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Over the last 10 years, global raspberry production has increased by 47.89%, based mainly on the red raspberry species (Rubus idaeus). 
However, the black raspberry (Rubus occidentalis), although less consumed, is resistant to one of the most important diseases for the 
crop, the late leaf rust caused by Acculeastrum americanum fungus. In this context, genetic resistance is the most sustainable way to 
control the disease, mainly because there are no registered fungicides for late leaf rust in Brazil. Therefore, the aim was to understand 
the genetic architecture that controls resistance to late leaf rust in raspberries. For that, we used an interspecific multiparental population 
using the species mentioned above as parents, 2 different statistical approaches to associate the phenotypes with markers [GWAS (gen-
ome-wide association studies) and copula graphical models], and 2 phenotyping methodologies from the first to the 17th day after in-
oculation (high-throughput phenotyping with a multispectral camera and traditional phenotyping by disease severity scores). Our 
findings indicate that a locus of higher effect, at position 13.3 Mb on chromosome 5, possibly controls late leaf rust resistance, as 
both GWAS and the network suggested the same marker. Of the 12 genes flanking its region, 4 were possible receptors, 3 were likely 
defense executors, 1 gene was likely part of signaling cascades, and 4 were classified as nondefense related. Although the network and 
GWAS indicated the same higher effect genomic region, the network identified other different candidate regions, potentially comple-
menting the genetic control comprehension.
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Introduction
Although wild raspberry species occur in different conditions, pro-
duction is mainly in Europe and North America. With a production 
increase of 47.89% in 10 years (FAOSTAT 2022), this temperate crop 
is increasingly appreciated due to several characteristics. Its main 
features are organoleptic properties, content of healthy compo-
nents, such as anthocyanins (Rao and Snyder 2010), and high 
added value, which can represent a potential business for small 
and medium-sized producers (de Oliveira et al. 2020). Even with 
this set of characteristics, there is a need for more raspberry culti-
vars adapted to tropical climate conditions, as is the case in Brazil. 
In Brazil, the used varieties are introgressions from north- 
hemisphere countries (Marchi et al. 2019), so their yield and per-
formance in the face of biotic and abiotic stresses depend on the in-
tensity of the interaction of these cultivars with the new 
production environments. The country’s production is concen-
trated in regions with high altitudes and lower annual tempera-
tures, representing a small portion of arable areas of Brazil.

The acceptance of a new raspberry cultivar relies on environ-
mental adaptation and fruit quality, with particular emphasis 

on fruit color. Red raspberries (Rubus idaeus) are economically 
more important and more consumed than black ones (Rubus occi-
dentalis) (Folta and Gardiner 2009; Baby et al. 2018). However, in 
addition to the differences in fruit color, they also differ in resist-
ance to some diseases. Late leaf rust is relevant in the north and 
south hemispheres, with reported losses of up to 70% with the cul-
tivar “Festival” in Nova Scotia (Ellis et al. 1991). The Acculeastrum 
americanum pathogen causes the disease, and the first symptom 
is the orange spots on the leaves, which turn dark over time. 
Depending on the disease severity, premature defoliation may oc-
cur, consequently becoming more susceptible to winter injuries. 
Although most red raspberry cultivars are susceptible to late 
rust and are economically important, more resistant varieties, 
such as the black raspberry species, have been reported and 
may serve as a source of genetic variability (Hall et al. 2009). 
Therefore, exploring the resistance interspecific variation to late 
leaf rust in raspberries represents great potential for breeding 
and a more sustainable and indicated way to control the disease.

The different genetic variations in these species derive from 
spontaneous mutations maintained or shaped during evolution 
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by some forces, such as natural or artificial selection, among other 
genetic processes that lead to speciation. The analysis of these 
mutations helps to elucidate the genetic architecture of traits of 
great interest to humanity, such as yield or resistance to biotic 
and abiotic stresses, among many others (Alonso-Blanco et al. 
2009). Understanding complex traits requires a study of the causal 
loci allelic variation. The general way to make this link between 
phenotype and genotype is by performing broadly used analyses, 
genome-wide association studies (GWAS), and quantitative trait 
locus (QTL) mapping (Korte and Farlow 2013). The wide use of 
these techniques was possible due to the advancement of next- 
generation sequencing technologies, exponentially increasing 
the capacity to obtain genomic data with a drop in the associated 
cost (Henson et al. 2012). However, phenotyping remains a bottle-
neck for these traits studied nowadays (Yang et al. 2020). Our ability 
to dissect the genetic architecture of a quantitative trait is limited 
by our ability to obtain individual phenotypic values, such as trad-
itional or high-throughput phenotypes. As traditional methods can 
be costly, time-consuming, destructive, and more prone to human 
error, high-throughput phenotyping has come to try to reduce the 
phenotyping bottleneck in breeding programs (Gill et al. 2022). 
Although it still presents many limitations and challenges, once es-
tablished in a crop, it can accelerate genetic gain by improving the 
selection intensity and accuracy (Araus et al. 2018).

In the past years, GWAS has been the main analysis used to 
study the genetic architecture of traits due to its ability to control 
population structure and not require a specific mating design as 
QTL mapping. The main contribution of the technique derives 
from the fact that it is possible to perform these associations in pa-
nels containing great diversity. The method uses the ancestral re-
combination events to identify the causal loci through the linkage 
disequilibrium (LD) (Huang and Han 2014). The studied traits can 
be simple and easily detectable by GWAS when they have few loci 
with large effects on the phenotype or more complex traits, such 
as those that are regulated by many small-effect loci or those that 
have many rare allelic variants (Korte and Farlow 2013).

Not as conventional as association and QTL mapping in plant 
breeding, it is the use of a graphical network. The term Network 
has become more frequent in many scientific fields because graph-
ical modeling is one of the best ways to represent high-dimensional 
data (Purutçuoğlu and Farnoudkia 2017). Behrouzi and Wit (2019)
studied epistatic selection using semiparametric penalized copula 
Gaussian graphical models, in which the network was able to cap-
ture aberrant associations between markers through short- and 
long-range LD dependencies. Zhang et al. (2021), also using latent 
Gaussian copula models, studied schizophrenia using genomic 
data based on single nucleotide polymorphism (SNPs) and brain 
imaging. In these systems, each variable, such as phenotype and 
genotype, is represented by a node, and edges between these nodes 
represent its conditional independence relationships. According to 
Sklar’s theorem, it is necessary to describe the joint probability dis-
tribution function to use multivariate stochastic models. This joint 
distribution can be decomposed into the variable’s marginal distri-
butions and a joint behavior of the random variables, the copula 
(Durante et al. 2013). Besides the capability to utilize data with 
missing values, a key benefit lies in the separate and independent 
variable modeling, allowing the joint use of variables with different 
distributions. As association mapping and the network derived 
from copula graphical models are approaches that differ in meth-
odology and data modeling, using them together can contribute as 
an additional layer of reliability to the obtained results.

