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REVIEW ARTICLE                                         
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ABSTRACT 
Soils are the largest terrestrial reservoir of organic carbon, yet they are easily degraded. 
Consistent and accurate monitoring of changes in soil organic carbon stocks and net green
house gas emissions, reporting, and their verification is key to facilitate investment in sus
tainable land use practices that maintain or increase soil organic carbon stocks, as well as to 
incorporate soil organic carbon sequestration in national greenhouse gas emission reduction 
targets. Building up on an initial review of monitoring, reporting and verification (MRV) 
schemes with a focus on croplands, grasslands, and forestlands we develop a framework for 
a modular, scalable MRV system. We then provide an inventory and classification of selected 
MRV methodologies and subsequently “score” them against a list of key characteristics. It 
appears that the main challenge in developing a unified MRV system concerns the monitor
ing component. Finally, we present a conceptual workflow that shows how a prototype for 
an operational, modular multi-ecosystem MRV tool could be systematically built.
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Introduction

Soils, the largest terrestrial reservoir of organic car
bon [1,2], are easily degraded when disturbed [3]. 
There is growing recognition of the importance of 
monitoring changes in soil organic carbon (SOC) 
stocks in the broader context of climate change 
mitigation ([4], Sustainable Development Goal 
(SDG) 13 [5]), halting and reversing land degrad
ation (SDG 15), ensuring human livelihood/health 
(SDG 1,2,3) and reversing biodiversity loss ([6]; SDG 
14, 15). Being able to reliably quantify the amount 
of organic carbon that is stored in soils and to 
accurately measure and model how these amounts 
change with management practices and land use 
change forms the first step towards making 
informed decisions about how SOC stocks can be 
preserved or increased and ecosystem services 
improved [7–11]. In this context, it is important to 
carefully distinguish the “sequestration of SOC in 
stable pools from the mere transient increases in 

SOC storage that follow the incorporation of 
manure and plant residues into soils” [12–16].

SOC refers only to the carbon component of 
soil organic matter (SOM) [17–19]. SOM itself is an 
important determinant of the quantity and quality 
of many ecosystem services [9, 20] and soil func
tioning [21,22]. It should be noted that drivers of 
change in SOM concentration are not exactly the 
same as drivers of change in SOC stock [12, 15]. 
For example, interventions to build up SOM quan
tity and quality may only lead to a reduction in 
carbon losses (i.e. carbon loss mitigation) rather 
than result in real carbon sequestration in stable 
pools and negative emissions [12, 16].

SOC stocks and greenhouse gas (GHG) fluxes 
vary with environmental conditions such as soil 
type and terrain (e.g. drainage, exposition), climate, 
and land use (e.g. agriculture, forestry, peatlands, 
and urban land) and management [23,24]. The 
overarching policy setting, such as the EU 
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Common Agricultural Policy (CAP) and GreenDeal 
[25–28], create conditions aimed at maintaining 
current carbon stocks in carbon-rich ecosystems 
(e.g. peatlands, mangroves) respectively increasing 
SOC stocks in, and reducing GHG emissions from, 
degraded ecosystems.

The European Commission [29] proposed a 
Framework for Carbon Removals Certification that 
aims to incentivise carbon removals. Alongside 
other removal options, this includes a specific 
focus on promoting “carbon farming”, a category 
that includes nature-based solutions. The 
Framework establishes rules to certify and govern 
removals with the objective of ensuring high qual
ity carbon removals within Europe and thereby 
elicit upscaling of carbon removals. The framework 
aims at allowing financing through various sour
ces, for example public funding (CAP, state aid, 
and EU funds), food and biomass value chain 
(insetting), carbon credits outside the value chain 
(offsetting), and could entail a significant shift 
towards market-based incentives for mitigation in 
the land sector. Voluntary carbon markets are 
increasingly offering market-based incentives to 
landowners [30–32], but until now European poli
cymakers have relied on action-based and regula
tory approaches to manage the land sector, as 
exemplified by the CAP [29].

In data scarce countries, global default values 
for reference SOC stocks and emission factors are 
commonly used to infer changes in SOC stocks 
over time and variation over space, subject to 
defined land use and management interventions, 
using empirical models, i.e. Tier 1 level approaches 
[33,34]. The use of such default values, however, is 
prone to low accuracy and high uncertainty, espe
cially when applied to estimate SOC stock change 
in local/landscape scale projects [35,36]. Through 
physical (in-situ) soil sampling combined, or not 
combined, with modeling researchers, project 
managers, and agricultural practitioners can 
improve estimation of current SOC stocks and 
changes under different land management practi
ces. For instance, repeated measurements of SOC 
concentration, bulk density and proportion of 
coarse fragments can show how land management 
impacts SOC stocks over time and space, provided 
they are based on a strategic research/experimen
tal design [37]. When paired with sustainable soil 
management and agricultural practices, the infor
mation can be used in financing frameworks to 
promote carbon sequestration while supporting 
livelihoods through increased soil health and 

possibly agricultural yields, as well as addressing 
climate change. In practice, however, the cost of 
taking sufficient soil samples to reliably monitor 
changes in carbon farming projects can be prohibi
tive, hence the need for developing novel 
approaches (e.g. hybrid modeling). For such practi
ces to be rewarded, the reported SOC gains need 
to be verified by a third party. Importantly, the 
experts or companies that are in charge of carrying 
out monitoring and reporting should not also carry 
out the verification, due to a possible conflict of 
interest; see for example the independent review 
of Australian carbon credit units (ACCUs) [38].

Consistent and accurate monitoring of changes 
in SOC stocks and net GHG emissions, reporting, 
and their verification, is key to facilitate investment 
in sustainable land use practices that maintain and 
increase SOC, as well as to incorporate SOC 
sequestration in GHG emission reduction targets at 
the international and national level (e.g. Nationally 
Determined Contributions, NDC) [39]. Yet, accord
ing to Wiese et al. [40], only 28 out of 184 coun
tries in the Paris Climate Agreement referred to 
SOC, peatlands or wetlands in their NDCs: “to 
increase country commitments and attention to 
managing SOC, there is a need for improved SOC 
measurement and monitoring, for better evidence 
on the impacts of management practices on SOC, 
and for incentives for farmers to change practices 
and overcome barriers.”

The short- and longer-term socio-economic per
spective of farmers versus the long-term perspec
tive of SOC sequestration projects needs to be 
considered too [41–44]. Soil management interven
tions aimed at increasing organic matter (i.e. SOC) 
levels in soil and to decrease organic carbon loss 
in soils of different agro-ecological and urban sys
tems, and their possible co-benefits, have been 
described elsewhere [24, 45–50].

While most Monitoring, Reporting and 
Verification (MRV) schemes focus on total SOC, it 
should be noted that the carbon in soils consists 
of different forms that are chemically varied and 
have specific turnover times [51]. The complex bio
logical basis of SOC sequestration has recently 
been reviewed by Lavelle [52], while Doetterl et al. 
[53] focused on the effects of biotic and abiotic 
factors controlling SOC dynamics at continental to 
global scales. Potential, actual and attainable SOC 
sequestration rates are determined by defining fac
tors, such as clay mineralogy, limiting factors (e.g. 
climate) and reducing factors (e.g. erosion, residue 
removal, soil fertility decrease, land mis- 
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management) or increasing factors (e.g. improved 
land management, crop rotation, cover crops, add
itional C inputs) [54]. Further, there may be stoi
chiometric [55–58] and microbiological limitations 
[59–61], as well as often overruling social and eco
nomic limitations to attainable SOC gains [42, 
62–65].

