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ABSTRACT

Soils are the largest terrestrial reservoir of organic carbon, yet they are easily degraded.
Consistent and accurate monitoring of changes in soil organic carbon stocks and net green-
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house gas emissions, reporting, and their verification is key to facilitate investment in sus-

tainable land use practices that maintain or increase soil organic carbon stocks, as well as to
incorporate soil organic carbon sequestration in national greenhouse gas emission reduction
targets. Building up on an initial review of monitoring, reporting and verification (MRV)
schemes with a focus on croplands, grasslands, and forestlands we develop a framework for
a modular, scalable MRV system. We then provide an inventory and classification of selected
MRV methodologies and subsequently “score” them against a list of key characteristics. It
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appears that the main challenge in developing a unified MRV system concerns the monitor-
ing component. Finally, we present a conceptual workflow that shows how a prototype for
an operational, modular multi-ecosystem MRV tool could be systematically built.

Introduction

Soils, the largest terrestrial reservoir of organic car-
bon [1,2], are easily degraded when disturbed [3].
There is growing recognition of the importance of
monitoring changes in soil organic carbon (SOC)
stocks in the broader context of climate change
mitigation ([4], Sustainable Development Goal
(SDG) 13 [5]), halting and reversing land degrad-
ation (SDG 15), ensuring human livelihood/health
(SDG 1,2,3) and reversing biodiversity loss ([6]; SDG
14, 15). Being able to reliably quantify the amount
of organic carbon that is stored in soils and to
accurately measure and model how these amounts
change with management practices and land use
change forms the first step towards making
informed decisions about how SOC stocks can be
preserved or increased and ecosystem services
improved [7-11]. In this context, it is important to
carefully distinguish the “sequestration of SOC in
stable pools from the mere transient increases in

SOC storage that follow the incorporation of
manure and plant residues into soils” [12-16].

SOC refers only to the carbon component of
soil organic matter (SOM) [17-19]. SOM itself is an
important determinant of the quantity and quality
of many ecosystem services [9, 20] and soil func-
tioning [21,22]. It should be noted that drivers of
change in SOM concentration are not exactly the
same as drivers of change in SOC stock [12, 15].
For example, interventions to build up SOM quan-
tity and quality may only lead to a reduction in
carbon losses (i.e. carbon loss mitigation) rather
than result in real carbon sequestration in stable
pools and negative emissions [12, 16].

SOC stocks and greenhouse gas (GHG) fluxes
vary with environmental conditions such as soil
type and terrain (e.g. drainage, exposition), climate,
and land use (e.g. agriculture, forestry, peatlands,
and urban land) and management [23,24]. The

overarching policy setting, such as the EU
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Common Agricultural Policy (CAP) and GreenDeal
[25-28], create conditions aimed at maintaining
current carbon stocks in carbon-rich ecosystems
(e.g. peatlands, mangroves) respectively increasing
SOC stocks in, and reducing GHG emissions from,
degraded ecosystems.

The European Commission [29] proposed a
Framework for Carbon Removals Certification that
aims to incentivise carbon removals. Alongside
other removal options, this includes a specific
focus on promoting “carbon farming”, a category
that includes nature-based solutions. The
Framework establishes rules to certify and govern
removals with the objective of ensuring high qual-
ity carbon removals within Europe and thereby
elicit upscaling of carbon removals. The framework
aims at allowing financing through various sour-
ces, for example public funding (CAP, state aid,
and EU funds), food and biomass value chain
(insetting), carbon credits outside the value chain
(offsetting), and could entail a significant shift
towards market-based incentives for mitigation in
the land sector. Voluntary carbon markets are
increasingly offering market-based incentives to
landowners [30-32], but until now European poli-
cymakers have relied on action-based and regula-
tory approaches to manage the land sector, as
exemplified by the CAP [29].

In data scarce countries, global default values
for reference SOC stocks and emission factors are
commonly used to infer changes in SOC stocks
over time and variation over space, subject to
defined land use and management interventions,
using empirical models, i.e. Tier 1 level approaches
[33,34]. The use of such default values, however, is
prone to low accuracy and high uncertainty, espe-
cially when applied to estimate SOC stock change
in local/landscape scale projects [35,36]. Through
physical (in-situ) soil sampling combined, or not
combined, with modeling researchers, project
managers, and agricultural practitioners can
improve estimation of current SOC stocks and
changes under different land management practi-
ces. For instance, repeated measurements of SOC
concentration, bulk density and proportion of
coarse fragments can show how land management
impacts SOC stocks over time and space, provided
they are based on a strategic research/experimen-
tal design [37]. When paired with sustainable soil
management and agricultural practices, the infor-
mation can be used in financing frameworks to
promote carbon sequestration while supporting
livelihoods through increased soil health and

possibly agricultural yields, as well as addressing
climate change. In practice, however, the cost of
taking sufficient soil samples to reliably monitor
changes in carbon farming projects can be prohibi-
tive, hence the need for developing novel
approaches (e.g. hybrid modeling). For such practi-
ces to be rewarded, the reported SOC gains need
to be verified by a third party. Importantly, the
experts or companies that are in charge of carrying
out monitoring and reporting should not also carry
out the verification, due to a possible conflict of
interest; see for example the independent review
of Australian carbon credit units (ACCUs) [38].

Consistent and accurate monitoring of changes
in SOC stocks and net GHG emissions, reporting,
and their verification, is key to facilitate investment
in sustainable land use practices that maintain and
increase SOC, as well as to incorporate SOC
sequestration in GHG emission reduction targets at
the international and national level (e.g. Nationally
Determined Contributions, NDC) [39]. Yet, accord-
ing to Wiese et al. [40], only 28 out of 184 coun-
tries in the Paris Climate Agreement referred to
SOC, peatlands or wetlands in their NDCs: “to
increase country commitments and attention to
managing SOC, there is a need for improved SOC
measurement and monitoring, for better evidence
on the impacts of management practices on SOC,
and for incentives for farmers to change practices
and overcome barriers.”

The short- and longer-term socio-economic per-
spective of farmers versus the long-term perspec-
tive of SOC sequestration projects needs to be
considered too [41-44]. Soil management interven-
tions aimed at increasing organic matter (i.e. SOC)
levels in soil and to decrease organic carbon loss
in soils of different agro-ecological and urban sys-
tems, and their possible co-benefits, have been
described elsewhere [24, 45-50].

While most Monitoring, Reporting and
Verification (MRV) schemes focus on total SOC, it
should be noted that the carbon in soils consists
of different forms that are chemically varied and
have specific turnover times [51]. The complex bio-
logical basis of SOC sequestration has recently
been reviewed by Lavelle [52], while Doetterl et al.
[53] focused on the effects of biotic and abiotic
factors controlling SOC dynamics at continental to
global scales. Potential, actual and attainable SOC
sequestration rates are determined by defining fac-
tors, such as clay mineralogy, limiting factors (e.g.
climate) and reducing factors (e.g. erosion, residue
removal, soil fertility decrease, land mis-



management) or increasing factors (e.g. improved
land management, crop rotation, cover crops, add-
itional C inputs) [54]. Further, there may be stoi-
chiometric [55-58] and microbiological limitations
[59-61], as well as often overruling social and eco-
nomic limitations to attainable SOC gains [42,
62-65].

Although soils are a promising reservoir to store
carbon, long time scales are required to sequester
amounts of (stable) carbon of relevance to
mitigate climate change [66-68]. Alternatively, par-
ticulate organic matter (POM) defined as the
“0.053-2mm size fraction” of SOM [69], can also
play a role in climate change mitigation. Part of it
can persist over longer time scales as it can be
trapped within soil aggregates where it is not
available for soil microbes to cycle [70,71]. For the
fast-decomposing POM, the stock and carbon
accrual can be high, but management needs to be
maintained to be relevant for climate change miti-
gation [72] as there is a high risk of reversal (hence
a percentage of credits is held in a buffer pool to
mitigate this risk).

Possible gains in SOC are considered to be finite
[73,74] and are reversible upon changes in land
management practices [75,76]. The validity of the
widely accepted assumption of “possible stable
SOC gains being finite due to the limited mineral
surface available” (i.e. saturation concept) has
recently been questioned and remains an issue of
scientific debate [77-79]. In this context, it is
important to differentiate between the concepts of
C-saturation versus C-equilibrium, which is based
on inputs/outputs of C for a given system [16].

Importantly, interventions that are focused on
SOC sequestration may not be as efficient for cli-
mate change mitigation as anticipated [80-83].
Also they might not always lead to increased crop
productivity [13,14, 84,85], and often operate on
longer time scales than many smallholder farmers
can accept financially [42]. A recent study [86]
found that the main incentives for smallholder
farmers to participate in carbon payment schemes
are non-monetary. These include improved yields,
building soil resilience and limit erosion, increasing
soil organic matter as a source of nitrogen (N) in
“low soil fertility regions” [87-89] or, alternatively,
to reduce the application of inorganic N fertilizers
in parts of the world with N-related environmental
problems [81, 90]. Further include
access to financial advisory services and credit,
investments in local infrastructure, and the devel-
opment of income-generating activities. Such co-

incentives
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benefits play a central role in carbon payment
projects as they can enhance the likelihood of per-
manence of practices to sustain SOC stocks, a cen-
tral issue related to the credibility of SOC credits
[86]. In this context, it is also important to be
aware of the risk of land grabbing associated with
some “carbon credit oriented” projects and large-
scale investments in farmland [91-94].

The abbreviation MRV, as used in this review,
stands for Monitoring, Reporting and Verification.
The monitoring activities under consideration are
related to national scale, landscape, plot and/or
project scale inventories, and those focusing on
the carbon markets (e.g. voluntary and compli-
ance), as well as “insetting.” The economic consid-
erations of carbon market-oriented MRV systems,
i.e. underpinning business models, are intricate
[95-97]. Payment models can focus on preserving
or increasing forest biomass, conserving SOC,
reducing net emissions from soil, increasing
sequestration of carbon into soils or a combination
thereof. Most voluntary carbon market schemes in
agriculture work on the basis of “Net Abatement,”
i.e. SOC stock increases plus soil derived GHG
emission reductions (i.e. consider net GHG emis-
sion changes expressed as CO,eq). For some MRV
systems, however, measuring SOC change is not
required (i.e. “action-based” verification), but this
precludes the scope for true verification (i.e.
“result-based”). In this context, some groups prefer
to use “Measurement, Monitoring, Reporting and
Verification” (MMRV) to show the importance of
field measurements, rather than MRV alone [98].
Many MRV guidelines and approved methodolo-
gies have been proposed, yet their differences
remain unclear. In this study, we compared 17 of
these guidelines using 26 criteria including the
ecosystems covered, geographic scope, tier level
and reporting frequency.

The WorldBank [7] identified three broad types
of payment systems applicable to projects seques-
tering SOC in agricultural land. These were ranked
according to cost of implementation, confidence
of atmospheric impact, and degree of complexity:
a) Payment for practice (input-based system); b)
Payment for practice with performance dividend;
and ¢) Payment for performance (output-based
system, e.g. carbon-market, voluntary or compli-
ance). For the first payment system, it is sufficient
to implement an eligible practice to get paid.
Alternatively, for the last payment system (c) an
assessment of the impact is compulsory and the
payment itself can be modulated based on the
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performance. The second payment system (b) is a
blend of systems “a” and “c,” with a fixed payment
plus a bonus based on the performance.

Although much progress in national and sub-
national level MRV systems for SOC has been
achieved over the last two decades [11, 66,
99-103], a recent poll of staff working in environ-
mental  organizations, businesses, academic
researchers and government entities identified
MRV as “one of the largest challenges by entities
developing carbon farming schemes” [104]. This
has partly to do with the scale at which the MRV
system is needed when referring to carbon farm-
ing, i.e. farm or plot scale, which may involve
approaches that differ from those commonly used
for national or sub-national inventories (i.e. Tier 1
and Tier 2) and make more systematic use of Tier
3 approaches, with exhaustive management and
farm data collection for GHG emissions assess-
ment. The most common challenges according to
the poll were the lack of robust monitoring, report-
ing and verification systems as well as knowledge
about the relevant costs. This is surprising consid-
ering that UNFCCC [105] principles indicate that
MRV systems should be “transparent, complete,
consistent, comparable and accurate” and also
consider the common sense principles of being
“pragmatic, cost-effective, scalable, timely, and
operational.” Importantly, safeguards against
“greenwashing” [106,107], and the often associated
“land grabbing” [92,93], through uncertainty quan-
tification and solid verification by independent
suitably experienced and qualified third parties will
be essential [108-111]. Yet, verifiers may not have
the right expertise, and many will not have the
modeling experience, pointing at a need for train-
ing capacity [112].

The primary objective of this study, carried out in
the framework of the EU ORCaSA project [113], is to
propose an approach for a modular, integrative, and
multi-ecosystem MRV framework for SOC stock
changes. First, we carried out an in-depth literature
search using the Web of Science platform to retrieve
studies that examined SOC and MRV systems focus-
ing on croplands, grasslands and forest lands.
Additional articles were identified from personal
research libraries (For URLs see Supplementary infor-
mation S4). Based on this, in Section “ Components
for a modular MRV framework”, we propose a con-
ceptual, modular, and scalable MRV framework.
Subsequently, we provide an inventory and classifi-
cation of current MRV methodologies and subse-
quently “score” them using a list of key

characteristics (Section “Inventory and classification
of current MRV approaches”). Thereafter, in Section
“Towards an operational, integrative, and multi-eco-
system MRV approach for SOC stock changes”, we
build on this and provide an outlook on how an
operational, modular multi-ecosystem MRV system
could be systematically built in the next phase of
the ORCaSa project.

Components for a modular MRV framework

Smith et al. [114] discussed a conceptual MRV
framework for cropland dedicated to NDCs. They
described how different “building blocks” (e.g. field
measurements, datasets, models) could contribute
to the three components of an MRV system for
SOC changes. The study also provided a methodo-
logical basis for the ground monitoring, modeling,
and verification of SOC stock changes. It requires
to combine different datasets (e.g. input for mod-
els, calibration and validation data), together with
models (e.g. empirical, soil process-based models,
coupled soil-crop process-based models, carbon
balance models), embedded in a spatial data infra-
structure (SDI) allowing for handling of databases,
intensive computing, decision support systems,
and verification and distribution of results/report-
ing. It is important to note that when process-
based models simulate only the soil compartment
they require external information on biomass
inputs to the soil, while coupled soil-vegetation
models  directly estimate biomass inputs.
Therefore, the choice of modeling approach will
have important consequences when the calcula-
tion of net SOC stock changes is operationalized.

A “building block,” is one of the separate parts
that are combined to make an operational MRV
system. Examples are spatial data layers (e.g. maps
of soil properties, land management and activity
data), modeling approaches (e.g. process-based
soil, vegetation or coupled soil-vegetation models,
or data-driven models), or the combination of
Earth Observation (EO) data and radiative transfer
models that can produce biophysical data from EO
to be assimilated in process-based models. The
building blocks themselves, many elements of
which already exist as loose modules [115-117],
need to be assembled in an operational processing
chain to be applied in one or several contexts of
applications (e.g. CAP, Carbon market, or NDC)
[118-120]. Note that the same building blocks
(and their constituting parts) can be used in one
or several components of an MRV system. For
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example, both the Comet Farm Tool [121] and the
DayCent model [122,123] are Tier 3 approaches
(and even include the same model), but their use
and role in MRV systems is completely different.

A different conceptual MRV framework has been
presented by Paustian et al. [124]. It includes com-
ponents similar those proposed by Smith et al.
[114], as well as a scalable quantification platform
(which is not detailed in the paper itself), and fur-
ther considers the different communities that
should be served by an MRV system (e.g. national
policies, carbon finance market and supply chains).

