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1  |  INTRODUC TION

During cryopreservation of semen, cold shock, osmotic shock and 
the production of reactive oxygen species damage cells and com-
promise sperm function (Partyka et al., 2011; Rakha et al., 2020). 
Therefore, the cooling protocol is important for sperm survival of 
rooster sperm (Madeddu et al., 2016). Higher cooling rates induce 
intracellular ice formation (Mazur,  1977), whereas too low cool-
ing rates may cause excessive cell dehydration and expose cell 
membranes for longer periods of time to the pockets of hyper-
tonic solutions, with possible deleterious effects from the gener-
ation of reactive oxygen species, and lipid and protein extraction 
(Katkov, 2012). The optimal cooling rate is a compromise between 

these opposing effects to decrease cryodamage and maximize 
sperm viability and functionality after thawing. However, there are 
no studies in rooster sperm that have addressed the effect of dif-
ferent cooling rates in the separate phases of the freezing protocol: 
prior to and after ice nucleation. In sperm from different mammal 
species, the application of a low initial cooling rate in the phase 
prior to ice nucleation, followed by high cooling rates around the 
time of ice nucleation, seems to improve sperm survival and func-
tionality (Galarza et al., 2019).

The aim of the present study was to compare two different freez-
ing protocols of rooster sperm that are based on a low cooling rate 
in the first cooling phase to minimize cold chock, followed by higher 
cooling rates around or following ice nucleation and ice growth.
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Abstract
The present study compares two protocols for the cryopreservation of chicken semen. 
Both protocols had an initial low cooling rate in the first step, followed by higher cool-
ing rates around ice nucleation (Protocol 1) or following the dissipation of the latent 
heat of fusion (Protocol 2) in the second step. Semen ejaculates obtained from 12 
roosters were diluted with Rootex with 6% dimethylformamide and frozen follow-
ing either Protocol 1 (from +5°C to −10°C at 5°C/min and from −10°C to −130°C at 
60°C/min) or Protocol 2 (from +5°C to −35°C at 7°C/min and from −35°C to −140°C 
at 60°C/min). Compared with fresh semen, following both protocols, cryopreserva-
tion resulted in reduced post-thaw sperm quality (p < .001). Post-thaw percentage of 
sperm with an intact plasma membrane was greater using Protocol 2 than Protocol 1 
(p < .05). The results suggest that high cooling rates around the time of ice nucleation 
are not recommendable.
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2  |  MATERIAL S AND METHODS

2.1  |  Experimental birds

Twelve White Prat roosters were used in this study. Birds were 
housed at the Research Station ‘El Encín’ (Madrid, Spain, 40°31' N). 
All birds were 1 year old and were fed a commercial feed containing 
16% crude protein, 2700 kcal of metabolisable energy/kg, 3.5% Ca 
and 0.5% available P over the entire experimental period.

2.2  |  Semen collection, management and 
freezing protocols

Semen samples were collected twice weekly in 15 mL graduated 
centrifuge tubes (Sterilin®) using the massage technique described 
by Burrows and Quinn  (1937). Pools of semen were made during 
each semen recovery session. A total of 10 semen pools were used 
for each freezing method (a total of 20 semen pools). Each pool 
was immediately diluted 1:1 (v:v) at field temperature in a Rootex® 
(Arquimea Agrotech) medium and immediately cooled to 5°C for 
45 min. Subsequently, diluted semen was further diluted with 1 vol-
ume of Rootex with 18% dimethylformamide (DMF) (dilution 1:2 
(v:v); final DMF concentration 6%). Samples were kept for equilibra-
tion at 5°C for 15 min, loaded into 0.5 mL straws and frozen at two 
freezing rates before being stored in liquid nitrogen. Samples were 
frozen using the following two freezing protocols (Figure 1):

Protocol 1: from +5°C to −10°C at 5°C/min and from −10°C to 
−130°C at 60°C/min. Protocol 2: from +5°C to −35°C at 7°C/min and 
from −35°C to −140°C at 60°C/min. After 15 days, the straws were 
thawed in a water bath for 30 s at 5°C.

