WOFOST, 
satellite and ancillary data (soil, irrigation and elevation data). 
 
This study addresses four key research questions as follow: 

RQ 1. Can remote sensing data explain the variability in actual yield which cannot be explained by SWAP-WOFOST 
outputs alone?  

RQ 2. Can ancillary data explain the variability in actual yield which cannot be explained by SWAP-WOFOST 
outputs alone? 

RQ 3. Can remote sensing and ancillary data explain the variability in actual yield which cannot be explained by 
SWAP-WOFOST outputs alone? 

RQ 4. Can non-linear model like Random Forest improve the linear regression model containing SWAP-WOFOST, 
remote sensing and ancillary data? 

1.9  Hypothesis 
 
Hypothesis 1- Satellite derived NDVI values are strongly correlated with field measured ground cover values. 
 
Hypothesis 2- The regression model involving the SWAP-WOFOST outputs, the remotely sensed data and the 
ancillary data is expected to perform best (have the highest R2 and the lowest r.m.s.e.) among the regression 
models tested.  
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2. Materials and methods 

2.1  Location description 
 
The data collection took place from 96 established commercial ware potato farms in the years 2020-21. The fields 
were spread across the six most important potato growing regions of the Netherlands, namely, Tholen/ West 
Brabant, Zuid Holland, Flevoland, North Brabant, Drenthe, and Limburg. Eight potato fields per region per year 
(a total of 48 fields per year) were selected to maintain homogeneity in the number of sample fields in each 
region. Fields in the first three regions had a clay soil texture where the potato variety grown was Innovator while 
the latter three regions have sandy soil with the variety Fontane. The varieties were chosen as they were the 
main variety used in each soil texture. Two of the farms did not have crop registration data, hence, could not be 
simulated with SWAP-WOFOST. Fields were visited once every two weeks from planting to harvest, hence 10-13 
visits per field in one growing season (Ravensbergen, 2024).  

 

Figure 5: Map of the study area. Potato growing fields in the Netherlands and the field locations. The year in 
the legend indicate the year in which the field survey was conducted. 

2.2 Materials used 
 
Three types of data was used for the study- field , satellite and ancillary data. Field survey was conducted by 

Paul Ravensbergen as a part of his thesis work (Ravensbergen, 2024). The SWAP-WOFOST crop simulation yield 

outputs were also done by him. 

 
Field data: Actual yield data, irrigation data, cultivar data and ground cover data were collected from field 
measurements. There was total 96 fields studied in the research, out of which 94 were used for SWAP-WOFOST 
simulations due to lack of crop registration information about the two fields. There were four replicates for each 
farm to measure actual yield and ground cover by potato crop. The agronomic management practices were the 
same for all the four replicates. The yield was measured during and at the end of the growing season. In this 
study, only the final yield was used as the actual yield. The measurement for the yield at final harvest followed 
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the same procedure for both the years. Final yield sampling was done on four 3m2 area after haulm killing or 
natural senescence, or just before the harvesting by the farmer in case the haulms had not senesced 
(Ravensbergen, 2024). A six kg subsample per plot to measure underwater weight, which was then recalculated 
to dry matter concentration. The data used is the Dry weight marketable yield and the unit is tonnes/hectare.  
Dry weight of actual yield data was used as water content might not be the best representation of the modelled 
yields. Dry weight eliminates the chances of fluctuations of varying moisture content of the crop, leading to more 
confusion in the dataset.  
 
Both the varieties used in the study are for primarily used for French fry processing. The yellow-fleshed Fontane 
is the most important variety in the Flanders region, with 50% of the potato yield production volume. Fontane 
once replaced Bintje due to its resistance to potato cyst nematode Globodera rostochiensis. Innovator, the white 
fleshed potato, is resistant to another potato cyst nematode Globodera pallida to which Fontane is sensitive. 
However, Innovator cannot be used everywhere in the Netherlands due to its low underwater weight. Innovator 
is not recommended for sandy soils as it has a high chance of developing rust and brown spots. Innovator is also 
drought sensitive which can affect the yield (Demin, 2021). 
 

 

Figure 6: Histogram of the field observed actual yields. (Source: Field work from (Ravensbergen, 2024)) 

Ground cover was measured over the entire growing season at an interval of 15 days with four measurements 
per plot. The four plots were averaged for each field in this study. So, first the four measurements per plot was 
averaged followed by the average of the four plots to derive an average Canopy Cover value for each date. The 
number of emerged plants per plot was counted before full canopy closure. Crop health was scored from 1 to 5 
by visual interpretation. A score of 5 represents healthy crop while a score of 1 is a diseased crop. The crop health 
score was averaged for the entire season. 

Irrigation data was collected from the farmers. The irrigation schedule including the amount of irrigation 
provided at each time interval (irrigation event) were asked from the farmer. The amount of irrigation provided 
were summed up for the entire season for each field which was used as ancillary data. The percentage of clay in 
the soil was also included as ancillary data. 

Satellite data: Pre-processed Sentinel 2 data available on Google Earth Engine (GEE) platform were used. The 
Sentinel-2 image collection named "COPERNICUS/S2_SR" was used for surface reflectance data. Excel (.csv) file 
containing all the field geographical coordinates were converted to point shapefile before it was ingested on GEE 
as an asset. Firstly, the clouds were masked in the Sentinel-2 images followed by calculating the NDVI band. Lastly 
the NDVI values for the field locations. It was necessary to choose the starting and the ending date of the required 
satellite data. The earliest planting date for 2020 and 2021 were 26th March (field ID44) and 31st March (field ID 
115) respectively. In some fields, haulm killing occur days or weeks before the harvesting of the potatoes and for 
some of the fields, plants are killed during the harvest process. Hence, the harvesting date had been preferred 
over the crop end date as the variable for choosing the ending date of the satellite data. The latest harvesting 
date (which can be beyond the crop end date) for 2020 and 2021 were 7th November and 10th November 
respectively. Hence, to maintain homogeneity of the datasets, the datasets for NDVI extraction were collected 
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between 26th March and 11th November for both the years. The NDVI values were exported in csv. format. This 
was used in R software for further data analysis.  

The mean elevation data is extracted from the AHN (Actueel Hoogtebestand Nederland) DEM (Digital Elevation 
Model) of the Netherlands 0.5m resolution Lidar data available on GEE platform. The dataset has only one band 
named ‘elevation’ where the unit is metre. It contains ground level samples with all other items above ground 
(such as buildings, bridges, trees etc.) removed. Elevation data was extracted for all the field locations and 
exported as .csv file for further analysis in R software. 

Crop model data: Simulated SWAP-WOFOST outputs for 94 fields had been used. The outputs comprised of both 
the potential and the water limited yields for all the fields over the entire growing period. The final yield value 
for the fields were extracted from the entire WOFOST output over the growing season for both Yp and Yw and 
used for the research. In this study, irrigation is included in the water-limited yield. To understand the data, 
preliminary statistical study of the data was done as presented in Tables 3, 4 and Figure 7.  