Depending on the size of the area to be moni-
tored, the availability/accuracy of the input data,
protocols for sampling/measurement, monitoring
frequency, scale of interest and purpose, different
MRV approaches and associated methodologies
(e.g. Tiers as in Bockstaller et al. [119] for the CAP),
will be needed.

Based on the above, and discussions during two
international stakeholder workshops, we pictured a
scalable, modular MRV framework (Figure 1):

a. Monitoring (M), which includes experiments
or observatories (e.g. long-term soil observa-
tions, flux tower networks), direct (soil) meas-
urements, activity data, spatial data layers,
Earth Observation (see M1 to M5 in Figure 1)
aimed at developing and/or applying models
(M6 to M8). The gear wheel in the green
monitoring box (M) serves to illustrate that
these activities are performed within the con-
text of a scalable quantification platform.

Monitoring

ol

Data preparation Data analytics
- . —————
( @ Experiments \\ ‘/@ Process-based —_—
A —/ % models
2 R
( Direct (soil) ‘ > <
% measurements ( @ Data-driven models

( 0 Hybrid models

grrenassnnnesnanes }( @ Activity data (

.><@ Spatial data layers

o NS

e
S
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b. Reporting (R), which includes rules and proce-
dures (R1 and R2).

¢. Verification (V), which includes rules and pro-
cedures, verification itself, proof of adoption
of practice, and data (soil and/or EO) for veri-
fication (V1 to V4).

The three components and their building
blocks, as well as their practical application, have
been discussed in detail in Batjes et al. [125].
Landscape-scale assessment of SOC stock changes
in agriculture and forestry, for example, can pre-
sent a number of practical problems. Data are
needed from heterogeneous areas, often for mul-
tiple points in time, and the collection and labora-
tory analyses of these samples can be expensive
and time consuming [126]. However, time and
costs can be reduced by taking composite samples
and using proximal sensing techniques, such as
MIR/NIR spectroscopy, and developing soil spectral
calibration libraries and estimation services [100,
127-131]. Overall, field measurements (even when
considering the associated uncertainties [132,133])
are still considered the best option to quantify and
verify SOC content and SOC changes. They are
also needed for model development and calibra-
tion as well as verification. The use of field meas-
urements, modeling and remote sensing for MRV
purposes is often complementary [134,135].

Broadly speaking, three types of models are
used to predict SOC stocks and SOC stock changes:
a) process-based (M6 in Figure 1) or mechanistic
models [114, 124, 136,137]; b) data-driven (M7, or

. &
Ef <
=5 <

Reporting Verification

Reporting rules
and procedures

¥ J

/4 e
( Verificat
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/¢ &
/ _
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Proof of adoption (Soil) data for
of practice verification
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Earth = IIILILLITITITITITTrrrres
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Figure 1. Schematic representation of components, building blocks, and information flow for a modular, scalable MRV
system. (the dotted lines illustrate that Earth Observation can provide activity and spatial data for monitoring and report-

ing, respectively independent input for verification).
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empirical) models [138,139]; and c) hybrid models
(M8, [140-142]). The second type of model is
based on statistical relationships derived directly
from field (experiment) observations, while pro-
cess-based models consider algorithms that are
founded on more general scientific understanding.
The latter is derived from laboratory- and field-
based experiments, as well as a variety of field-
based observations of SOC distribution along
climatic, vegetation, topographic and geological
gradients. Data-driven (M7) and process-based
models (M6) can be combined in hybrid mod-
els (M8).

General specifications for the different model
categories mentioned earlier, and their main char-
acteristics, are presented in Table 1. A critical dis-
cussion of the differences between the applied
methods, such as quality/differences of measuring
protocols, remote sensing approaches (e.g. what is
measured and how (SOC, biomass, Net Primary
Production), model structures and data require-
ments, local or off-site calibration, use of measured
or map-based (aggregated) data for driving model-
ing, and accounting for the associated uncertainty)
is considered beyond the scope of this review as
these have been addressed elsewhere [37, 99, 101,
118, 125, 141, 143-147]. However, such methodo-
logical differences are crucial and will have a major
impact on the quality of the actual MRV system.

A fairly recent development has been the devel-
opment of “hybrid models” that combine multiple
data sources and modeling techniques [148]. For
example, these can comprise a combination of
“field data — remote sensing - machine learning”
[149,150], “field data — remote sensing — ecosystem
models” [151-157], or “field data — remote sensing
- machine learning - ecosystem models” [120].
The combination of field measurements, remote
sensing and ecosystem carbon models can be

used for upscaling plot data for carbon accounting
to larger areas (e.g. regional, country or global
scale). However, the approach can also be used for
downscaling: in that case, large scale data or
model output (e.g. from a Dynamic Global
Vegetation Model) are combined with remote
sensing data to refine ecosystem or data-driven
model outputs at smaller spatial scales, thus cap-
turing local variations in carbon dynamics [158].
Another recent development has been the use of
geostatistical approaches for assessing space-time
changes in SOC stocks using machine learning that
draws on large soil databases and environmental
covariates [138, 159]. Le Noeé et al. [160] provided
a comprehensive review of ~250 SOC models,
spanning 90years of model development history,
and concluded that combining independent valid-
ation based on observed time series and improved
information flow between predictive and concep-
tual models is needed to increase reliability in pre-
dictions.  Different sources of uncertainty
associated with MRV systems, and steps towards
their quantification, are discussed elsewhere (see
Section “Reporting and verification”).

Decision support tools provide information on
the quantification of SOC stock changes, GHG
emissions, or both. They mainly use IPCC Tier 1
(i.e. consider default or country-specific emission
factors) and Tier 2 (i.e. consider more detailed and
region-specific data and models) approaches but
can also include a module for Tier 3 (most compre-
hensive and site-specific methodologies) [156,
161,162]. Tier 3 type approaches, the most
demanding ones, are run using spatially explicit
inputs and farm/region-specific model parameters.
Tier 3 is considered to be the most accurate
approach [33]. Operational tools (in particular Tier
3 type) depend on several of the building blocks
described in Figure 1 (e.g. spatial data for climate

Table 1. Examples of different model categories and current decision support tools and their characteristics®.

Models

Decision support tools
Characteristics Data-driven Process-based Hybrid
Data requirement Low High (environmental data) High (environmental data) High (farm specific data)
Calibration requirement Low High High Low
Required expertise Low Medium-high High Medium
Management options Medium (categories) No-high High Medium-high
Targeted scale Country and larger Point, country and larger Point, country and larger Field-farm
Uncertainty/expected error  High Medium-low Medium-low Medium-high

for field scale

Examples IPCC and UNFCC (Tier 1 Roth C (Tier 3), AgriCarbon—EOb Cool Farm Tool (Tier 1),

and Tier 2); Machine
learning®

EPIC, CENTURY,
DAYCENT, DNDC (Tier 3)

Comet Farm (Tier 1 and
2), CPB tools (Tier 1 and
2), SIMEOS-AMG (Tier 3)

®Adapted from Kuhnert et al. [94]. Note that some process-based models only consider C (e.g. RothC); whereas others consider C, N, P etc dynamics
(e.g. DayCent) and these are often termed ‘biochemical models’. Some process-based models have no plant/crop component (e.g. RothC), while
others have (e.g. DayCent). All have biochemical pathways related to the cycling of incoming C using defined conceptual pools with varying decay

rates.

B-Machine-learning based models and hybrid models seldom have clear abbreviations; for examples see text.



or activity data as input, in-situ soil data for
verification).

Inventory and classification of current MRV
approaches

Inventory

National scale

Different MRV systems will be needed depending
on their projected applications. National MRV
frameworks under the UN Framework Convention
on Climate Change (UNFCC) [28] focus on “what is
measured, what is reported, and what is verified.”
The adopted IPCC methodologies are intended to
yield national GHG inventories that are transpar-
ent, complete, accurate, consistent over time and
comparable across countries (i.e. compliance
oriented).

Smith et al. [114] reviewed MRV methods in use
in countries participating in the Global Research
Alliance on Agricultural Greenhouse Gases (GRA).
All countries that are parties to the UNFCCC need
to deliver national inventories of emissions and
removals of GHG associated with human activities.
Since different countries have different capacities
to produce inventories, the IPCC guidelines lay out
tiers of methods for each emission source. They
[114] reported that countries listed as “non-annex
1” (i.e. mostly developing countries that have rati-
fied or accepted the UNFCCC and are not included
in Annex 1 of the Kyoto Protocol) face major chal-
lenges due to a paucity of data respectively limited
technical capacity to collect the data necessary for
the inventories. For instance, in sub-Saharan Africa,
countries often lack activity data in addition to
specific emission factors [163]. As a result, most
GRA countries use a Tier 1 approach to report SOC
changes associated with areas defined as cropland,
while industrialized (Annex ) countries such as
Australia, Canada and Denmark use a Tier 3
approach, respectively based on FullCAM, Century
and C-Tool models. Further, specificities on meth-
odologies and models used in selected GRA coun-
tries are provided in Smith et al. [114].

Subnational to project scale

More recently, Oldfield et al. [164] prepared an
overview of SOC estimation and sampling meth-
ods, listing main issues and approaches to be con-
sidered in an MRV framework. Their study
considered twelve published MRV “protocols” for
SOC credits generated on cropland and rangeland.
They assessed over forty characteristics for each
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protocol. Unsurprisingly, these protocols take dif-
ferent approaches to quantifying SOC and net
GHG removals, often building upon national con-
ventions. While some use soil sampling only,
others combine sampling with process-based mod-
eling, or use only modeling and remote sensing.
These differences as well as the way issues such as
permanence (i.e. consider the sustained climate
mitigation effect in the long-term) and additional-
ity (i.e. consider if the reported emission reduc-
tions and/or carbon removals associated with the
adoption of new land management practices (i.e.
project scenario) would be greater than under the
“business-as-usual” scenario (i.e. without the car-
bon finance or incentive)) are accounted for may
create the risk of generating credits that are not
equal or comparable [94, 103, 165]. Furthermore, it
should be noted that some of the protocols
reviewed in Oldfield et al. [164] have since been
retracted by the certifying agencies as some of the
claims for carbon offsets made could not be sub-
stantiated due to “greenwashing” [106,107].
According to Arcusa and Sprenkle-Hyppolite
[115], based on an analysis of the carbon dioxide
removal (CDR) certification and standards ecosys-
tem for the year 2021-2022, there are at least
thirty standard developing organizations. These
propose at least 125 standard methodologies for
carbon removal from 23 different CDR activities.
Further, they identified 27 different versions of cer-
tification instruments in voluntary and compliance
markets. In practice, again, this diversity makes it
cumbersome to determine whether net climate
benefits have been achieved or not. This shows
the importance of developing an operational uni-
fied, modular, multi-ecosystem MRV “tool” for SOC
and ecosystem carbon stocks (see Section
“Towards an operational, integrative, and multi-
ecosystem MRV approach for SOC stock changes”).
Black et al. [103] presented an innovative global
comparative  analysis  of  farmland  SOC
“programmes or standards”, abbreviated below as
“codes”, providing novel insights into the range of
approaches governing this global marketplace. For
this, they elaborated an analytical framework for
the systematic comparison of “codes.” They used
this to identify commonalities and differences in
approaches, methods, administration, commercial-
ization, and operations for twelve publicly avail-
able “codes” from around the world. These “codes”
used a range of mechanisms to manage addition-
ality, uncertainty and risks, baselines, measure-
ment, reporting and verification, auditing, resale of
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carbon units, bundling and stacking, stakeholder
engagement, and market integrity. They concluded
that adapting or translating existing “codes,” or
developing new approaches, to a workable farm
level carbon “code” in a new country or region is
not trivial, since these must address local eco-
nomic, environmental, and social factors, including
farming systems, soil and climatic conditions, regu-
lations, social norms and values.

For France, Yogo et al. [166] proposed three
possible options for carbon balance evaluation
and monitoring with different methodologies,
tools and data that can be mobilized, as well as
recommendations for the specific case of crop-
lands, and pointed at the advantage of moving
towards methods that include remote sensing for
a territorial deployment. Their comprehensive
assessment included a review of twenty different
methodologies, and tools, to assess at least one of
the three main GHGs (CO,, N,O and CH,) and/or
carbon sequestration in soil and above-ground
biomass. The underlying calculations include IPCC
Tier 1 or Tier 2 emission factors, but also a range
of models and use of satellite data.

For the Netherlands, Lesschen et al. [117] devel-
oped an elaborate “rating” system. It considers cri-
teria and describes characteristics for twelve
selected models and tools, to identify their suit-
ability for application by farmers in the
Netherlands. Criteria for selection include public
availability, licensing, validation, accessibility of
input data, applicability to cropland and grassland
under climatic conditions similar to those in the
Netherlands, as well as other characteristics, such
as whether models are maintained, the number of
C-pools, temporal scale and temporal resolution,
spatial resolution, soil depth and number of layers,
consideration of water balance and nitrogen inter-
actions. On the basis of their inventory, Lesschen
et al. [117] selected four potentially suitable soil C-
models. Subsequently, they identified the data
requirements of these models in terms of soil
parameters, weather data, kind, and type of
organic materials (manure) applied, soil manage-
ment, information on crop type, etc. After a quali-
tative comparison, the four models
compared quantitively using datasets for two
long-term experiments in the Netherlands. It fol-
lowed that there are substantial differences
between the models — this made the comparison
of SOC changes uncertain. While some models
simulated the same trends, changes in SOC levels
varied substantially between models. Several

were

studies [167-169] indicated that a multi-model
analysis reduced the uncertainty in simulated SOC
stocks, which would suggest that MRV systems
should not rely on one model only. All of this will
have implications for the verifiability of modelled
SOC stock changes, or net GHG emissions, at an
accepted confidence level (e.g. 90%). In this con-
text, it should be noted that carbon markets do
not look for change in SOC stocks over time, but
rather at additionality or the difference in esti-
mated GHG emissions under the “project” scenario
versus GHG emissions that would have occurred
under the “business-as-usual” scenario (i.e. net
abatement).

Similarly, different MRV approaches and meth-
odologies are used in the forest sector [170-173].
Differences in statistical sampling design, for
example, as well as field sampling techniques and
subsequent laboratory analyses will impact on the
predictive quality of different monitoring networks
[99, 174,175], making inter-comparison of results
derived from various monitoring systems problem-
atic [147, 176]. According to Olsson [177], unmeas-
urable uncertainties, such as political issues and
economic rebound effects potentially leading to
carbon “leakages,” tend to be neglected in inven-
tories. Importantly, different certification schemes
can result in different prices being paid per net
tonne of CO,¢q sequestered. These prices, in turn,
will among others influence land use and crop
management decisions [178-180] hence achiev-
able carbon sequestration.

Reviewed guidelines and approved
methodologies

From the above it follows that many different
guidelines and methodologies relating to MRV
exist and that the terms used are not always clear-
cut with a diverse range of associated certification
schemes. In this context, Demenois et al. [94]
referred to a “jungle of certification schemes”. For
this review, as indicated earlier, we considered a
selection of guidelines recognized as being most
relevant based on the expertise of the writing
team, and subsequent feedback during two inter-
national stakeholder workshops (Table 2). Succinct
descriptions thereof are provided in
Supplementary Information S2.

Typically, each approved methodology is based
on one, or several, standards. These are often
documented in a central registry which lists
whether methodologies are accepted, in (scientific)
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Table 2. List of reviewed guidelines and approved methodologies (listed in alphabetical order of their abbreviation).