Although soils are a promising reservoir to store 
carbon, long time scales are required to sequester 
amounts of (stable) carbon of relevance to 
mitigate climate change [66–68]. Alternatively, par
ticulate organic matter (POM) defined as the 
“0.053–2 mm size fraction” of SOM [69], can also 
play a role in climate change mitigation. Part of it 
can persist over longer time scales as it can be 
trapped within soil aggregates where it is not 
available for soil microbes to cycle [70,71]. For the 
fast-decomposing POM, the stock and carbon 
accrual can be high, but management needs to be 
maintained to be relevant for climate change miti
gation [72] as there is a high risk of reversal (hence 
a percentage of credits is held in a buffer pool to 
mitigate this risk).

Possible gains in SOC are considered to be finite 
[73,74] and are reversible upon changes in land 
management practices [75,76]. The validity of the 
widely accepted assumption of “possible stable 
SOC gains being finite due to the limited mineral 
surface available” (i.e. saturation concept) has 
recently been questioned and remains an issue of 
scientific debate [77–79]. In this context, it is 
important to differentiate between the concepts of 
C-saturation versus C-equilibrium, which is based 
on inputs/outputs of C for a given system [16].

Importantly, interventions that are focused on 
SOC sequestration may not be as efficient for cli
mate change mitigation as anticipated [80–83]. 
Also they might not always lead to increased crop 
productivity [13,14, 84,85], and often operate on 
longer time scales than many smallholder farmers 
can accept financially [42]. A recent study [86] 
found that the main incentives for smallholder 
farmers to participate in carbon payment schemes 
are non-monetary. These include improved yields, 
building soil resilience and limit erosion, increasing 
soil organic matter as a source of nitrogen (N) in 
“low soil fertility regions” [87–89] or, alternatively, 
to reduce the application of inorganic N fertilizers 
in parts of the world with N-related environmental 
problems [81, 90]. Further incentives include 
access to financial advisory services and credit, 
investments in local infrastructure, and the devel
opment of income-generating activities. Such co- 

benefits play a central role in carbon payment 
projects as they can enhance the likelihood of per
manence of practices to sustain SOC stocks, a cen
tral issue related to the credibility of SOC credits 
[86]. In this context, it is also important to be 
aware of the risk of land grabbing associated with 
some “carbon credit oriented” projects and large- 
scale investments in farmland [91–94].

The abbreviation MRV, as used in this review, 
stands for Monitoring, Reporting and Verification. 
The monitoring activities under consideration are 
related to national scale, landscape, plot and/or 
project scale inventories, and those focusing on 
the carbon markets (e.g. voluntary and compli
ance), as well as “insetting.” The economic consid
erations of carbon market-oriented MRV systems, 
i.e. underpinning business models, are intricate 
[95–97]. Payment models can focus on preserving 
or increasing forest biomass, conserving SOC, 
reducing net emissions from soil, increasing 
sequestration of carbon into soils or a combination 
thereof. Most voluntary carbon market schemes in 
agriculture work on the basis of “Net Abatement,” 
i.e. SOC stock increases plus soil derived GHG 
emission reductions (i.e. consider net GHG emis
sion changes expressed as CO2eq). For some MRV 
systems, however, measuring SOC change is not 
required (i.e. “action-based” verification), but this 
precludes the scope for true verification (i.e. 
“result-based”). In this context, some groups prefer 
to use “Measurement, Monitoring, Reporting and 
Verification” (MMRV) to show the importance of 
field measurements, rather than MRV alone [98]. 
Many MRV guidelines and approved methodolo
gies have been proposed, yet their differences 
remain unclear. In this study, we compared 17 of 
these guidelines using 26 criteria including the 
ecosystems covered, geographic scope, tier level 
and reporting frequency.

The WorldBank [7] identified three broad types 
of payment systems applicable to projects seques
tering SOC in agricultural land. These were ranked 
according to cost of implementation, confidence 
of atmospheric impact, and degree of complexity: 
a) Payment for practice (input-based system); b) 
Payment for practice with performance dividend; 
and c) Payment for performance (output-based 
system, e.g. carbon-market, voluntary or compli
ance). For the first payment system, it is sufficient 
to implement an eligible practice to get paid. 
Alternatively, for the last payment system (c) an 
assessment of the impact is compulsory and the 
payment itself can be modulated based on the 
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performance. The second payment system (b) is a 
blend of systems “a” and “c,” with a fixed payment 
plus a bonus based on the performance.

Although much progress in national and sub- 
national level MRV systems for SOC has been 
achieved over the last two decades [11, 66, 
99–103], a recent poll of staff working in environ
mental organizations, businesses, academic 
researchers and government entities identified 
MRV as “one of the largest challenges by entities 
developing carbon farming schemes” [104]. This 
has partly to do with the scale at which the MRV 
system is needed when referring to carbon farm
ing, i.e. farm or plot scale, which may involve 
approaches that differ from those commonly used 
for national or sub-national inventories (i.e. Tier 1 
and Tier 2) and make more systematic use of Tier 
3 approaches, with exhaustive management and 
farm data collection for GHG emissions assess
ment. The most common challenges according to 
the poll were the lack of robust monitoring, report
ing and verification systems as well as knowledge 
about the relevant costs. This is surprising consid
ering that UNFCCC [105] principles indicate that 
MRV systems should be “transparent, complete, 
consistent, comparable and accurate” and also 
consider the common sense principles of being 
“pragmatic, cost-effective, scalable, timely, and 
operational.” Importantly, safeguards against 
“greenwashing” [106,107], and the often associated 
“land grabbing” [92,93], through uncertainty quan
tification and solid verification by independent 
suitably experienced and qualified third parties will 
be essential [108–111]. Yet, verifiers may not have 
the right expertise, and many will not have the 
modeling experience, pointing at a need for train
ing capacity [112].

The primary objective of this study, carried out in 
the framework of the EU ORCaSA project [113], is to 
propose an approach for a modular, integrative, and 
multi-ecosystem MRV framework for SOC stock 
changes. First, we carried out an in-depth literature 
search using the Web of Science platform to retrieve 
studies that examined SOC and MRV systems focus
ing on croplands, grasslands and forest lands. 
Additional articles were identified from personal 
research libraries (For URLs see Supplementary infor
mation S4). Based on this, in Section “ Components 
for a modular MRV framework”, we propose a con
ceptual, modular, and scalable MRV framework. 
Subsequently, we provide an inventory and classifi
cation of current MRV methodologies and subse
quently “score” them using a list of key 

characteristics (Section “Inventory and classification 
of current MRV approaches”). Thereafter, in Section 
“Towards an operational, integrative, and multi-eco
system MRV approach for SOC stock changes”, we 
build on this and provide an outlook on how an 
operational, modular multi-ecosystem MRV system 
could be systematically built in the next phase of 
the ORCaSa project.

Components for a modular MRV framework

Smith et al. [114] discussed a conceptual MRV 
framework for cropland dedicated to NDCs. They 
described how different “building blocks” (e.g. field 
measurements, datasets, models) could contribute 
to the three components of an MRV system for 
SOC changes. The study also provided a methodo
logical basis for the ground monitoring, modeling, 
and verification of SOC stock changes. It requires 
to combine different datasets (e.g. input for mod
els, calibration and validation data), together with 
models (e.g. empirical, soil process-based models, 
coupled soil-crop process-based models, carbon 
balance models), embedded in a spatial data infra
structure (SDI) allowing for handling of databases, 
intensive computing, decision support systems, 
and verification and distribution of results/report
ing. It is important to note that when process- 
based models simulate only the soil compartment 
they require external information on biomass 
inputs to the soil, while coupled soil-vegetation 
models directly estimate biomass inputs. 
Therefore, the choice of modeling approach will 
have important consequences when the calcula
tion of net SOC stock changes is operationalized.

