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The developing pig respiratory microbiome harbors strains 
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Abel A. Vlasblom,1 Birgitta Duim,1,2 Shriram Patel,3,4 Roosmarijn E. C. Luiken,1 Daniel Crespo-Piazuelo,5 Julia Eckenberger,3 Chloe E. 
Huseyin,3 Peadar G. Lawlor,5 Christian Elend,6 Jaap A. Wagenaar,1,2,7 Marcus J. Claesson,3 Aldert L. Zomer1,2

AUTHOR AFFILIATIONS See affiliation list on p. 17.

ABSTRACT In the global efforts to combat antimicrobial resistance and reduce 
antimicrobial use in pig production, there is a continuous search for methods to prevent 
and/or treat infections. Within this scope, we explored the relationship between the 
developing piglet nasal microbiome and (zoonotic) bacterial pathogens from birth 
until 10 weeks of life. The nasal microbiome of 54 pigs was longitudinally studied 
over 16 timepoints on 9 farms in 3 European countries (Germany, Ireland, and the 
Netherlands) using amplicon sequencing targeting the V3-V4 16S rRNA region as well 
as the tuf gene for its staphylococcal discrimination power. The piglets’ age, the farm, 
and the litter affected the nasal microbiome, with piglets’ age explaining 19% of the 
variation in microbial composition between samples. Stabilization of the microbiome 
occurred around 2 weeks post-weaning. Notably, while opportunistic pathogens were 
ubiquitously present, they did not cause disease. The piglet nasal microbiome often 
carried species associated with gut, skin, or vagina, which suggests that contact with 
the vaginal and fecal microbiomes shapes the piglet nasal microbiome. We identified 
bacterial co-abundance groups of species that were present in the nasal microbiomes in 
all three countries over time. Anti-correlation between these species and known bacterial 
pathogens identified species that might be exploited for pathogen reduction. Further 
experimental evidence is required to confirm these findings. Overall, this study advances 
our understanding of the piglet nasal microbiome, the factors influencing it, and its 
longitudinal development, providing insights into its role in health and disease.

IMPORTANCE Our study on the nasal microbiota development in piglets across farms 
in three European countries found that the microbiomes developed similarly in all 
locations. Additionally, we observed that the colonization of porcine pathogens was 
either positively or negatively associated with the presence of other bacterial species. 
These findings enhance our knowledge of co-colonizing species in the nasal cavity 
and the identified microbial interactions that can be explored for the development of 
interventions to control pathogens in porcine husbandry.

KEYWORDS microbiome, respiratory pathogens, colonization, porcine, nasal, 
microbiome development

I n pig farming, bacterial respiratory and systemic infections can be detrimental to 
health and welfare, and increase cost and antimicrobial use (1, 2). There is a continu­

ous search for (biological) interventions, such as probiotics and competitive exclusion 
strategies, to prevent and treat infections (3–5).

The impact of the respiratory microbiome on piglet respiratory or systemic infections 
is an emerging field (6–10). Differences in (upper) airway microbiome composition 
between healthy and diseased pigs (9–15), between livestock-associated methicillin-
resistant Staphylococcus aureus (LA-MRSA) carriers and non-carriers (7, 16, 17) and due to 
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exposure to farm conditions, such as high gaseous ammonia concentrations (18), have 
been described, often in cross-sectional studies. These studies have identified species 
associated with disease. Longitudinal piglet nasal studies focusing on microbiome 
development have been performed (7, 19, 20). However, longitudinal development of 
the pig nasal microbiome (PNM) in relationship with bacterial pathogens is understud­
ied. By elucidating the PNM’s intricacies, we will obtain insights that might improve 
animal health or reduce the presence of bacterial species with zoonotic potential 
through microbiome modulation.

Common opportunistic bacterial pathogens, including those part of the porcine 
respiratory disease complex (PRDC) (1, 21), such as Actinobacillus pleuropneumoniae 
(22), Actinobacillus suis (23), Trueperella pyogenes (24), Bordetella bronchiseptica (22), 
Glaesserella parasuis (9), Klebsiella pneumoniae (25), Mannheimia varigena (26), Myco­
plasma hyopneumoniae (22), Mycoplasma hyorhinis (27), Pasteurella multocida (28), and 
Streptococcus suis (29), are often present in the porcine upper respiratory tract (30). In 
addition, potential zoonotic pathogens such as LA-MRSA reside in the respiratory tract.

To elucidate trends in the development of the PNM, including its relationship with the 
relative abundance of these 12 pathogens, 54 piglets were sampled (nasal swabs) across 
9 farms in 3 European countries from birth until 70 days of age for tuf and 16S rRNA 
gene amplicon sequencing. tuf Amplicon sequencing improved taxonomical resolution, 
over 16S rRNA sequencing, for some clinically relevant species, including Staphylococcus, 
Enterococcus, and Streptococcus (7, 31, 32). Member of these genera might be of interest 
because they can interfere with nasal colonization of S. aureus (33). Correlation network 
analysis (clustering based on positive and negative associations in species abundance) 
identified co-abundance groups (CAGs) of co-occurring bacterial species, and singular 
species, which displayed anti- and co-correlation to the selected bacterial pathogens.