Abbreviation

Name

Carbon Farming Initiative—Estimating Sequestration of Carbon in Soil Using Default Values

https://www.dcceew.gov.au/climate-change/emissions-reduction/emissions-reduction-fund/methods/

Carbon Farming Initiative—Estimating soil organic carbon sequestration using measurement and models

https://www.cleanenergyregulator.gov.au/ERF/Choosing-a-project-type/Opportunities-for-the-land-sector/
Agricultural-methods/estimating-soil-organic-carbon-sequestration-using-measurement-and-models-method

https:/static1.squarespace.com/static/611691387b74c566a67f385d/t/63483a986a24ac421c4f4414/

https://www.climateactionreserve.org/wp-content/uploads/2020/10/Soil-Enrichment-Protocol-V1.0.pdf

AU-CFIDV

estimating-sequestration-of-carbon-in-soil-using-default-values
AU-CFMM

method
BC-SCM BCarbon Soil Carbon Protocol

1665677979013/2022-10-13-BCarbon-Soil-Carbon-Protocol-V2.pdf
CARSSE Climate Action Reserve Soil Enrichment Protocol v 1.0
DE-MOOR Moor Futures

https://www.moorfutures.de/downloads/

FR-LBC

Label Bas Carbone (There are six approved methodologies for SOC, see below for details).

https://label-bas-carbone.ecologie.gouv.fr/quest-ce-que-le-label-bas-carbone

Gold Standard

GSOC-MRV FAO GSOC MRV Protocol

Soil Organic Carbon Framework Methodology
https://globalgoals.goldstandard.org/

https://www.fao.org/documents/card/en/c/cb0509en
IPCC IPCC guidelines for national greenhouse gas inventories
https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf

https:/registry.regen.network/v/methodology-library/published-methodologies/carbonplus-methodology-for-

Methodology for Carbon Accounting for Mosaic and Landscape-scale REDD Projects, v2.2

https://verra.org/methodology/vm0006-methodology-for-carbon-accounting-for-mosaic-and-landscape-scale-

NL-SNK Stichting Nationale Koolstofmarkt
https://nationaleco2markt.nl/
https://nationaleco2markt.nl/methoden/
Nori Nori Croplands Methodology, v 1.3
https://nori.com/resources/croplands-methodology
Plan Vivo Plan Vivo standard methodology
https://www.planvivo.org/standard-documents
Regen Regen Network Methodology for GHG and Co-Benefits in Grazing Systems
grazing-systems-v1.0-and-credit-class
UK-PC IUCN-UK Peatland Code
https://www.iucn-uk-peatlandprogramme.org/peatland-code-0
US-ACR American Carbon Registry (There are four methodologies for SOC, see 3.2.2)
https://americancarbonregistry.org/carbon-accounting/standards-methodologies
VMO0006
redd-projects-v2-2/
VMO0042

VM0042 Methodology for Improved Agricultural Land Management, v2.0

https://verra.org/methodologies/vm0042-methodology-for-improved-agricultural-land-management-v2-0/

“Listed in alphabetical order of abbreviations (all URLs last accessed 5 July 2024). Short descriptions are provided as Supplementary Information S1.
PThese guidelines include several approved methodologies, see Supplementary Information S1 for additional information.

peer review or open for public comment. Further,
registries list inactive (or repealed) methodologies
and their version. Major registries in the voluntary
carbon offset market include the American Carbon
Registry (ACR) [181], Verified Carbon Standard
(VERRA) [182], Climate Action Reserve (https://
www.climateactionreserve.org/) and Gold Standard
Impact Registry (https://www.goldstandard.org/).

Classification characteristics

We defined a list of main characteristics that
should be considered when comparing the guide-
lines and approved methodologies considered in
Table 2. This list (Table 3) considers characteristics
such as purpose of the MRV system, ecosystem(s)
covered, Tier level, geographic scope, scope of
monitoring as well as verification requirements
such as “additionality” and “permanence.”

For each characteristic, either one or several
answers are possible. For example, for the classifi-
cation characteristic “Ecosystem(s) covered,” there

are nine options, and one could answer
“Croplands,” “Grasslands” or “Wetlands/peatlands.”
Alternatively, for the characteristic “Leakage
requirement” only two answers are possible (Yes
or No). During the “scoring” it proved cumbersome
to unmistakably assign a class for some character-
istics in view of the overall diversity/complexity of
the considered MRV guidelines/methodologies,
such as consideration of multiple Tiers. In such
instances, pragmatically, “best appraisals” were
provided considering the available “multi-faceted”
information. This level of “uncertainty” has been
expressed under “Confidence in ratings,” which
was assessed as: High (5 times), Medium (8 times)
and Low (4 times). Results of the assessments were
stored in a spreadsheet with eighteen rows and
twenty-seven  columns  (see  Supplementary
Information S3) of which only the first eight col-
umns and rows are shown in Table 4 in view of
space. As indicated, in some cases, we only
assessed one specific methodology whereas there
can be more (e.g. six for Label Bas Carbone (FR-


https://www.climateactionreserve.org/
https://www.climateactionreserve.org/
https://www.goldstandard.org/
https://doi.org/10.1080/17583004.2024.2410812
https://doi.org/10.1080/17583004.2024.2410812
https://www.dcceew.gov.au/climate-change/emissions-reduction/emissions-reduction-fund/methods/estimating-sequestration-of-carbon-in-soil-using-default-values
https://www.dcceew.gov.au/climate-change/emissions-reduction/emissions-reduction-fund/methods/estimating-sequestration-of-carbon-in-soil-using-default-values
https://www.cleanenergyregulator.gov.au/ERF/Choosing-a-project-type/Opportunities-for-the-land-sector/Agricultural-methods/estimating-soil-organic-carbon-sequestration-using-measurement-and-models-method
https://www.cleanenergyregulator.gov.au/ERF/Choosing-a-project-type/Opportunities-for-the-land-sector/Agricultural-methods/estimating-soil-organic-carbon-sequestration-using-measurement-and-models-method
https://static1.squarespace.com/static/611691387b74c566a67f385d/t/63483a986a24ac421c4f4414/1665677979013/2022-10-13-BCarbon-Soil-Carbon-Protocol-V2.pdf
https://static1.squarespace.com/static/611691387b74c566a67f385d/t/63483a986a24ac421c4f4414/1665677979013/2022-10-13-BCarbon-Soil-Carbon-Protocol-V2.pdf
https://www.climateactionreserve.org/wp-content/uploads/2020/10/Soil-Enrichment-Protocol-V1.0.pdf
https://www.moorfutures.de/downloads/
https://label-bas-carbone.ecologie.gouv.fr/quest-ce-que-le-label-bas-carbone
https://globalgoals.goldstandard.org/
https://www.fao.org/documents/card/en/c/cb0509en
https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf
https://nationaleco2markt.nl/
https://nationaleco2markt.nl/methoden/
https://nori.com/resources/croplands-methodology
https://www.planvivo.org/standard-documents
https://registry.regen.network/v/methodology-library/published-methodologies/carbonplus-methodology-for-grazing-systems-v1.0-and-credit-class
https://registry.regen.network/v/methodology-library/published-methodologies/carbonplus-methodology-for-grazing-systems-v1.0-and-credit-class
https://www.iucn-uk-peatlandprogramme.org/peatland-code-0
https://americancarbonregistry.org/carbon-accounting/standards-methodologies
https://verra.org/methodology/vm0006-methodology-for-carbon-accounting-for-mosaic-and-landscape-scale-redd-projects-v2-2/
https://verra.org/methodology/vm0006-methodology-for-carbon-accounting-for-mosaic-and-landscape-scale-redd-projects-v2-2/
https://verra.org/methodologies/vm0042-methodology-for-improved-agricultural-land-management-v2-0/
https://doi.org/10.1080/17583004.2024.2410812
https://doi.org/10.1080/17583004.2024.2410812
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Table 4. Scoring of MRV guidelines and approved methodologies®.

Aggregation
Ecosystem(s) (bundling) of Scope of
Abbreviation Purpose of MRV covered Geographic scope farms Tier level monitoring GHGs targeted
AU-CFIDV Voluntary Agricultural Specific country Allowed 1 GHG accounting All
carbon market land and
woody
vegetation
AU-CFMM Voluntary Agricultural Specific country Allowed 3 SOC stock CO,
carbon market land and change
woody
vegetation
BC-SCM Voluntary Croplands Specific country Allowed 3 SOC stock Co,
carbon market change
CARSSE Voluntary Croplands Specific country Allowed All All All
carbon market
DE-MOOR Voluntary Wetlands/ Specific country Not allowed 1 GHG accounting N,O
carbon market peatlands
FR-LBC® Voluntary Croplands Specific country Allowed All All All
carbon market
Gold Standard Voluntary Agricultural Multiple countries Allowed All SOC stock All
carbon market land and change
agro-forestry
GSOC-MRV Voluntary Agricultural Multiple countries Allowed All All All
carbon market land and

agro-forestry

2Only the first eight columns are shown here in view of the length of the full table (see Supporting Information S2 for the full set of ratings).
PFor abbreviations see Table 2. Note that several guidelines, such as FR-LBC, consider different methodologies and only one or two of these are
assessed here (in casu, ‘Field crops’ for FR-LBC). Details are provided in Supporting Information S1.

LBC), see Supplementary Information S2 and foot-
note to Table 4).

Characterization of reviewed MRV systems and
methodologies

In view of the large number of characteristics
involved, it would be helpful to reduce the multi-
dimensional space in which the MRV approaches
are scored to only two dimensions. As a result,
each MRV approach would be situated in a two-
dimensional plane, where MRV approaches that
have similar characteristics are close to each other,
while those exhibiting distinct features are posi-
tioned farther apart. This dimension reduction can
be achieved with a statistical technique known as
multidimensional scaling [MDS, see 183,184]. Here
we applied MDS using the “cmdscale” function of
the “cluster” package of the R software for statis-
tical computing [185]. This approach differs from
the one adopted by Demenois et al. [94], who
used multiple correspondence analysis (MCA) to
assess main differences between SOC standards.
An important difference between MDS and MCA is
that a characteristic that is systematically isolated
from all the other characteristics (and hence con-
sidered “very particular”) will always appear on the
first dimension of the MCA plot, but not necessar-
ily on the MDS plot [186].

Multidimensional scaling requires a dissimilarity
matrix as input. This is a square matrix that has as
many rows and columns as there are MRV
approaches, and whose value at row i and column

j stores the dissimilarity between the i-th and j-th
MRV approach. The dissimilarity between two MR
approaches is derived from the characteristics of
the two MRV approaches. Since the characteristics
of MRV approaches listed in Table 2 are measured
on a nominal scale, common Euclidean distances
cannot be computed. We therefore used the
Gower metric [187]. This simply assigns distance 0
if the two MRV approaches have the same value
for the characteristic, and distance 1 if they are not
the same. This was done for all characteristics and
the average of all distances was taken to define
the dissimilarity between two MRV approaches. It
is possible to assign weights to the characteristics
and thus allow some characteristics to have more
influence on the final dissimilarity metric than
others. We did not do this here and assumed that
all characteristics are equally important, which is a
simplification. Furthermore, we treated all charac-
teristics as nominal variables, even if the reported
classes are on an ordinal scale. This means that for
“Transparency and reproducibility of
requirements,” for example, the distance between
two MRV approaches that score “low” and “high” is
the same as that between two MRV approaches
that score “low” and “moderate” or “moderate”
and “high”.

Results of the multidimensional scaling are
shown in Figure 2. The MRV approaches are fairly
uniformly distributed in the two-dimensional space
and there are no clear clusters or extremes,
although some patterns can be observed. MRV
approaches in the lower right (LR) quadrant, for
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Figure 2. Position of considered MRV guidelines and approved methodologies in a two-dimensional space after applica-

tion of multidimensional scaling to MRV characteristics.

example, all relate to a specific country and most
follow a Tier 1 approach. While they focus on dif-
ferent ecosystems, they mainly have “moderate” or
“high” transparency requirements, and most score
yes for “additionality”, “permanence,” “leakage,”
“reversibility,” and “data retention” requirements.
Verification for all is action-based and transparency
requirements are mostly assessed as “moderate.”
All methodologies are aimed at the compliance
market in the LR quadrant. In the lower left quad-
rant (LL), Gold Standard and GSOC-MRV are quite
close indicating that they share key characteristics.
Indeed, both MRV approaches aim at the voluntary
carbon market, are applied in multiple countries,
also consider Tier 3 level approaches, predomin-
antly are result-based and agree on many of the
requirements, yet not in a systematic way.
Alternatively, IPCC is focused on the compliance
market, considers all ecosystems (e.g. forestlands,
grasslands, and croplands), all three Tier levels, yet
can follow different verification pathways. Other
clusters of apparently similar MRV approaches are
AU-CFMM, BC-SCM, NL-SNK and Regen; all four are
developed for a specific country or countries,
make use of process-based models except for
Regen, consider soil measurements, have similar
reporting frequency, are result-based, and have a

data retention/sharing policy. They all occur in the
UL quadrant and mainly are for agricultural land,
i.e. grassland and/or cropland. In the upper right
quadrant (UR) all MRV approaches focus on the
voluntary carbon market. VM0006, Nori and Plan
Vivo all focus on SOC stock change and are appli-
cable in multiple countries, use historic land man-
agement as baseline setting and do not require
ground truth SOC observations (i.e. verification is
action-based), but have different frequencies and
periods of reporting. VM0042 is somewhat
“isolated” in Figure 2 in the sense that it occurs at
the top of the central vertical axis, but no clear
explanation for this can be found. Filtering the
considered MRV approaches by axis (i.e. “LL-LR” for
Dimension 1 resp. “LL-UL"” for Dimension 2) does
not provide any clearcut “messages” for possible
captions. Possibly, the main conclusion that can be
drawn from Figure 2, considering the simplifica-
tions involved, again is that the landscape of MRV
guidelines and applied methodologies is quite
diverse.

It should be noted that five out of the twenty-
six characteristics are related to a verification
“requirement” (e.g. absence of leakage or reversal
requirement). Since no weights were applied these
characteristics together have a strong effect on the



outcome of the multidimensional scaling, for
example five times stronger than “Purpose of
MRV” or “Ecosystem(s) covered.” There is much to
say for reducing their influence by assigning
weights. Likewise, many users might wish to assign
a higher weight to characteristics such as “requires
ground truth SOC observations” and “Target depth
interval (for soil sampling),” or “Tier level” than to
characteristics such as “Reporting periods” and
“Frequency of reporting.” Assigning weights
involves subjective choices but so does the a priori
decision about which characteristics are included
in the analysis. A sensitivity analysis on a few char-
acteristics could show which characteristics are
more important and how the results would be
affected. Alternatively, it could be worthwhile to
organize stakeholder workshops to jointly define
and refine key characteristics of MRV guidelines
and methodologies, assign associated weights, and
evaluate the sensitivity of the multidimensional
scaling results to choices made. Finally, it should
be noted that the reduction to a two-dimensional
space caused a significant loss of information, indi-
cating that Figure 2 should only be used in an
indicative way.

Towards an operational, integrative, and
multi-ecosystem MRV approach for SOC
stock changes

General considerations

MRV  frameworks typically comprise several
“building blocks” (see Figure 1) that consider vari-
ous levels of complexity, as shown in Table 1 for
modeling approaches. Building on the present
review, and recommendations made by the
International  Consortium on  Soil  Carbon
Sequestration in Agriculture [188], we highlight
the need to develop a methodological framework
and prototypes for operational multi-ecosystem
monitoring tools for net SOC stock changes.
Ideally, this modular tool (preferably web-based)
would:

a. define the project’s name, boundaries, dur-
ation, scope (e.g. NDC or insetting), and eco-
system(s) under consideration;

b. permit uploading of activity data and of other
relevant spatial data layers, with preference
for local data when available (e.g. soil data,
climatic data, aboveground biomass data);

c. define the relevant method for designing the
baseline (e.g. project specific, generic) and
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test different scenarios (e.g. type of land use
conversion, recommended management prac-
tices) to increase SOC stocks and reduce GHG
emissions (decision tool);

d. produce biophysical products derived from
EO data that will eventually be assimilated in
Tier 3 modeling approaches or used in ML
(machine learning) and Al (artificial intelli-
gence) approaches.

e. utilize a decision tree to select and run the
appropriate methodology for monitoring (e.g.
Tier 1 to Tier 3 with or without assimilating
EO data, Al or hybrid). One of the criteria for
building the decision tree itself is the context
of MRV (e.g. NDCs, voluntary carbon market,
insetting) that defines the duration and fre-
quency of monitoring (e.g. annually estimates
for insetting prevent the use of in-situ soil
sampling approaches), while other considera-
tions such as data availability, technical
expertise, costs and project scope will also be
accounted for.