It is seen that the median potential yield gap (Figure 7(a)) is almost similar for all clusters (around 4t/ha) as 
compared to water-limited yield gap. In Figure 7(b), the median yield gaps for Flevoland and Zuid-Holland is 
almost around zero, which means that the Yw is almost near Ya.  

Table 3: Average dry matter yields of Fontane and Innovator varieties of potato on SWAP-WOFOST modelled 
data and field observed data. (Source: Field work from (Ravensbergen, 2024)) 

Variety Yp (WOFOST) (t/ha) Yw (WOFOST) (t/ha) Ya (Field observation) (t/ha) 

Innovator 16.06 12.34 12.01 

Fontane 17.10 15.09 13.39 

  

Table 4:  Yield gap statistics of the six clusters on Yp and Yw SWAP-WOFOST modelled yields (t/ha). (Source: 
Field work from (Ravensbergen, 2024)) 

Cluster 
name (16 
fields per 
clusters) 

Mean YieldGap 
(Yp-Ya) 

Mean YieldGap 
(Yw-Ya) 

Standard 
Deviation 

YieldGap (Yp-Ya) 

Standard 
Deviation 

YieldGap (Yw-Ya) 

Brabant 2.99 1.25 2.90 2.76 

Drenthe 4.18 2.21 2.17 2.24 

Flevoland 4.05 -0.04 1.52 3.37 

Limburg 3.99 1.65 2.08 2.59 

Tholen / 
West-Brabant 

3.84 0.84 2.07 3.44 

Zuid-Holland 4.26 0.16 1.78 1.45 
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(a) 

 

(b) 

Figure 7: Boxplots of Yield gaps of (a) potential (Yp-Ya) and (b) water-limited (Yw-Ya) yields for each cluster. 

(Source: Field work from (Ravensbergen, 2024)) 

 

Ancillary data: Total irrigation quantity (mm) data, clay estimate (percentage) and elevation data (m) have been 
used as ancillary data in the study. The data collection for the ancillary data has been discussed earlier as part of 
the field data collection. 

Table 5: Materials used for the study 

Data Material used Variable attribute 

Satellite data Sentinel-2 (European Space Agency) Spectral index NDVI 

 AHN (Actueel Hoogtebestand Nederland) DEM 
(Digital Elevation Model) of the Netherlands 

Elevation data 

Crop model data SWAP-WOFOST data WOFOST potential and water 
limiting yields 

Field data Soil data Estimated clay percentage based 
on farmer survey or soil map 

 Actual yield (Ya) data Field observation 

 Irrigation data Field observation 

 

2.3  Methodology 
2.3.1 Method 

This study will analyse relationships between a set of independent variables and actual yield as the dependent 
variable. Firstly, a simple linear regression model was developed between SWAP-WOFOST yields and actual yields 
(model 1). Colours and shapes were used to differentiate between the six clusters and the two varieties 
respectively in Figure 8. The clusters are the different regions of the Netherlands representing differences in soil 
texture and weather conditions. The same model was used to distinguish between five field situation categories 
discussed in the next paragraph. This was necessary to have a general understanding of the data and how well 
SWAP-WOFOST outputs correlated to Ya. Next, as the goal of the study was to improve SWAP-WOFOST 
estimations using other forms of data, the fields were divided into categories based on their field situations. 
Firstly, the five categories were divided into two major categories-normal and problematic fields. Normal fields 
included fields which had Ya either close to Yw or Yp. Problematic fields, on the other hand, comprised of two 
categories which are either not yet modelled by SWAP-WOFOST or is erroneous. We are interested in improving 
the estimation of yields of problematic fields which are currently not well represented by the SWAP-WOFOST 
outputs. 
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There were five categories of yield reducing situations observed in fields. The category ‘Accurate potential’ refers 

to the situation when modelled potential yield was equal to the field observed actual yield. ‘Accurate oxygen’ 

refers to the situation when the modelled water-limited yield was equal to the field observed actual yield. The 

limitation in this case was the deficiency of oxygen. Oxygen stress is created by waterlogging which is common 

in clayey soils.  ‘Accurate drought’ refers to the situation when the modelled water-limited yield was equal to the 

field observed actual yield. The limitation in this case was the stress by drought. ‘Reducing factor’ category refers 

to any other production factor limitation for the situation when the modelled water-limited yield was equal to 

the field observed actual yield. This can refer to factors which reduces the yield other than drought stress and 

oxygen deficiency like pests, diseases, weeds, etc. Lastly, ‘erroneous’ category refers to situations when field 

observed actual yield was higher than modelled yield (both potential and water-limited). Minor differences of 

0.1 ton were neglected. There was a total of 94 fields where 48 fields were part of 2020 and 46 fields were part 

of 2021. 

Table 6: Field problem category with number of fields in each year 

Problem category 2020 2021 

Accurate potential 8 7 

Accurate oxygen 6 14 

Accurate drought 12 1 

Reducing factors 11 19 

Erroneous 11 5 

Total (All_fields) 48 46 

 

It is possible to simulate the first three categories using SWAP-WOFOST with apperciable accuracy. However, the 

fourth category of reducing factors is not well simulated by SWAP-WOFOST and hence can NDVI can be helpful 

here. As mentioned earlier, the NDVI is thought to be able to provide information about the real conditions on 

the field which cannot be captured by SWAP-WOFOST solely. The fourth category of field problems represents 

factors reducing actual yields. This can be weeds, diseases, etc. The fifth category is the erroneous category which 

was also studied a bit in this study to see if NDVI can predict the behaviour of the fields in this category. There is 

all_fields cateogory used in the models which combines all the categories together. 

The Canopy Cover evolution for a growing season was studied for the different field problem categories. Firstly, 

the Canopy Cover evolution was done for normal and problematic categories and then for all the problem 

categories seperately. . Normal field include the ‘accurate_potential’, ‘accurate_drought’ and ‘accurate_oxygen’ 

categories while problematic fields include the ‘reducing_factors’ and ‘erroneous’ categories. This was studied 

to identify if it possible to differentiate between the categories on the basis of Canopy Cover change over time. 

The measured Canopy Cover is then added to the SWAP-WOFOST outputs to see if the Canopy Cover variable 
has some added information for the actual yield estimate (Model 2).  The Canopy Cover from the entire 
season is included in the model. The rationale here is that Canopy Cover is the representation of the actual 
conditions of the field which are not addressed by the modelled water limited yields. 

The next step involves the derivation of the NDVI values. The rationale is that NDVI values are easier to derive 
than ground cover due to its availability from remotely sensed data rather than laborious and time-consuming 
field measurements of ground cover. Figures 12 and 13 contain all the datapoints for all dates of canopy capture. 
As it is not possible to always have an NDVI for a date when there was a Canopy Cover observation, NDVI values 
were interpolated for all the dates in between the actual NDVI values when the NDVI values could be captured. 
NDVI may not be available on certain days because there may not be satellite taking photo on that day or that 
day was too cloudy and that part of the image was masked.  