RESULTS

Cohort characteristic and sampling summary

Nasal swabs were obtained from 54 piglets born to 27 sows across 9 farms equally 
distributed in 3 countries (Table 1). We sampled from birth up to 10 weeks of age; daily 
during the first week of life, as our previous work showed rapid microbiome developed 
during this period (7), and weekly thereafter. Piglets were weaned between timepoints 
26 and 31 with most farms weaning was performed at timepoint 28. The 16S rRNA was 
sequenced from all samples (n = 813; Table 1). Furthermore, samples from two of the 
three litters per farm were additionally tuf amplicon sequenced (n = 538) for improved 
Staphylococcus resolution (31). Due to sequencing failure, 21 samples were lost (dark 
gray values in Table 1). Another 30 samples were excluded due to doxycycline treatment 
after timepoint 27 in farm NLD3 (light gray 0 values in Table 1).

TABLE 1 Distribution of nasal swab samples used for amplicon sequencingd

Timepoints

Country Farm ID Litters Piglets 0 1 2 3 4 5 6 13 20 27 34 41 48 55 62 69 Total samples

Germany GER1 3 6 6 a 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 95
GER2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 95
GER3 3 6 6 6 6 6 6 6 6 6 6 6 5 6 5 6 6 6 94

Ireland IRL1 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 96
IRL2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 96
IRL3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 96

The Netherlands NLD1 3 6 6 6 6 6 6 6 5 5 6 6 6 6 6 6 6 6 94
NLD2 3 6 4 4 6 6 6 6 4 6 6 6 6 6 6 6 6 6 90
NLD3 3 6 4 6 6 6 6 5 6 6 6 6 0 0 0 0 0 0 57

Total 9 27 54 50b 52 54 54 54 53 51 53 54 54 47 48 47 48 48 46 813c

aThe total number of nasal swabs collected per farm per timepoint. Timepoints are depicted in days (0–69) and represent the piglet’s age.
bTotal number of nasal swabs per timepoint.
cTotal number of included nasal swabs.
dDark grey values represent timepoints with sample loss.
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Summary of the sequencing results

Sequencing generated 32 and 15 million raw 16S rRNA and tuf gene reads, respectively. 
Microbiome analysis was performed on 17 and 11 million curated reads with a mean 
count of 19,812 ± 5,298 standard deviation (SD) and 18,226 ± 5,782 SD reads/sample for 
16S rRNA and tuf, respectively (Fig. S1A and B; Fig. S2A and B). For 16S rRNA, 11 negative 
controls had a mean read count of 1,204 with 3 of the 11 negative controls contain­
ing ~4,000 reads. For tuf, seven negative controls were sequenced, with each of them 
having very few reads in them (<20 reads). Overall, 10,088 unique amplicon sequence 
variants (ASVs) were identified in the 16S rRNA data set, 1,430 of which were detected 
as potential contaminants. For tuf, 4,038 unique ASVs were generated with no potential 
contaminants. In the 16S rRNA data set, the phylum Proteobacteria, with a 65.4% mean 
relative abundance, was most prevalent followed by Firmicutes (20.8%) and Bacteroidetes 
(7.2%). At genus level, Moraxella (44.9%) had the highest mean relative abundance 
followed by Streptococcus, Mannheimia, Rothia, and Actinobacillus all at ~5%. For tuf, 
Proteobacteria and Firmicutes made up around 100% (59.5% and 39.7%, respectively) of 
the detected phyla, and the most relatively abundant genera were Moraxella (59.0%) and 
Streptococcus (16.8%).

Bacterial diversity changes in the porcine nasal microbiome over time

The species diversity estimated with the Shannon index was higher at birth (Fig. 1; Fig. 
S3 with a categorical x-axis) for the tuf and 16S rRNA data sets with a lower overall 
richness for tuf. We observed a diversity decrease in the first week of life (T = 0 vs 6, 
P < 0.00001), which was most pronounced in the Netherlands, followed by a diversity 
increase at T = 13 (P < 0.00001). In the 16S rRNA data set, there was no significant 
difference in alpha diversity between timepoints 13 and 20, and 34 and 41, spanning 
over the time of weaning (T = 26–31). For tuf, there was also an alpha diversity decrease 
between the timepoints 0 and 6 (T = 0–6, P < 0.00001). However, between T6 and T13, 
no significant increase in alpha diversity was observed. We found no significant change 
in average Shannon diversity between T13 or T20, and T34 but did find a difference in 
Shannon diversity of weeks 2 and 3 (T = 13 and 20) vs week 6 (T = 41; P 0.015 and P 
0.003), with week 6 samples having lower average Shannon diversity than the earlier 
samples. Between week 5 (T = 34) and week 10 (T = 69), we did not observe a significant 
difference in alpha diversity in both data sets.

Beta diversity displays country-independent microbiome development

To investigate compositional changes in the piglet nasal microbiota over time, beta 
diversity was assessed via principal component analysis (PCA) based on Aitchison 
distances (Fig. 2). We observed across all three countries, an effect of time. Time (age 
of the piglet) explained most of the variation, as validated by permutational analysis 
of variance (PERMANOVA) in both the 16S rRNA and tuf data sets (19.24% and 24.73%, 
respectively; Table 2). Samples taken at birth (T = 0) are distinctly clustered from samples 
taken at the end of week 1 (T = 6) and week 5 (T = 34) (pairwise PERMANOVA, 16 S 
R2: 14%, 18%; tuf R2: 25%, 28%; P 0.001). Between week 3 (T = 20) and week 5 (T = 
34) (spanning weaning), we observed a significant difference in beta diversity (pairwise 
PERMANOVA, R2: 7.2% and 6.7%; P 0.001 and 0.001; 16S and tuf). Late samples, between 
week 5 (T = 34) and week 10 (T = 69), appear overlapping/similar in the PCA; however, 
pairwise PERMANOVA found a significant difference between the timepoints in the 16S 
and tuf data sets (T = 34 vs 69; R2: 3.5% and 3.4%, P: 0.001 and 0.025) albeit with the 
smallest R2 values compared to other timepoint comparisons.