To guide the development of such operational
tools, we propose a methodological framework
presented in Figure 3. However, there are several
limitations to this framework: it is not yet adapted
to situations involving land use change, does not
account for non-CO, greenhouse gas emissions
and climatic (e.g. albedo changes) and environ-
mental effects, and it does not consider the trade-
off between cost and accuracy in monitoring
approaches. Further, Figure 3 does not visualize
the various levels of maturity, accuracy or scalabil-
ity of the different methods available for monitor-
ing or verifying SOC stock changes.

Monitoring

It appears that the main challenges in developing
a unified, operational MRV system concern the
monitoring component. As shown in Figure 3, this
component can rely on various approaches the
choice of which may depend on the previously
mentioned decision tree (their spatial arrangement
in Figure 3 is arbitrary);

a. Soil MRV approaches that combine SOC stock
change  with  consideration  of field
measurements,

b. Tier 1 or Tier 2 approaches, for instance when
there is no process-based model calibrated
and validated for the local context;
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Figure 3. Proposition for a multi-ecosystem methodological framework depicting a modular flowchart for building an
operational MRV tool for assessing net SOC stock changes (abbreviations: A.l., artificial intelligence; M.L., machine learn-

ing; IR, infrared; FMIS, Farm Management Information system).

Tier 3 approaches which may or may not:
assimilate remote sensing, be based only on
soil modelling, use independent soil and
vegetation models (e.g. biomass estimates
being used as input in the soil model), or use
ecosystem models that assess the full ecosys-
tem carbon budget, sometimes with limited
field validation. Alternatively, emerging Al
[189,190] and evolving ML-based SOC MRV
approaches [138, 191] may be considered.

In the French LBC methodology for arable land,
for example, a Tier 3 approach with a focus on soil
was chosen. There are no clear guidelines for mod-
elling or measuring crop or cover crop biomass in
the field or by satellite, and no field-measured SOC
changes over time are considered for local valid-
ation [192,193]. large uncertainties in
SOC stock change estimates can result from rough
biomass estimates. Wijmer et al. [120], for example,
showed that assimilating averaged LAl (leaf area
index) at plot level instead of using high-resolution
LAl products (10m) can result in a significant
underestimation of the winter wheat biomass.
Overall, very few guidelines, methodologies or
tools rely on biomass quantification by remote
sensing (or by hybrid modeling approaches such
as remote sensing data assimilation) to map its

However,

spatial variability in an attempt to provide the soil
models with more accurate estimates of biomass
carbon inputs.

Assimilation of remote sensing data in plant or
ecosystem models can correct the model’s trajec-
tory [194]. Such models assimilate biophysical
products (e.g. LAl, aboveground biomass) derived
from radiative transfer models and remote sensing
products (corrected for atmospheric effects with
orthorectification) that may be built on sensors
with different wavelengths [195-198] as shown in
Figure 3. Such radiative transfer models can be
integrated in the monitoring tool as in Wijmer
et al. [119]. However, as shown for croplands [188]
and forestlands [199,200], upscaling process-based
models initially developed for local applications by
assimilating remote sensing data is challenging as
they need much data for model evaluation and
calibration. Based on these considerations, Tier 3
type estimation methods for current carbon stocks
may benefit from assimilation of remote sensing
data. However, a dedicated new generation of
models such as SAFYE-CO, [154,155], tailored to
upscaling the carbon budget components, would
have to be developed for this. Meanwhile, another
approach may consist in correcting the model’s
output based on the analysis of the vegetation’s
spatial variability by using spectral indices such as



the Normalized Difference Vegetation Index or LAl
maps derived from remote sensing [201].

Alternatively, a combination of Tier 3 approaches
could be used. For example, a single vegetation
model, with or without remote sensing data assimi-
lation, may provide biomass input data to one or
several soil models (e.g. for an ensemble approach).
Further, for Tier 3 methods EO assimilation may not
always be possible (e.g. for very small plots, or
optical EO data in very cloudy areas) or relevant (e.g.
in hilly areas where the limited accuracy of biophys-
ical products may result in a high uncertainty on the
final estimates). It should be noted also that several
biophysical products, such as LAl and superficial soil
water content, could be assimilated in a specific pro-
cess-based model and that several radiative transfer
models could be used to derive a specific biophys-
ical variable in an ensemble approach. As such, each
methodology should be regularly evaluated and
whenever possible improved based on in situ data
collected at long-term experimental sites or from
flux tower networks as shown in Figure 3.

Implementation of a Tier 3 approach, however,
may not always be relevant or possible for
example when process-based models are not cali-
brated or validated for the project’s local context.
We refer to the prototype quantification platform
developed for croplands in France as an example.
It considers the joint use of NIVA’s [195] algorithms
for Tiers 1 and 2 and the SAFYE-CO, model
[154,155] for Tier 3. Alternatively, for Tier 3 a
hybrid modeling approach could be used for an
area defined by land use type, building for
instance on Wijmer et al. [120]. Depending on the
context and scale of monitoring, soil data to run
the soil module may be obtained from local sour-
ces, respectively from appropriately scaled soil
products (e.g. SoilGrids [196], LUCAS [197] or
national soil databases) complemented with in-situ
field measurements for validation.

Each ecosystem has its specificities, therefore
some “building blocks” (or modules) will have to
be designed, added or implemented in a context-
specific way [198, 202-204]. For instance, monitor-
ing SOC stock changes for peatlands (highly
organic soils) would require adapted SOC models
[205] and an adapted framework that considers
seasonal fluctuations of the water Table [206,207],
and may require coupling with a hydrological
module [208]. Likewise, specific approaches would
be needed to model net SOC stock changes in
other ecosystems such as forestland [31, 170, 173,
199] or in urban environments [209,210].
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Reporting and verification

Reporting requirements are fully linked to the
objectives of the applied methodologies (e.g.
national GHG inventories or carbon farming), the
stakeholder responsible for the reporting (e.g. a
state, a farmer) and the nature of the payment sys-
tems (i.e. payment for practice, payment for per-
formance, or payment for practice with
performance dividend). Generally, the more com-
plex the methodologies are, the more demanding
the reporting will become. For example, reporting
on the implementation of a practice might be
straightforward for a farmer, but this will be far
more challenging if a farmer aims for a payment
for performance derived from model-based
approaches. Therefore, it is essential to consider
the heterogeneity of capacities (e.g. reliable access
to Internet for online reporting) and expertise of
the stakeholder responsible for the reporting.

CIRCASA [211] made recommendations for crop-
land that could be used for or adapted to other
ecosystems. The CIRCASA team suggested that
reporting should primarily be through gridded
data extraction (e.g. of the modelled outputs) for
any spatially defined area (e.g. a field, farm, small
region, sourcing area of an industry, given crop
type, or country) and any time period (e.g. one
year for CAP or insetting programs up to several
years or decades for NDCs or offsetting projects).
Inherently, all SOC stock change estimates should
be provided with the same unit (e.g. g C m™ or g
COzeq m~2 per time period considered); any claims
put forth by projects must always be substantiated
by statistically rigorous evidence and be independ-
ently verified by a third party.

Concerning baseline setting, we recommend an
adaptative framework, with supporting guidelines/
tools, that would accommodate both generic (i.e.
calculated for a given type of pedoclimatic condi-
tions x crop rotation x practices) and project-spe-
cific baselines. The operational processing chain
described above would allow both. First, it could
produce information on several years prior to
implementation of, for instance, a carbon farming
program but also during the project’s life cycle.
Second, because the proposed approach is based
on remote sensing and hybrid modeling it will
allow to simulate scenarios for plots/farms in the
same pedoclimatic region (or landscape) that con-
sider the adoption level of recommended carbon
farming practices, and this for a range of crop
rotations.
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Verification of the practices implemented during
performance-based projects could benefit from
modern technologies. For instance, activity data
could be collected through mobile phones
[212,213], online portals [214] or connection to
Farm Management Information Systems (FMIS)
[215,216] with application programming interfaces
(APIs) [217]. Yet, our own recent experience has
shown that activity data in FMIS may lack reliabil-
ity/consistency and may require to be checked by
a third party (e.g. an agricultural council).

For verification of SOC stock changes, we rec-
ommend an approach based on soil re-sampling
(e.g. surveys, grids, demonstration farms) and
remote sensing using standardized protocols. To
optimize the cost/accuracy ratio of verification,
well-designed initial and final soil sampling
schemes are needed [37, 218,219]. Further, the
process should be based on consistent sampling
procedures and comparable analytical methods
[147, 220-224]. A principal decision is whether to
adopt a design-based or model-based statistical
inference for output-based verification. The impor-
tant advantage of design-based statistical infer-
ence (i.e. statistical sampling theory) is that it is
entirely model-free, hence makes no assumptions
[225,226]. It yields unbiased estimates of SOC stock
change for an area of interest while the associated
estimation accuracy is quantified. However, it
requires a probability sample from the area of
interest, with all inclusion probabilities known and
greater than zero. Model-based approaches essen-
tially rely on statistical regression (e.g. machine
learning [227] or kriging [228]. They may also use
uncertainty propagation methods [229,230] when
outputs of process-based models are used to infer
the SOC stock change and uncertainties in model
inputs, parameters and structure need to be
accounted for. It is important to note that, due to
an averaging out effect, uncertainty decreases
when spatial averages of SOC stock change are
computed [159, 219]. The uncertainty decrease is
largest when errors have a low spatial correlation.
More information about design-based and model-
based statistical inference for verification of out-
put-based projects is provided elsewhere
(Supplementary Information 1).

For verification of results emanating from
“advanced” Tier 3 approaches, pluri-annual high-
resolution maps of biomass and SOC stock
changes produced by hybrid modeling approaches
(e.g. AgriCarbon-EO) could be useful as these will
provide insights into spatio-temporal dynamics of

C stock changes, for instance to help identify areas
that preferentially store or lose C. Such an inte-
grated approach would allow for a substantial
reduction in the number of soil samples required
to detect significant SOC stock changes (at a pre-
defined confidence level), ultimately providing
more representative and accurate estimates.

Conclusions

Current MRV systems use a diversity of guidelines
and approved methodologies. These consider a
wide range of procedures to manage, for example,
additionality, uncertainty, persistence, baselines,
measurement, reporting and verification. A selec-
tion of current MRV guidelines and approved
methodologies, as applied to various ecosystems
in defined geographies, was characterized
according to twenty-six “key characteristics” using
a pre-defined number of classes/options for each
characteristic. Subsequent multi-dimensional scal-
ing showed that the considered MRV methodolo-
gies are fairly uniformly distributed in the two-
dimensional space and that there are no clear clus-
ters or extremes, and some patterns were
observed. The assessment, however, was not
unambiguous as it required simplifications. In
retrospect, having a binary categorization of char-
acteristics like leakage, permanence, and addition-
ality could not capture the nuance as to how the
different protocols actually account for those
“complex” issues. Although a protocol can set
these requirements, this does not mean that they
actually do a “sufficient job at” accounting for
them [231]. In the future, it could be worthwhile to
organize regional stakeholder workshops to jointly
revise the list of key characteristics while also
assigning weights to each characteristic with a
view to evaluate the sensitivity of the results of
the multidimensional scaling procedure to various
choices.

As a follow up to this review, building on the
elements shown in Figure 3, the next phase of the
ORCaSa project will be to develop a prototype for
an operational, modular and multi-ecosystem MRV
system that would be applicable in different con-
texts (e.g. national or subnational reporting, CAP,
voluntary carbon market, insetting/supply chain)
and at different levels of complexity (i.e. Tier 1 to
3), depending on the context of application and
the availability/accuracy of input data. An impor-
tant element of that work will be to develop
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decision trees to guide the choice of MRV system
components that will be proposed by ORCaSa.

There are still numerous research and govern-
ance issues to consider with respect to improving
MRV approaches [232,233]. These are being
addressed in the framework of the Soil Carbon
International Research Consortium (IRC) which
aims to provide better access to research, methods
and practices for soil carbon (see https://www.
impact4soil.com/), and a strategic research agenda
is currently being developed.

Acknowledgements

This study was carried out in the framework of the EU
ORCaSa project (https://irc-orcasa.eu). We thank the partici-
pants of two international stakeholder workshops for their
valuable contributions. Our special thanks go to the
anonymous reviewers whose insightful comments and sug-
gestions helped us to improve the original submission.

Disclosure statement

The authors have no financial or non-financial competing
interests associated with this research or the publication of
this manuscript.

Funding

The ORCaSa project has received funding from the
Horizon Europe Programme under grant agreement n°
101059863.

Data availability statement

The materials and data that support the findings of this
study are available at https://doi.org/10.17027/isric_e6da-
sc18.

References

1. Batjes NH. Total carbon and nitrogen in the soils of
the world. Eur J Soil Sci. 1996;47(2):151-163. doi:10.
1111/j.1365-2389.1996.tb01386.x.

2. Friedlingstein P, O'Sullivan M, Jones MW, et al. Global
carbon budget 2022. Earth Syst Sci Data. 2022;14(11):
4811-4900. doi:10.5194/essd-14-4811-2022.

3. FAO, ITPS. Status of the world’s soil resources (SWSR) -
Main report. Rome: Food and Agriculture Organization
of the United Nations and Intergovernmental
Technical Panel on Soils; 2015. p. 650.

4. IPCC. Climate change 2022: impacts, adaptation and
vulnerability. In: Portner H-O, Roberts DC, Tignor M,
et al, editors. Cambridge (UK) and New York (NY,
USA): UNEP, WMO; 2022. p. 3068.

5. UNEP. UNEP and the Sustainable Development
Goals; 2023 [cited 2023 07 june]. Available from:
https://www.unep.org/explore-topics/sustainable-
development-goals.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CARBON MANAGEMENT . 17

IPBES. Global assessment report on biodiversity and
ecosystem services of the Intergovernmental
Science- Policy Platform on Biodiversity and
Ecosystem Services. Brondizio ES, Settele J,Diaz S,
Ngo HT, editors. Bonn (DE); 2019.

WorldBank. Soil organic carbon (SOC) MRV source-
book for agricultural landscapes. Washington: The
World Bank Group; 2021.

FAO-GSP. Unlocking the potential for soil organic
carbon - Outcome document. Global Symposium on
soil organic carbon (21-23 March 2017). Rome
(Italy): FAO; 2017. p. 36.

UNEP. The benefits of soil carbon - managing soils
for multiple, economic, societal and environmental
benefits. UNEP Yearbook - Emerging issues in our
global environment 2012. Nairobi: United Nations
Environmental Programme; 2012. p. 19-33.

Banwart SA, Noelmeyer E, Milne E, editors. Soil car-
bon: science, management and policy for multiple
benefits. Wallingford (UK): CABI; 2015.

Rumpel C, Amiraslani F, Bossio D, et al. Studies from
global regions indicate promising avenues for main-
taining and increasing soil organic carbon stocks.
Reg Environ Change. 2023;23(8):1-4.