Given the above, this work seeks to find the genomic regions re-
sponsible for resistance to late leaf rust in raspberries using 

traditional and high-throughput phenotyping data through a non-
conventional pipeline using a GWAS and copula graphical models 
network.

Materials and Methods
Plant material
The crosses to obtain the interspecific hybrids were carried out in a 
testcross scheme, in which a group consisted of 3 parents of the spe-
cies R. idaeus that had favorable characteristics for the market, such 
as fruit color ranging from golden (Golden Bliss) to red (Himbo Top), 
were crossed with the common parent of the species R. occidentalis 
(Jewel), being the source of alleles for late rust resistance (Fig. 1). 
Both the red and black raspberry varieties used in the study are dip-
loid, although the genome size in centiMorgans (cM) of these 2 spe-
cies is different, with the red variety (Heritage) having 462.7 cM 
(Ward et al. 2013) and the black variety (Jewel) having 1230.7 cM 
(Willman et al. 2022). We highlight the number of individuals per 
subfamily in Fig. 1, where the JG subfamily has 35 individuals, JS 
has 28 individuals, and JT has 31 individuals. “Jewel” was used as 
a female parent due to the unilateral incompatibility between the 
species (Lewis and Crowe 1958). Of the 99 genotypes, 94 were inter-
specific hybrids, and 4 were parents. Although the population is 
small in number, it is highly heterozygous and the previously cal-
culated effective population size is 174 individuals (Campos et al. 
2023). The average population heterozygosity is 0.54, while the par-
ents of R. idaeus species have 0.58, and Jewel (R. occidentalis) reaches 
0.77. More information about the genetic characterization and di-
versity of the panel can be found in Campos et al. (2023).

The variety “Jewel” is described as a vigorous, consistently pro-
ductive plant with large, firm fruits, almost black color, and higher 
resistance to winter injuries than red raspberries (Ourecky and 
Slate 1973; OMAFRA 2021). The species R. occidentalis has late 
rust resistance records, but the records are not associated with 
the “Jewel” variety. Although we attempted to use the parent 
“Heritage” we were unable to obtain any viable crosses between 
this variety and “Jewel.” Therefore, we used it only as a check in 
the experiment. The “Heritage” variety has medium, reddish, 
and excellent quality fruits, but it is highly susceptible to late 
rust and needs more hours of chilling (Hall et al. 2009). The cultivar 
“Himbo Top,” which originated in Switzerland, has pale red fruit 
and is easy to harvest (Hauenstein 2008; OMAFRA 2021). The cul-
tivar “Autumn Bliss,” parent of “Himbo Top,” has good productiv-
ity in Brazil and is less demanding in terms of the number of 
chilling hours than “Heritage” (Raseira et al. 2004). The “Golden 
Bliss” variety, or “All Gold” in the United Kingdom, has little infor-
mation in the literature. It has yellow fruit and it is well adapted to 
the South of the state of Minas Gerais (Moura et al. 2012). No infor-
mation about the “Salmon” variety was found in the literature.

Conducting the experiments
The experimental units consisted of a 5 L pot containing only one 
plant. The experiment was arranged in an augmented block de-
sign, which was replicated twice in time. The experiment was car-
ried out in a semicontrolled condition, in a greenhouse with 
temperature control and supplemental light. One clone from 
each parent of the red species (“Himbo Top,” “Golden Bliss,” and 
“Salmon”), 1 from the resistant black raspberry “Jewel” and 1 
from the unrelated variety “Heritage,” were used as checks in 
every block. For its execution, drastic pruning was carried out, 
leaving only 3 buds on the stems. Because younger leaves are 
less susceptible to late rust, with the drastic pruning, all the 
plants had leaves at approximately the same development stage. 
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The inoculum from the fungus A. americanum was sprayed 5 days 
after the pruning. The suspensions were prepared in the 
Department of Phytopathology of ESALQ/USP, using 50 mL of dis-
tilled water, Tween 20 (0.01%), and urediniospores of A. american-
um collected. The suspension concentration was adjusted to 104 
urediniospores/mL in a Neubauer chamber and used to spray in-
oculate the abaxial face of the leaves to the point of runoff. To en-
sure the development of the disease, the plants were covered for 
24 h with a dark plastic bag to set up a humid chamber.

Phenotyping
The experiment consisted of 2 types of phenotyping, traditional 
and high-throughput phenotyping, lasting ∼17 days after inocula-
tion (DAI) (Fig. 2). In traditional phenotyping, disease severity 
scores (ranging from 0 to 8) were assigned from the 11th to the 
17th DAI. According to the diagrammatic scale proposed by Dias 
et al. (2023a). Since there is subjectivity related to the score given 
by the evaluator and to reduce this bias, 3 people evaluated all 
the plants and an average of the evaluators was performed.

A high-throughput greenhouse phenotyping platform obtained 
the plant’s multispectral images (Fig. 3). The platform consists of 3 
rails, 2 moving in parallel and 1 perpendicular to the side of the 
greenhouse. A board, cameras, battery, and sensors were at-
tached to the perpendicular rail. More details about this low-cost, 
greenhouse-based, high-throughput phenotyping platform in 
Yassue et al. (2022).

The high-throughput images were collected from the first DAI 
and then on alternate days until completing 17 DAI. We experi-
enced issues capturing images on the 15th day of phenotyping, 
so there is no high-throughput phenotyping data for this day 
(Sev15). To facilitate discussion in the paper, we will design these 
traits as Sev01–Sev17, specifying the 1st to the 17th phenotyping 
DAI for disease severity.