A “building block,” is one of the separate parts 
that are combined to make an operational MRV 
system. Examples are spatial data layers (e.g. maps 
of soil properties, land management and activity 
data), modeling approaches (e.g. process-based 
soil, vegetation or coupled soil-vegetation models, 
or data-driven models), or the combination of 
Earth Observation (EO) data and radiative transfer 
models that can produce biophysical data from EO 
to be assimilated in process-based models. The 
building blocks themselves, many elements of 
which already exist as loose modules [115–117], 
need to be assembled in an operational processing 
chain to be applied in one or several contexts of 
applications (e.g. CAP, Carbon market, or NDC) 
[118–120]. Note that the same building blocks 
(and their constituting parts) can be used in one 
or several components of an MRV system. For 
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example, both the Comet Farm Tool [121] and the 
DayCent model [122,123] are Tier 3 approaches 
(and even include the same model), but their use 
and role in MRV systems is completely different.

A different conceptual MRV framework has been 
presented by Paustian et al. [124]. It includes com
ponents similar those proposed by Smith et al. 
[114], as well as a scalable quantification platform 
(which is not detailed in the paper itself), and fur
ther considers the different communities that 
should be served by an MRV system (e.g. national 
policies, carbon finance market and supply chains).

Depending on the size of the area to be moni
tored, the availability/accuracy of the input data, 
protocols for sampling/measurement, monitoring 
frequency, scale of interest and purpose, different 
MRV approaches and associated methodologies 
(e.g. Tiers as in Bockstaller et al. [119] for the CAP), 
will be needed.

Based on the above, and discussions during two 
international stakeholder workshops, we pictured a 
scalable, modular MRV framework (Figure 1):

a. Monitoring (M), which includes experiments 
or observatories (e.g. long-term soil observa
tions, flux tower networks), direct (soil) meas
urements, activity data, spatial data layers, 
Earth Observation (see M1 to M5 in Figure 1) 
aimed at developing and/or applying models 
(M6 to M8). The gear wheel in the green 
monitoring box (M) serves to illustrate that 
these activities are performed within the con
text of a scalable quantification platform.

b. Reporting (R), which includes rules and proce
dures (R1 and R2).

c. Verification (V), which includes rules and pro
cedures, verification itself, proof of adoption 
of practice, and data (soil and/or EO) for veri
fication (V1 to V4).

The three components and their building 
blocks, as well as their practical application, have 
been discussed in detail in Batjes et al. [125]. 
Landscape-scale assessment of SOC stock changes 
in agriculture and forestry, for example, can pre
sent a number of practical problems. Data are 
needed from heterogeneous areas, often for mul
tiple points in time, and the collection and labora
tory analyses of these samples can be expensive 
and time consuming [126]. However, time and 
costs can be reduced by taking composite samples 
and using proximal sensing techniques, such as 
MIR/NIR spectroscopy, and developing soil spectral 
calibration libraries and estimation services [100, 
127–131]. Overall, field measurements (even when 
considering the associated uncertainties [132,133]) 
are still considered the best option to quantify and 
verify SOC content and SOC changes. They are 
also needed for model development and calibra
tion as well as verification. The use of field meas
urements, modeling and remote sensing for MRV 
purposes is often complementary [134,135].

Broadly speaking, three types of models are 
used to predict SOC stocks and SOC stock changes: 
a) process-based (M6 in Figure 1) or mechanistic 
models [114, 124, 136,137]; b) data-driven (M7, or 

Figure 1. Schematic representation of components, building blocks, and information flow for a modular, scalable MRV 
system. (the dotted lines illustrate that Earth Observation can provide activity and spatial data for monitoring and report
ing, respectively independent input for verification).
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empirical) models [138,139]; and c) hybrid models 
(M8, [140–142]). The second type of model is 
based on statistical relationships derived directly 
from field (experiment) observations, while pro
cess-based models consider algorithms that are 
founded on more general scientific understanding. 
The latter is derived from laboratory- and field- 
based experiments, as well as a variety of field- 
based observations of SOC distribution along 
climatic, vegetation, topographic and geological 
gradients. Data-driven (M7) and process-based 
models (M6) can be combined in hybrid mod
els (M8).

General specifications for the different model 
categories mentioned earlier, and their main char
acteristics, are presented in Table 1. A critical dis
cussion of the differences between the applied 
methods, such as quality/differences of measuring 
protocols, remote sensing approaches (e.g. what is 
measured and how (SOC, biomass, Net Primary 
Production), model structures and data require
ments, local or off-site calibration, use of measured 
or map-based (aggregated) data for driving model
ing, and accounting for the associated uncertainty) 
is considered beyond the scope of this review as 
these have been addressed elsewhere [37, 99, 101, 
118, 125, 141, 143–147]. However, such methodo
logical differences are crucial and will have a major 
impact on the quality of the actual MRV system.

A fairly recent development has been the devel
opment of “hybrid models” that combine multiple 
data sources and modeling techniques [148]. For 
example, these can comprise a combination of 
“field data – remote sensing – machine learning” 
[149,150], “field data – remote sensing – ecosystem 
models” [151–157], or “field data – remote sensing 
– machine learning – ecosystem models” [120]. 
The combination of field measurements, remote 
sensing and ecosystem carbon models can be 

used for upscaling plot data for carbon accounting 
to larger areas (e.g. regional, country or global 
scale). However, the approach can also be used for 
downscaling: in that case, large scale data or 
model output (e.g. from a Dynamic Global 
Vegetation Model) are combined with remote 
sensing data to refine ecosystem or data-driven 
model outputs at smaller spatial scales, thus cap
turing local variations in carbon dynamics [158]. 
Another recent development has been the use of 
geostatistical approaches for assessing space-time 
changes in SOC stocks using machine learning that 
draws on large soil databases and environmental 
covariates [138, 159]. Le No€e et al. [160] provided 
a comprehensive review of �250 SOC models, 
spanning 90 years of model development history, 
and concluded that combining independent valid
ation based on observed time series and improved 
information flow between predictive and concep
tual models is needed to increase reliability in pre
dictions. Different sources of uncertainty 
associated with MRV systems, and steps towards 
their quantification, are discussed elsewhere (see 
Section “Reporting and verification”).

Decision support tools provide information on 
the quantification of SOC stock changes, GHG 
emissions, or both. They mainly use IPCC Tier 1 
(i.e. consider default or country-specific emission 
factors) and Tier 2 (i.e. consider more detailed and 
region-specific data and models) approaches but 
can also include a module for Tier 3 (most compre
hensive and site-specific methodologies) [156, 
161,162]. Tier 3 type approaches, the most 
demanding ones, are run using spatially explicit 
inputs and farm/region-specific model parameters. 
Tier 3 is considered to be the most accurate 
approach [33]. Operational tools (in particular Tier 
3 type) depend on several of the building blocks 
described in Figure 1 (e.g. spatial data for climate 

Table 1. Examples of different model categories and current decision support tools and their characteristicsa.