Baveye PC, Berthelin J, Tessier D, et al. Storage of
soil carbon is not sequestration: straightforward
graphical visualization of their basic differences. Eur
J Soil Sci. 2023;74(3):e13380. doi:10.1111/ejss.13380.
Janzen HH. The soil carbon dilemma: shall we hoard
it or use it? Soil Biol Biochem. 2006;38(3):419-424.
doi:10.1016/j.s0ilbio.2005.10.008.

Moinet GYK, Hijbeek R, van Vuuren DP, et al. Carbon
for soils, not soils for carbon. Glob Chang Biol. 2023;
29(9):2384-2398. doi:10.1111/gcb.16570.

Chenu C, Angers DA, Barré P, et al. Increasing
organic stocks in agricultural soils: knowledge gaps
and potential innovations. Soil Tillage Res. 2019;188:
41-52. doi:10.1016/j.5til.2018.04.011.

Don A, Seidel F, Leifeld J, et al. Carbon sequestra-
tion in soils and climate change mitigation—
Definitions and pitfalls. Glob Chang Biol. 2023;30(1):
e16983. doi:10.1111/gcb.16983.

Pribyl DW. A critical review of the conventional SOC
to SOM conversion factor. Geoderma. 2010;156(3-4):
75-83. doi:10.1016/j.geoderma.2010.02.003.

Lettens S, Vos BD, Quataert P, et al. Variable carbon
recovery of Walkley-Black analysis and implications
for national soil organic carbon accounting. Eur J
Soil Sci. 2007;58(6):1244-1253. doi:10.1111/j.1365-
2389.2007.00916.x.

De Vos B, Lettens S, Muys B, et al. Walkley-Black ana-
lysis of forest soil organic carbon: recovery, limitations
and uncertainty. Soil Use Manage. 2007;23(3):221-229.
doi:10.1111/j.1475-2743.2007.00084 x.

Bouma J. Soil science contributions towards
Sustainable Development Goals and their imple-
mentation: linking soil functions with ecosystem
services. Z Pflanzenernahr Bodenk. 2014;177(2):111-
120. doi:10.1002/jpIn.201300646.

Creamer RE, Hagens M, Baartman J, et al. Editorial
for special issue on “understanding soil functions -


https://www.impact4soil.com/
https://www.impact4soil.com/
https://irc-orcasa.eu
https://doi.org/10.17027/isric_e6da-sc18
https://doi.org/10.17027/isric_e6da-sc18
https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
https://doi.org/10.5194/essd-14-4811-2022
https://www.unep.org/explore-topics/sustainable-development-goals
https://www.unep.org/explore-topics/sustainable-development-goals
https://doi.org/10.1111/ejss.13380
https://doi.org/10.1016/j.soilbio.2005.10.008
https://doi.org/10.1111/gcb.16570
https://doi.org/10.1016/j.still.2018.04.011
https://doi.org/10.1111/gcb.16983
https://doi.org/10.1016/j.geoderma.2010.02.003
https://doi.org/10.1111/j.1365-2389.2007.00916.x
https://doi.org/10.1111/j.1365-2389.2007.00916.x
https://doi.org/10.1111/j.1475-2743.2007.00084.x
https://doi.org/10.1002/jpln.201300646

18 N. H. BATJES ET AL.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

from ped to planet”. Eur J Soil Sci. 2021;72(4):1493—
1496. doi:10.1111/ejss.13099.

Nannipieri P, Ascher J, Ceccherini MT, et al
Microbial diversity and soil functions. European J
Soil Science. 2003;54(4):655-670. doi:10.1046/j.1351-
0754.2003.0556.x.

Wiesmeier M, Urbanski L, Hobley E, et al. Soil
organic carbon storage as a key function of soils - A
review of drivers and indicators at various scales.
Geoderma. 2019;333:149-162. doi:10.1016/j.geo-
derma.2018.07.026.

Beillouin D, Corbeels M, Demenois J, et al. A global
meta-analysis of soil organic carbon in the
Anthropocene. Nat Commun. 2023;14(1):3700. doi:
10.1038/541467-023-39338-z.

Bouma J, Pinto-Correia T, Veerman C. Assessing the
role of soils when developing sustainable agricul-
tural production systems focused on achieving the
UN-SDGs and the EU green deal. Soil Systems. 2021;
5(3):56. doi:10.3390/s0ilsystems5030056.

European Commission. Communication from the
Commission to the European Parliament, the
European Council, the Council, the European
Economic and Social Committee and the
Committee of the regions - The European Green
Deal. Luxembourg ; 2019. p. 24.

European Commission. Proposal for a Directive of
the European Parliament and of the Council on Soil
Monitoring and Resilience. European Commission;
2023. p. 22.

United Nations. Handbook on measurement, report-
ing and verification for developing countries. Bonn:
Framework Convention on Climate Chage, United
Nations Climate Change Secretariat; 2014. p. 56.
European Commission. Proposal for a regulation of
the european parliament and of the council establish-
ing a union certification framework for carbon remov-
als. Brussels: European Commission; 2022. p. 52.
Mooney S, Janoski K. Economic considerations for
the development of a carbon farming scheme. In:
Rumpel C, editor. Understanding and fostering soil
carbon sequestration. Cambridge: Burleigh Dodds
Science Publishing; 2022. p. 809-827.

Haya BK, Evans S, Brown L, et al. Comprehensive
review of carbon quantification by improved forest
management offset protocols. Front For Glob Change.
2023;6(6):9588. doi:10.3389/ffgc.2023.958879.

Tamme E. Financing engineered carbon removal
with the voluntary carbon markets - synergies with
public funding and a look beyond double claiming.
Tallinn (Estonia): Climate Principles OU; 2022. p. 10.
IPCC. 2019 refinement to the 2006 ipcc guidelines
for national greenhouse gas inventories: overview.
Buendia EC Guendehou S Limmeechokchai B, et al.
Geneva: IPCC; 2019. p. 15.

UNCCD.; 2017 Good Practice Guidance SDG
Indicator 15.3.1: proportion of land that is degraded
over total land area (ver. 1.0). p. 115.

Cardinael R, Umulisa V, Toudert A, et al. Revisiting
IPCC Tier 1 coefficients for soil organic and biomass
carbon storage in agroforestry systems. Environ Res

36.

37.

38.

39.

40.

41.

42.

43.

a4,

45.

46.

47.

Lett. 2018;13(12):124020. doi:10.1088/1748-9326/
aaeb5f.

Batjes NH. Soil organic carbon stocks under native
vegetation - revised estimates for use with the sim-
ple assessment option of the Carbon Benefits
Project system. Agriculture Ecosyst Environ. 2011;
142(3-4):365-373. d0i:10.1016/j.agee.2011.06.007.
Brus DJ. Statistical sampling approaches for soil
monitoring. European J Soil Science. 2014;65(6):
779-791. doi:10.1111/ejss.12176.

Australian Government. Independent review of austra-
lian carbon credit units canberra: department of cli-
mate change, energy, the environment and water,
australian government; 2023; [cited 2023 20 October].
Available from: https://www.dcceew.gov.au/climate-
change/emissions-reduction/independent-review-
accus.

Bellassen V, Angers D, Kowalczewski T, et al. Soil
carbon is the blind spot of European national GHG
inventories. Nat. Clim. Chang. 2022;12(4):324-331.
doi:10.1038/s41558-022-01321-9.

Wiese L, Wollenberg E, Alcantara-Shivapatham V,
et al. Countries’ commitments to soil organic carbon
in nationally determined contributions. Climate
Policy. 2021;21(8):1005-1019. doi:10.1080/14693062.
2021.1969883.

Wander MM, Ugarte CM. Understanding the value
of and reasoning behind farmer adoption of carbon
centric practice. In: Rumpel C, editor. Understanding
and fostering soil carbon sequestration. Cambridge:
Burleigh Doods Science Publishing; 2022.p. 829-
850.

Funk R, Pascual U, Joosten H, et al. From potential
to implementation: an innovation framework to
realize the benefits of soil carbon. In: Banwart SA,
Noelmeyer E, Milne E, Management and policy for
multiple benefits. Wallingford (UK): CABI. Soil carbon
Science; 2015. p. 47-59.

Rumpel C. Benefits and trade-offs of soil carbon
sequestration. In: Rumpel C, editor. Understanding
and fostering soil carbon sequestration. Cambridge:
Burleigh Dodds Science Publishing; 2022. p. 183-
207.

Buck HJ, Palumbo-Compton A. Soil carbon seques-
tration as a climate strategy: what do farmers think?
Biogeochemistry. 2022;161(1):59-70. doi:10.1007/
$10533-022-00948-2.

FAO, ITPS. Recarbonizing global soils - A technical
manual of recommended management practices.
Voume 1: introductioin and methodology. Rome:
Global Soil Partnership; 2022. p. 52.

Lal R. Managing soils for negative feedback to cli-
mate change and positive impact on food and
nutritional security. Soil Sci Plant Nutr. 2020;66(1):1-
9. doi:10.1080/00380768.2020.1718548.

Mora de la Luz M, Medina J, Poblete-Grant P, et al.
Innovative agriculture management to foster soil
organic carbon sequestration. In: Rumpel C, editor.
Understanding and fostering soil carbon sequestra-
tion. Cambridge: Burleigh Dodds Science Publishing;
2022. p. 271-301.


https://doi.org/10.1111/ejss.13099
https://doi.org/10.1046/j.1351-0754.2003.0556.x
https://doi.org/10.1046/j.1351-0754.2003.0556.x
https://doi.org/10.1016/j.geoderma.2018.07.026
https://doi.org/10.1016/j.geoderma.2018.07.026
https://doi.org/10.1038/s41467-023-39338-z
https://doi.org/10.3390/soilsystems5030056
https://doi.org/10.3389/ffgc.2023.958879
https://doi.org/10.1088/1748-9326/aaeb5f
https://doi.org/10.1088/1748-9326/aaeb5f
https://doi.org/10.1016/j.agee.2011.06.007
https://doi.org/10.1111/ejss.12176
https://www.dcceew.gov.au/climate-change/emissions-reduction/independent-review-accus
https://www.dcceew.gov.au/climate-change/emissions-reduction/independent-review-accus
https://www.dcceew.gov.au/climate-change/emissions-reduction/independent-review-accus
https://doi.org/10.1038/s41558-022-01321-9
https://doi.org/10.1080/14693062.2021.1969883
https://doi.org/10.1080/14693062.2021.1969883
https://doi.org/10.1007/s10533-022-00948-2
https://doi.org/10.1007/s10533-022-00948-2
https://doi.org/10.1080/00380768.2020.1718548

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

60.

Paul S, Leifeld J. Management of organic soils to
reduce soil organic carbon losses. In Rumpel C, edi-
tor. Optimizing forest management for soil carbon
sequestration. Cambridge: Burleigh Dodds Science
Publishing; 2022. p. 617-679.

Dick D, Bayer C, Dieckow J. Fostering carbon
sequestration in humid tropical and subtropical
soils. In: Rumpel C, editor. Understanding and fos-
tering soil carbon sequestration. Cambridge:
Burleigh Dodds Science Publishing ; 2022. p. 681-
706.

Khangura R, Ferris D, Wagg C, et al. Regenerative agri-
culture - a literature review on the practices and mech-
anisms used to improve soil health. Sustainability.
2023;15(3):2338. doi:10.3390/su15032338.

Baldock JA, Sanderman J, Macdonald LM, et al.
Quantifying the allocation of soil organic carbon to
biologically significant fractions. Soil Res. 2013;51(8):
561-576. doi:10.1071/SR12374.

Kyker-Snowman E, Lombardozzi DL, Bonan GB, et al.
Increasing the spatial and temporal impact of eco-
logical research: a roadmap for integrating a novel
terrestrial process into an Earth system model. Glob
Chang Biol. 2022;28(2):665-684. doi:10.1111/gcb.
15894.

Doetterl S, Abramoff R, Cornelis J-T, et al.
Understanding soil organic carbon dynamics at
larger scales. In: Rumpel C, editor. Understanding
and fostering soil carbon sequestration. Cambridge:
Buddleigh Dodds Science Publishers; 2022. p. 115-
182.

Ingram JS, Fernandes ECM. Managing carbon
sequestration in soils: concepts and terminology.
Agriculture Ecosyst Environ. 2001;87(1):111-117. doi:
10.1016/50167-8809(01)00145-1.

Bertrand |, Viaud V, Daufresne T, et al. Stoichiometry
constraints challenge the potential of agroecological
practices for the soil C storage. A review. Agron
Sustain Dev. 2019;39(6):54. doi:10.1007/s13593-019-
0599-6.

de Vries W. Soil carbon 4 per mille: a good initiative
but let's manage not only the soil but also the
expectations: comment on Minasny. Geoderma.
2017;309:111-112. Geoderma. 2017. doi:10.1016/j.
geoderma.2017.05.023.

Xu X, Thornton PE, Post WM. A global analysis of soil
microbial biomass carbon, nitrogen and phosphorus
in terrestrial ecosystems. Global Ecol Biogeogr. 2013;
22(6):737-749. doi:10.1111/geb.12029.

Kirkby CA, Richardson AE, Wade LJ, et al. Nutrient
availability limits carbon sequestration in arable
soils. Soil Biol Biochem. 2014;68:402-409. doi:10.
1016/j.50ilbi0.2013.09.032.

Ulrich S, Tischer S, Hofmann B, et al. Biological soil
properties in a long-term tillage trial in Germany. Z
Pflanzenernahr Bodenk. 2010;173(4):483-489. doi:10.
1002/jpIn.200700316.

Berner D, Marhan S, Keil D, et al. Land-use intensity
modifies spatial distribution and function of soil
microorganisms in grasslands. Pedobiologia. 2011;
54(5-6):341-351. doi:10.1016/j.pedobi.2011.08.001.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

CARBON MANAGEMENT . 19

van Diepeningen AD, de Vos OJ, Korthals GW, et al.
Effects of organic versus conventional management
on chemical and biological parameters in agricul-
tural soils. Appl Soil Ecol. 2006;31(1-2):120-135. doi:
10.1016/j.aps0il.2005.03.003.

Izac AMN. Developing policies for soil carbon man-
agement in tropical regions. Geoderma. 1997;79(1-
4):261-276. doi:10.1016/S0016-7061(97)00044-X.

Keel SG, Bretscher D, Leifeld J, et al. Soil carbon
sequestration potential bounded by population
growth, land availability, food production, and cli-
mate change. Carbon Manage. 2023;14(1):2244456.
doi:10.1080/17583004.2023.2244456.

Batjes NH. Technologically achievable soil organic
carbon sequestration in world croplands and grass-
lands. Land Degrad Dev. 2019;30(1):25-32. doi:10.
1002/1dr.3209.

Demenois J, Torquebiau E, Arnoult MH, et al.
Barriers and strategies to boost soil carbon seques-
tration in agriculture. Front Sustain Food Syst. 2020;
4(37):1-14. doi:10.3389/fsufs.2020.00037.

Sierra CA, Crow SE. Modeling soil organic carbon
dynamics, carbon sequestration and the climate
benefit of sequestration. Understanding and foster-
ing soil carbon sequestration; 2022. p. 351-374.
Amundson R. The Pandora’s box of soil carbon. Proc
Natl Acad Sci U S A. 2022;119(11):e2201077119. doi:
10.1073/pnas.2201077119.

Smith P. How long before a change in soil organic
carbon can be detected? Glob Chang Biol. 2004;10:
1878-1883.

Cambardella CA, Elliott ET. Particulate soil organic-
matter changes across a grassland cultivation
sequence. Soil Sci Soc Am J. 1992;56(3):777-783.
doi:10.2136/5552j1992.03615995005600030017x.

Six J, Conant RT, Paul EA, et al. Stabilization mecha-
nisms of soil organic matter: implications for C-sat-
uration of soils. Plant Soil. 2002;241(2):155-176. doi:
10.1023/A:1016125726789.