Image processing
The multispectral camera was the Parrot’s Sequoia+, with a reso-
lution of 1.2 MP in each of the 4 monochromatic lenses: green, 
red, red edge, and near-infrared. The monochrome lens of the 
green has a wavelength of 550 nm, the red has a wavelength of 
660 nm, the red edge of 735 nm, and the near-infrared of 790 
nm. The images were processed by assembling the orthomosaics 
using the software AgiSoft Metashape v. 1.7. After assembly, the 
plots ShapeFiles were drawn in the software QGIS 3.0. To remove 
the background, we first apply the Soil Color Index (SCI) filter for 

soil removal with the software FieldImageR (Matias et al. 2020). As 
the image’s background was uneven, we had to manually adjust 
the intervals of each layer to remove as much of the background 
as possible. The spectral indices referring to the presymptomatic 
and symptomatic plants were extracted using the same software. 
We tested 2 different masks, the NDVI and OSAVI, from which we 
extracted the 2 indices commonly used in works studying disease 
severity. We used the mask layers’ mean and median, as carried 
out by Yassue et al. (2022) and as represented in Fig. 3 (step h).

Genotyping
Genotyping was performed using the genotyping-by-sequencing 
(GBS) methodology (Elshire et al. 2011). Young fresh leaves were 
sampled from each genotype and immediately frozen in liquid ni-
trogen. These samples were stored at −80◦C until further analysis. 
The extraction of total DNA from each sample was carried out 
following the protocol proposed by the manufacturer of the ex-
traction kit (Qiagen) and using the DNeasy Plant Mini Kit. A rare- 
cutting enzyme, the PstI (New England BioLabs Inc.), and another 
frequently cutting enzyme, the MseI (New England BioLabs Inc.), 
were used. Purification with the QIAquick PCR purification Kit 
(Qiagen) was followed to proceed with the PCR amplification 
step. DNA libraries were quantified using the Agilent DNA 
1000 Kit in an Agilent 2100 Bioanalyzer (Agilent Technologies). 
Additionally, they were quantified on a CFX 384 Touch Real-Time 
PCR Detection System using the KAPA Library Quantification Kit 
(KAPA Biosystems, cat. KK4824). Finally, the libraries were diluted 
and sequenced in a sequencer HiSeq 2500 System (Illumina, Inc). 
The SNP calling was carried out following the pipeline TASSEL-GBS 
(Glaubitz et al. 2014). The alignment was performed using Bowtie2 
software (Langmead and Salzberg 2012) with the reference genomes 
of the black raspberry (VanBuren et al. 2016). We started our ana-
lysis with the 28.373 markers previously selected in the work of 
Campos et al. (2023), but to perform filtering and imputation on 
the data, we use these markers in their original format containing 
missing values. Filters, such as minor allele frequency ≥0.20, miss-
ing rate ≤0.20, and a filter to remove monomorphic SNPs, were ap-
plied to remove possible sequencing errors using the package 
SNPRelate (Zheng et al. 2023). We used this MAF value because it 
helped to control the large variability in the panel and improve 
the resolution of the GWAS in our small population and because 
we were interested in the resistance alleles of the central parent. 
Of the initial 28.373 markers, we ended with 19.440 markers after 

Fig. 1. Population structure. In red (Himbo Top, Golden Bliss, and Salmon) are the varieties of R. idaeus, with different susceptibility levels. In black (Jewel) 
is the crosses common parent R. occidentalis, mother of all crosses, with higher resistance to late leaf rust. In beige are the subfamilies with their specific 
numbers of individuals.
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filtering. Finally, the snpReady software was used for the missing 
data imputation by Wright’s method (Granato et al. 2018).

Phenotypic analysis
The genotypic values and variance components were estimated 
using the REML/BLUP method (restricted maximum likelihood/ 
best linear unbiased predictor) using the statgenSTA package 
(Rossum et al. 2023) in the R environment (version 4.3, https:// 
www.r-project.org/). The following model was used to calculate 
the genotypes BLUPs and to estimate the variance components 
and broad-sense heritabilities:

y = X1r + X2c + Z1b + Z2g + ϵ (1) 

Where y is the vector of phenotypic values of disease severity; r is 
the replicate fixed effect; c is the checks fixed effect; b is the ran-

dom replicate nested block effect, where N(0, Iσ2
b); g is the random 

genotype effect, where N(0, Iσ2
g); ϵ is the random effect of the re-

sidual, where N(0, Iσ2
e ); X1 and X2 are the fixed effect incidence ma-

trices; Z1 and Z2 are the random effect incidence matrices; and I is 
the identity matrix. BLUPs were considered in the next steps be-
cause it was necessary to perform a spatial correction using 
checks with the statgenSTA package, due to the heterogeneity of 
spatial effects and the experimental design in the greenhouse. 
As statgenSTA package uses SpATS package as a modeling engine, 
an extra spatial term is always included in the model. The P-spline 
ANOVA (PSANOVA) uses penalized bidimensional splines to ad-
just local variations using the column and row coordinates of 
the experimental data (Rodríguez-Álvarez et al. 2017).

Genome-wide association studies
From model (1), association mapping was performed using the 
Bayesian information and linkage disequilibrium iteratively 
nested keyway (BLINK) method, implemented in the GAPIT soft-
ware (Lipka et al. 2012). As BLINK model accounts for population 
structure as it uses putative quantitative trait nucleotides 
(QTNs) as covariates in the model (Chen et al. 2021), we did not 
use any principal components as covariates in the model. 
Quantile-quantile and Manhattan plots were generated to scan 
the population stratification and to visualize the significant 
SNPs in the association mapping analysis. To calculate the signifi-
cance threshold, we used an adjusted P-value for the effective 
number of tests in our study by the analysis of LD blocks across 
the genome (Johnson et al. 2010). According to Campos et al. 
(2023), the average gene block for our population is 282 kb. 
Dividing the size of the black raspberry genome (243 Mb) by the 
average size of the gene blocks, we obtained a number of 861 
gene blocks in our genome. Then, we divided the alpha value of 
0.05 by the effective number of tests (number of gene blocks). 
Therefore, we corrected the P-value to 5.8e−05 and considered a 
new threshold of 4.23 on the negative logarithmic scale.

Copula graphical model
The netgwas package was used to estimate the conditional inde-
pendence relationships with a nonparanormal (npn) approach 
within the Gaussian copula graphical model (Behrouzi et al. 
2023), this method was chosen because of the data high dimen-
sionality. We built ten networks with different sparsity levels 

Fig. 2. Replicate structure. The experiment was replicated twice, and there were 17 days of phenotyping after inoculation in each replicate. We 
phenotyped in 2 ways: traditional phenotyping using disease severity scores and high-throughput phenotyping using the multispectral camera.