Characteristics

Models
Decision support tools

Data-driven Process-based Hybrid

Data requirement Low High (environmental data) High (environmental data) High (farm specific data)
Calibration requirement Low High High Low
Required expertise Low Medium-high High Medium
Management options Medium (categories) No-high High Medium-high
Targeted scale Country and larger Point, country and larger Point, country and larger Field-farm
Uncertainty/expected error 

for field scale
High Medium-low Medium-low Medium-high

Examples IPCC and UNFCC (Tier 1 
and Tier 2); Machine 
learningb

Roth C (Tier 3), 
EPIC, CENTURY, 
DAYCENT, DNDC (Tier 3)

AgriCarbon-EOb Cool Farm Tool (Tier 1), 
Comet Farm (Tier 1 and 
2), CPB tools (Tier 1 and 
2), SIMEOS-AMG (Tier 3)

aAdapted from Kuhnert et al. [94]. Note that some process-based models only consider C (e.g. RothC); whereas others consider C, N, P etc dynamics 
(e.g. DayCent) and these are often termed ‘biochemical models’. Some process-based models have no plant/crop component (e.g. RothC), while 
others have (e.g. DayCent). All have biochemical pathways related to the cycling of incoming C using defined conceptual pools with varying decay 
rates.

b.Machine-learning based models and hybrid models seldom have clear abbreviations; for examples see text.
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or activity data as input, in-situ soil data for 
verification).

Inventory and classification of current MRV 
approaches

Inventory

National scale
Different MRV systems will be needed depending 
on their projected applications. National MRV 
frameworks under the UN Framework Convention 
on Climate Change (UNFCC) [28] focus on “what is 
measured, what is reported, and what is verified.” 
The adopted IPCC methodologies are intended to 
yield national GHG inventories that are transpar
ent, complete, accurate, consistent over time and 
comparable across countries (i.e. compliance 
oriented).

Smith et al. [114] reviewed MRV methods in use 
in countries participating in the Global Research 
Alliance on Agricultural Greenhouse Gases (GRA). 
All countries that are parties to the UNFCCC need 
to deliver national inventories of emissions and 
removals of GHG associated with human activities. 
Since different countries have different capacities 
to produce inventories, the IPCC guidelines lay out 
tiers of methods for each emission source. They 
[114] reported that countries listed as “non-annex 
1” (i.e. mostly developing countries that have rati
fied or accepted the UNFCCC and are not included 
in Annex 1 of the Kyoto Protocol) face major chal
lenges due to a paucity of data respectively limited 
technical capacity to collect the data necessary for 
the inventories. For instance, in sub-Saharan Africa, 
countries often lack activity data in addition to 
specific emission factors [163]. As a result, most 
GRA countries use a Tier 1 approach to report SOC 
changes associated with areas defined as cropland, 
while industrialized (Annex I) countries such as 
Australia, Canada and Denmark use a Tier 3 
approach, respectively based on FullCAM, Century 
and C-Tool models. Further, specificities on meth
odologies and models used in selected GRA coun
tries are provided in Smith et al. [114].

Subnational to project scale
More recently, Oldfield et al. [164] prepared an 
overview of SOC estimation and sampling meth
ods, listing main issues and approaches to be con
sidered in an MRV framework. Their study 
considered twelve published MRV “protocols” for 
SOC credits generated on cropland and rangeland. 
They assessed over forty characteristics for each 

protocol. Unsurprisingly, these protocols take dif
ferent approaches to quantifying SOC and net 
GHG removals, often building upon national con
ventions. While some use soil sampling only, 
others combine sampling with process-based mod
eling, or use only modeling and remote sensing. 
These differences as well as the way issues such as 
permanence (i.e. consider the sustained climate 
mitigation effect in the long-term) and additional
ity (i.e. consider if the reported emission reduc
tions and/or carbon removals associated with the 
adoption of new land management practices (i.e. 
project scenario) would be greater than under the 
“business-as-usual” scenario (i.e. without the car
bon finance or incentive)) are accounted for may 
create the risk of generating credits that are not 
equal or comparable [94, 103, 165]. Furthermore, it 
should be noted that some of the protocols 
reviewed in Oldfield et al. [164] have since been 
retracted by the certifying agencies as some of the 
claims for carbon offsets made could not be sub
stantiated due to “greenwashing” [106,107].

According to Arcusa and Sprenkle-Hyppolite 
[115], based on an analysis of the carbon dioxide 
removal (CDR) certification and standards ecosys
tem for the year 2021–2022, there are at least 
thirty standard developing organizations. These 
propose at least 125 standard methodologies for 
carbon removal from 23 different CDR activities. 
Further, they identified 27 different versions of cer
tification instruments in voluntary and compliance 
markets. In practice, again, this diversity makes it 
cumbersome to determine whether net climate 
benefits have been achieved or not. This shows 
the importance of developing an operational uni
fied, modular, multi-ecosystem MRV “tool” for SOC 
and ecosystem carbon stocks (see Section 
“Towards an operational, integrative, and multi- 
ecosystem MRV approach for SOC stock changes”).

Black et al. [103] presented an innovative global 
comparative analysis of farmland SOC 
“programmes or standards”, abbreviated below as 
“codes”, providing novel insights into the range of 
approaches governing this global marketplace. For 
this, they elaborated an analytical framework for 
the systematic comparison of “codes.” They used 
this to identify commonalities and differences in 
approaches, methods, administration, commercial
ization, and operations for twelve publicly avail
able “codes” from around the world. These “codes” 
used a range of mechanisms to manage addition
ality, uncertainty and risks, baselines, measure
ment, reporting and verification, auditing, resale of 
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carbon units, bundling and stacking, stakeholder 
engagement, and market integrity. They concluded 
that adapting or translating existing “codes,” or 
developing new approaches, to a workable farm 
level carbon “code” in a new country or region is 
not trivial, since these must address local eco
nomic, environmental, and social factors, including 
farming systems, soil and climatic conditions, regu
lations, social norms and values.

For France, Yogo et al. [166] proposed three 
possible options for carbon balance evaluation 
and monitoring with different methodologies, 
tools and data that can be mobilized, as well as 
recommendations for the specific case of crop
lands, and pointed at the advantage of moving 
towards methods that include remote sensing for 
a territorial deployment. Their comprehensive 
assessment included a review of twenty different 
methodologies, and tools, to assess at least one of 
the three main GHGs (CO2, N2O and CH4) and/or 
carbon sequestration in soil and above-ground 
biomass. The underlying calculations include IPCC 
Tier 1 or Tier 2 emission factors, but also a range 
of models and use of satellite data.

For the Netherlands, Lesschen et al. [117] devel
oped an elaborate “rating” system. It considers cri
teria and describes characteristics for twelve 
selected models and tools, to identify their suit
ability for application by farmers in the 
Netherlands. Criteria for selection include public 
availability, licensing, validation, accessibility of 
input data, applicability to cropland and grassland 
under climatic conditions similar to those in the 
Netherlands, as well as other characteristics, such 
as whether models are maintained, the number of 
C-pools, temporal scale and temporal resolution, 
spatial resolution, soil depth and number of layers, 
consideration of water balance and nitrogen inter
actions. On the basis of their inventory, Lesschen 
et al. [117] selected four potentially suitable soil C- 
models. Subsequently, they identified the data 
requirements of these models in terms of soil 
parameters, weather data, kind, and type of 
organic materials (manure) applied, soil manage
ment, information on crop type, etc. After a quali
tative comparison, the four models were 
compared quantitively using datasets for two 
long-term experiments in the Netherlands. It fol
lowed that there are substantial differences 
between the models – this made the comparison 
of SOC changes uncertain. While some models 
simulated the same trends, changes in SOC levels 
varied substantially between models. Several 

studies [167–169] indicated that a multi-model 
analysis reduced the uncertainty in simulated SOC 
stocks, which would suggest that MRV systems 
should not rely on one model only. All of this will 
have implications for the verifiability of modelled 
SOC stock changes, or net GHG emissions, at an 
accepted confidence level (e.g. 90%). In this con
text, it should be noted that carbon markets do 
not look for change in SOC stocks over time, but 
rather at additionality or the difference in esti
mated GHG emissions under the “project” scenario 
versus GHG emissions that would have occurred 
under the “business-as-usual” scenario (i.e. net 
abatement).