This step was followed by the question whether ground cover can be replaced by NDVI by running a correlation 
analysis (the higher the correlation, the better the replaceability). The hypothesis at this stage is that NDVI and 
ground cover are highly related to each other as NDVI is highly dependent on the reflection in the NIR and the R 
bands, which act as unique indicator of vegetation in remote sensing studies. Once this is established, model 



13 | P a g e  
 

with Ya and Canopy Cover was compared with model with Ya and interpolated NDVI. This was done to see if 
model with NDVI work similar or better as compared to model with Canopy Cover. 

If ground cover can be replaced by NDVI, then the reasons behind this significant relationship will be investigated. 

One of the reasons behind significant NDVI relationship which can be attributed to is the number of missing 

plants. The number of missing plants is often created by some form of stress. The number of missing plants can 

be related to the ground cover as the greenness decreases. The number of missing plants is a sum of the missing 

plants per plot and the number of plants which were still there but had a low chance of surviving.  

After differentiating the datapoints on the field category basis, the datapoints were also differentiated cluster 

wise and year wise to understand if the fields are distinguishable in those regard. We combine SWAP-WOFOST 

data and ancillary data into a regression model to check how much of the variability in Ya can be explained by 

them.  

Lastly, we try to merge all the data to find how much of the Ya can be accurately predicted by the combination 
of the three types of data (crop model outputs, remotely sensed data, and ancillary data). In lot of the graphs in 
the result section, non-linear regression line was used instead of linear regression line to show the potential of 
non-linear models to estimate actual yield. There are two types of regression lines found in the graphs. The 
geom_smooth() function in R was used for the lines of the graphs. The ‘lm’ (linear model) method was used for 
the straight lines and the ‘loess’ (Locally Estimated Scatterplot Smoothing) method was used the polynomial 
lines. 

As the main focus of the study is to improve the estimation of the reducing category, Random Forest was 

performed only on the reducing_factor category. The independent variables chosen for this model were Yw, 

elevation, clay_est, ndvi_interpolated and irri_quantity. The two hyperparameters-mtry and ntree were 

optimised for the model. The hyperparameter ntree refers to the number of trees in the model. There should be 

enough trees to stabilise the error but not more than required. The hyperparameter mtry is how many variables 

will be included in the first split.r.m.s.e. was used for comparision in accuracy with the other models. Firstly, the 

r.m.s.e., values were calculated for different ntree values keeping mtry constant and then for the ntree deriving 

the lowest value of r.m.s.e., mtry was manually examined (Figure 17). Feature importance was also studied to 

identify the variables selected by the model for better prediction. ’IncNodePurity’ is the short form for Increase 

in Node Purity. This calculates how much inclusion of a predictor variable improves the model’s ability to predict. 

Higher ranked variables are more important features. The entire study was done on R-software version 4.3.1. 

2.3.2 Description of the models 

Model 1 (SWAP-WOFOST): The SWAP-WOFOST Yp and Yw are regressed with the actual yield field data using 
simple linear regression. Clusters, variable known as cluster_name, were used a factor. 

Model 2 (SWAP-WOFOST and NDVI): The SWAP-WOFOST and the NDVI values are used as explanatory variables 
to see if there is any improvement in the accuracy with the inclusion of the NDVI values.  Different variables have 
been added to the model 1 and these were referred to as sub-models. Multiple linear regression was used to 
estimate the Ya using SWAP-WOFOST simulated outputs, Canopy Cover and NDVI. Firstly, Canopy Cover was used 
for the adding information to the model 1. This was followed by using NDVI as a replacement for Canopy Cover 
as the relationship between Canopy Cover and NDVI is strong from earlier results (Figure 12). NDVI alone 
performed better than Canopy Cover and hence can be used as a replacement for Canopy Cover as an 
explanatory variable. Then, both Canopy Cover and NDVI was used for improving the estimations. Avg_cnp_cvr 
refers to the Canopy Cover variable while ndvi_interpolated refers to the interpolated NDVI values. 

Model 3 (SWAP-WOFOST and ancillary data): A model is developed using different factors that might have a 

significant relationship with actual yield (Ya) like elevation, percentage of clay and quantity of irrigation. Ancillary 

data consisted of clay percentage, total irrigation amount and elevation data. Although clay percentage and 

irrigation amount are inputs to SWAP-WOFOST model, these variables were included in the model improvement. 

This is because it is assumed that these variables can add information to the model in such a way that SWAP-

WOFOST fails to acknowledge. Linear regression models to estimate Ya using SWAP-WOFOST and ancillary data 

were developed for the three field situation categories. Irri_quantity refers to the total amount of irrigation 

applied to the field while clay_est refers to the clay percentage. 
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Model 4 (SWAP-WOFOST, NDVI and ancillary data): Data from Model 2 and 3 (SWAP-WOFOST, NDVI, ancillary 
data) are then combined together into Model 4. It is expected that the model 4 will perform the best among all 
the models. The inclusion of remote sensing and crop models to the ancillary data in model 3 will check if the 
hypothesis 2 stands correct. Random forest are implemented for the model 4 with the idea to further improve 
the accuracy of the predicted yields.  

2.3.3 Evaluation of the models 

There are many ways for model performance measures for comparing model predictions and field observations. 

The models are analysed first graphically and then statistically. The quantitative measures used to meaure model 

performance in this study are R2 and r.m.s.e. R2 will explain how well the X variable explains Y variable (Wang and 

Jain, 2003) while r.m.s.e. stands for the square root of the sum of the squared differences between the predicted 

and observed values divided by the number of observations. The larger the R2 value, the better the model while 

the smaller the r.m.s.e. value, the better the model. However, it must be dealt with caution as overfitting curves 

often have r.m.s.e. smaller than measurement and sampling error. The four main models had a critical graphical 

and quantitative analysis of the model performance. Adjusted R2 and root mean square error (r.m.s.e.) has been 

used for quantitative analysis of the model performance. There are other models where only the graphical 

analysis of the model is discussed. A p-value of less than 0.05 makes all the models statistically significant. 