Fig. 3. High-throughput phenotyping methodology. a) Mimicry of a drone flight inside the greenhouse using motorized rails and the multispectral 
camera. b) Georeferenced images with 70% overlapping. c) The orthomosaic assembly. d) The extraction of ShapeFiles from orthomosaic (pots). e) The 
image of a plot with the background. f) The image of a plot after removing the background. g) This same image is represented with a 3D matrix, where the 
third dimension represents the original and calculated layers (masks). h) The spectral indices (phenotypes) are calculated through the mean and median 
of NDVI and OSAVI layers.
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from the following “rho” settings: 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 
0.65, 0 .7, 0.75. After building the 10 networks, we used a package 
function that calculates the best regularization parameter (rho) 
based on Bayesian criteria, which was 0.2 for our data. As input 
for the network, we used a genotype by variable matrix, with the 
variables being all the BLUPs from the model (1) and all markers. 
Since copula graphical models are computationally intensive, we 
reduced the variables number. The SNPRelate package was used to 
filter the marker matrix by LD, using a sliding window with a size 
of 100 kb and an LD threshold of 0.10, resulting in a 4,686 markers 
matrix (Zheng et al. 2023). We ensured that the SNPs found by 
GWAS were in this new marker matrix, so we could compare the 
results. To facilitate the discussion of the resulting network, we 
adopted a partial correlation threshold of 0.05 between the mar-
kers and the traditional phenotypes (Sev11–Sev17). Finally, we 
used the netShiny package to graphically visualize the network 
(de Jongh and Behrouzi 2022).

Gene annotation
All candidate genes flanking the associated marker were analyzed 
considering a 100 kb window, or 50 kb upstream and downstream 
regions of the physical positions of the associated SNPs. These 
genes were annotated by using the R. occidentalis reference gen-
ome. In addition to gene annotation by homology using BLAST, 
the conserved domains/motifs of R genes from the published R. oc-
cidentalis genome were predicted by the InterProScan v5.33–72.0 
software. According to the literature, candidate genes were classi-
fied as not defense-related, belonging to the signaling cascade, as 
receptors or defense executors.

SNPs heritability
To estimate the percentage that all associated SNPs explain of the 
phenotype, we have calculated the SNPs variance components 
based on the following model:

y∗ = Z1g +
p

i=1

Zi+1si + ϵ (2) 

To estimate the percentage that each associated SNP explains of 
the phenotype, we have calculated the SNPs variance components 
based on the following model:

y∗ = Z1g + Z2si + ϵ (3) 

Where y∗ is the vector of the disease severity BLUPs calculated in 

model (1); g is the random genotype effect, where N(0, Gσ2
g) and G 

is the additive kinship matrix; si is the random effect of the ith SNP 

(si; i = 1, . . . , p), where N(0, Iσ2
si); ϵ is the random effect of the re-

sidual, where N(0, Iσ2
e ); Z1, Zi+1, …, Z p+1 are the random effect inci-

dence matrices; and I is the identity matrix. As we were using the 
SNPs as random covariates in the model, we removed them in the 
additive G matrix.

From model (2), we calculated the narrow-sense heritability for 
all SNPs jointly by the following model:

h2
total =

 p
i=1 σ2

si

σ2
g +

 p
i=1 σ2

si + σ2
e

(4) 

From model (3), we calculated the narrow-sense heritability for 
each SNP:

h2
snp =

σ2
si

σ2
g + σ2

si + σ2
e

(5) 

Results
Traditional traits
Severity score BLUPs
The increase in mean disease severity score BLUPs shows that we 
were able to capture disease progression with the traditional phe-
notyping method used (Fig. 4). For the same BLUPs, the lowest cor-
relation observed was between Sev11 and Sev17, with a 
correlation coefficient of 0.88. The highest correlation, 0.97, was 
found between the Sev15 and Sev17 traits. Broad-sense heritabil-
ities ranged from 0.36 for Sev17 to 0.40 for Sev13 (Table 1).

Genome-wide association studies for traditional traits
We found a significant marker at position 13.3 Mb of chromosome 
5 in all traditional phenotyping days (Fig. 5). A table containing the 
marker name, traditional phenotyping day, chromosome, pos-
ition, P-value, maf, and SNP effect can be found as 
Supplementary Table S1. We already expected to find fewer 
SNPs because it is a small population, so we decided to monitor 
this SNP because it is consistent over time. To facilitate the results 
presentation in this section, we will comment on genes directly re-
lated to plant immunity. However, in the next sections, we will 
show the gene profile of all genes found by GWAS and the network 
(Fig. 8). A list of the entire annotation can be found in the 
Supplementary material for all genes flanking the marker region 
in a 100 kb window (Supplementary Table S2). Of the 12 genes 
flanking its region, 4 were possible receptors, 3 were likely defense 
executors, 1 gene was part of signaling cascades, and 4 were 
classified as nondefense related. Approximately 20 kb from this 
marker is a gene whose function prediction is “NB-ARC DOMAIN 
DISEASE RESISTANCE PROTEIN.” In the exact position of the 
marker, there is another gene with the function “PLANT 

Fig. 4. Severity score BLUPs distribution from the 11th to the 17th day 
after inoculation, or for Sev11–Sev17 traits.

Table 1. Pearson correlation and broad-sense heritability of 
disease severity BLUPs (traditional phenotyping) from the 11th to 
17th DAI.

Traits

Broad-sense heritabilitySev11 Sev13 Sev15 Sev17

Sev11 1 0.38
Sev13 0.96 1 0.40
Sev15 0.92 0.96 1 0.39
Sev17 0.88 0.93 0.97 1 0.36
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BROAD-SPECTRUM MILDEW RESISTANCE PROTEIN RPW8.” 20 kb 
away, we found a receptor gene with the function “L-TYPE 
LECTIN-DOMAIN CONTAINING RECEPTOR KINASE S.5- 
RELATED.” 6.8 kb away from the marker, we found the 4th gene 
with receptor function, the gene “WALL-ASSOCIATED RECEPTOR 
KINASE-LIKE 21.” In addition to the Manhattan plots, we observed 
that the QQPlots are adjusted (Supplementary Fig. S1), with the 
majority of markers having an expected −log10(P-value) and only 
one marker with the observed −log10(P-value) much higher than 
expected, supporting the significance of this marker on chromo-
some 5.