Similarly, different MRV approaches and meth
odologies are used in the forest sector [170–173]. 
Differences in statistical sampling design, for 
example, as well as field sampling techniques and 
subsequent laboratory analyses will impact on the 
predictive quality of different monitoring networks 
[99, 174,175], making inter-comparison of results 
derived from various monitoring systems problem
atic [147, 176]. According to Olsson [177], unmeas
urable uncertainties, such as political issues and 
economic rebound effects potentially leading to 
carbon “leakages,” tend to be neglected in inven
tories. Importantly, different certification schemes 
can result in different prices being paid per net 
tonne of CO2eq sequestered. These prices, in turn, 
will among others influence land use and crop 
management decisions [178–180] hence achiev
able carbon sequestration.

Reviewed guidelines and approved 
methodologies

From the above it follows that many different 
guidelines and methodologies relating to MRV 
exist and that the terms used are not always clear- 
cut with a diverse range of associated certification 
schemes. In this context, Demenois et al. [94] 
referred to a “jungle of certification schemes”. For 
this review, as indicated earlier, we considered a 
selection of guidelines recognized as being most 
relevant based on the expertise of the writing 
team, and subsequent feedback during two inter
national stakeholder workshops (Table 2). Succinct 
descriptions thereof are provided in 
Supplementary Information S2.

Typically, each approved methodology is based 
on one, or several, standards. These are often 
documented in a central registry which lists 
whether methodologies are accepted, in (scientific) 
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peer review or open for public comment. Further, 
registries list inactive (or repealed) methodologies 
and their version. Major registries in the voluntary 
carbon offset market include the American Carbon 
Registry (ACR) [181], Verified Carbon Standard 
(VERRA) [182], Climate Action Reserve (https:// 
www.climateactionreserve.org/) and Gold Standard 
Impact Registry (https://www.goldstandard.org/).

Classification characteristics

We defined a list of main characteristics that 
should be considered when comparing the guide
lines and approved methodologies considered in 
Table 2. This list (Table 3) considers characteristics 
such as purpose of the MRV system, ecosystem(s) 
covered, Tier level, geographic scope, scope of 
monitoring as well as verification requirements 
such as “additionality” and “permanence.”

For each characteristic, either one or several 
answers are possible. For example, for the classifi
cation characteristic “Ecosystem(s) covered,” there 

are nine options, and one could answer 
“Croplands,” “Grasslands” or “Wetlands/peatlands.” 
Alternatively, for the characteristic “Leakage 
requirement” only two answers are possible (Yes 
or No). During the “scoring” it proved cumbersome 
to unmistakably assign a class for some character
istics in view of the overall diversity/complexity of 
the considered MRV guidelines/methodologies, 
such as consideration of multiple Tiers. In such 
instances, pragmatically, “best appraisals” were 
provided considering the available “multi-faceted” 
information. This level of “uncertainty” has been 
expressed under “Confidence in ratings,” which 
was assessed as: High (5 times), Medium (8 times) 
and Low (4 times). Results of the assessments were 
stored in a spreadsheet with eighteen rows and 
twenty-seven columns (see Supplementary 
Information S3) of which only the first eight col
umns and rows are shown in Table 4 in view of 
space. As indicated, in some cases, we only 
assessed one specific methodology whereas there 
can be more (e.g. six for Label Bas Carbone (FR- 

Table 2. List of reviewed guidelines and approved methodologies (listed in alphabetical order of their abbreviation).
Abbreviation Name

AU-CFIDV Carbon Farming Initiative—Estimating Sequestration of Carbon in Soil Using Default Values 
https://www.dcceew.gov.au/climate-change/emissions-reduction/emissions-reduction-fund/methods/ 

estimating-sequestration-of-carbon-in-soil-using-default-values
AU-CFMM Carbon Farming Initiative—Estimating soil organic carbon sequestration using measurement and models 

method 
https://www.cleanenergyregulator.gov.au/ERF/Choosing-a-project-type/Opportunities-for-the-land-sector/ 

Agricultural-methods/estimating-soil-organic-carbon-sequestration-using-measurement-and-models-method
BC-SCM BCarbon Soil Carbon Protocol 

https://static1.squarespace.com/static/611691387b74c566a67f385d/t/63483a986a24ac421c4f4414/ 
1665677979013/2022-10-13-BCarbon-Soil-Carbon-Protocol-V2.pdf

CARSSE Climate Action Reserve Soil Enrichment Protocol v 1.0 
https://www.climateactionreserve.org/wp-content/uploads/2020/10/Soil-Enrichment-Protocol-V1.0.pdf

DE-MOOR Moor Futures 
https://www.moorfutures.de/downloads/

FR-LBC Label Bas Carbone (There are six approved methodologies for SOC, see below for details). 
https://label-bas-carbone.ecologie.gouv.fr/quest-ce-que-le-label-bas-carbone

Gold Standard Soil Organic Carbon Framework Methodology 
https://globalgoals.goldstandard.org/

GSOC-MRV FAO GSOC MRV Protocol 
https://www.fao.org/documents/card/en/c/cb0509en

IPCC IPCC guidelines for national greenhouse gas inventories 
https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf

NL-SNK Stichting Nationale Koolstofmarkt 
https://nationaleco2markt.nl/ 
https://nationaleco2markt.nl/methoden/

Nori Nori Croplands Methodology, v 1.3 
https://nori.com/resources/croplands-methodology

Plan Vivo Plan Vivo standard methodology 
https://www.planvivo.org/standard-documents

Regen Regen Network Methodology for GHG and Co-Benefits in Grazing Systems 
https://registry.regen.network/v/methodology-library/published-methodologies/carbonplus-methodology-for- 

grazing-systems-v1.0-and-credit-class
UK-PC IUCN-UK Peatland Code 

https://www.iucn-uk-peatlandprogramme.org/peatland-code-0
US-ACR American Carbon Registry (There are four methodologies for SOC, see 3.2.2) 

https://americancarbonregistry.org/carbon-accounting/standards-methodologies
VM0006 Methodology for Carbon Accounting for Mosaic and Landscape-scale REDD Projects, v2.2 

https://verra.org/methodology/vm0006-methodology-for-carbon-accounting-for-mosaic-and-landscape-scale- 
redd-projects-v2-2/

VM0042 VM0042 Methodology for Improved Agricultural Land Management, v2.0 
https://verra.org/methodologies/vm0042-methodology-for-improved-agricultural-land-management-v2-0/

aListed in alphabetical order of abbreviations (all URLs last accessed 5 July 2024). Short descriptions are provided as Supplementary Information S1.
bThese guidelines include several approved methodologies, see Supplementary Information S1 for additional information.
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LBC), see Supplementary Information S2 and foot
note to Table 4).