Bossuyt H, Six J, Hendrix PF. Aggregate-protected
carbon in no-tillage and conventional tillage agroe-
cosystems using carbon-14 labeled plant residue.
Soil Sci Soc Am J. 2002;66(6):1965-1973.

Angst G, Mueller KE, Castellano MJ, et al. Unlocking
complex soil systems as carbon sinks: multi-pool
management as the key. Nat Commun. 2023;14(1):
2967. doi:10.1038/s41467-023-38700-5.

Hassink J. Preservation of plant residues in soils dif-
fering in unsaturated protective capacity. Soil Sci
Soc Am J. 1996;60(2):487-491. doi:10.2136/
$552j1996.03615995006000020021x.

Cotrufo MF, Ranalli MG, Haddix ML, et al. Soil car-
bon storage informed by particulate and mineral-
associated organic matter. Nat Geosci. 2019;12(12):
989-994. doi:10.1038/541561-019-0484-6.

Noordwijk M, Goverse T, Ballabio C, et al. Soil car-
bon transition curves: reversal of land degradation
through management of soil organic matter for
multiple benefits. Wallingford: CABI Books; 2015.
Zomer RJ, Bossio DA, Sommer R, et al. Global
sequestration potential of increased organic carbon


https://doi.org/10.3390/su15032338
https://doi.org/10.1071/SR12374
https://doi.org/10.1111/gcb.15894
https://doi.org/10.1111/gcb.15894
https://doi.org/10.1016/S0167-8809(01)00145-1
https://doi.org/10.1007/s13593-019-0599-6
https://doi.org/10.1007/s13593-019-0599-6
https://doi.org/10.1016/j.geoderma.2017.05.023
https://doi.org/10.1016/j.geoderma.2017.05.023
https://doi.org/10.1111/geb.12029
https://doi.org/10.1016/j.soilbio.2013.09.032
https://doi.org/10.1016/j.soilbio.2013.09.032
https://doi.org/10.1002/jpln.200700316
https://doi.org/10.1002/jpln.200700316
https://doi.org/10.1016/j.pedobi.2011.08.001
https://doi.org/10.1016/j.apsoil.2005.03.003
https://doi.org/10.1016/S0016-7061(97)00044-X
https://doi.org/10.1080/17583004.2023.2244456
https://doi.org/10.1002/ldr.3209
https://doi.org/10.1002/ldr.3209
https://doi.org/10.3389/fsufs.2020.00037
https://doi.org/10.1073/pnas.2201077119
https://doi.org/10.2136/sssaj1992.03615995005600030017x
https://doi.org/10.1023/A:1016125726789
https://doi.org/10.1038/s41467-023-38700-5
https://doi.org/10.2136/sssaj1996.03615995006000020021x
https://doi.org/10.2136/sssaj1996.03615995006000020021x
https://doi.org/10.1038/s41561-019-0484-6

20 N. H. BATJES ET AL.

77.

78.

79.

80.

81.

82.

83.

84,

85.

86.

87.

88.

89.

90.

91.

in cropland soils. Sci Rep. 2017;7(1):15554. doi:10.
1038/541598-017-15794-8.

Begill N, Don A, Poeplau C. No detectable upper
limit of mineral-associated organic carbon in tem-
perate agricultural soils. Glob Chang Biol. 2023;
29(16):4662-4669. doi:10.1111/gcb.16804.

Cotrufo MF, Lavallee JM, Six J, et al. The robust con-
cept of mineral-associated organic matter satur-
ation: a letter to Begill et al., 2023. Glob Chang Biol.
2023;29(21):5986-5987. doi:10.1111/gcb.16921.
Poeplau C, Begill N, Don A. Response to: “The robust
concept of mineral-associated organic matter satur-
ation: a letter to Begill et al. (2023)". Glob Chang
Biol. 2023;29(21):e4-e6. doi:10.1111/gcb.16920.
Lugato E, Leip A, Jones A. Mitigation potential of
soil carbon management overestimated by neglect-
ing N20 emissions. Nature Clim Change. 2018;8(3):
219-223. doi:10.1038/s41558-018-0087-z.

Kanter DR, Bartolini F, Kugelberg S, et al. Nitrogen
pollution policy beyond the farm. Nat Food. 2019;
1(1):27-32. d0i:10.1038/543016-019-0001-5.

Gerber JS, Carlson KM, Makowski D, et al. Spatially
explicit estimates of N20 emissions from croplands
suggest climate mitigation opportunities from
improved fertilizer management. Glob Chang Biol.
2016;22(10):3383-3394. doi:10.1111/gcb.13341.
Pique G, Carrer D, Lugato E, et al. About the assess-
ment of cover crop albedo potential cooling effect:
risk of the darkening feedback loop effects. Remote
Sens. 2023;15(13):3231. doi:10.3390/rs15133231.
Keenor SG, Rodrigues AF, Mao L, et al. Capturing a
soil carbon economy. R Soc Open Sci. 2021;8(4):
202305. doi:10.1098/rs0s5.202305.

Oldfield EE, Bradford MA, Wood SA. Global meta-
analysis of the relationship between soil organic
matter and crop vyields. SOIL. 2019;5(1):15-32. doi:
10.5194/s0il-5-15-2019.

Tamba Y, Wafula J, Magaju C, et al. A review of the
participation of smallholder farmers in land-based
carbon payment schemes. Nairobi: TMG (Think Tank
for Sustainability) and ICRAF. 2021 (ICRAF Working
Paper).

Falconnier GN, Cardinael R, Corbeels M, et al. The
input reduction principle of agroecology is wrong
when it comes to mineral fertilizer use in sub-
Saharan Africa. Outlook Agric. 2023;52(3):311-326.
doi:10.1177/00307270231199795.

Vanlauwe B, Amede T, Bationo A, et al. Fertilizer and
soil health in Africa: the role of fertilizer in building
soil health to sustain farming and address climate
change. Muscle Shoals, AL, USA: International
Fertilizer Development Center (IFDC); 2023. p. 82.
Giller KE, Kanampiu F, Hungria M, et al. The role of
nitrogen fixation in African smallholder agriculture.
Agricult Ecosyst Environ. 2019;285:106601. doi:10.
1016/j.agee.2019.106601.

Sonneveld MPW, Bouma J. Methodological consider-
ations for nitrogen policies in the Netherlands
including a new role for research. Environ Sci Policy.
2003;6(6):501-511. doi:10.1016/j.envsci.2003.08.005.
Lorenzo C, Vermeulen S, Leonard R, et al. Land grab
or development opportunity? Agricultural

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

investment and international land deals in Africa
London/Rome: International Institute for
Environment and Development, Food and
Agricultural Organization of the United Nations, and
International Fund for Agricultural Development;
20009. p. 120.

De Schutter O. How not to think of land-grabbing:
three critiques of large-scale investments in farm-
land. J Peasant Stud. 2011;38(2):249-279. doi:10.
1080/03066150.2011.559008.

Yang B, He J. Global land grabbing: a critical review
of case studies across the world. land. Land. 2021;
10(3):324. d0i:10.3390/land10030324.

Demenois J, Dayet A, Karsenty A. Surviving the jun-
gle of soil organic carbon certification standards: an
analytic and critical review. Mitig Adapt Strateg
Glob Change. 2022;27(1):1-17. doi:10.1007/s11027-
021-09980-3.

Soil EJP. Inventory of the use of models for account-
ing and policy support (soil quality and soil carbon);
2021. p. 34.

Cevallos G, Grimaut J, Bellassen V. Domestic carbon
standards in Europe: overview and perspectives.
I4KCE Institute for Climate Economics; 2019. p. 44.
Nogues M, Husson M, Paul G, et al. Framework of
possible business models for the implementation of
a carbon demonstrator - Territorial demonstrators of
soil carbon sequestration. INRAE, LISIS and NATAIS;
2021.

Shrestha G, Cooley S, Larson L, et al. Report for the
Carbon Dioxide Removal (CDR): towards a Unified
Monitoring, Measuring, Reporting and Verification
(MMRV) Framework Workshop; 2023. p. 36.

Batjes NH, van Wesemael B. Measuring and monitor-
ing soil carbon. In: Banwart SA, Noelmeyer E, Milne
E, editors. Soil carbon: science, management and
policy for multiple benefits. Wallingford (UK): CABI;
2015. p. 188-201.

Kuhnert M, Vetter SH, Smith P. Measuring and moni-
toring soil carbon sequestration. In: Rumpel C, edi-
tor. Understanding and fostering soil carbon
sequestration. Cambridge (UK): Burleigh Dodds
Science Publishing; 2022. p. 305-321.

Aitkenhead M. Digital tools for assessing soil organic
carbon at farm and regional scale. In: Rumpel C, edi-
tor. Understanding and fostering soil carbon
sequestration. Cambridge: Burleigh Dodds Science
Publishing; 2022. p. 395-419.

Wang Y, Qi Q, Zhou L, et al. Recognition of potential
outliers in soil datasets from the perspective of geo-
graphical context for improving farm-level soil map-
ping accuracies. Geoderma. 2023;431:116374. doi:
10.1016/j.geoderma.2023.116374.

Black HIJ, Reed MS, Kendall H, et al. What makes an
operational farm soil carbon code? Insights from a
global comparison of existing soil carbon codes
using a structured analytical framework. Carbon
Manag. 2022;13(1):554-580. doi:10.1080/17583004.
2022.2135459.

European Commission (Directorate-General for
Climate Action). Reviewing the contribution of the
land, land-use change and forestry sector of the


https://doi.org/10.1038/s41598-017-15794-8
https://doi.org/10.1038/s41598-017-15794-8
https://doi.org/10.1111/gcb.16804
https://doi.org/10.1111/gcb.16921
https://doi.org/10.1111/gcb.16920
https://doi.org/10.1038/s41558-018-0087-z
https://doi.org/10.1038/s43016-019-0001-5
https://doi.org/10.1111/gcb.13341
https://doi.org/10.3390/rs15133231
https://doi.org/10.1098/rsos.202305
https://doi.org/10.5194/soil-5-15-2019
https://doi.org/10.1177/00307270231199795
https://doi.org/10.1016/j.agee.2019.106601
https://doi.org/10.1016/j.agee.2019.106601
https://doi.org/10.1016/j.envsci.2003.08.005
https://doi.org/10.1080/03066150.2011.559008
https://doi.org/10.1080/03066150.2011.559008
https://doi.org/10.3390/land10030324
https://doi.org/10.1007/s11027-021-09980-3
https://doi.org/10.1007/s11027-021-09980-3
https://doi.org/10.1016/j.geoderma.2023.116374
https://doi.org/10.1080/17583004.2022.2135459
https://doi.org/10.1080/17583004.2022.2135459

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

green deal. Workshop IV Carbon farming in the CAP
strategic plans; 2021.

UNFCC. Handbook on measurement, reporting and
verification for developing country parties. Bonn:
United Nations Climate Change Secretariat; 2014.
p. 56.

Popkin G. Shaky ground. Science. 2023;381(6656):
369-373. doi:10.1126/science.adj9318.

West TAP, Borner J, Sills EO, et al. Overstated carbon
emission reductions from voluntary REDD+ projects
in the Brazilian Amazon. Proc Natl Acad Sci U S A.
2020;117(39):24188-24194.  doi:10.1073/pnas.2004
334117.

Yang Z, Nguyen TTH, Nguyen HN, et al
Greenwashing behaviours: causes, taxonomy and
consequences based on a systematic literature
review. J Business Econ Manag. 2020;21(5):1486-
1507. doi:10.3846/jbem.2020.13225.

Trouwloon D, Streck C, Chagas T, et al
Understanding the use of carbon credits by compa-
nies: a review of the defining elements of corporate
climate claims. Glob Chall. 2023;7(4):2200158. doi:
10.1002/gch2.202200158.

Montgomery AW, Lyon TP, Barg J. No end in sight?
A greenwash review and research agenda. Organ
Environ.  2023;37(2):221-256.  doi:10.1177/10860
266231168905.

Miltenberger O, Jospe C, Pittman J. The good is
never perfect: why the current flaws of voluntary
carbon markets are services, not barriers to success-
ful climate change action. Front Clim. 2021;3:
686516. doi:10.3389/fclim.2021.686516.

Rabobank. Carbon sequestration in agricultural soils:
how to unlock the green potential of the agricul-
tural sector. Amsterdam: Economic Research,
Rabobank; 2021. p. 31.

ORCaSA. ORCaSa because soil organic matters - A
Horizon Europe initiative that aims to bring
together international stakeholders working on
techniques for capturing and storing carbon in the
soil; 2023 [cited 2024 15 Februaryl. Available from:
https://irc-orcasa.eu/.

Smith P, Soussana J-F, Angers D, et al. How to meas-
ure, report and verify soil carbon change to realize
the potential of soil carbon sequestration for atmos-
pheric greenhouse gas removal. Glob Chang Biol.
2020;26(1):219-241. doi:10.1111/gcb.14815.

Arcusa S, Sprenkle-Hyppolite S. Snapshot of the car-
bon dioxide removal certification and standards eco-
system (2021-2022). Climate Policy. 2022;22(9-10):
1319-1332. doi:10.1080/14693062.2022.2094308.
FAO-GSP. A protocol for measurement, monitoring,
reporting and verification of soil organic carbon in
agricultural landscapes - GSOC-MRV  Protocol.
Rome: FAO, ITPS, GSP; 2020. p. 140.

Lesschen JP, Hendriks C, van der Linden A, et al.
Ontwikkeling praktijktool voor bodem C (in Dutch).
Wageningen: Wageningen Environmental Research;
2020. p. 52.

Nevalainen O, Niemitalo O, Fer |, et al. Towards agri-
cultural soil carbon monitoring, reporting, and verifi-
cation through the Field Observatory Network

119.

120.

121.

122.

123.

124,

125.

126.

127.

128.

129.

130.

131.

CARBON MANAGEMENT . 21

(FION). Geosci. Instrum. Method. Data Syst. 2022;
11(1):93-109. doi:10.5194/gi-11-93-2022.

Bockstaller C, Sirami C, Sheeren D, et al. Apports de
la télédétection au calcul d'indicateurs agri-environ-
nementaux au service de la PAC, des agriculteurs et
porteurs d’enjeu. Innovations Agronomiques. 2021;
83:43-59.

Wijmer T, Al Bitar A, Arnaud L, et al. AgriCarbon-EO
v1.0.1: large-scale and high-resolution simulation of
carbon fluxes by assimilation of Sentinel-2 and
Landsat-8 reflectances using a Bayesian approach.
Geosci Model Dev. 2024;17(3):997-1021. doi:10.
5194/gmd-17-997-2024.

Paustian K, Schuler J, Killian K, et al. COMET2.0-
Decision support system for agricultural greenhouse
gas accounting. Managing Agricultural Greenhouse
Gases; 2012. p. 251-270.

Del Grosso SJ, Mosier AR, Parton WJ, et al. DAYCENT
model analysis of past and contemporary soil N20
and net greenhouse gas flux for major crops in the
USA. Soil Tillage Res. 2005;83(1):9-24. doi:10.1016/j.
still.2005.02.007.

Mathers C, Black CK, Segal BD, et al. Validating
DayCent-CR for cropland soil carbon offset reporting
at a national scale. Geoderma. 2023;438:116647. doi:
10.1016/j.geoderma.2023.116647.

Paustian K, Collier S, Baldock J, et al. Quantifying
carbon for agricultural soil management: from the
current status toward a global soil information sys-
tem. Carbon Manage. 2019;10(6):567-587. doi:10.
1080/17583004.2019.1633231.