 

2.3.4 Cross validation approach in Random Forest model 

Linear regression is performed for all the four models against Ya data in R software. Random forest was performed 
only in the last model to see if there can be any further improvement in the model using advanced regression 
technique. For this model, cross validation was performed to test accuracy and prediction of the Ya. As the 
n<1000 for our dataset (n=94 fields), every observation is valuable to be seperated into training and testing data. 
Hence, the approach of leave one out cross validation becomes useful for the dataset. The leave out approach 
involves the use of one specific entity as the validation dataset while the rest of the observations are used as 
training dataset. The leave year out approach, the leave cluster out approach and leave field out approach are 
the three options available for our dataset. Leave year out approach tests the temporal generalisation of the 
model and accuracy and prediction in a new year while leave site out approach tests how accurate a model is 
when applied on a new cluster in the same year. As, we have two years of data in our dataset, there can be a 
huge variability in our model owing to variability in the weather conditions. On the other hand, leaving a cluster 
out results in huge variability owing to differences in soil conditions and management practices. In this study, the 
interest was to predict each field instead of year and cluster. Hence, the leave field out cross validation is used 
for this study. This ensures that every field is tested on the performance of the rest of the fields. In this way, the 
variability is much homogeneous. In this study, this LOOCV was run for all fields separately and then average 
r.m.s.e. was used for analysis. 
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3. Results 

3.1   Actual yield estimation using SWAP-WOFOST model only 
3.1.1 Simple Linear regression 

The simple linear regression models between the actual field observed yields and SWAP-WOFOST yield estimates 

are represented in Figure 8 and Appendix 1 and 2. The actual yields from field data collected are represented by 

Observed Actual Yield (Ya) while the SWAP-WOFOST model potential and water limited output yields are 

represented by Estimated Potential Yield (Yp) and Estimated Water-limited Yield (Yw) respectively.  

 

(i) 

(ii) 
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Figure 8: Relationship between (i) the Yp represents the SWAP-WOFOST modelled potential yield and (ii) the 

Yw represents the SWAP-WOFOST modelled water limited yield on the X-axis and Observed Actual yields on the 

Y axis. The solid and the dotted black lines represent the 1:1 line and the linear regression line respectively. 

Potential yield values are much higher than actual yield values in Figure 8 (i) The spread of the datapoints was 

more around the 1:1 line in Figure 8(ii). Thus, water-limited yields are a better representation of actual yields as 

compared to potential yields. Fontane variety has higher overestimation as compared to Innovator in general In 

Figure 8 (i). Fontane also has a wider spread of datapoints while Innovator is more clustered. This can be due to 

the soil characteristics which is probably not well simulated by SWAP-WOFOST potential yields. Five out of six 

points which are on or above the 1:1 line belongs to the Fontane category. Drenthe, Limburg and Zuid-Holland 

are highly significant and their counter interactions with Yp are also highly significant in Appendix 1. No significant 

relationships are found in Appendix 2. However, the median of the model residuals for Appendix 2 (0.02 t/ha) is 

much lower than Appendix 1 (0.17 t/ha). Although the overall adjusted R2 improves in the water limited yield as 

compared to the potential yield, the R2 value is only 0.21 proving there is a lot of space for improvement.  

In Figure 9, the dataset was divided into normal and problematic fields as per the field category As Yp can be a 

better representation for accurate_potential category, Figure 9 (i) represents relationship of the two. However, 

for the rest of the categories, the actual yield values were compared with the water limited modelled yield values 

hence, Figure 9 (ii) and (iii) are represent the other categories. In Figure 9 (ii), the categories are combined into 

the normal and the problematic fields.  

 

 

(i) 

 



17 | P a g e  
 

 

(ii) 

 

(iii) 

Figure 9: Relationship between (i) Yp representing the SWAP-WOFOST modelled potential yields for 

accurate_potential category and (ii) Yw representing the SWAP-WOFOST modelled water limited yields for two 

problem categories and (iii)  Yw representing the SWAP-WOFOST modelled water limited yields for five 

problem categories are on the X-axis and  Observed Actual yields on the Y-axis  respectively. The dotted black 

line represents the non-linear relationship in Figure 9 (i). The diagonal black line of the graph represents the 

1:1 line while the other black line in the graph represents the regression line for all the values in the graph. 

Figure 9 (i) shows Modelled (Yp) Vs Observed yield and has only one category ‘accurate potential’, where the 

model overestimates the yield. Figure 9 (ii) shows that the normal fields are randomly scattered around the 1:1 

line while the problematic fields are found scattered further away from the 1:1 line. When Figure 9 (ii) is 

compared with the Figure 9(iii), it can be seen that the underestimated yield values of the problematic category 

of Figure 9(ii) belong to the ‘erroneous’ category while the overestimated yield values of the problematic 

category of Figure 9(ii) belong to the ‘reducing_factor’ category. 
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3.1.2 Variation of Canopy Cover (%) over time 

Canopy Cover (%) evolution is presented Figure 10 and 11. This is Canopy Cover captured on the field over two 

years. Similar evolution in the Canopy Cover can be observed  in both the years. In both the years, the maximum 

vegetative stage is reached in July-August. It is difficult to differentiate between the two field categories at any 

phenological stage. 

 

(i) 

 

(ii) 

Figure 10: Time series of field measured Canopy Cover for (a) 2020 and (b) 2021 respectively for normal and 

problematic fields. The normal fields include fields of the accurate_potential, accurate_oxygen and 

accurate_drought categories and the problematic fields include the fields of the the reducing_factor and 

erroneous categories. 
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(i) 

(ii) 

Figure 11: Time series of field measured Canopy Cover for (a) 2020 and (b) 2021 respectively for the five 

categories of the field problems. 

More variation in the datapoints of different categories is observed after the maximum vegetation stage in both 

Figures 10 and 11. This shows that the differences in the categories are observed from the grain filling stage till 

the harvest stage when observed with Canopy Cover. The two categories accurate_drought and accurate_oxygen 

in Figure 11 (ii) have a reduction in canopy cover faster than the other categories in Figure 11. Reducing_factor 

category extends beyond accurate_potential category in 2020 by a lot as compared to 2021. 

3.1.3  Relationship between interpolated NDVI and Canopy Cover  

Figure 12 and Appendix 3 provide an overview of the relationship between interpolated NDVI and Canopy Cover. 

There is a general upward trend which proves that with increasing Canopy Cover, NDVI also increases. However, 
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towards the right-bottom part of the graphs, it is seen that a lot of datapoints which have been captured as 

almost full Canopy Cover do not have very NDVI (NDVI <0.5).  

 

(i) 

 

(ii) 

Figure 12: The relationship between interpolated ndvi and field observed Canopy Cover for (i)normal and 

problematic fields and (ii) the five different categories. 

The ground Canopy Cover percentage is related to the NDVI to see if NDVI can be a replacement for it. Hence, 

the NDVI was studied with respect to each field problem category for both the years. In Appendix 3, a clear 

distinction is seen between the two varieties. Datapoints with Fontane variety is found mostly towards the top 

part of the graphs as compared to datapoints with Innovator variety , which is found in the lower part of the 

graphs. This can be related to the algorithm for the differences in canopy architecture of the different varieties 

and soil characteristics of the respective cluster.  