The temperatures of the freezing chamber and the straw's inte-
rior were recorded. In one dummy straw, the thermocouple of the 
biological freezer was introduced to a straw-containing freezing me-
dium (Rootex-6% DMF) only. The thermocouple inside the dummy 
straw allows to register the occurrence of ice nucleation and to es-
timate the duration of the subsequent dissipation of the latent heat 
of fusion.

2.3  |  Assessment of sperm variables

Sperm motility was assayed as previously described (Santiago-
Moreno et al., 2012) using a computer-aided sperm analyses (CASA) 
system coupled to a phase contrast microscope (Nikon Eclipse model 
50i; negative contrast) and employing Sperm Class Analyzer (SCA®) 
v.4.0. software (Microptic S.L., Barcelona, Spain). The percentage 
of motile spermatozoa, the percentage of progressive motility, the 
curvilinear velocity (VCL), the straight-line velocity (VSL) and the 
average path velocity (VAP) were analysed by CASA. Propidium io-
dide and SYBR-14 were used as fluorochromes in the examination 
of membrane integrity (Chalah & Brillard, 1998); 200 cells were ex-
amined using an epifluorescence microscope at 400× (wavelength: 
450–490 nm) (Figure 2). Sperm was analysed in fresh samples, after 
equilibration, and in frozen-thawed samples.

2.4  |  Statistical analyses

The effect of cooling rate on sperm variables was analysed by 
ANOVA. All statistical calculations were made using Statistica soft-
ware for Windows v.10.0 MR1 (StatSoft Inc., Tulsa, OK, USA).

F I G U R E  1 Experimental design diagram. Twenty pool sperm samples were diluted with Rootex® extender and 18% DMF (final DMF 
concentration = 6%). After 15 min at 5°C equilibration time, 10 pool samples were frozen using the freezing Protocol 1 (from +5°C to −10°C 
at 5°C/min and from −10°C to −130°C at 60°C/min) and other 10 samples using the freezing Protocol 2 (from +5°C to −35°C at 7°C/min and 
from −35°C to −140°C at 60°C/min).
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3  |  RESULTS

The freezing curve used to cryopreserve the epididymal sperma-
tozoa is depicted in Figure  3. For both protocols, ice nucleation 
(seeding) occurred at −10°C (at 3.8 min). In Protocol 1, ice nucleation 
occurred 20 s after the second-step cooling rate (from −10 to −130°C 
at 60°C/min), whereas in Protocol 2, ice nucleation occurred about 
98 s before the second-step cooling rate (from −35°C to −140°C 
at 60°C/min). Equilibration time significantly reduced the propor-
tion of motile sperm and the percentage of spermatozoa showing 
progressive motility (p < .05). The freezing-thawing process signifi-
cantly reduced (p < .001) the values of all sperm variables recorded 
(Table 1). The proportion of viable spermatozoa was greater (p < .05) 
in spermatozoa that underwent Protocol 2 than in those that under-
went Protocol 1.

4  |  DISCUSSION

In the freezing protocols used in the present study, a low cooling rate 
was applied in the first cooling phase in order to minimize cold shock. 
Our findings indicate that initiating the second phase of the cooling 
process around ice nucleation (Protocol 1) had a negative effect on 
the post-thaw survival of rooster sperm. Indeed, Protocol 1 dem-
onstrated the highest cryoinjury response, which may be attributed 
to the second-step cooling rate (from −10 to −130°C at 60°C/min) 
that could be too rapid when used on bird sperm. The spindle shape, 
very little cytoplasm and long flagellum of rooster spermatozoa may 
render them very susceptible to cryoinjury when a high cooling rate 
is produced around ice nucleation. This filiform characteristic of bird 
sperm might be responsible for the different response compared 