To indicate ordination-driving species, we plotted their effect as arrows in the 16S 
rRNA PCA. Earlier samples were driven by members of the genera Clostridium, Mor­
axella, Streptococcus, Acinetobacter, and Escherichia, where late samples were driven 
by members of the genera Moraxella, Glaesserella, Agathobacter, Subdoligranulum, 
Prevotella, and Mannheimia (Fig. 2A). For tuf, 12 of the top 15 ordination driving taxa 
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were attributed to samples from earlier timepoints. Moraxella osloensis, Moraxella genus, 
and the Lactobacillales order drove the shift toward later timepoint clusters (Fig. 2B).

Additionally, we sought to identify factors that explained most of the variation in the 
beta diversity, apart from the factor time (time: 19.24% 16S and 24.73% tuf). We therefore 
tested the explained variance of the hierarchical levels and found that all levels explained 
some of the variance, but farm explained a small majority (5.3% 16S and 7.3% tuf; Table 
2). Sex of piglets had a significant effect but explained, 0.26% for 16S and 0.39% for tuf of 
the variation (Table 2).

Temporal trends in relative abundances at species-level taxonomy

Individual farm-level differences were observed among the top 25 most abundant taxa 
at species level (Fig. S4). However, trends in average relative abundances of the PNM 
top 25 species between the countries seemed similar (Fig. 3). For 16S rRNA, the most 
abundant species were members of the genus Moraxella, which often accounted for 
half of the species relative abundance. During the first week after birth, M. boevrei, 
together with M. bovoculi and M. porci, were the most abundant. Toward the end of 

FIG 1 Longitudinal changes in the piglet nasal community Shannon diversity measured for (A) 16S rRNA and (B) tuf gene amplicon sequencing. X-axis: Sample 

time (days), timepoint 0 represents the piglets’ day of birth. Y-axis: Shannon diversity index. Farms are presented by country and color coded for identification. 

The dots represent the samples, lines display the predicted mean, and the gray boundaries the standard error.
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FIG 2 Principal component analyses show compositional differences and similarities (beta diversity) in the nasal microbiomes of piglets over time in the 16S 

rRNA data (A) and the tuf data (B). Samples were colored by age of the piglets in days (0–69) and given shape by country (Germany, Ireland, and the Netherlands). 

The arrows show the top 15 taxa that drive the sample ordination. * represents a significant P-value (α < 0.05).
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the first week, the species M. catarrhalis/nonliquefaciens and an unknown species of the 
genus Moraxella became more prevalent. The species M. porci was consistently observed 
throughout all timepoints (prevalence bar, Fig. 3C), with its highest relative abundance 
beginning at week 1 and after day 48 with a pronounced larger proportion in the later 
German samples (Fig. 3A). Streptococcus suis was prevalent throughout with a low mean 
relative abundance. During the first week, we prevalently observed the species Rothia 
nasimurium and Mannheimia varigena, and species from the genera Clostridium and 
Escherichia were abundant. From the end of week 1 to week 10, we observed an increas­
ing fraction of Actinobacillus indolicus (most pronounced in Ireland), Bergeyella zoohel­
cum, and Glaesserella parasuis. These species together with the various Moraxella species 
comprised on average half of the averaged relative abundances in weeks 1–10. In the 
Dutch samples, in week 2 (T = 13), fewer of the top 25 most abundant species were 
present (Fig. 3A and B). This was clearly observed in Dutch farm NLD2 (Fig. S4A).

A lower number of taxa were observed for tuf (as compared to 16S), an amplicon 
known for a good resolution for Staphylococcus, Streptococcus, and Enterococcus species 
(31, 34, 35). In the tuf data set, the Moraxella genus was by far the most abundant taxon, 
specifically an unclassified member of the genus Moraxella (Fig. 3B). The second most 
relatively abundant Moraxella species was M. osloensis, which could not be differentiated 
by 16S rRNA gene sequencing and was abundant until weaning (T = 27). The species 
S. suis had its highest relative abundance in the first days of life but was detected 
throughout the sampling period shown in Fig. 3B and by the high prevalence bar in 
Fig. 3D. Around week 2, the Streptococcus genus and Lactobacilliales order, both without 
better taxonomic resolution, became more abundant.

Like 16S rRNA, in the Dutch tuf samples, the top 25 species explained less relative 
abundance in week 2 (T = 13). Overall, the top 25 taxa at species level comprised 90%–
100% of the average relative abundance. After timepoint week 3 (T = 20), four to five 
species made up 90% of the relative abundance, illustrating the low number of taxa 
represented by tuf.