Batjes NH, Ceschia E, Heuvelink GBM, et al.
International review of current MRV initiatives for
soil carbon stock change assessment and associated
methodologies. Wageningen: ISRIC, INRAE and
CIRAD; 2023. (ORCASA Deliverable 4.1)
Arias-Navarro C, Diaz-Pinés E, Klatt S, et al. Spatial
variability of soil N20 and CO2 fluxes in different
topographic positions in a tropical montane forest
in Kenya. JGR Biogeosci. 2017;122(3):514-527. doi:
10.1002/2016JG003667.

Poeplau C. Advances in measuring soil organic car-
bon stocks and dynamics at the profile scale. In:
Rumpel C, editor. Understanding and fostering soil
carbon sequestration. Cambridge: Burleigh Dodds
Science Publishing; 2022. p. 323-350.

Shepherd KD, Ferguson R, Hoover D, et al. A global
soil spectral calibration library and estimation ser-
vice. Soil Security. 2022;7:100061. doi:10.1016/j.s0i-
sec.2022.100061.

Viscarra Rossel RA, Behrens T, Ben-Dor E, et al.
Diffuse reflectance spectroscopy for estimating soil
properties: a technology for the 21st century. Eur J
Soil Sci. 2022;73(4):e13271. doi:10.1111/ejss.13271.
McBride MB. Estimating soil chemical properties by
diffuse reflectance spectroscopy: promise versus
reality. Eur J Soil Sci. 2022;73(1):e13192. doi:10.1111/
ejss.13192.

Cécillon L, Barthes BG, Gomez C, et al. Assessment
and monitoring of soil quality using near-infrared
reflectance spectroscopy (NIRS). Eur J Soil Sci. 2009;
60(5):770-784. doi:10.1111/j.1365-2389.2009.01178.x.


https://doi.org/10.1126/science.adj9318
https://doi.org/10.1073/pnas.2004334117
https://doi.org/10.1073/pnas.2004334117
https://doi.org/10.3846/jbem.2020.13225
https://doi.org/10.1002/gch2.202200158
https://doi.org/10.1177/10860266231168905
https://doi.org/10.1177/10860266231168905
https://doi.org/10.3389/fclim.2021.686516
https://irc-orcasa.eu/
https://doi.org/10.1111/gcb.14815
https://doi.org/10.1080/14693062.2022.2094308
https://doi.org/10.5194/gi-11-93-2022
https://doi.org/10.5194/gmd-17-997-2024
https://doi.org/10.5194/gmd-17-997-2024
https://doi.org/10.1016/j.still.2005.02.007
https://doi.org/10.1016/j.still.2005.02.007
https://doi.org/10.1016/j.geoderma.2023.116647
https://doi.org/10.1080/17583004.2019.1633231
https://doi.org/10.1080/17583004.2019.1633231
https://doi.org/10.1002/2016JG003667
https://doi.org/10.1016/j.soisec.2022.100061
https://doi.org/10.1016/j.soisec.2022.100061
https://doi.org/10.1111/ejss.13271
https://doi.org/10.1111/ejss.13192
https://doi.org/10.1111/ejss.13192
https://doi.org/10.1111/j.1365-2389.2009.01178.x

22 N. H. BATJES ET AL.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144,

145.

Blinemann EK, Bongiorno G, Bai Z, et al. Soil quality
- a critical review. Soil Biol Biochem. 2018;120:105-
125. doi:10.1016/].50ilbio.2018.01.030.

van Leeuwen CCE, Mulder VL, Batjes NH, et al. Effect
of measurement error in wet chemistry soil data on
the calibration and model performance of pedo-
transfer functions. Geoderma. 2024;442:116762. doi:
10.1016/j.geoderma.2023.116762.

van Wesemael B, Chabrillat S, Sanz Dias A, et al.
Remote sensing for soil organic carbon mapping
and monitoring. Remote Sens. 2023;15(14):3464.
doi:10.3390/rs15143464.

McKenzie N, Henderson B, McDonald W. Monitoring
soil change: principles and practices for Australian
conditions. CSIRO Land & Water, CSIRO
Mathematical & Information Sciences, National Land
and Water Resources Audit; Black Mountain (AU):
CSIRO; 2002. p. 112.

Smith P, Smith JU, Powlson DS, et al. A comparison
of the performance of nine soil organic matter mod-
els using datasets from seven long-term experi-
ments. Geoderma. 1997;81(1-2):153-225. doi:10.
1016/50016-7061(97)00087-6.

Parton WJ, Schimel DS, Cole CV, et al. Analysis of fac-
tors controlling soil organic matter levels in Great Plain
grasslands. Soil Science Soc Am J. 1987;51(5):1173-
1179. doi:10.2136/s553j1987.03615995005100050015x.
Heuvelink GBM, Angelini ME, Poggio L, et al
Machine learning in space and time for modelling
soil organic carbon change. Eur J Soil Sci. 2021;
72(4):1607-1623. doi:10.1111/ejss.12998.

De Rosa D, Ballabio C, Lugato E, et al. Soil organic
carbon stocks in European croplands and grass-
lands: how much have we lost in the past decade?
Glob Chang Biol. 2024;30(1):e16992. doi:10.1111/
gcb.16992.

Soussana JF, Allard V, Pilegaard K, et al. Full
accounting of the greenhouse gas (CO2, N20, CH4)
budget of nine European grassland sites.
Agriculture Ecosyst Environ. 2007;121(1-2):121-134.
doi:10.1016/j.agee.2006.12.022.

Tziolas N, Tsakiridis N, Chabrillat S, et al. Earth obser-
vation data-driven cropland soil monitoring: a
review. Remote Sens. 2021;13(21):4439. doi:10.3390/
rs132144309.

van der Voort TS, Verweij S, Fujita Y, et al. Enabling
soil carbon farming: presentation of a robust, afford-
able, and scalable method for soil carbon stock
assessment. Agron Sustain Dev. 2023;43(1):22. doi:
10.1007/513593-022-00856-7.

Perugini L, Pellis G, Grassi G, et al. Emerging report-
ing and verification needs wunder the Paris
Agreement: how can the research community
effectively contribute? Environ Sci Policy. 2021;122:
116-126. doi:10.1016/j.envsci.2021.04.012.

Nieto L, Houborg R, Tivet F, et al. Limitations and
future perspectives for satellite-based soil carbon
monitoring. Environ Challenges. 2024;14:100839.
doi:10.1016/j.envc.2024.100839.

Lark RM. Some considerations on aggregate sample
supports for soil inventory and monitoring. Eur J

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

Soil Sci. 2012;63(1):86-95. doi:10.1111/j.1365-2389.
2011.01415.x.

Arrouays D, Marchant BP, Saby NPA, et al. Generic
issues on broad-scale soil monitoring schemes: a
review. Pedosphere. 2012;22(4):456-469. doi:10.
1016/51002-0160(12)60031-9.

Saby NPA, Bellamy PH, Morvan X, et al. Will
European soil-monitoring networks be able to
detect changes in topsoil organic carbon content?
Global Change Biol. 2008;14(10):2432-2442. doi:10.
1111/j.1365-2486.2008.01658.x.

Schauberger B, Jagermeyr J, Gornott C. A systematic
review of local to regional yield forecasting
approaches and frequently used data resources. Eur
J Agron. 2020;120:126153. doi:10.1016/j.eja.2020.
126153.

Odebiri O, Mutanga O, Odindi J. Deep learning-
based national scale soil organic carbon mapping
with Sentinel-3 data. Geoderma. 2022;411:115695.
doi:10.1016/j.geoderma.2022.115695.

Vaudour E, Gholizadeh A, Castaldi F, et al. Satellite
imagery to map topsoil organic carbon content
over cultivated areas: an overview. Remote Sensing.
2022;14(12):2917. doi:10.3390/rs14122917.

Ovando G, Sayago S, Bocco M. Evaluating accuracy
of DSSAT model for soybean yield estimation using
satellite weather data. ISPRS J Photogramm Remote
Sens. 2018;138:208-217. doi:10.1016/j.isprsjprs.2018.
02.015.

Jin X, Kumar L, Li Z, et al. A review of data assimila-
tion of remote sensing and crop models. Eur J
Agron. 2018;92:141-152. doi:10.1016/j.€ja.2017.11.
002.

Bandaru V, Yaramasu R, Jones C, et al. Geo-CropSim:
a Geo-spatial crop simulation modeling framework
for regional scale crop yield and water use assess-
ment. ISPRS J Photogramm Remote Sens. 2022;183:
34-53. doi:10.1016/j.isprsjprs.2021.10.024.

Piqgue G, Fieuzal R, Debaeke P, et al. Combining
high-resolution remote sensing products with a
crop model to estimate carbon and water budget
components: application to sunflower. Remote Sens.
2020;12(18):2967. doi:10.3390/rs12182967.

Pique G, Fieuzal R, Al Bitar A, et al. Estimation of
daily CO2 fluxes and of the components of the car-
bon budget for winter wheat by the assimilation of
Sentinel 2-like remote sensing data into a crop
model. Geoderma. 2020;376:114428. doi:10.1016/j.
geoderma.2020.114428.

Clivot H, Mouny J-C, Duparque A, et al. Modeling
soil organic carbon evolution in long-term arable
experiments with AMG model. Environ Model Softw.
2019;118:99-113. doi:10.1016/j.envsoft.2019.04.004.
Guan K, Jin Z, Peng B, et al. A scalable framework
for quantifying field-level agricultural carbon out-
comes. Earth Sci Rev. 2023;243:104462. doi:10.1016/
j.earscirev.2023.104462.

Ciais P, Bastos A, Chevallier F, et al. Definitions and
methods to estimate regional land carbon fluxes for
the second phase of the REgional Carbon Cycle
Assessment and Processes Project (RECCAP-2).


https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.1016/j.geoderma.2023.116762
https://doi.org/10.3390/rs15143464
https://doi.org/10.1016/S0016-7061(97)00087-6
https://doi.org/10.1016/S0016-7061(97)00087-6
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.1111/ejss.12998
https://doi.org/10.1111/gcb.16992
https://doi.org/10.1111/gcb.16992
https://doi.org/10.1016/j.agee.2006.12.022
https://doi.org/10.3390/rs13214439
https://doi.org/10.3390/rs13214439
https://doi.org/10.1007/s13593-022-00856-7
https://doi.org/10.1016/j.envsci.2021.04.012
https://doi.org/10.1016/j.envc.2024.100839
https://doi.org/10.1111/j.1365-2389.2011.01415.x
https://doi.org/10.1111/j.1365-2389.2011.01415.x
https://doi.org/10.1016/S1002-0160(12)60031-9
https://doi.org/10.1016/S1002-0160(12)60031-9
https://doi.org/10.1111/j.1365-2486.2008.01658.x
https://doi.org/10.1111/j.1365-2486.2008.01658.x
https://doi.org/10.1016/j.eja.2020.126153
https://doi.org/10.1016/j.eja.2020.126153
https://doi.org/10.1016/j.geoderma.2022.115695
https://doi.org/10.3390/rs14122917
https://doi.org/10.1016/j.isprsjprs.2018.02.015
https://doi.org/10.1016/j.isprsjprs.2018.02.015
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/j.eja.2017.11.002
https://doi.org/10.1016/j.isprsjprs.2021.10.024
https://doi.org/10.3390/rs12182967
https://doi.org/10.1016/j.geoderma.2020.114428
https://doi.org/10.1016/j.geoderma.2020.114428
https://doi.org/10.1016/j.envsoft.2019.04.004
https://doi.org/10.1016/j.earscirev.2023.104462
https://doi.org/10.1016/j.earscirev.2023.104462

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

Geosci Model Dev. 2022;15(3):1289-1316. doi:10.
5194/gmd-15-1289-2022.

Szatmari G, Pasztor L, Heuvelink GBM. Estimating
soil organic carbon stock change at multiple scales
using machine learning and multivariate geostatis-
tics. Geoderma. 2021;403:115356. doi:10.1016/j.geo-
derma.2021.115356.

Le Noé J, Manzoni S, Abramoff R, et al. Soil organic
carbon models need independent time-series valid-
ation for reliable prediction. Commun Earth Environ.
2023;4(1):158. doi:10.1038/s43247-023-00830-5.
Milne E, Sessay M, Paustian K, et al. Towards a
standardized system for the reporting of carbon
benefits in sustainable land management projects.
Integrated Crop Management. 2010;11:105-117.

Del Grosso S, Ojima D, Parton W, et al. Simulated
effects of dryland cropping intensification on soil
organic matter and greenhouse gas exchanges
using the DAYCENT ecosystem model. Environ
Pollut. 2002;116 Suppl 1: S75-S83. doi:10.1016/
50269-7491(01)00260-3.

Rosenstock TS, Wilkes A. Reorienting emissions
research to catalyse African agricultural develop-
ment. Nat Clim Chang. 2021;11(6):463-465. doi:10.
1038/541558-021-01055-0.

Oldfield EE, Lavallee JM, Kyker-Snowman E, et al.
The need for knowledge transfer and communica-
tion among stakeholders in the voluntary carbon
market. Biogeochemistry. 2022;161(1):41-46. doi:10.
1007/510533-022-00950-8.

Paul C, Bartkowski B, Donmez C, et al. Carbon farm-
ing: are soil carbon certificates a suitable tool for cli-
mate change mitigation? J Environ Manage. 2023;
330:117142. doi:10.1016/j.jenvman.2022.117142.
Yogo WIG, Clivot H, Wijmer T, et al. Evaluation and
monitoring methodologies for soil carbon balance
and recommendations for drafting a low carbon
label method. ADEME Report. no. 18-03-C0034.
INRAe; 2021.

Riggers C, Poeplau C, Don A, et al. Multi-model ensem-
ble improved the prediction of trends in soil organic
carbon stocks in German croplands. Geoderma. 2019;
345:17-30. doi:10.1016/j.geoderma. 2019.03.014.
Couedel A, Falconnier GN, Adam M, et al. Long-term
soil organic carbon and crop yield feedbacks differ
between 16 soil-crop models in sub-Saharan Africa.
Eur J Agron. 2024;155:127109. doi:10.1016/j.eja.
2024.1271009.

Farina R, Sandor R, Abdalla M, et al. Ensemble mod-
elling, uncertainty and robust predictions of organic
carbon in long-term bare-fallow soils. Glob Chang
Biol. 2021;27(4):904-928. doi:10.1111/gcb.15441.
Makipaa R, Abramoff R, Adamczyk B, et al. How
does management affect soil C sequestration and
greenhouse gas fluxes in boreal and temperate for-
ests? — a review. For Ecol Manage. 2023;529:120637.
doi:10.1016/j.foreco.2022.120637.

Oliver GR, Beets PN, Garrett LG, et al. Variation in
soil carbon in pine plantations and implications for
monitoring soil carbon stocks in relation to land-use
change and forest site management in New

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

CARBON MANAGEMENT . 23

Zealand. For Ecol Manage. 2004;203(1-3):283-295.
doi:10.1016/j.foreco.2004.07.045.

Lacarce E, Le Bas C, Cousin JL, et al. Data manage-
ment for monitoring forest soils in Europe for the
Biosoil project. Soil Use Manage. 2009;25(1):57-65.
doi:10.1111/j.1475-2743.2009.00194.x.

ICP  Forests. ICP Forests monitoring Manual
Eberswalde (Germany); 2021.

Louis BP, Saby NPA, Orton TG, et al. Statistical sam-
pling design impact on predictive quality of har-
monization functions between soil monitoring
networks. Geoderma. 2014;213:133-143. doi:10.
1016/j.geoderma.2013.07.018.

van Wesemael B, Paustian K, Andrén O, et al. How
can soil monitoring networks be used to improve
predictions of organic carbon pool dynamics and
CO, fluxes in agricultural soils? Plant Soil. 2010;
338(1-2):247-259. doi:10.1007/511104-010-0567-z.
Bispo A, Andersen L, Angers DA, et al. Accounting
for carbon stocks in soils and measuring GHGs emis-
sion fluxes from soils: do we have the necessary
standards? Front Environ Sci. 2017;5(41):1-12. doi:
10.3389/fenvs.2017.00041.