with mammal sperm (e.g. rams) for which a cooling rate of 60°C/
min around the time of ice nucleation yields a better motility, plasma 
membrane and DNA integrities (Galarza et al., 2019). Although pre-
vious studies have recommended a rapid freezing rate of 50°C/min 
up to −140°C (Blesbois et al., 2007) or 59°C/min (Purdy et al., 2009), 
in the present work, the rapid freezing rate from −10°C to −130°C 
at 60°C/min was associated with poorer sperm characteristics than 
those obtained with Protocol 2. In Protocol 2, a low cooling rate 
(7°C/min) is maintained for a longer time (until −35°C); after ice nu-
cleation, this allows for a better adaptation to the deleterious effects 
of unfrozen, extracellular, hypertonic solutions when ice growth 
occurs. Protocol 2 was previously used in Spanish chicken breeds 
using DMA as a cryoprotectant, providing good results after thawing 
(Santiago-Moreno et al., 2011). Our findings disagree with those of 
Madeddu et al. (2016) who recommend an initial high cooling rate to 
reach −25°C within 30 s using static LN2 vapour. However, a com-
parative study between vapour freezing of static LN2 and Protocol 
2, using DMA as cryoprotectants, provided more desirable results 
for the latter method (Santiago-Moreno et al., 2011). In conclusion, 
the results suggest that high cooling rates around the time of ice 
nucleation are not recommendable.
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F I G U R E  2 Sperm viability evaluated with propidium iodide and SYBR-14; sperm cells stained green were deemed to be live, whereas red 
coloured spermatozoa were considered dead (×400).
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TA B L E  1 Sperm variables (mean ± SE) in fresh samples, after equilibration 15 min at 5°C with cryoprotectant (DMF 6%), and after freeze-
thawing, either Protocol 1 (from +5°C to −10°C at 5°C/min and from −10°C to −130°C at 60°C/min) or Protocol 2 (from +5°C to −35°C at 
7°C/min and from −35°C to −140°C at 60°C/min).

Sperm variable

Fresh Equilibrated Thawed

Protocol 1 Protocol 2 Protocol 1 Protocol 2 Protocol 1 Protocol 2

Mot. sperm (%) 91.09 ± 1.79a 88.80 ± 1.86a 78.32 ± 2.87b 81.24 ± 2.69b 51.84 ± 2.14c 55.03 ± 2.71c

PM (%) 70.84 ± 5.00a 66.55 ± 4.74a 48.59 ± 4.56b 52.93 ± 3.57b 12.13 ± 1.50c 15.80 ± 2.24c

VCL (μm/s) 92.36 ± 6.07a 90.23 ± 5.21a 76.39 ± 458a 80.48 ± 3.96a 36.90 ± 2.02b 40.02 ± 2.43b

VSL (μm/s) 46.83 ± 3.41a 46.22 ± 4.03a 36.72 ± 3.60a 39.51 ± 2.76a 11.10 ± 1.34b 12.97 ± 1.31b

VAP (μm/s) 66.84 ± 4.91a 64.89 ± 4.29a 52.46 ± 3.85a 55.88 ± 3.03a 18.50 ± 1.90b 22.06 ± 2.00b

Viab (%) 80.14 ± 2.43a 77.45 ± 1.77a 77.29 ± 2.94a 75.45 ± 1.96a 24.30 ± 1.12b 36.80 ± 2.24c

Note: Within each row, different letters (a, b and c) indicate significant differences (p < .05).
Abbreviations: Mot. Sperm, percentage of motile spermatozoa; PM, progressive motility; VAP, average path velocity; VCL, curvilinear velocity; Viab, 
viable sperm; VSL, straight-line velocity.

F I G U R E  3 Time of ice nucleation (black arrow) as a function of the freezing curve. Protocol 1 freezing curve: from +5°C to −10°C at 5°C/
min and from −10°C to −130°C at 60°C/min, Protocol 2: from +5°C to −35°C at 7°C/min and from −35°C to −140°C at 60°C/min. Black line: 
programmed chamber temperature; Grey line: actual sample temperature.
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