Characterization of reviewed MRV systems and 
methodologies

In view of the large number of characteristics 
involved, it would be helpful to reduce the multi- 
dimensional space in which the MRV approaches 
are scored to only two dimensions. As a result, 
each MRV approach would be situated in a two- 
dimensional plane, where MRV approaches that 
have similar characteristics are close to each other, 
while those exhibiting distinct features are posi
tioned farther apart. This dimension reduction can 
be achieved with a statistical technique known as 
multidimensional scaling [MDS, see 183,184]. Here 
we applied MDS using the “cmdscale” function of 
the “cluster” package of the R software for statis
tical computing [185]. This approach differs from 
the one adopted by Demenois et al. [94], who 
used multiple correspondence analysis (MCA) to 
assess main differences between SOC standards. 
An important difference between MDS and MCA is 
that a characteristic that is systematically isolated 
from all the other characteristics (and hence con
sidered “very particular”) will always appear on the 
first dimension of the MCA plot, but not necessar
ily on the MDS plot [186].

Multidimensional scaling requires a dissimilarity 
matrix as input. This is a square matrix that has as 
many rows and columns as there are MRV 
approaches, and whose value at row i and column 

j stores the dissimilarity between the i-th and j-th 
MRV approach. The dissimilarity between two MR 
approaches is derived from the characteristics of 
the two MRV approaches. Since the characteristics 
of MRV approaches listed in Table 2 are measured 
on a nominal scale, common Euclidean distances 
cannot be computed. We therefore used the 
Gower metric [187]. This simply assigns distance 0 
if the two MRV approaches have the same value 
for the characteristic, and distance 1 if they are not 
the same. This was done for all characteristics and 
the average of all distances was taken to define 
the dissimilarity between two MRV approaches. It 
is possible to assign weights to the characteristics 
and thus allow some characteristics to have more 
influence on the final dissimilarity metric than 
others. We did not do this here and assumed that 
all characteristics are equally important, which is a 
simplification. Furthermore, we treated all charac
teristics as nominal variables, even if the reported 
classes are on an ordinal scale. This means that for 
“Transparency and reproducibility of 
requirements,” for example, the distance between 
two MRV approaches that score “low” and “high” is 
the same as that between two MRV approaches 
that score “low” and “moderate” or “moderate” 
and “high”.

Results of the multidimensional scaling are 
shown in Figure 2. The MRV approaches are fairly 
uniformly distributed in the two-dimensional space 
and there are no clear clusters or extremes, 
although some patterns can be observed. MRV 
approaches in the lower right (LR) quadrant, for 

Table 4. Scoring of MRV guidelines and approved methodologiesa.

Abbreviation Purpose of MRV
Ecosystem(s) 

covered Geographic scope

Aggregation 
(bundling) of 

farms Tier level
Scope of 

monitoring GHGs targeted

AU-CFIDV Voluntary 
carbon market

Agricultural 
land and 
woody 
vegetation

Specific country Allowed 1 GHG accounting All

AU-CFMM Voluntary 
carbon market

Agricultural 
land and 
woody 
vegetation

Specific country Allowed 3 SOC stock 
change

CO2

BC-SCM Voluntary 
carbon market

Croplands Specific country Allowed 3 SOC stock 
change

CO2

CARSSE Voluntary 
carbon market

Croplands Specific country Allowed All All All

DE-MOOR Voluntary 
carbon market

Wetlands/ 
peatlands

Specific country Not allowed 1 GHG accounting N2O

FR-LBCb Voluntary 
carbon market

Croplands Specific country Allowed All All All

Gold Standard Voluntary 
carbon market

Agricultural 
land and 
agro-forestry

Multiple countries Allowed All SOC stock 
change

All

GSOC-MRV Voluntary 
carbon market

Agricultural 
land and 
agro-forestry

Multiple countries Allowed All All All

aOnly the first eight columns are shown here in view of the length of the full table (see Supporting Information S2 for the full set of ratings).
bFor abbreviations see Table 2. Note that several guidelines, such as FR-LBC, consider different methodologies and only one or two of these are 

assessed here (in casu, ‘Field crops’ for FR-LBC). Details are provided in Supporting Information S1.
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example, all relate to a specific country and most 
follow a Tier 1 approach. While they focus on dif
ferent ecosystems, they mainly have “moderate” or 
“high” transparency requirements, and most score 
yes for “additionality”, “permanence,” “leakage,” 
“reversibility,” and “data retention” requirements. 
Verification for all is action-based and transparency 
requirements are mostly assessed as “moderate.” 
All methodologies are aimed at the compliance 
market in the LR quadrant. In the lower left quad
rant (LL), Gold Standard and GSOC-MRV are quite 
close indicating that they share key characteristics. 
Indeed, both MRV approaches aim at the voluntary 
carbon market, are applied in multiple countries, 
also consider Tier 3 level approaches, predomin
antly are result-based and agree on many of the 
requirements, yet not in a systematic way. 
Alternatively, IPCC is focused on the compliance 
market, considers all ecosystems (e.g. forestlands, 
grasslands, and croplands), all three Tier levels, yet 
can follow different verification pathways. Other 
clusters of apparently similar MRV approaches are 
AU-CFMM, BC-SCM, NL-SNK and Regen; all four are 
developed for a specific country or countries, 
make use of process-based models except for 
Regen, consider soil measurements, have similar 
reporting frequency, are result-based, and have a 

data retention/sharing policy. They all occur in the 
UL quadrant and mainly are for agricultural land, 
i.e. grassland and/or cropland. In the upper right 
quadrant (UR) all MRV approaches focus on the 
voluntary carbon market. VM0006, Nori and Plan 
Vivo all focus on SOC stock change and are appli
cable in multiple countries, use historic land man
agement as baseline setting and do not require 
ground truth SOC observations (i.e. verification is 
action-based), but have different frequencies and 
periods of reporting. VM0042 is somewhat 
“isolated” in Figure 2 in the sense that it occurs at 
the top of the central vertical axis, but no clear 
explanation for this can be found. Filtering the 
considered MRV approaches by axis (i.e. “LL-LR” for 
Dimension 1 resp. “LL-UL” for Dimension 2) does 
not provide any clearcut “messages” for possible 
captions. Possibly, the main conclusion that can be 
drawn from Figure 2, considering the simplifica
tions involved, again is that the landscape of MRV 
guidelines and applied methodologies is quite 
diverse.

It should be noted that five out of the twenty- 
six characteristics are related to a verification 
“requirement” (e.g. absence of leakage or reversal 
requirement). Since no weights were applied these 
characteristics together have a strong effect on the 

Figure 2. Position of considered MRV guidelines and approved methodologies in a two-dimensional space after applica
tion of multidimensional scaling to MRV characteristics.
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outcome of the multidimensional scaling, for 
example five times stronger than “Purpose of 
MRV” or “Ecosystem(s) covered.” There is much to 
say for reducing their influence by assigning 
weights. Likewise, many users might wish to assign 
a higher weight to characteristics such as “requires 
ground truth SOC observations” and “Target depth 
interval (for soil sampling),” or “Tier level” than to 
characteristics such as “Reporting periods” and 
“Frequency of reporting.” Assigning weights 
involves subjective choices but so does the a priori 
decision about which characteristics are included 
in the analysis. A sensitivity analysis on a few char
acteristics could show which characteristics are 
more important and how the results would be 
affected. Alternatively, it could be worthwhile to 
organize stakeholder workshops to jointly define 
and refine key characteristics of MRV guidelines 
and methodologies, assign associated weights, and 
evaluate the sensitivity of the multidimensional 
scaling results to choices made. Finally, it should 
be noted that the reduction to a two-dimensional 
space caused a significant loss of information, indi
cating that Figure 2 should only be used in an 
indicative way.