Temporal trends of bacterial pathogens in the piglet nasal microbiota

Next, we focused on the 12 pig pathogens as in the Introduction. The relative abun­
dances of these species were calculated for 16S and tuf, specified in Table 3. Of the 
12 species, 9 were detected using 16S rRNA and 2 using tuf (S. aureus and S. suis). 
In the 813 samples, S. suis was the most prevalent (804/813) followed by G. parasuis 
(500/813) and M. varigena (365/813). These species also had the highest mean relative 
abundance of the 12 putatively pathogenic species, around 3% across samples. M. 
varigena had the highest mean relative abundance of 7.5%. The maximum relative 
abundance of M. varigena, A. pleuropneumoniae, G. parasuis, and M. hyorhinis was around 
50%, and S. aureus had the lowest maximum relative abundance at around 0.7%. The 
species Bordetella bronchiseptica was not identified, but ASVs assigned to the Bordetella 

TABLE 2 PERMANOVA outputs for the 16S rRNA and tuf data sets with time, sex, and the nested factor country, farm, sow, piglet as factors explaining variation

16S rRNA Tuf

Factor Df SumOfSqs R2 Pr (>F) Df SumOfSqs R2 Pr (>F)

Time 15 132473.46 0.1924 0.0002a 15 29408.61 0.2473 0.0002a

Sex 1 1794.97 0.0026 0.0008a 1 462.00 0.0039 0.0030a

Country 2 19065.64 0.0277 0.0002a 2 3972.26 0.0334 0.0002a

Country: farm 6 36632.69 0.0532 0.0002a 6 8678.21 0.0730 0.0002a

Country: farm: sow: piglet 18 25908.57 0.0376 0.0002a 9 4159.90 0.0350 0.0002a

Country: farm: sow: piglet 26 14908.61 0.0216 0.8660 17 2122.51 0.0178 0.8676
Residual 744 457918.93 0.6649 NAb 487 70125.58 0.5896 NA
Total 812 688702.86 1 NA 537 118929.1 1 NA
aRepresents a significant adjusted P-value (α <0.05).
bNA,Not applicable.
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genus were present. T. pyogenes, S. aureus, and K. pneumoniae were rarely detected. 
We observed a peak of T. pyogenes in farm NLD1 samples containing a relative 

FIG 3 The top 25 most abundant taxa at species level in the 16S rRNA (A) and tuf (B) data in all samples per country. The piglet 

samples are grouped by age of the piglet in days. The heatmaps show, for each of the 25 top species, at which timepoint each 

species had its presence in the 16S rRNA (C) and tuf data (D); red correlates with a high presence, and blue correlates with a 

low presence of a taxon per timepoint (based on Pearson correlation). The bars to the right of the heatmap show the species 

prevalence over all samples, and boxplots show the distribution of its relative abundance over all samples.
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abundance >0.1% for a period from week 3 till week 8 (Fig. 4). K. pneumoniae was 
detected in the three German farms and in farm IRL3.

To investigate whether there were temporal trends in the presence of pathogens, we 
plotted the relative abundance of the pathogens investigated for 16S rRNA (Fig. 4) and 
tuf (Fig. S5) by farm. As expected from the high prevalence of S. suis (Table 2), this taxon 
was consistently detected across the studied farms. A. pleuropneumoniae was mostly 
detected in the first week, except for farm IRL3, where it increased in relative abundance 
after week 2. G. parasuis was detected throughout the sampling period, generally with 
a higher relative abundance after week 2 (except for farm GER3, where it was only 
detected in the first week).

We observed different profiles of pathogen presence between farms. For example, in 
farms GER1 and IRL1, hardly any M. hyorhinis or P. multocida were detected. In contrast, 
co-occurrence of these species was observed on farms IRL2, IRL3, and NLD1. M. hyorhinis 
was prevalent in five of the nine farms and mostly after week 2.

Co- and anti-correlation of bacterial species in the piglet nasal microbiome

Positive and negative associations between the top ~125 taxa at species level for 16S and 
top ~50 taxa at species level for tuf for were determined using SparCC per country after 
removing species with low prevalence. The selected taxa explained an average of 94% of 
the relative abundance in the 16S and 99% in the tuf data set. Subsequently, a selection 
of species, with a SparCC correlation index smaller than −0.2 and larger than 0.2 (cutoffs 
were chosen to reduce the number of species and edges between species) per country, 
was included for clustering using a Markov cluster algorithm (MCL). We observed seven 
distinct co-abundance groups for 16S rRNA and two tuf-CAGs. 16S-CAG1 was the largest 
with 15 members, followed by 16S-CAG2 with 13 members. We further established two 
tuf-CAGs of similar size (seven and eight taxa) (Table S1).

The SparCC-inferred interactions of the species were visualized in a network (Fig. 5). 
Between the members of 16S-CAG1 and 16S-CAG2, exclusively negative interactions 
were observed. Members of 16S-CAG3 and 16S-CAG4 shared positive interactions 
between them and negative interactions with members of the other 16S-CAGs. The 
smaller 16S-CAG5, 16S-CAG6, and 16S-CAG7 had positive associations with members of 
16S-CAG2.

Temporal succession of taxa could underlie the co-abundance grouping

Time explained most variability in microbial composition. To observe time effects on 
CAGs, the average of the summed relative abundances per CAG (Fig. 6) was plotted over 
time. In all three countries, similar trends were observed; 16S-CAG1 increased in relative 

TABLE 3 Presence of bacterial pathogens in the 16S rRNA data set

Species Prevalence in samples
(N = 813)