21 | P a g e  
 

3.1.4 Reasons for reduction of yield 

The reduction of yield studied were missing number of plants and crop health. The relationship between the 

NDVI and the reason was studied for all fields together. For Figure 13 (i), the points are clustered on the left side 

of the graph as the number of missing plants hovered between zero and 20. However, there was random 

scattering observed in NDVI with increasing number of missing plants. Same number of missing plants can have 

different NDVI values. In Figures 14 (i) and (ii), the fields with crop health in ascending order shows a constant in 

(i) or decrease in (ii) in NDVI values. It is possible to say that the minute difference in crop health across fields 

could not be captured by NDVI. Also, the crop health was qualitative and was graded on visual introspection. 

 

 

(i) 

(ii) 

Figure 13: Relationship between avg NDVI  and number of missing plants for all fields in (i) 2020 and (ii) 2021. 
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(i) 

(ii) 

Figure 14: Relationship between NDVI  and crop health for all fields in (i) 2020 and (ii) 2021. 

The correlation coefficients in missing plants reason for all the fields category and the reducing factory category 

fields were 0.15 and 0.11 respectively. The correlation coefficients in crop health reason for all the fields and the 

reducing factory category fields were -0.54 and -0.48 respectively.  
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3.2  Actual yield estimation using WOFOST model output, average Canopy Cover and 

NDVI 
 

Multiple linear regression models were developed for including the information of NDVI and canopy cover. The 

results of the combined Canopy Cover and NDVI (column 3 of each table) were slightly improved in Tables 7-9 as 

compared to their only NDVI counterpart (column 4 of each table). The best R2 and r.m.s.e. values were found 

when the clusters were used as factors. This can be because clusters have different soil and weather conditions. 

NDVI_interpolated improves the R2 for accurate_potential, reducing_factor and all the categories combined 

together categories as compared to avg_cnp_cvr. In accurate_potential and reducing_factor categories, the 

highest adjusted R2 is for the submodel- Yp + ndvi_interpolated*cluster_name. All the models have p-value very 

small, making them highly significant. However for all_fields category, there are two best performing submodels- 

(a) Yw + ndvi_interpolated*cluster_name and (b) Yw + ndvi_interpolated + avg_cnp_cvr *cluster_name in terms 

of adjusted R2. Thus, it is possible to say that ndvi_interpolated can enough to improve the model with 

cluster_name as factor. 

Table 7: Comparision of the quantitative analysis of different models for estimating Ya for model 1 (using  SWAP-

WOFOST) and model 2 (SWAP-WOFOST+NDVI) for accurate_potential category. 

x=independ
ent variables 

 Yp  Yp 
+avg_cnp_cv
r  

 Yp + 
ndvi_interpo
lated 

 Yp 
+avg_cnp_cv
r + 
ndvi_interpo
lated 

Yp+ndvi_inte
rpolated*clu
ster_name 

Yp+ndvi_inte
rpolated+avg
_cnp_cvr*cl
uster_name 

multiple R2 0.54 0.55 0.55 0.61 0.75 0.77 

adj R2 0.54 0.54 0.55 0.61 0.75 0.74 

r.m.s.e. 0.82 0.82 0.80 0.75 0.60 0.59 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

Table 8: Comparision of the quantitative analysis of different models for estimating Ya for model 1 (using  SWAP-
WOFOST) and model 2 (SWAP-WOFOST+NDVI) for reducing_factor category. 

x=independ
ent variables 

 Yw   Yw 
+avg_cnp_cv
r  

 Yw + 
ndvi_interpo
lated 

 Yw 
+avg_cnp_cv
r + 
ndvi_interpo
lated 

Yw + 
ndvi_interpo
lated  *     
cluster_nam
e 

Yw + 
ndvi_interpo
lated + 
avg_cnp_cvr 
*     
cluster_nam
e 

multiple R2 0.45 0.45 0.46 0.50 0.55 0.54 

adj R2 0.45 0.44 0.46 0.50 0.54 0.52 

r.m.s.e. 0.98 0.97 0.97 0.92 0.89 0.89 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 
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Table 9: Comparision of the quantitative analysis of different models for estimating Ya for model 1 (using  SWAP-
WOFOST) and model 2 (SWAP-WOFOST+NDVI) for all fields. 

x=independ
ent variables 

 Yw   Yw 
+avg_cnp_cv
r  

 Yw + 
ndvi_interpo
lated 

 Yw 
+avg_cnp_cv
r + 
ndvi_interpo
lated 

Yw + 
ndvi_interpo
lated *     
cluster_nam
e 

Yw + 
ndvi_interpo
lated + 
avg_cnp_cvr 
*     
cluster_nam
e 

multiple R2 0.15 0.16 0.16 0.18 0.20 0.22 

adj R2 0.15 0.15 0.16 0.18 0.20 0.20 

r.m.s.e. 1.92 1.89 1.92 1.87 1.87 1.83 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

3.3 Actual yield estimation using SWAP-WOFOST model output and other secondary 

data 
 
Secondary data refers to clay percentage, elevation and total iriigation amount data. Irri_quantity variable 

reduced the R2 value of the SWAP-WOFOST outputs for both the accurate_potential and the reducing_factor 

category. This means that unnecessary addition of variable might not always add useful information to the model 

but can add more confusion to the model. However, when added to the model with all other ancillary variables 

and the cluster factor, this improved the R2 for all the three categories. This can be due to the differences in the 

irrigation requirement of the clusters.  

It is interesting to observe that SWAP-WOFOST can estimate yields with high accuracy with the aid of ancillary 

data for accurate_potential category (Table 10). There is overfitting in the last submodel Yp+ elevation+ clay_est+ 

irri_quantity* cluster_name. When irri_quanity is removed from the overfitted model, 

Yp+elevation+clay_est*cluster_name performs the best R2 and r.m.s.e. value in the accurate potential category. 

For the reducing_factor and all_fields categories, the submodel 

Yp+elevation+clay_est+irri_quantity*cluster_name performed best in terms of adj R2 and r.m.s.e. 