Copula graphical models network
The nodes in the network derived from copula graphical models 
represent all variables, including the 4 traditional traits and the 
4,686 markers used (Fig. 6). The edge thickness indicates the de-
gree of partial correlation between variables. From left to right, 
we present the network containing all variables (Fig. 6a), a subnet 
containing only the markers with primary dependencies on the 4 

traditional traits (Fig. 6b), and a subnet containing variables with a 
partial correlation of 0.05 or higher (Fig. 6c). We selected partial 
correlations of at least 0.05 to facilitate the discussion of our 
work. In the same figure, the edges connecting the 4 traditional 
traits are thicker and have higher correlations compared to the 
correlations with the markers. As with GWAS, annotations for 
all associated markers are presented in Supplementary Table S2.

The marker with the higher partial correlation in the network is 
the SRO05_13334757 marker in 13 DAI (Sev13) (Figs. 6 and 7), the 
same as in GWAS. But unlike GWAS, the network provided us 
with more complex information about the architecture of late 
rust resistance. We observed that the 4 phenotypic variables (in 
pink in Fig. 6c) are linked to at least 1 marker (in blue in Fig. 6c), 
and that some phenotypic variables have more than 1 marker 
linked to them at the same time. In the partial correlation matrix 
in Fig. 7, some associations are positive (blue) and others negative 
(red), suggesting that disease severity is negatively or positively 
correlated with the lack or presence of the reference allele or 
the most common allele at a given SNP.

Fig. 5. Manhattan Plots from the GWAS for each of the 4 traditional traits, Sev11–Sev17. The vertical black line represents the marker with the lowest 
P-value. The horizontal green line is the significance threshold calculated for GWAS.
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Markers’ gene profile
The gene profile for each associated marker shows that regions 
flanking the 8 markers of interest had 93 genes (Fig. 8). Of this to-
tal, we classified each gene as “Not defense-related,” Receptors, 
“Signaling cascades,” and “Defense executors” based on the litera-
ture. Of the 93 genes, we classified 33 genes as “Not 
defense-related.” The marker with the highest number of 
“Defense Executors” in red is the SRO06_2456198. The marker 
with the highest number of “Receptors” in green is the 
SRO05_13334757. The marker with the highest number of 
“Signaling cascades” in blue is the SRO02_4535679.

Graphical network gene annotation
The 4 phenotypic variables in the network are linked to 8 different 
marker variables, with 93 candidate genes flanking these markers. 
The phenotypic variable Sev11 has partial correlations with 4 dif-
ferent markers (Fig. 6c). For example, these markers have candi-
date genes with functions such as “ankyrin repeat-containing 

protein NPR4,” “probable leucine-rich repeat receptor-like protein 
kinase At1g68400,” “probable WRKY transcription factor 2,” 
“pleiotropic drug resistance protein 1,” and “salicylic acid-binding 
protein 2.” Similarly, the Sev13 variable is linked to 4 markers, 
with candidate genes including “probable serine/threonine- 
protein kinase kinX” and all the other candidate genes mentioned 
for the highlighted marker on chromosome 5. Unlike the previous 
markers, the Sev15 phenotypic variable has only one marker 
linked to it, with candidate genes such as the “probable serine/ 
threonine-protein kinase kinX” gene. Finally, the Sev17 variable 
has a partial correlation with 2 markers that are not common to 
any of the other phenotypic variables and only have genes likely 
to be defense executors, such as the “FAR-RED IMPAIRED 
RESPONSIVE (FAR1) FAMILY PROTEIN” gene (Fig. 8).

SNPs heritabilities
We calculated the heritability for 8 SNPs, the marker found in 
GWAS, and the other 7 SNPs found only by the network. The 

Fig. 6. Copula graphical models networks. a) The network containing all variables; b) contains only the markers with primary dependencies on the 
4 traditional traits; c) again a subnetwork containing variables with a partial correlation higher than or equal to 0.05. The pink square in c) highlights the 
same significant marker in GWAS.

Fig. 7. Matrix representation of partial correlations higher than 0.05, between phenotypic and marker variables. The closer the partial correlation is to 
blue, the more positively related the allele is to the traits. The closer the partial correlation is to red, the more negatively related the allele is to the traits. 
The gray color represents a partial correlation of zero between the variables.
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heritability resulting from the combined use of all 8 SNPs (total) 
for Sev11 was 0.5135, while for Sev13, Sev15, and Sev17, it was 
0.5850, 0.5831, and 0.5826, respectively (Table 2). For the 
SRO05_13334757 marker, the hsnp on the different phenotyping 
days were 0.3739, 0.4313, 0.3852, and 0.3477. The 
SRO06_24561982 marker and the chromosome 5 marker obtained 
the highest heritabilities over the phenotyping days and had va-
lues of 0.3205, 0.3486, 0.3074, and 0.3013, respectively.

High-throughput phenotyping
Genome-wide association studies for high-throughput traits
Significant markers were found on all high-throughput phenotyp-
ing days using the GWAS approach. We noticed that both NDVI 
and OSAVI masks produced the same results. A complete list of 
all indices, with associated markers, P-values, correlation with 
traditional traits and broad-sense heritability are available as 
Supplementary Table S3. However, the indices had a correlation 
with traditional traits from 0.04 to 0.26, while heritability varied 
from 0 to 0.43. We annotated genes for the marker associated 
with the spectral index that had the highest correlation with trad-
itional traits. This index was the mean NDVI and mean OSAVI at 
11 DAI, which has a heritability of 0.26. The associated marker is 
positioned in 30.6 Mb at chromosome 4 and has 32 genes in a 
100 Mb window. Among all these genes, 41 kb from the marker 
there is a gene whose predicted function is “LEUCINE-RICH 
REPEAT RECEPTOR PROTEIN KINASE EMS1,” a gene that plays crit-
ical roles in pathogenic defense responses (Gou et al. 2010).

Spectral indices BLUPs
As depicted in Fig. 9, the progression of the disease can be ob-
served with the severity scores. Furthermore, we can observe 
the difference in parental resistance, with the “Jewel” variety (in 
blue) having the lowest disease severity values (Fig. 9a). The 
mean and median NDVI spectral indices at the 11th DAI (index 
within the highest correlation within traditional traits) appear 
random until the red line, which represents the day the plants be-
gan to show disease symptoms (Fig. 9b, c). From 7 DAI, there is a 
same pattern of disease severity behavior in parents, both for 

traditional and high-throughput phenotyping. The similarity of 
parental behavior in both phenotyping approaches suggests that 
we were also able to capture disease progression with high- 
throughput phenotyping. Furthermore, the index using the 
mean pixel value (Fig. 9b) produces a more similar pattern to 
the traditional phenotyping (Fig. 9a), than the index using the me-
dian pixel value (Fig. 9c).