Average relative abundance 
when detected

Average relative 
abundance overall

Maximum relative 
abundance in a sample

Actinobacillus pleuropneumoniae 136 1.96% 0.33% 56.43%
Actinobacillus suis NDa – – –
Bordetella bronchiseptica NDa – – –
Glaesserella parasuis 500 6.20% 3.81% 47.00%
Klebsiella pneumoniae 69 0.87% 0.07% 6.69%
Mannheimia varigena 365 7.50% 3.40% 63.71%
Mycoplasma hyopneumoniae NDa – – –
Mycoplasma hyorhinis 196 2.12% 0.51% 51.45%
Pasteurella multocida 84 1.02% 0.11% 17.12%
Staphylococcus aureus 11 0.29% < 0.01% 0.69%
Streptococcus suis 804 3.15% 3.11% 25.43%
Trueperella pyogenes 55 0.29% 0.02% 3.20%
aThese species have not been detected in the sequencing data.
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abundance from day 1 and remained dominant up to day 70 of life. Inversely, the relative 
abundance of 16S-CAG2 was highest at birth and decreased from the first day, with some 
fluctuations in relative abundance later in life. Similarly, tuf-CAG1 was succeeded by tuf-
CAG2 after day 1, a trend that was again evident in all three countries. 16S-CAG3 had a 
minor peak around week 2 of life (2 weeks prior to weaning). This effect was more 
evident in the unaveraged plot of 16S-CAG3 (Fig. S6). The 16S-CAGs other than the 16S-
CAGs 1 and 2 had a generally low relative abundance.

Candidate probiotic species that are anti-correlated with respiratory patho­
gens

We utilized the SparCC analysis of the 16S rRNA and tuf data sets to infer taxa negatively 
associated with airway pathogens over all three countries, displayed in Table 4. Porcine 
pathogens of 16S-CAG1 (G. parasuis, M. hyorhinis, and P. multocida) showed inverse 
correlations with members of 16S-CAG2, 16S-CAG3, and 16S-CAG5. M. varigena, a 
pathogen of 16S-CAG2, was negatively correlated with members of 16S-CAG1, 16S-
CAG3, and 16S-CAG4 (Table 4). These anti-correlating taxa could be explored for 
probiotic potential.

FIG 4 Log-transformed relative abundances (>0.0001) for 16S rRNA over time of the nine detected pig pathogens faceted per farm. Lines indicate trends in 

relative abundance within a farm.
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DISCUSSION

The development of the piglet nasal microbiome has implications for health and disease. 
However, its longitudinal development is understudied, and most microbiome studies 
lack taxonomic resolution (6). We obtained longitudinal data of the porcine nasal 
microbiota from birth to day 70 of life, from three farms across three different coun­
tries, using a combination of 16S rRNA and tuf gene amplicon sequencing achieving 
phylogenetic resolution up to species level. Using tuf sequencing, the species resolution 
of Firmicutes (35, 36) in the piglet nasal microbiome improved. This allowed us to 
describe CAGs of bacterial species that are commonly found together and consistently 
present in piglets in the studied countries.

Piglet age and the farm shape the nasal microbiota

Time (age of the piglet) explained 19.4% of the (16S rRNA) variation in nasal microbiome 
composition between samples. The fact that the microbiome changes with time has 
been previously observed in human (37) and animal (38–40) studies, where a more stable 
microbiome has been observed in adulthood (37, 41). We observed a notable drop in 
alpha diversity during the first week, followed by a subsequent increase in the next week. 
This change in diversity was also reflected in the beta diversity. In other studies, changes 
in alpha diversity at T = 7 have been observed in relationship with antibiotic treatment of 
the sow or piglets (19) (in our study, no antibiotics were used). The authors hypothesized 
that their observed increase in alpha diversity was caused by dysbiosis and associated 
influx of environmental taxa.

Weaning is an impactful life event for piglets. This is reflected in a small but significant 
effect in beta diversity between samples before and after weaning. However, alpha 
diversity did not show a significant effect between the same timepoints. We observed 
that the alpha diversity stabilized after weaning and did not show significant differen­
ces. We observed a smaller difference between later timepoints than between earlier 
timepoints in the beta diversity analysis, which we visualized in the PCA plots (Fig. 3). This 
post-weaning stabilization has previously been described (20) and suggests maturation 
from juvenile to a more “adult” microbiome in response to the changing factors around 

FIG 5 Network of co- and anti-correlating species for 16S rRNA (A) and tuf (B). Line color orange indicates negative association, and blue indicates positive 

association. Line thickness corresponds with a higher average correlation index (R2). The larger node size indicates the greater average relative abundance over 

the whole data set. Species nodes are colored and circled according to their CAGs.
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weaning. After age, farm had the largest effect on beta diversity, followed by sow (litter) 
and the country of origin (Table 2). A farm effect (11) and a litter effect on the piglet-ton­
sil microbiota (42) have previously been described. Nonetheless, remarkable congruence 
in the developing microbiome was observed for all piglets across all countries. Homoge­
neity in environmental conditions such as gaseous ammonia (18) or using vaccination 
(43) and similar genetics (despite pig lineage differences between farms in this study) in 
commercial pig farming might help explain this consistency. To determine drivers behind 
the differences between farms, countries, and/or litters that affect nasal microbiome 
development in greater detail, a study design with more farms and farm data would be 
needed.

FIG 6 Average relative abundances of the seven 16S-CAGs (A) and two tuf-CAGs (B) by time, per country; error bars represent the standard deviation in relative 

abundance between samples.
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The vaginal and fecal microbiome “seed” the nasal microbiome