Table 10: Comparision of the quantitative analysis of different models for estimating Ya for model 3 (using  SWAP-

WOFOST+ancillary data) for accurate_potential category. 

x=indepe
ndent 
variables 

 Yp Yp+elevat
ion 

Yp+clay_
est 

Yp+irri_q
uantity 

Yp+elevat
ion+clay_
est 

Yp+elevat
ion+clay_
est+irri_q
uantity 

Yp+elevat
ion+clay_
est*clust
er_name 

Yp+elevat
ion+clay_
est+irri_q
uantity*c
luster_na
me 

multiple 
R2 

0.54 0.74 0.64 0.34 0.75 0.68 0.79 1 

adj R2 0.54 0.74 0.64 0.34 0.74 0.68 0.78 1 

r.m.s.e. 0.82 0.62 0.73 0.91 0.61 0.63 0.56 1.04E-12 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 
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Table 11: Comparision of the quantitative analysis of different models for estimating Ya for model 3 (using  

SWAP-WOFOST+ancillary data) for reducing_factor category. 

x=indepe
ndent 
variables 

 Yw   Yw 
+elevatio
n 

 Yw 
+clay_est 

 Yw 
+irri_qua
ntity 

 Yw 
+elevatio
n+clay_e
st 

Yw+eleva
tion+clay
_est+irri_
quantity 

Yw+eleva
tion+clay
_est*clus
ter_nam
e 

Yw+eleva
tion+clay
_est+irri_
quantity*
cluster_n
ame 

multiple 
R2 

0.45 0.49 0.50 0.40 0.50 0.48 0.62 0.74 

adj R2 0.45 0.48 0.50 0.40 0.50 0.48 0.61 0.74 

r.m.s.e. 0.98 0.95 0.94 0.94 0.93 0.87 0.82 0.61 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

Table 12: Comparision of the quantitative analysis of different models for estimating Ya for model 3 (using  

SWAP-WOFOST+ancillary data) for all fields. 

x=indepe
ndent 
variables 

 Yw   Yw 
+elevatio
n 

 Yw 
+clay_est 

 Yw 
+irri_qua
ntity 

 Yw 
+elevatio
n+clay_e
st 

Yw+eleva
tion+clay
_est+irri_
quantity 

Yw+eleva
tion+clay
_est*clus
ter_nam
e 

Yw+eleva
tion+clay
_est+irri_
quantity*
cluster_n
ame 

multiple 
R2 

0.15 0.15 0.15 0.13 0.15 0.14 0.25 0.30 

adj R2 0.15 0.15 0.15 0.13 0.15 0.14 0.25 0.30 

r.m.s.e. 1.92 1.91 1.91 1.98 1.91 1.98 1.80 1.78 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

3.4  Actual yield estimation using WOFOST model output, NDVI and other secondary 

data 
3.4.1 Multiple Linear regression 

Model 4 deals with the improvement in the model performance by incorporating all the variables studied in this 

scientific work. As already mentioned earlier, SWAP-WOFOST can already be correctly predicted with ancillary 

data alone for accurate_potential category (Table 10). The final model of Table 10 was already overfitted. Thus 

the addition of NDVI is not required and has been done solely to maintain homogeneity in the scientific work. In 

all the categories studied, it is found that addition of all variables with the factor cluster helped to establish the 

highest R2 values with the lowest r.m.s.e. values of this study. 

Table 13: Comparision of the quantitative analysis of different models for estimating Ya for model 4 (using  SWAP-

WOFOST+ancillary data+NDVI) ) for accurate_potential category. 

x=independent 
variables 

Yp+elevation+clay_
est+ndvi_interpola
ted 

Yp+elevation+clay_
est+ndvi_interpola
ted*cluster_name 

Yp + elevation + 
clay_est + 
ndvi_interpolated 
+ irri_quantity 

Yp+elevation+clay_
est+ndvi_interpola
ted+irri_quantity*c
luster_name 

multiple R2 0.74 0.76 0.67 1 

adj R2 0.74 0.75 0.67 1 

r.m.s.e. 0.61 0.59 0.64 2.65E-13 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16  < 2.2e-16 
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Table 14: Comparision of the quantitative analysis of different models for estimating Ya for model 4 (using  SWAP-
WOFOST+ancillary data+NDVI) for reducing_factor category. 

x=independent 
variables 

Yw+elevation+clay
_est+ndvi_interpol
ated 

Yw+elevation+clay
_est+ndvi_interpol
ated*cluster_name 

Yw + elevation + 
clay_est + 
ndvi_interpolated 
+ irri_quantity 

Yw+elevation+clay
_est+ndvi_interpol
ated+irri_quantity*
cluster_name 

multiple R2 0.51 0.56 0.49 0.74 

adj R2 0.50 0.55 0.49 0.74 

r.m.s.e. 0.93 0.88 0.86 0.61 

p-value  < 2.2e-16  < 2.2e-16  < 2.2e-16  < 2.2e-16 

 

Table 15: Comparision of the quantitative analysis of different models for estimating Ya for model 4 (using  

SWAP-WOFOST+ancillary data+NDVI) for all fields. 

x=independent 
variables 

Yw+elevation+clay
_est+ndvi_interpol
ated 

Yw+elevation+clay
_est+ndvi_interpol
ated*cluster_name 

Yw + elevation + 
clay_est + 
ndvi_interpolated 
+ irri_quantity 

Yw+elevation+clay
_est+ndvi_interpol
ated+irri_quantity*
cluster_name 

multiple R2 0.16 0.22 0.14 0.31 

adj R2 0.16 0.22 0.14 0.30 

r.m.s.e. 1.92 1.85 1.98 1.78 

p-value < 2.2e-16  < 2.2e-16 < 2.2e-16 < 2.2e-16 

 

3.4.2 Random Forest Model 

Linear regression for the reducing factor category estimated the Ya with a r.m.s.e. of 0.59 and 0.86 with and 

without the cluster factor. The best performing model with the most appropriate hyperparameters (ntree=500, 

mtry=1) had a r.m.s.e. of 1.0911 (Figure 16), which is much higher than the r.m.s.e. of the linear regression model 

for the same variable combination of 0.86. Figure 15 shows the importance of the feature selection. Although 

there are subtle differences in the absolute values of the feature importance in each field, overall Yw is the most 

important feature chosen by the random forest model. 
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Figure 15: Feature importance for all the fields in Random Forest model. 

 

(i) 

 

(ii) 

Figure 16: Variation in r.m.s.e values with (i) ntree hyperparamter with mtry=3 and (ii) mtry hyperparamter 

with ntree=500 
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4. Discussion and Recommendation 

4.1 Discussion 
 
In this study, improvement of estimation of Ya using more relevant data was investigated. In Table 3, the field 
observed values are closer to the values of Yw as compared to Yp. This can also be inferred from the Figure 8. 
Figure 8 represents a regression for all fields together. Most of the fields were overestimated in estimating Ya 
using Yp. Only six fields were above the 1:1 line in the Figure 8 (i). The Figure 8 (ii)-Yw represented the Ya way 
better than the Yp as the spread of the datapoints are around the 1:1 line. 
 
Figure 9 (ii) and (iii) shows that there is space for the model of the reducing factor and the erroneous categories 

to be improved. The regression lines of the accurate_drought and the accurate_oxygen categories are close to 

the 1:1 line. Thus on average, the model is able to estimate these two categories accurately. The residuals of 

these two categories are also small. 

Phenology plays a role in the LAI curve. In the early phenological stages, the LAI is low. The LAI reaches a 
maximum with the maximum vegetative stage and then gradually decreases over time until the plant reaches 
senescence. This results in a bell-shaped curve over the entire growing season. This Phenomenon has been well 
captured by Canopy Cover (%) in Figure 10 and 11. Thus, it can be assumed that Canopy Cover can be used a 
proxy for LAI. 