Towards an operational, integrative, and 
multi-ecosystem MRV approach for SOC 
stock changes

General considerations

MRV frameworks typically comprise several 
“building blocks” (see Figure 1) that consider vari
ous levels of complexity, as shown in Table 1 for 
modeling approaches. Building on the present 
review, and recommendations made by the 
International Consortium on Soil Carbon 
Sequestration in Agriculture [188], we highlight 
the need to develop a methodological framework 
and prototypes for operational multi-ecosystem 
monitoring tools for net SOC stock changes. 
Ideally, this modular tool (preferably web-based) 
would:

a. define the project’s name, boundaries, dur
ation, scope (e.g. NDC or insetting), and eco
system(s) under consideration;

b. permit uploading of activity data and of other 
relevant spatial data layers, with preference 
for local data when available (e.g. soil data, 
climatic data, aboveground biomass data);

c. define the relevant method for designing the 
baseline (e.g. project specific, generic) and 

test different scenarios (e.g. type of land use 
conversion, recommended management prac
tices) to increase SOC stocks and reduce GHG 
emissions (decision tool);

d. produce biophysical products derived from 
EO data that will eventually be assimilated in 
Tier 3 modeling approaches or used in ML 
(machine learning) and AI (artificial intelli
gence) approaches.

e. utilize a decision tree to select and run the 
appropriate methodology for monitoring (e.g. 
Tier 1 to Tier 3 with or without assimilating 
EO data, AI or hybrid). One of the criteria for 
building the decision tree itself is the context 
of MRV (e.g. NDCs, voluntary carbon market, 
insetting) that defines the duration and fre
quency of monitoring (e.g. annually estimates 
for insetting prevent the use of in-situ soil 
sampling approaches), while other considera
tions such as data availability, technical 
expertise, costs and project scope will also be 
accounted for.

To guide the development of such operational 
tools, we propose a methodological framework 
presented in Figure 3. However, there are several 
limitations to this framework: it is not yet adapted 
to situations involving land use change, does not 
account for non-CO2 greenhouse gas emissions 
and climatic (e.g. albedo changes) and environ
mental effects, and it does not consider the trade- 
off between cost and accuracy in monitoring 
approaches. Further, Figure 3 does not visualize 
the various levels of maturity, accuracy or scalabil
ity of the different methods available for monitor
ing or verifying SOC stock changes.

Monitoring

It appears that the main challenges in developing 
a unified, operational MRV system concern the 
monitoring component. As shown in Figure 3, this 
component can rely on various approaches the 
choice of which may depend on the previously 
mentioned decision tree (their spatial arrangement 
in Figure 3 is arbitrary);

a. Soil MRV approaches that combine SOC stock 
change with consideration of field 
measurements,

b. Tier 1 or Tier 2 approaches, for instance when 
there is no process-based model calibrated 
and validated for the local context;
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c. Tier 3 approaches which may or may not: 
assimilate remote sensing, be based only on 
soil modelling, use independent soil and 
vegetation models (e.g. biomass estimates 
being used as input in the soil model), or use 
ecosystem models that assess the full ecosys
tem carbon budget, sometimes with limited 
field validation. Alternatively, emerging AI 
[189,190] and evolving ML-based SOC MRV 
approaches [138, 191] may be considered.

In the French LBC methodology for arable land, 
for example, a Tier 3 approach with a focus on soil 
was chosen. There are no clear guidelines for mod
elling or measuring crop or cover crop biomass in 
the field or by satellite, and no field-measured SOC 
changes over time are considered for local valid
ation [192,193]. However, large uncertainties in 
SOC stock change estimates can result from rough 
biomass estimates. Wijmer et al. [120], for example, 
showed that assimilating averaged LAI (leaf area 
index) at plot level instead of using high-resolution 
LAI products (10 m) can result in a significant 
underestimation of the winter wheat biomass. 
Overall, very few guidelines, methodologies or 
tools rely on biomass quantification by remote 
sensing (or by hybrid modeling approaches such 
as remote sensing data assimilation) to map its 

spatial variability in an attempt to provide the soil 
models with more accurate estimates of biomass 
carbon inputs.

Assimilation of remote sensing data in plant or 
ecosystem models can correct the model’s trajec
tory [194]. Such models assimilate biophysical 
products (e.g. LAI, aboveground biomass) derived 
from radiative transfer models and remote sensing 
products (corrected for atmospheric effects with 
orthorectification) that may be built on sensors 
with different wavelengths [195–198] as shown in 
Figure 3. Such radiative transfer models can be 
integrated in the monitoring tool as in Wijmer 
et al. [119]. However, as shown for croplands [188] 
and forestlands [199,200], upscaling process-based 
models initially developed for local applications by 
assimilating remote sensing data is challenging as 
they need much data for model evaluation and 
calibration. Based on these considerations, Tier 3 
type estimation methods for current carbon stocks 
may benefit from assimilation of remote sensing 
data. However, a dedicated new generation of 
models such as SAFYE-CO2 [154,155], tailored to 
upscaling the carbon budget components, would 
have to be developed for this. Meanwhile, another 
approach may consist in correcting the model’s 
output based on the analysis of the vegetation’s 
spatial variability by using spectral indices such as 

Figure 3. Proposition for a multi-ecosystem methodological framework depicting a modular flowchart for building an 
operational MRV tool for assessing net SOC stock changes (abbreviations: A.I., artificial intelligence; M.L., machine learn
ing; IR, infrared; FMIS, Farm Management Information system).
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the Normalized Difference Vegetation Index or LAI 
maps derived from remote sensing [201].

Alternatively, a combination of Tier 3 approaches 
could be used. For example, a single vegetation 
model, with or without remote sensing data assimi
lation, may provide biomass input data to one or 
several soil models (e.g. for an ensemble approach). 
Further, for Tier 3 methods EO assimilation may not 
always be possible (e.g. for very small plots, or 
optical EO data in very cloudy areas) or relevant (e.g. 
in hilly areas where the limited accuracy of biophys
ical products may result in a high uncertainty on the 
final estimates). It should be noted also that several 
biophysical products, such as LAI and superficial soil 
water content, could be assimilated in a specific pro
cess-based model and that several radiative transfer 
models could be used to derive a specific biophys
ical variable in an ensemble approach. As such, each 
methodology should be regularly evaluated and 
whenever possible improved based on in situ data 
collected at long-term experimental sites or from 
flux tower networks as shown in Figure 3.

Implementation of a Tier 3 approach, however, 
may not always be relevant or possible for 
example when process-based models are not cali
brated or validated for the project’s local context. 
We refer to the prototype quantification platform 
developed for croplands in France as an example. 
It considers the joint use of NIVA’s [195] algorithms 
for Tiers 1 and 2 and the SAFYE-CO2 model 
[154,155] for Tier 3. Alternatively, for Tier 3 a 
hybrid modeling approach could be used for an 
area defined by land use type, building for 
instance on Wijmer et al. [120]. Depending on the 
context and scale of monitoring, soil data to run 
the soil module may be obtained from local sour
ces, respectively from appropriately scaled soil 
products (e.g. SoilGrids [196], LUCAS [197] or 
national soil databases) complemented with in-situ 
field measurements for validation.