Previously, we observed that nasal samples taken from piglets directly after birth 
contained many species associated with the gastrointestinal tract (7). An effect of 
natural birth on the piglets’ microbiome development is supported by the different 
development of the piglet’s (gut) microbiome in cesarean-section-derived pigs (44). 
Likely because for naturally born piglets, the first contact with the nonsterile environ­
ment, including the birth canal and maternal feces, is different. A maternal effect is also 
suggested in studies where the sow microbiome and the sow’s parity influenced the 
piglet tonsillar microbiome directly post-partum. As was seen in the vaginal microbiota 
of high-parity sows consisting of taxa as Pasteurellaceae family, and the Aerococcus, 
Clostridium, and Escherichia genera. These taxa were subsequently more present in their 
piglets’ tonsil directly post-partum (45). Similarly, in our samples shortly after birth, 
we detected members of the genera Clostridium and Escherichia, taxa often associated 
with the gut (Fig. 2). Clostridium and Escherichia species clustered into 16S-CAG2 and 
16S-CAG3 (16S-CAG3 almost completely consisted of Clostridiaceae). Both these CAGs 
were detected mostly in early life (CAG3 has an additional peak around week 2). The 
relative abundance of these gut-associated taxa and the higher Shannon alpha diversity 
(Fig. 1) indicate nasal colonization by vaginal and (the generally rich) fecal microbiota. A 
recent study shows that gut-associated microbes are present nasally and actively living 
there (46). These observations add further evidence that natural birth seeds the early 
colonizers of the piglet’s upper respiratory tract.

Sow and farrowing pen conditions shape the starting microbiome

The samples from the first week after birth excluding the first timepoints (T = 2–6) 
likely consist of a microbiome that is driven by maternal or farrowing pen influences as 
the samples of these timepoints cluster together horizontally. Colostrum and the high 
piglet snout to sow skin/teat contact may shape the microbiota, as has been suggested 
by Obregon-Gutierrez and collaborators. Specifically, sow-skin contact was associated 
with presence of the genera Rothia, Moraxella, and Enhydrobacter (47). Enhydrobacter, a 
member of the Moraxallaceae family, was not observed in our study. However, we did 
observe high abundances of Rothia, albeit less abundant than Moraxella and Mannheimia 
species, mainly present during the first week of life. This is supported by our previous 
finding that Rothia was present at almost 50% relative abundance during the first week 
(7). M. boevrei was often the most prevalent species during this period, succeeded later 
in life by other Moraxella species, a finding consistent with other studies (12, 13, 48, 49). 
Interestingly, Moraxella has been observed as a common nasopharyngeal inhabitant in 
humans and animals and has been associated with opportunistic airway infections (10, 
50–52), but also with breastfeeding, and microbiome stability (41).

Abundant taxa detected in the nasal microbiota match previous studies

In alignment with our data (Fig. 3), Correa-Fiz et al. (12) identified genera, such as 
Moraxella, Haemophilus, Enhydrobacter, Klebsiella, Oscillospira, Streptococcus, Lactobacillus, 
Weeksella, Prevotella, and Bacteriodes, as key components of the core nasal microbiome 
at 3–4 weeks of life (12). The discrepancy between Haemophilus and Glaesserella can be 
explained by a name change of H. parasuis to G. parasuis. The most abundant genera 
in their 2019 study (48) again correlate with our current findings. The porcine nasal 
microbiome samples studied by Strube et al. (32) had higher Streptococcus, Rothia, 
Moraxella, and Globicatella and lower Facklamia and Aerococcus abundances. Again, 
we observed these genera, except Facklamia and Globicatella, as our most abundant 
taxa. The most abundant genera in our study are also in direct concordance with the 
genera present in the pig upper respiratory microbiome, as found at three timepoints by 
Rampelotto et al. (13) at the end of weaning, at the end of the nursery phase (T = 71), 
and at finishing (T = 373) (13).
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Co-abundance analysis identifies two major CAGs in competition

In both 16S rRNA and tuf data sets, co-abundant species grouped across countries. 
Previously, we described CAGs from 16S rRNA and tuf nasal swab data sets in one Dutch 
farm with temporal trends and associations with LA-MRSA (7). Here, we describe seven 
16S-CAGs across multiple farms and countries. There was overlap between 16S-CAG6 
and 16S-CAG8 of the previous study and 16S-CAG1 and 16S-CAG3 of the current study. 
For example, in previous 16S-CAG8 and current 16S-CAG3, we observe Clostridium 
species being present 2 weeks pre-weaning.

The interaction network depicts that the members of the two largest 16S-CAGs are 
negatively associated with each other (Fig. 5A). The same holds true for the two tuf-CAGs 
we defined (Fig. 5B). These negative associations have a temporal component. Members 
of 16S-CAG1 and tuf-CAG2 are most present in the later timepoints, indicating that 
these CAGs are part of the microbiome of older piglets. We argue that there is a group 
of genera colonizing the nasal microbiome at birth and early in life (e.g., the species 
in 16S-CAG2). This group is later succeeded by other taxa (the species in 16S-CAG1) 
potentially due to microbe competition, changing maternal contact, piglet development, 
or by altered piglet behavior and changes in its diet (e.g., weaning or early life solid feed 
introduction).

Several taxa were negatively associated with respiratory pathogens

We observed widespread presence of opportunistic pathogens, with low relative 
abundances, and observed farm­specific pathogen trends. Several taxa were negatively 
associated with pathogens (Table 4). For example, some farms showed M. hyorhinis in 
co-occurrence with P. multocida after week 2. This is in concordance with clinical signs 
of M. hyorhinis infections arising around weeks 3–10 in affected pigs (30) and matches 
previous descriptions of secondary infections of M. hyorhinis, P. multocida, and S. suis 
after viral infection as part of the PRDC complex (53). However, piglets in our study did 
not show clinical signs. This absence of signs is consistent with studies that detected 
bacteria commonly associated with disease without causing disease (21, 54). Therefore, 
these species could be considered as opportunistic pathogens or pathobionts (55). One 
thing to note is that taxonomy assigned to amplicon sequencing does not account 
for within-species heterogenicity nor can it detect the presence of virulence genes. 
Therefore, we were not able to discriminate between commensal and virulent strains 
that were present in the nasal microbiome of the sampled pigs.