 

Figure 17: Retrieved LAI of two potato field, namely, P2 and P3. The phenological stages are indicated at the 

top as E indicating emergence, VD indicating Vegetation Development, F for Flowering, PG for Potato Growing, 

R for Ripening an H for Harvest (González-Sanpedro et al., 2008) 

Figure 10 illustrates the initial growth of the canopy reaching a peak of 100% Canopy Coverage followed by the 

gradual decrease of the Canopy Cover. Similar inverted bell shaped curves for canopy cover evolution over time 

has been reported in (Tenreiro et al., 2021). In both the years (i) and (ii), the Canopy Cover was not able to 

differentiate a lot between the normal and the problematic categories. Removal of the erroneous category from 

the problematic category did not help to differentiate between the two categories in Figure 10. A deeper look at 

the two categories at the level of field problems in Figure 11 also could not differentiate among the categories.  
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Average NDVI might not be the best representation to correlate with the missing plants (Figure 13) or crop health 
(Figure 14). As a further study, it can be interesting to use a early date of NDVI instead of the average NDVI over 
the entire growing season to better represent the missing plants. This is because at early phenological stages, 
the plants do not expand and create 100% soil coverage. In the maximum vegetative stages, the plants expand 
and cover the entire soil even if there are many missing plants or not. It is not appreciated to use the average 
NDVI values as the average values will hover around a certain value instead of showing enough variation which 
is important for capturing ground information.  

The NDVI values used were interpolated values and not real satellite data values. This can create some 
discrepancy in capturing the actual ground truth information on the specific date. There can be differences as 
there can be sudden changes on ground which might not be really captured by interpolated NDVI. In further 
studies, it might interesting to see if NDVI has a relation with yield gap values. Also, inclusion of time series for 
each variable like NDVI and irrigation schedule provides more information and can possibly improve yield 
estimation.  

NDVI was related to ground cover to evaluate its relationship to replace tedious ground cover measurements by 

satellite data (Figure 12). The Pearson’s correlation coefficient for the relationship for all the points together 

(without categorising) was 0.93. Thus, the first hypothesis is accepted that states satellite derived NDVI values 

are highly correlated with field measured ground cover values. There are many other studies to show that NDVI 

and Canopy Cover can be highly correlated. Figure 12 clearly indicates that the data for the normal and the 

problematic fields is difficult to be differentiated. In Figure 12 (ii), accurate_drought and accurate_oxygen can be 

differentiated as accurate_oxygen had a lower average NDVI as compared to accurate_drought for the same 

percentage of Canopy Cover. 

As the reasons for actual yield was investigated to identify if reducing factor category can be represented by 

these factors, the correlation coefficients for all the fields and the reducing factory category fields were 

calculated. Thus, it is not possible to conclude that reduction in yield either by number of missing plants or crop 

health is identified by Canopy Cover or NDVI. As the NDVI and Canopy Cover are highly correlated, the graphs 

were not repeated for the two variables. 

Inclusion of measured Canopy Cover improved the R2 values of the model 1 (Table 7-9). In some cases, the R2 

was maximum for only adding NDVI values. In Table(s) 7-9, the R2 always improved slightly when NDVI was used 

as a predictor variable as compared to Canopy Cover. Thus it is possible for NDVI to replace Canopy Cover for all 

fields. Although the idea was to see if NDVI can replace Canopy Cover, it was interesting to see that both the 

variables together can be better for estimating the Ya. This means that Canopy Cover can add such information 

which is not possible for NDVI to add. For example, disease in crop causing yellow leaves can be visible in Canopy 

Cover but not in satellite data. The results further improve when clusters are used as a factor in all three cases.  

Lastly, it is possible to conclude that seperately estimating for each field problem category performs better than 

estimating for all fields together. Addition of Canopy Cover variable as the explanotory variable in the NDVI+ 

SWAP-WOFOST model added only meagre information to the model owing to the high correlation between NDVI 

and Canopy Cover. This indicates NDVI is equivalent to Canopy Cover. Thus, it is possible from Table 8 to say that 

the addition of remote sensing data to SWAP-WOFOST outputs can improve the Ya estimation (research question 

1). It helps to reduce the yield gap by bringing the Yw close to Ya. 

All the three categories where Model 3 is examined (Tables 10-12), the inclusion of all the forms of ancillary data 
to the SWAP-WOFOST results performed as the best models than there counterparts. Accurate potential category 
had a R2 of 1 with minimal r.m.s.e. A graphical interpretation can aid to ensure that the model is so perfect. There 
is overfitting of the model. However, for the other two categories, there was improvement in R2 and r.m.s.e. 
values for including all the ancillary data. It is therefore possible to say that ancillary can definitely explain more 
variation in the data if added to Model 1 (research question 2). There can be two reasons why elevation was 
highly related to each cluster. Firstly, the elevation of clusters with clayey soils are mainly near the sea and the 
elevation of these is below the mean sea level as compared to clusters like Limburg which have higher elevation. 
Also, the groundwater table will vary for each of the clusters. 

In Model 4, the three categories behaved differently. The all fields category improved slightly in R2 while the 
r.m.s.e. also increased by 0.003 t/ha. The reducing category had a slight decrease of R2 and a r.m.s.e. increase of 
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0.002 t/ha. The accurate potential category had a constant R2 of 1 with a extremely minute decrease in r.m.s.e.. 
Hence, this shows that adding on information may not necessarily be improving the model and should be 
concious to what is being added (research question 3). Adding more information to an overfit model is also not 
the best choice. Hypothesis 2 can be accepted as the model 4 for all categories is almost the same as model 3. 
The slight differences in R2 and rmse values is due to the calculations based on four decimal points. However, 
when R2 and r.m.s.e. values are rounded to two decimal points, the results of model 4 and model 3 are exactly 
the same. Cluster and field problem categories when used as factor or separate models respectively improved 
the understanding of the models.  

Reducing_factor category always performed better than all fields category and worse than accurate_potential 
category. Reducing_factor category fields had dramatic increase in the R2 and decrease in r.m.s.e. values 
(Appendix 5-8). Model 3 and 4 had a adjusted R2 increase of 36.35% and 35.41% and a r.m.s.e. decrease of 
31.37% and 31.32% respectively as compared to Model 1. Model 2, on the other hand, had a slight decrease of 
adjusted R2 of 4.27% and a slight r.m.s.e. decrease of 0.63% as compared to Model 1.  