Discussion
The polygenic architecture of late rust resistance
We aimed to understand the genetic architecture regulating re-
sistance to late leaf rust in raspberries using traditional and high- 
throughput phenotyping, using statistical techniques such as 
GWAS and copula graphical models. The GWAS results showed 
a higher effect marker on chromosome 5 (Fig. 5). Still, there is evi-
dence through copula graphical models that this trait can be regu-
lated, not only by this higher effect marker but also for different 
genomic regions depending on the stage of disease progression 
(Fig. 7). Studies using other crops in the literature show that rust 
resistance is polygenic. Ledesma-Ramírez et al. (2019) found 14 
resistance-associated SNPs to yellow rust in wheat, explaining 
6.0–14.1% of the resistance. Vikas et al. (2022) found 65 QTNs 
associated with leaf rust resistance in bread wheat, explaining 

Fig. 8. The marker’s gene profile in GWAS and the copula graphical models network. In gray (first position for each marker) is the not defense-related gene 
count for each marker on the X-axis. In green (second position) is the gene count that has a receptor function. In blue (third position) is the gene count that 
participates in signaling cascades. In red (fourth position) is the gene count with functions belonging to the class of defense executors genes.

Table 2. The narrow-sense heritability for each individual SNP, 
coming from both the network and GWAS, and for all SNPs jointly 
(total) on all traditional phenotyping days.

Sev11 Sev13 Sev15 Sev17

h2
SRO01 16909751 0.2291 0.2141 0.1492 0.1301

h2
SRO02 28133706 0.0732 0.1327 0.2356 0.2579

h2
SRO02 4535679 0.1697 0.1929 0.2084 0.1989

h2
SRO03 6110606 0.213 0.2463 0.1786 0.1358

h2
SRO04 14146782 0.0485 0.0517 0.1117 0.1719

h2
SRO05 13334757 0.3739 0.4313 0.3852 0.3477

h2
SRO06 24561982 0.3205 0.3486 0.3074 0.3013

h2
SRO07 9443780 0.3336 0.3225 0.2653 0.2165

h2
Total 0.5135 0.585 0.5831 0.5826
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1.98–31.72% of the phenotypic variation. We only found 1 asso-
ciated marker in GWAS, which explains 43.13% of the phenotypic 
variation in 13 DAI (Table 2, SRO05_13334757 marker). Although 
this marker is a good candidate to carry out marker-assisted selec-
tion in raspberry breeding, we emphasize that the experiment has 
a small population and the effect of this marker may have been in-
flated for this same reason.

We believe the small population used is also why we did not 
find other SNPs. Although we knew that a larger population would 
be ideal, we lost many materials because the experimentation site 
is located in a subtropical region of Brazil. In contrast, the produc-
tion sites have a predominantly temperate climate. In addition to 
the climatic difficulty, the interspecific hybrids’ vigor was un-
known. Even with the reduced population, the significant marker 
found by GWAS has 9 candidate defense-related genes, in addition 
to other possible regions found by the network (Fig. 8). Clustering 
genes participating in the same metabolic pathway implies they 
are under the same selective pressure (Polturak and Osbourn 
2021). Possibly, not just one of these genes confers resistance to 
raspberry, but others from the same cluster for a coordinated ex-
pression of specialized metabolites (Bharadwaj et al. 2021).

Resistance to late rust possibly has a locus of 
higher effect
The higher effect marker for both the network and the GWAS had 4 
candidate resistance genes flanking the marker. Resistance genes 
are involved in recognizing molecular patterns and elicitors of 
pathogens and are responsible for triggering the immune response 
in plants as soon as this recognition occurs. The “NB-ARC DOMAIN 
DISEASE RESISTANCE PROTEIN” gene, ∼20 kb from the marker, is 
a specific type of resistance gene that monitors intracellular distur-
bances related to plant immunity (van Ooijen et al. 2008). The 
“PLANT BROAD-SPECTRUM MILDEW RESISTANCE PROTEIN 
RPW8” gene was located at the exact location on the marker. 
RPW8 locus found in Arabdopsis thaliana contains a dominant resist-
ance gene, which induces the salicylic acid metabolic pathway to 
trigger defense against fungal disease and powdery mildew (Xiao 
et al. 2001). The “WALL-ASSOCIATED RECEPTOR KINASE-LIKE 2” 
gene is 6.8 kb from the marker. WAKs, or Plant cell wall-associated 
kinases, are genes in many plant species that bind to cell wall pectin. 
WAKs also have an intracellular domain for signal transduction and 
are related to the recognition of damage-associated molecular pat-
tern (DAMP), as cell wall fragments. By recognizing wall integrity, 

these receptors can trigger callose deposition on the cell wall and in-
crease protection against pathogens (Amsbury 2020). The only work 
studying late rust resistance in raspberry was the (Jamieson and 
Nickerson 1999) work, in which they experimented with segregating 
populations for late rust resistance. They concluded that there is a 
locus with a higher effect on resistance called “Pa” by them, agreeing 
with our results.

Gene flow throughout phenotyping days
An unexpected result was that, although both techniques have 
the SRO05_13334757 marker with higher association to late rust 
resistance with traditional phenotyping, only for GWAS does 
this same marker appear with a higher −log10(P-value) in all 
traits. Meanwhile, the other phenotyping days in the network, 
Sev11, Sev15, and Sev17, are more correlated with other markers. 
Possibly, the relationship between graph separation and condi-
tional independence between variables showed us these differ-
ences in the network, as we consider all variables (traits and 
SNPs) simultaneously, not as a univariate test as in GWAS. Dias 
et al. (2023b) demonstrated that although the common parent 
has pre and postformed defense mechanisms against A. american-
um, these are not sufficient to completely contain the infection. In 
Fig. 9a–c, although “Jewel” variety is more resistant than the other 
parents, its severity score also increases over time. With the in-
tense inoculum application to all the leaves and more than 
2 weeks of disease progression, the disease severity scores could 
change the genotype ranking on phenotyping days, as disease pro-
gression may not be the same for all genotypes. To understand 
whether the change in SNPs associated with each day of pheno-
typing is related to the type of modeling in the network or whether 
disease progression actually involves other genomic regions for 
resistance, could be a valuable information on late leaf rust resist-
ance. But as we have a small population to infer this and these 
SNPs with lower effect in the network could be due to low statis-
tical power, the answer is not within the scope of our study.