Before using the current findings to develop competitive exclusion against respiratory 
pathogens, additional experimental evidence is warranted. The amplicon sequencing 
used in the current study resulted in compositional data, which are not ideal for 
quantitative analysis (56). Absence of taxa in the sequence data does not necessarily 
indicate a true absence of the bacterium (7). Furthermore, methodological differences 
can cause effect on the outcome of a sequencing effort and may cause differences 
between studies (57). Quantitative and sensitive methods such as qPCR are needed 
to confirm negative correlations between potential probiotic taxa and opportunistic 
pathogens. Additionally, interactions identified in our in silico analyses should be tested 
by isolating identified strains and testing them in in vitro and in vivo models.

Conclusion

This study extends the understanding of the longitudinal development of the nasal 
microbiome of 54 piglets between birth and day 70 of life. The nasal microbiota 
displayed similar trends in (alpha- and beta-) diversity and relatively abundant taxa over 
three geographically distinct regions, in different farms, and different litters. We conclude 
that the development of the piglet nasal microbiome is strongly influenced by the 
age of the pig regardless of the farm. CAGs of bacterial species, with distinct temporal 
trends in all three countries, showed interactions between commensal nasal species and 
respiratory pathogens. These data can be used to inform and identify probiotic strains 
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to control opportunistic bacterial airway pathogens. Such a pathogen reduction strategy 
would be valuable in the fight against AMR.

MATERIALS AND METHODS

Farms and animal management

Nine conventional farms were studied in three European countries [Ireland (n = 3), 
Germany (n = 3), and the Netherlands (n = 3)]. Farmers gave informed consent to 
participate in the study, and all data were anonymized before analysis. At birth, piglets 
from four litters on each of the three farms in the three countries were selected for 
nasal swabbing. Only piglets from sows which had not been treated with antimicrobials 
were selected, and piglets from litters where antimicrobials were administered during 
the study period were excluded. Farm­specific details can be found in the questionnaire 
results (Table S2).

Nasal swab sampling

Piglets were nasal swabbed at 0, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 48, 55, 62, and 69 days 
after birth. Nasal swabs were taken from 54 piglets born to 27 sows across 9 farms over 
3 countries (N = 864). For samples taken in week 1, aluminum-wire swabs with a rayon 
tip (Copan, 160C) were used. Swabs from later timepoints (T = 14–69) were taken using 
plastic swabs with a rayon tip (Copan, 155C). The swabs were kept refrigerated and were 
processed within 24 hours post-sampling. The swab tips were cut into 2-mL Eppendorf 
tubes and submerged in 600-µL lysis buffer BL (LGC genomics, Berlin, Germany) and 
stored at −20°C until processing.

DNA extraction

DNA from nasal swabs was extracted, from piglets with a completed timeseries (n = 16) 
[for Dutch farm NLD3 (n = 9)] resulting into a total of 813 samples, using a modified 
LGC mag kit protocol (LGC genomics, Berlin, Germany) adapted from Wylie et al. (58). 
The samples were homogenized and lysed by beat beating with 0.2-mm zirconia beads 
and 500-µL molecular grade TE-saturated phenol (ThermoFisher, Bleiswijk, the Nether­
lands). After spinning, the aqueous phase was transferred to 1,000 µL binding buffer and 
10 µL magnetic beads in a round bottom molecular grade 2.2 mL 96-deep-well plate 
(VWR international, Amsterdam, the Netherlands). The binding and washing steps were 
performed in 96-well plates according to the manufacturer’s specification, and the eluted 
DNA was stored at −20°C. Empty lysis buffer was used as negative controls for DNA 
extraction, qPCR, and sequencing.

Quantification of 16S rRNA by real-time PCR to normalize sequencing input

Sample bacterial DNA was estimated using a 16S rRNA qPCR to normalize the sequenc­
ing library preparation. Reactions were performed on the LightCycler 480 platform 
(Roche Diagnostics, Almere, The Netherlands). Reaction mixtures consisted of 1 µL nasal 
swab DNA, 7 µL molecular grade water, 1 µL primer 355F (5' ACTCCTACGGGAGGCAGC 3') 
at 10 µM, 1 µL primer 556R (5' CTTTACGCCCARTRAWTCCG 3') at 10 µM, and 10 µL SYBR 
Green Master Mix (Bio-Rad, Veenendaal, The Netherlands). The DNA extraction estimated 
an average rRNA yield corresponding to 5 × 108 bacterial cells/mL.

16S rRNA and tuf gene sequencing

The V3-V4 region of the 16S rRNA gene was amplified using the primers 341F (5′-TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAGC

CTACGGGNGGCWGCAG-3′) and 805R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGA GA
CAGGACTACHVGGGTATCTAATCC-3′) (Eurofins Genomics, Germany). The tuf gene was 
amplified using the primers tuf-F (5′-GCCAGTTGAGGACGTATTCT-3′) and tuf-R (5′-CCA
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TTTCAGTACCTTCTGGTAA-3′) (36). Both primer sets were used at a concentration of 
0.2 µM with Phusion High-Fidelity DNA polymerase (Thermo Scientific, USA). According 
to Illumina (San Diego, CA, USA) recommendations, the following PCR conditions were 
used: an initial denaturation step at 98°C for 30 s, followed by 25 cycles of denaturation 
at 98°C for 10 s, annealing at 55°C for 15 s, extension at 72°C for 20 s, and a final extension 
step at 72°C for 5 min, followed by cooling to 4°C. The amplicons were visualized on a 
1% agarose gel to confirm amplicon lengths of approximately 550 bp for the 16S rRNA 
gene and 400 bp for the tuf gene. The amplicons were purified using Agencourt AMPure 
XP magnetic beads (Beckman-Coulter, USA) and eluted in 50 µL EB Buffer (Qiagen), 
after which Illumina barcode sequences were added using the Nextera XT v2 Index 
Primer Kit. The index PCR conditions were as follows: 98°C for 30 s, followed by eight 
cycles of denaturation at 98°C for 10 s, 55°C for 15 s, 72°C for 20 s, and a final 72°C 
for 5 min, followed by cooling to 4°C. Another round of purification with Agencourt 
AMPure XP magnetic beads was performed, and the final amplicons with indices were 
eluted in 28  µL EB Buffer (Qiagen). Sample concentration was measured using the 
Qubit High-Sensitivity Double-Stranded DNA Assay Kit (Thermo Scientific) on a Qubit 3 
Fluorometer. For library pooling, 30 ng DNA from each sample was combined to create 
a randomized pooled library that was sequenced at the Teagasc NGS sequencing facility 
(Teagasc Moorepark, Fermoy, Co. Cork, Ireland) on an Illumina MiSeq, generating 2  × 
300  bp paired-end reads.

Amplicon sequencing read pre-processing

The check of read quality and the pipeline to infer ribosomal sequence variants (ASVs) 
using DADA2 v1.20 was performed as described by Patel et al. (7) with slight modifica­
tions considering the following parameters: truncLen = c(220,220), trimLeft = c (17, 21), 
maxEE = c (2, 2), truncQ = c (2, 2), maxN = 0, rm.phix = TRUE for 16S rRNA and truncLen 
= c(240,200), trimLeft = c (20, 22), maxEE = c (2, 2), truncQ = c (2, 2), maxN = 0, rm.phix 
= TRUE for the tuf gene. In the taxonomy assignment step, the bootstrap confidence 
threshold was mutated to 80%.

Amplicon sequencing microbiome analysis

Data sets were formatted into two phyloseq objects (tuf and 16S rRNA) for diver­
sity analyses, visualization, and statistics. RStudio for windows (2023.03.1+446 “Cherry 
Blossom” Release) with R version 4.1.3 (10 March 2022) was used to perform all analyses. 
Analyses in R were performed using the “microViz” (0.10.6) (59), “microbiome” (1.16.0), 
“tidyverse” (1.3.2), “CoDaSeq” (0.99.6), “phyloseqCompanion” (1.0), “vegan” (2.6–4), and 
“phyloseq” (1.38.0) packages. The full R analysis, including all loaded libraries (utilitarian 
libraries), is appended as a Quarto-document (.qmd).

Alpha diversity calculations

Alpha diversity measures were estimated and visualized using the “phyloseq” R-package. 
To correct for varying sequence depth, all samples were rarefied to 5,034 reads for the 
16S rRNA data set (minimum read count of the 16S rRNA data set) and 6,091 reads 
for the tuf data set (minimum read count of the tuf data set). Shannon alpha diversity 
was visualized using the “plot_richness()” function. t-Tests to compare timepoint alpha 
diversity were performed using the base R Welch two sample t-test at an alpha of 0.05.

Beta diversity calculations

Aitchison distances were calculated from centered log-ratio) transformed, unfiltered, and 
unrarefied data sets, which had zeroes imputed with half the minimum observed value 
for each taxon at species level, using the “tax_transform()” function. When taxonomy 
was not assignable to species level, the microViz “tax_fix()” function was used to 
impute the highest possible taxonomic resolution (E.G. Staphylococcus species). Samples 
were ordinated using the “ord_calc()” function using method “PCA.” The ordinations 
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were visualized using the “ord_plot()” function. Top 15 ordination-driving species were 
visualized by using the “ord_plot()” setting; “plot_taxa = 1:15.” All three functions are 
from the “microViz” R-package.

PERMANOVA analysis on beta diversity

PERMANOVA analysis was performed on the ordinations asmentioned in the result 
section above using the “adonis2()” function from the “Vegan” R-package. Use the 
model formula: “Country/Farm/Identifier_SOW/Identifier_pig +Time + Sex” to consider 
the nested study design. We used 5,000 permutations. Pairwise comparisons were made 
using the “pairwise.adonis2()” function from the “PairwiseAdonis” R package with an 
alpha of 0.05.

Visualization of microbial composition

Composition bar plots were generated by merging relative abundance data from all 
farms by timepoint for each country. Unrarefied data sets were used to generate the 
composition bar plots. Bar plots were generated using the “comp_barplot()” function, 
and heatmaps were generated using the “cor_heatmap()” function both from the 
“microViz” R-package, setting tax_level to “species,” and n_taxa to 25. Figures were 
optimized using functions from the “ggplot2” R package.

SparCC correlation

ASVs were agglomerated to species level to generalize species-level effects. Positive and 
negative associations based on the abundances of species with at least 50 reads in at 
least 5% of the samples in the 16S rRNA and tuf data set were inferred using SparCC (60). 
From each separate country, (anti)correlations with an r >0.2 or r <−0.2 were selected. 
Species displaying significant correlation with an average correlation of r >0.2 over all 
countries, where the interaction was found, were clustered into co-abundance groups 
using MCL (61) using default settings.
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