Each ecosystem has its specificities, therefore 
some “building blocks” (or modules) will have to 
be designed, added or implemented in a context- 
specific way [198, 202–204]. For instance, monitor
ing SOC stock changes for peatlands (highly 
organic soils) would require adapted SOC models 
[205] and an adapted framework that considers 
seasonal fluctuations of the water Table [206,207], 
and may require coupling with a hydrological 
module [208]. Likewise, specific approaches would 
be needed to model net SOC stock changes in 
other ecosystems such as forestland [31, 170, 173, 
199] or in urban environments [209,210].

Reporting and verification

Reporting requirements are fully linked to the 
objectives of the applied methodologies (e.g. 
national GHG inventories or carbon farming), the 
stakeholder responsible for the reporting (e.g. a 
state, a farmer) and the nature of the payment sys
tems (i.e. payment for practice, payment for per
formance, or payment for practice with 
performance dividend). Generally, the more com
plex the methodologies are, the more demanding 
the reporting will become. For example, reporting 
on the implementation of a practice might be 
straightforward for a farmer, but this will be far 
more challenging if a farmer aims for a payment 
for performance derived from model-based 
approaches. Therefore, it is essential to consider 
the heterogeneity of capacities (e.g. reliable access 
to Internet for online reporting) and expertise of 
the stakeholder responsible for the reporting.

CIRCASA [211] made recommendations for crop
land that could be used for or adapted to other 
ecosystems. The CIRCASA team suggested that 
reporting should primarily be through gridded 
data extraction (e.g. of the modelled outputs) for 
any spatially defined area (e.g. a field, farm, small 
region, sourcing area of an industry, given crop 
type, or country) and any time period (e.g. one 
year for CAP or insetting programs up to several 
years or decades for NDCs or offsetting projects). 
Inherently, all SOC stock change estimates should 
be provided with the same unit (e.g. g C m−2 or g 
CO2eq m−2 per time period considered); any claims 
put forth by projects must always be substantiated 
by statistically rigorous evidence and be independ
ently verified by a third party.

Concerning baseline setting, we recommend an 
adaptative framework, with supporting guidelines/ 
tools, that would accommodate both generic (i.e. 
calculated for a given type of pedoclimatic condi
tions� crop rotation�practices) and project-spe
cific baselines. The operational processing chain 
described above would allow both. First, it could 
produce information on several years prior to 
implementation of, for instance, a carbon farming 
program but also during the project’s life cycle. 
Second, because the proposed approach is based 
on remote sensing and hybrid modeling it will 
allow to simulate scenarios for plots/farms in the 
same pedoclimatic region (or landscape) that con
sider the adoption level of recommended carbon 
farming practices, and this for a range of crop 
rotations.
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Verification of the practices implemented during 
performance-based projects could benefit from 
modern technologies. For instance, activity data 
could be collected through mobile phones 
[212,213], online portals [214] or connection to 
Farm Management Information Systems (FMIS) 
[215,216] with application programming interfaces 
(APIs) [217]. Yet, our own recent experience has 
shown that activity data in FMIS may lack reliabil
ity/consistency and may require to be checked by 
a third party (e.g. an agricultural council).

For verification of SOC stock changes, we rec
ommend an approach based on soil re-sampling 
(e.g. surveys, grids, demonstration farms) and 
remote sensing using standardized protocols. To 
optimize the cost/accuracy ratio of verification, 
well-designed initial and final soil sampling 
schemes are needed [37, 218,219]. Further, the 
process should be based on consistent sampling 
procedures and comparable analytical methods 
[147, 220–224]. A principal decision is whether to 
adopt a design-based or model-based statistical 
inference for output-based verification. The impor
tant advantage of design-based statistical infer
ence (i.e. statistical sampling theory) is that it is 
entirely model-free, hence makes no assumptions 
[225,226]. It yields unbiased estimates of SOC stock 
change for an area of interest while the associated 
estimation accuracy is quantified. However, it 
requires a probability sample from the area of 
interest, with all inclusion probabilities known and 
greater than zero. Model-based approaches essen
tially rely on statistical regression (e.g. machine 
learning [227] or kriging [228]. They may also use 
uncertainty propagation methods [229,230] when 
outputs of process-based models are used to infer 
the SOC stock change and uncertainties in model 
inputs, parameters and structure need to be 
accounted for. It is important to note that, due to 
an averaging out effect, uncertainty decreases 
when spatial averages of SOC stock change are 
computed [159, 219]. The uncertainty decrease is 
largest when errors have a low spatial correlation. 
More information about design-based and model- 
based statistical inference for verification of out
put-based projects is provided elsewhere 
(Supplementary Information 1).

For verification of results emanating from 
“advanced” Tier 3 approaches, pluri-annual high- 
resolution maps of biomass and SOC stock 
changes produced by hybrid modeling approaches 
(e.g. AgriCarbon-EO) could be useful as these will 
provide insights into spatio-temporal dynamics of 

C stock changes, for instance to help identify areas 
that preferentially store or lose C. Such an inte
grated approach would allow for a substantial 
reduction in the number of soil samples required 
to detect significant SOC stock changes (at a pre- 
defined confidence level), ultimately providing 
more representative and accurate estimates.

Conclusions

Current MRV systems use a diversity of guidelines 
and approved methodologies. These consider a 
wide range of procedures to manage, for example, 
additionality, uncertainty, persistence, baselines, 
measurement, reporting and verification. A selec
tion of current MRV guidelines and approved 
methodologies, as applied to various ecosystems 
in defined geographies, was characterized 
according to twenty-six “key characteristics” using 
a pre-defined number of classes/options for each 
characteristic. Subsequent multi-dimensional scal
ing showed that the considered MRV methodolo
gies are fairly uniformly distributed in the two- 
dimensional space and that there are no clear clus
ters or extremes, and some patterns were 
observed. The assessment, however, was not 
unambiguous as it required simplifications. In 
retrospect, having a binary categorization of char
acteristics like leakage, permanence, and addition
ality could not capture the nuance as to how the 
different protocols actually account for those 
“complex” issues. Although a protocol can set 
these requirements, this does not mean that they 
actually do a “sufficient job at” accounting for 
them [231]. In the future, it could be worthwhile to 
organize regional stakeholder workshops to jointly 
revise the list of key characteristics while also 
assigning weights to each characteristic with a 
view to evaluate the sensitivity of the results of 
the multidimensional scaling procedure to various 
choices.

As a follow up to this review, building on the 
elements shown in Figure 3, the next phase of the 
ORCaSa project will be to develop a prototype for 
an operational, modular and multi-ecosystem MRV 
system that would be applicable in different con
texts (e.g. national or subnational reporting, CAP, 
voluntary carbon market, insetting/supply chain) 
and at different levels of complexity (i.e. Tier 1 to 
3), depending on the context of application and 
the availability/accuracy of input data. An impor
tant element of that work will be to develop 
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decision trees to guide the choice of MRV system 
components that will be proposed by ORCaSa.

There are still numerous research and govern
ance issues to consider with respect to improving 
MRV approaches [232,233]. These are being 
addressed in the framework of the Soil Carbon 
International Research Consortium (IRC) which 
aims to provide better access to research, methods 
and practices for soil carbon (see https://www. 
impact4soil.com/), and a strategic research agenda 
is currently being developed.
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