A guidance for raspberries breeding
There are several studies demonstrating the usefulness of spectral 
indices in the diseased plants evaluation (Su et al. 2018; Abdullah 
et al. 2022; Soares et al. 2022). Thus, our objective was to test the 
usefulness of the NDVI and OSAVI indices for high-throughput 
phenotyping for late rust resistance in raspberry breeding. 
However, the markers found are different between the 

Fig. 9. Disease severity BLUPs for the parents throughout DAI. a) The graph for traditional phenotyping, b) the graph for the mean NDVI index 
(high-throughput phenotyping), and c) the graph for the median NDVI. From the red vertical line (07 DAI onwards) symptoms began to appear in the 
inoculated plants.
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phenotyping approaches and the correlation of spectral indices 
with traditional phenotypes only reached 0.26. We attribute this 
low correlation to some factors that we noticed throughout the ex-
periments. The first is that young raspberry leaves are resistant to 
late rust and the images were taken from the top of the plants, cap-
turing mostly young leaves. During the experiments, we noticed an 
intense vegetative growth, but as the genotypes had different 
growth rates and as we did not want to cause stress to the plants, 
we did not prune them. Meanwhile, traditional phenotyping con-
sisted of a general score based in the old leaves. The second pos-
sible reason is that, we noticed that the common and resistant 
parent showed symptoms on the leaves adaxial (upper) face in 
the first few days of plant symptoms. As the disease progressed, 
the common parent did not develop the characteristic orange pus-
tules on the abaxial (lower) face, meaning the pathogen was able to 
infect the common parent but was unable to continue its repro-
ductive cycle and develop spores (Supplementary Fig. S2). 
Figure 9a shows that traditional severity scores for the common 
parent were maintained close to zero during the 17 DAI. In this 
way, the spectral indices may have been distanced from the trad-
itional scores because the latter took pustules into account when 
assigning a severity score, while the former only used images of 
the upper part of the plants where the pustules are not located. 
The third and final reason is that the NDVI and OSAVI indices 
use spectral bands outside the visible spectrum (Su et al. 2018), 
such as Near Infrared, which may result in differences in relation 
to traditional phenotypes. However, even with these difficulties 
encountered during the experiment, the spectral indices were still 
able to capture the disease progression in the different parental 
lines (Fig. 9). Furthermore, the significant marker found on 
chromosome 4, with the mean NDVI index at 11 DAI, has a resist-
ance gene close to it (40 kb away), which could potentially be an im-
portant marker for resistance to late rust and a potential way of 
phenotyping plants in an automated way, as long as it is improved 
to deal with the biological challenges encountered by us.

Although our work has offered different confidence levels with the 
obtained results, it has produced important information for directing 
raspberry breeding programs. It was possible to indicate the marker 
with the highest effect in one of the main crop diseases using differ-
ent statistical approaches; both led to consistent results, supporting 
our findings and conclusions. Furthermore, using a GWAS/copula 
graphical models pipeline, which is not conventional in plant breed-
ing, can help other researchers discover causal alleles for their study 
traits. Using this pipeline, we could also add other candidate genes 
with less effect but still possibly responsible for the same trait. 
Therefore, a natural progression for this work would be to carry 
out validation studies of the markers found to confer reproducibility 
and consistency, as no other works are studying the genetic control of 
late leaf rust in raspberries to compare significant markers.

Data availability
Genomic data prior to filtering in Variant Call Format (VCF) is avail-
able in the Rosaceae database, under the accession number 
tfGDR1071, under the name “Rocci_raw_imput_all_sort.vcf” and 
can be accessed with the https://www.rosaceae.org/publication_ 
datasets URL. Traditional phenotypes (Supplementary Table S4), 
high-throughput phenotypes (Supplementary Table S5), and the ta-
ble of markers after filtering (Supplementary Table S6) are available 
as Supplementary material. Alternatively, these data can be down-
loaded directly from the “RaspberryRust” repository on GitHub 
(https://github.com/MelinaPrado/RaspberryRust.git). Supplemental 
material available at G3 online.
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Purutçuoğlu V, Farnoudkia H. 2017. Copula Gaussian graphical model-
ing of biological networks and Bayesian inference of model para-
meters. Sci Iran. 26:2495–2505. doi:10.24200/sci.2019.5071.1076

Rao AV, Snyder DM. 2010. Raspberries and human health: a review. 
J Agric Food Chem. 58:3871–3883. doi:10.1021/jf903484g

Raseira M, Gonçalves E, Trevisa R, Antunes L, Aspectos técnicos da 

cultura da framboeseira. Embrapa Clima Temperado. 2004.
Rodríguez-Álvarez MX, Boer MP, van Eeuwijk FA, Eilers PH. 2017. 

Correcting for spatial heterogeneity in plant breeding experiments 
with p-splines. Spat Stat. 23:52–71. doi:10.1016/j.spasta.2017.10.003

Rossum BJv, Eeuwijk FAV, Boer M, Malosetti M, Bustos-Korts D, Millet 
E, Paulo J. 2023. statgenSTA: Single Trial Analysis (STA) of Field Trials. 
R package version 1.0.11

Soares AdS, Vieira BS, Bezerra TA, Martins GD, Siquieroli ACS. 2022. 
Early detection of coffee leaf rust caused by Hemileia vastatrix 
using multispectral images. Agronomy. 12:2911. doi:10.3390/agro 
nomy12122911

Su J, Liu C, Coombes M, Hu X, Wang C, Xu X, Li Q, Guo L, Chen WH. 
2018. Wheat yellow rust monitoring by learning from multispec-
tral UAV aerial imagery. Comput Electron Agric. 155:157–166. doi:
10.1016/j.compag.2018.10.017

VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, 
Priest HD, Michael TP, Lyons E, Filichkin SA, et al. 2016. The gen-
ome of black raspberry (Rubus occidentalis). Plant J Cell Mol Biol. 
87(6):535–547. doi:10.1111/tpj.2016.87.issue-6

van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, 
Takken FLW. 2008. Structure-function analysis of the NB-ARC 
domain of plant disease resistance proteins. J Exp Bot. 59: 
1383–1397. doi:10.1093/jxb/ern045