Random Forest of Model 4 performed worse than Model 1 in terms of r.m.s.e. values. Hence, non-linear models 
might not be the better option to estimate Ya for this dataset (research question 4). The model which had the 
lowest r.m.s.e. was with ntree=500 and mtry=1. Mtry=1 makes trees less diverse due to availability of only one 
split. Random Forest also used a different approach than the rest (LOOCV method). Feature selection (Figure 15) 
shows that Yw was the most useful variable while NDVI was the least useful variable when the RF model was 
developed. This is in tune with the earlier results. Additon of NDVI values to Model 3 to develop Model 4 did not 
drastically improve the model efficiency. Along with that, cluster was not used as factor in the RF model although 
the comparision was made with the appropriate counterpart, i.e., linear regression models without cluster as a 
factor. Deep learning can also be used to estimate Ya using SWAP-WOFOST results and other data. However, it 
should be noted that neural networks can function well with ample amount of data, hence care should be taken 
that the amount of input data for such models are enough.  

4.2 Future recommendations that can be applied in further studies 
 
Potato crop is susceptible to extreme dry or wet conditions. The crop has a weak rooting system which is unable 
to breakthrough the hard impermeable soil layers to reach available water resulting in poor yield. On the other 
hand, the oversaturated soil can lead to dying roots and rotting tubers. Hence, incorporation of soil moisture 
conditions using field collected data can provide additional information which can improve the yield estimation. 
Satellite data which can be used as proxy for soil water content-passive SAR data can also be used as a 
replacement for field data collected soil moisture content measurements. Inclusion of weather data drastically 
improved the models for early and late potato yield models explaining the variability present in the yields across 
northern Belgium (Vannoppen and Gobin, 2022). 
 
Selection of the most appropriate period for estimation of yield is essential as the estimation performance can 
be highly vary during the different growth periods (Lin et al., 2023) for different varieties and environmental 
conditions. Average monthly values of Sentinel-2 vegetation indices of beginning of tuberization, early 
senescence under non-normal conditions such as pests and senescence were used in a study (Gómez et al., 
2019). The average maximum LAI for potato crop were found during mid-season (DOY 180) with values varying 
around 6-8m2/m2 while the average minimum was found towards the beginning of the growing season (DOY 140) 
having values 2-3m2/m2 under semi-arid irrigated conditions (Mourad et al., 2020).  Tuber expansion stage, which 
is 70 days after planting, turned out to be the best stage to estimate yield according to (Luo et al., 2020) while 
(Li et al., 2020) mentions how both the 90 DAP Random Forest (RF) and Partial Least Square (PLS) regression 
model outperform 60 DAP. Estimation of yield using multiple dates instead of single date improves adjusted R2 

values from 0.7415 to 0.8225 (Luo et al., 2020). Thus, selection of suitable dates can be useful for further 
improvement of this study. 

Random Forest for Model 4 included a lot of information which resulted in slow execution of the process due to 
computational limitations. Inclusion of more data to the level where it can be called big data can be useful for 
yield estimation. Big data refers to a voluminous amount of data which are so complex in nature that is often 
requires newer technologies like artificial intelligence for processing (EU Parliament, 2021). (Silva et al., 2020)  
studied different region, cultivar, year, soil type, irrigation quantity, rainfall quantity, intercepted PAR, sowing and 
harvesting dates, available N, P, K applied and field size as drivers of reported Ya for multiple crops, including 
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ware, starch, and seed potatoes, in the Netherlands using standard regression models. Many insights, thus, often 
remain hidden without the use of more advanced processing technologies like artificial intelligence. Thus, 
although (Silva et al., 2020) provides us an idea about the drivers of yield for potatoes in the Netherlands, 
involvement of machine learning technique to get more meaningful comprehension of the data can be an 
appropriate tool. Agronomic parameters like plant height, soil parameters like moisture, conductivity and 
nutritional parameters have also improved greatly yield estimation. Inclusion of cultivar information to remote 
sensing data can improve model R2 values by 56% (Li et al., 2021). 

At the same time, this study indicates that more data need not necessarily mean improved models. Thus, 
addition of data to the models leading to improvement while taking care of computational resources can make 
the modelling a sustainable choice. 

5. Conclusion 
This study gave an insight about how remote sensing and ancillary data can aid to SWAP-WOFOST results to 
estimate actual yields. No strong association was found with the number of missing plants and the crop health 
with NDVI. Canopy cover and NDVI together can improve the R2 than alone while when cluster is added as a 
factor, NDVI alone was enough to have the highest R2 and lowest r.m.s.e. values. In all fields combined category, 
there was no significant difference when Canopy Cover and NDVI were added as separate independent variables 
to the SWAP-WOFOST outputs. However, as NDVI is easier to derive than measuring Canopy Cover, thus, remote 
sensing can definitely explain better the variability of SWAP-WOFOST outputs. Ancillary data can also help to 
explain the variability of the SWAP-WOFOST outputs although for the accurate potential category, there is 
overfitting of the model. When both NDVI and ancillary data with SWAP-WOFOST outputs were combined, the 
R2 values and rmse values were similar to the values of the previous SWAP-WOFOST and ancillary data 
submodels. Thus, combining NDVI with ancillary data does not explain the variability better than the SWAP-
WOFOST and ancillary data model. In all the models, cluster as a factor improved the results drastically. Accurate 
potential category performed better than reducing category and followed by all-fields category. Unnecessarily 
inclusion of explanatory variables can lead to more confusion than clarity in estimating the yield.  

Random Forest did not improve the linear regression model with SWAP-WOFOST, remote sensing and ancillary 
data combined. Lastly, it is possible to conclude that rational inclusion of satellite and ancillary data can certainly 
improve the estimation results for reducing field category. The first hypothesis is accepted that states satellite 
derived NDVI values are highly correlated with field measured ground cover values. The second hypothesis is 
accepted as well because the results of SWAP-WOFOST, remote sensing and ancillary data model were the same 
as SWAP-WOFOST and ancillary data model. Further research can improve estimation of actual yield using better 
techniques and relevant information. 
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8. Appendix 
 

Appendix 1: Model 1 predicting actual yield with WOFOST potential yields only 
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Appendix 2: Model 1 predicting actual yield with WOFOST water limited yields only 

 

 

 

Appendix 3: The relationship between interpolated ndvi and field observed Canopy Cover cluster-wise for (i) 

2020 and (ii) 2021. The black lines represent the average of all the clusters. The solid and the dotted lines 

represent the linear and the non-linear method for regression lines. 
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Appendix 4: The relationship between interpolated ndvi and field observed Canopy Cover field problem-wise 

for (i) 2020 and (ii) 2021. The black lines represent the average of all the clusters. The solid and the dotted 

black lines represent the linear and the non-linear method for regression lines. 
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Appendix 5: Model 2 predicting actual yield with Yw and interpolated NDVI for reducing factor 

category 
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Appendix 6: Model 2 predicting actual yield with Yw, Canopy Cover and interpolated NDVI for 

reducing factor category 
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Appendix 7: Model 3 predicting actual yield with WOFOST water limited yields and ancillary data for 

reducing_factor category 

 

 

Appendix 8: Model 4 predicting actual yield with WOFOST water limited yields, NDVI and ancillary 

data for reducing_factor category 

 