Vikas VK, Pradhan AK, Budhlakoti N, Mishra DC, Chandra T, 
Bhardwaj SC, Kumar S, Sivasamy M, Jayaprakash P, Nisha R, 
et al. 2022. Multi-locus genome-wide association studies 
(ML-GWAS) reveal novel genomic regions associated with seed-
ling and adult plant stage leaf rust resistance in bread wheat 

Leaf rust resistance in raspberries | 11
D

ow
nloaded from

 https://academ
ic.oup.com

/g3journal/article/14/10/jkae202/7739024 by W
ageningen U

R
 Library user on 21 O

ctober 2024

https://doi.org/10.1080/07060661.2022.2147587
https://doi.org/10.3390/jof9030337
https://doi.org/10.1016/j.aml.2013.04.005
https://doi.org/10.1016/j.aml.2013.04.005
https://doi.org/10.1371/journal.pone.0019379
https://www.fao.org/faostat/en/#data
https://www.fao.org/faostat/en/#data
https://doi.org/10.1007/s43657-022-00048-z
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1186/1471-2164-11-19
https://doi.org/10.1007/s11032-018-0844-8
https://doi.org/10.2217/pgs.12.72
https://doi.org/10.1146/arplant.2014.65.issue-1
https://doi.org/10.17660/ActaHortic.1999.505.5
https://doi.org/10.1186/1471-2164-11-724
https://doi.org/10.1186/1746-4811-9-29
https://doi.org/10.1186/1746-4811-9-29
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.3389/fpls.2019.01390
https://doi.org/10.3389/fpls.2019.01390
https://doi.org/10.1038/hdy.1958.26
https://doi.org/10.1093/bioinformatics/bts444
https://doi.org/10.1093/bioinformatics/bts444
https://doi.org/10.1590/1678-992x-2018-0154
https://doi.org/10.1002/ppj2.20005
https://doi.org/10.1590/S0100-204X2012001200006
https://www.ontario.ca/page/raspberry-variety-description
https://www.ontario.ca/page/raspberry-variety-description
https://doi.org/10.1371/journal.ppat.1009698
doi:10.24200/sci.2019.5071.1076
https://doi.org/10.1021/jf903484g
https://doi.org/10.1016/j.spasta.2017.10.003
https://doi.org/10.3390/agronomy12122911
https://doi.org/10.3390/agronomy12122911
https://doi.org/10.1016/j.compag.2018.10.017
https://doi.org/10.1111/tpj.2016.87.issue-6
https://doi.org/10.1093/jxb/ern045


(Triticum aestivum L.). Heredity. 128(6):434–449. doi:10.1038/s414 

37-022-00525-1
Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson J, 

Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ. 2013. 
Saturated linkage map construction in Rubus idaeus using geno-
typing by sequencing and genome-independent imputation. 
BMC Genomics. 14(1):2. doi:10.1186/1471-2164-14-2

Willman MR, Bushakra JM, Bassil N, Finn CE, Dossett M, 
Perkins-Veazie P, Bradish CM, Fernandez GE, Weber CA, 
Scheerens JC, et al. 2022. Analysis of a multi-environment trial 
for black raspberry (Rubus occidentalis L.) quality traits. Genes. 
13(3):418. doi:10.3390/genes13030418

Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG. 2001. 
Broad-spectrum mildew resistance in Arabidopsis thaliana 
mediated by RPW8. Science. 291(5501):118–120. doi:10.1126/ 
science.291.5501.118

Yang W, Feng H, Zhang X, Zhang J, Doonan JH, Batchelor WD, Xiong 
L, Yan J. 2020. Crop phenomics and high-throughput 

phenotyping: past decades, current challenges, and future per-

spectives. Mol Plant. 13:187–214. doi:10.1016/j.molp.2020.01.008
Yassue RM, Galli G, Junior RB, Cheng H, Morota G, Fritsche-Neto R. 

2022. A low-cost greenhouse-based high-throughput phenotyp-
ing platform for genetic studies: a case study in maize under in-
oculation with plant growth-promoting bacteria. Plant 
Phenome J. 5(1), e20043. doi:10.1002/ppj2.20043

Zhang A, Fang J, Hu W, Calhoun VD, Wang YP. 2021. A latent 
Gaussian copula model for mixed data analysis in brain imaging 
genetics. IEEE/ACM Trans Comput Biol Bioinform. 18(4): 
1350–1360. doi:10.1109/TCBB.2019.2950904

Zheng X, Levine D, Li JZ, Weir SM, Willer CJ, Abecasis GR. 
2023. SNPRelate: Parallel Computing Toolset for Relatedness 
and Principal Component Analysis of SNP Data. R package version 
1.34.1.

Editor: A. Lipka

12 | M. Prado et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/14/10/jkae202/7739024 by W

ageningen U
R

 Library user on 21 O
ctober 2024

https://doi.org/10.1038/s41437-022-00525-1
https://doi.org/10.1038/s41437-022-00525-1
https://doi.org/10.1186/1471-2164-14-2
https://doi.org/10.3390/genes13030418
https://doi.org/10.1126/science.291.5501.118
https://doi.org/10.1126/science.291.5501.118
https://doi.org/10.1016/j.molp.2020.01.008
https://doi.org/10.1002/ppj2.20043
https://doi.org/10.1109/TCBB.2019.2950904

	Complementary approaches to dissect late leaf rust resistance in an interspecific raspberry population
	Introduction
	Materials and Methods
	Plant material
	Conducting the experiments
	Phenotyping
	Image processing
	Genotyping
	Phenotypic analysis
	Genome-wide association studies
	Copula graphical model
	Gene annotation
	SNPs heritability

	Results
	Traditional traits
	Severity score BLUPs
	Genome-wide association studies for traditional traits
	Copula graphical models network
	Markers’ gene profile
	Graphical network gene annotation
	SNPs heritabilities

	High-throughput phenotyping
	Genome-wide association studies for high-throughput traits
	Spectral indices BLUPs


	Discussion
	The polygenic architecture of late rust resistance
	Resistance to late rust possibly has a locus of higher effect
	Gene flow throughout phenotyping days
	A guidance for raspberries breeding

	Data availability
	Acknowledgments
	Funding
	Conflicts of interest
	Literature cited