Olsson A. Assessing Carbon Dioxide Removal meth-
ods amid uncertainty: soil carbon sequestration, bio-
char and harvested wood products as methods for
climate change mitigation. School of Engineering
Sciences in Chemistry, Biotechnology and Health
(CBH), Chemical Engineering, Energy Processes.
Stockholm: KTH; 2023.

Lehmann N, Briner S, Finger R. The impact of climate
and price risks on agricultural land use and crop man-
agement decisions. Land Use Policy. 2013;35(0):119-
130. doi:10.1016/j.landusepol.2013.05.008.

Sperow M. Marginal cost to increase soil organic
carbon using no-till on U.S. cropland. Mitig Adapt
Strateg Glob Change. 2018;24(1):93-112. doi:10.
1007/511027-018-9799-7.

D’Arcangelo FM, Pisu M, Raj A, et al. Estimating the
CO2 emission and revenue effects of carbon pricing.
Paris: OECD Economics Department; 2022. p. 52.
ACR. American Carbon Registry; 2023 [cited 2023 15
October]. Available from: https://www.offsetguide.
org/understanding-carbon-offsets/carbon-offset-pro
grams/voluntary-offset-programs/american-carbon-
registry/.

VCS. VCS standard - a VERRA verified standard.
Washington, DC: Verra; 2023. p. 74.

Borg |, Groenen PJF. Modern multidimensional scal-
ing. Theory and applications.New York: Springer;
2005.

Cox TF, Cox MAA. Multidimensional scaling. 2nd ed.
Boca Raton: Chapman & Hall/CRC; 2020.

R Core Team. R: a language and environment for
statistical computing. Vienna: R Foundation for
Statistical Computing; 2021.

Cadoret M, Lé S, Pages J, et al. Multidimensional scal-
ing versus multiple correspondence analysis when
analyzing categorization data. In Fichet B, Piccolo D,
Verde R, editors. Classification and multivariate analysis
for complex data structures. Vol. Studies in


https://doi.org/10.5194/gmd-15-1289-2022
https://doi.org/10.5194/gmd-15-1289-2022
https://doi.org/10.1016/j.geoderma.2021.115356
https://doi.org/10.1016/j.geoderma.2021.115356
https://doi.org/10.1038/s43247-023-00830-5
https://doi.org/10.1016/s0269-7491(01)00260-3
https://doi.org/10.1016/s0269-7491(01)00260-3
https://doi.org/10.1038/s41558-021-01055-0
https://doi.org/10.1038/s41558-021-01055-0
https://doi.org/10.1007/s10533-022-00950-8
https://doi.org/10.1007/s10533-022-00950-8
https://doi.org/10.1016/j.jenvman.2022.117142
https://doi.org/10.1016/j.geoderma.2019.03.014
https://doi.org/10.1016/j.eja.2024.127109
https://doi.org/10.1016/j.eja.2024.127109
https://doi.org/10.1111/gcb.15441
https://doi.org/10.1016/j.foreco.2022.120637
https://doi.org/10.1016/j.foreco.2004.07.045
https://doi.org/10.1111/j.1475-2743.2009.00194.x
https://doi.org/10.1016/j.geoderma.2013.07.018
https://doi.org/10.1016/j.geoderma.2013.07.018
https://doi.org/10.1007/s11104-010-0567-z
https://doi.org/10.3389/fenvs.2017.00041
https://doi.org/10.1016/j.landusepol.2013.05.008
https://doi.org/10.1007/s11027-018-9799-7
https://doi.org/10.1007/s11027-018-9799-7
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/voluntary-offset-programs/american-carbon-registry/
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/voluntary-offset-programs/american-carbon-registry/
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/voluntary-offset-programs/american-carbon-registry/
https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/voluntary-offset-programs/american-carbon-registry/

24 N. H. BATJES ET AL.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

classification, data analysis, and knowledge organiza-
tion. New York: Springer-Verlag; 2011. p. 301-308.
Gower JC. A general coefficient of similarity and
some of its properties. Biometrics. 1971;27(4):857-
871. doi:10.2307/2528823.

Castaldi F, Chabrillat S, Jones A, et al. Soil organic
carbon estimation in croplands by hyperspectral
remote APEX data using the LUCAS topsoil data-
base. Remote Sens. 2018;10(2):153. doi:10.3390/
rs10020153.

Sabine G. Artificial intelligence and soil carbon mod-
eling demystified: power, potentials, and perils.
Carbon Footprints. 2022;1(1):5.

Liu L, Zhou W, Guan K, et al. Knowledge-guided
machine learning can improve carbon cycle quanti-
fication in agroecosystems. Nat Commun. 2024;
15(1):357. doi:10.1038/541467-023-43860-5.
Stockmann U, Padarian J, McBratney A, et al. Global
soil organic carbon assessment. Global Food Secur.
2015;6:9-16. doi:10.1016/j.gfs.2015.07.001.

Weiss M, Jacob F, Duveiller G. Remote sensing for
agricultural applications: a meta-review. Remote
Sens Environ. 2020;236:111402. doi:10.1016/j.rse.
2019.111402.

Blackmore S, Godwin RJ, Fountas S. The analysis of
spatial and temporal trends in yield map data over
six years. Biosyst Eng. 2003;84(4):455-466. doi:10.
1016/51537-5110(03)00038-2.

Ferrant S, Gascoin S, Veloso A, et al. Agro-hydrology
and multi temporal high resolution remote sensing:
toward an explicit spatial processes calibration.
Hydrol Earth Syst Sci. 2014;18(12):5219-5237. doi:10.
5194/hess-18-5219-2014.

NIVA. Carbon farming, Result-based schemes and
NIVA indicators; 2023. p. 16.

Poggio L, de Sousa L, Batjes NH, et al. SoilGrids 2.0:
producing soil information for the globe with quan-
tified spatial uncertainty. SOIL. 2021;7(1):217-240.
doi:10.5194/s0il-7-217-2021.

Ballabio C, Lugato E, Fernandez-Ugalde O, et al.
Mapping LUCAS topsoil chemical properties at
European scale using Gaussian process regression.
Geoderma.  2019;355:113912.  doi:10.1016/j.geo-
derma.2019.113912.

Yu Y, Saatchi S. Sensitivity of L-Band SAR backscat-
ter to aboveground biomass of global forests.
Remote Sens. 2016;8(6):522. doi:10.3390/rs8060522.
Le Maire G, Davi H, Soudani K, et al. Modeling
annual production and carbon fluxes of a large
managed temperate forest using forest inventories,
satellite data and field measurements. Tree Physiol.
2005;25(7):859-872. doi:10.1093/treephys/25.7.859.
Le Maire G, Marsden C, Nouvellon Y, et al. MODIS
NDVI time-series allow the monitoring of Eucalyptus
plantation biomass. Remote Sens Environ. 2011;
115(10):2613-2625. doi:10.1016/j.rse.2011.05.017.
Fowler A, Basso B, Maureira F, et al. Spatial patterns
of historical crop yields reveal soil health attributes
in US Midwest fields. Sci Rep. 2024;14(1):465. doi:10.
1038/541598-024-51155-y.

Revill A, Sus O, Barrett B, et al. Carbon cycling of
European croplands: A framework for the

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

assimilation of optical and microwave Earth obser-
vation data. Remote Sens Environ. 2013;137:84-93.
doi:10.1016/j.rse.2013.06.002.

Fieuzal R, Sicre CM, Baup F. Estimation of sunflower
yield using a simplified agrometeorological model
controlled by optical and SAR satellite data. IEEE J Sel
Top Appl Earth Observ Remote Sens. 2017;10(12):
5412-5422. doi:10.1109/JSTARS.2017.2737656.

Baup F, Ameline M, Fieuzal R, et al. Temporal evolu-
tion of corn mass production based on agro-
meteorological modelling controlled by satellite
optical and SAR images. Remote Sens. 2019;11(17):
1978. d0i:10.3390/rs11171978.

Premrov A, Wilson D, Saunders M, et al. CO2 fluxes
from drained and rewetted peatlands using a new
ECOSSE model water table simulation approach. Sci
Total Environ. 2021;754:142433. doi:10.1016/j.scito-
tenv.2020.142433.

Renou-Wilson F, Byrne K, Flynn R, et al. Peatland
properties influencing greenhouse gas emissions
and removal (AUGER Project). Dublin: University
College Dublin; 2021. p. 197.

Crezee B, Dargie GC, Ewango CEN, et al. Mapping
peat thickness and carbon stocks of the central
Congo Basin using field data. Nat. Geosci. 2022;
15(8):639-644. d0i:10.1038/541561-022-00966-7.
Minasny B, Berglund O, Connolly J, et al. Digital
mapping of peatlands — a critical review. Earth-Sci
Rev. 2019;196:102870. doi:10.1016/j.earscirev.2019.
05.014.

Edmondson JL, Davies ZG, McHugh N, et al. Organic
carbon hidden in urban ecosystems. Sci Rep. 2012;
2(1):963. doi:10.1038/srep00963.

Vasenev VI, Smagin AV, Ananyeva ND, et al. Urban
soil's functions: monitoring, assessment, and man-
agement. In: Rakshit A, Abhilash PC, Singh HB, edi-
tors. Adaptive soil management: from theory to
practices. Singapore: Springer; 2017. p. 359-409.
CIRCASA. Strategic Research Agenda on soil organic
carbon in agricultural soils. INRA; 2020. p. 30.
Baumdiiller H. The Little We Know: An Exploratory
Literature Review on the Utility of Mobile Phone-
Enabled Services for Smallholder Farmers. J Intl Dev.
2018;30(1):134-154. doi:10.1002/jid.3314.

Herrick JE, Beh A, Barrios E, et al. The Land-Potential
Knowledge System (LandPKS): mobile apps and col-
laboration for optimizing climate change invest-
ments. Ecosyst Health Sustain. 2016;2(3):e01209. doi:
10.1002/ehs2.1209.

Fritz S, See L, Carlson T, et al. Citizen science and
the united nations sustainable development goals.
Nat  Sustain. 2019;2(10):922-930. doi:10.1038/
s41893-019-0390-3.

Fountas S, Carli G, Serensen CG, et al. Farm manage-
ment information systems: Current situation and
future perspectives. Comput Electron Agric. 2015;
115:40-50. doi:10.1016/j.compag.2015.05.011.
Melzer M, Bellingrath-Kimura S, Gandorfer M.
Commercial farm management information systems
- a demand-oriented analysis of functions in prac-
tical use. Smart Agricultural Technol. 2023;4:100203.
doi:10.1016/j.atech.2023.100203.


https://doi.org/10.2307/2528823
https://doi.org/10.3390/rs10020153
https://doi.org/10.3390/rs10020153
https://doi.org/10.1038/s41467-023-43860-5
https://doi.org/10.1016/j.gfs.2015.07.001
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/S1537-5110(03)00038-2
https://doi.org/10.1016/S1537-5110(03)00038-2
https://doi.org/10.5194/hess-18-5219-2014
https://doi.org/10.5194/hess-18-5219-2014
https://doi.org/10.5194/soil-7-217-2021
https://doi.org/10.1016/j.geoderma.2019.113912
https://doi.org/10.1016/j.geoderma.2019.113912
https://doi.org/10.3390/rs8060522
https://doi.org/10.1093/treephys/25.7.859
https://doi.org/10.1016/j.rse.2011.05.017
https://doi.org/10.1038/s41598-024-51155-y
https://doi.org/10.1038/s41598-024-51155-y
https://doi.org/10.1016/j.rse.2013.06.002
https://doi.org/10.1109/JSTARS.2017.2737656
https://doi.org/10.3390/rs11171978
https://doi.org/10.1016/j.scitotenv.2020.142433
https://doi.org/10.1016/j.scitotenv.2020.142433
https://doi.org/10.1038/s41561-022-00966-7
https://doi.org/10.1016/j.earscirev.2019.05.014
https://doi.org/10.1016/j.earscirev.2019.05.014
https://doi.org/10.1038/srep00963
https://doi.org/10.1002/jid.3314
https://doi.org/10.1002/ehs2.1209
https://doi.org/10.1038/s41893-019-0390-3
https://doi.org/10.1038/s41893-019-0390-3
https://doi.org/10.1016/j.compag.2015.05.011
https://doi.org/10.1016/j.atech.2023.100203

217.

218.

219.

220.

221.

222.

223.

224.

Arroqui M, Mateos C, Machado C, et al. RESTful Web
Services improve the efficiency of data transfer of a
whole-farm simulator accessed by Android smart-
phones. Comput Electron Agric. 2012;87(0):14-18.
doi:10.1016/j.compag.2012.05.016.

de Gruijter JJ, McBratney AB, Minasny B, et al. Farm-
scale soil carbon auditing. Geoderma. 2016;265:120-
130. doi:10.1016/j.geoderma.2015.11.010.

Wadoux A-C, Heuvelink GBM. Uncertainty of spatial
averages and totals of natural resource maps.
Methods Ecol Evol. 2023;14(5):1320-1332. doi:10.
1111/2041-210X.14106.

Batjes NH. Options for harmonising soil data
obtained from different sources. Wageningen: ISRIC
- World Soil Information; 2023. p. 21.

Bispo A, Arrouays D, Saby N, et al. Proposal of meth-
odological development for the LUCAS programme in
accordance with national monitoring programmes.
Towards climate-smart sustainable management of
agricultural soils (EU H2020-SFS-2018-2020/H2020-SFS-
2019). Brussels: EJP Soil. 2021. p. 135.

van Leeuwen C, Mulder VL, Batjes NH, et al.
Statistical modelling of measurement error in wet
chemistry soil data. Eur J Soil Sci. 2022;73(1):13137.
doi:10.1111/ejss.13137.

Fernandez-Ugalde O, Scarpa S, Orgiazzi A, et al.
LUCAS soil il module - Presentation of dataset and
results. Luxembourg: Publications Office of the
European Union; 2022, p.128.

d’Andrimont R, Yordanov M, Martinez-Sanchez L,
et al. Harmonised LUCAS in-situ land cover and use
database for field surveys from 2006 to 2018 in the
European Union. Sci Data. 2020;7(1):352. doi:10.
1038/541597-020-00675-z.

225.

226.

227.

228.

229.

230.

231.

232.

233.

CARBON MANAGEMENT . 25

De Gruijter JJ, Brus DJ, Bierkens MFP, et al., editors.
Sampling for natural resource monitoring. Heidelberg:
Springer; 2006.

Brus J. Spatial sampling with R. New York: Chapman
and Hall R/C; 2022.

James G, Witten D, Hastie T, et al. An introduction
to statistical learning. New York: Springer New York;
2021.

Webster R, Oliver A. Geostatistics for environmental
scientists (2nd ed.). Chichester: Wiley; 2007.

Taylor JR. An introduction to error analysis: the
study of uncertainties in physical measurements
(2nd ed.). Mill Valley University Science Books; 1982.
Heuvelink GBM. Error Propagation in Environmental
Modelling with GIS. Boca Raton: CRC Press; 1998.
Anderegg WRL, Trugman AT, Badgley G, et al.
Climate-driven risks to the climate mitigation poten-
tial of forests. Science. 2020;368:1327. doi:10.1126/
science.aaz7005.

Soussana JF, Arias-Navarro C, Bispo A, et al
Strategic Research Agenda (SRA) on Soil Carbon.
European Union’s Horizon 2020 research and innov-
ation programme grant agreement No 774378 -
Coordination of International Research on Soil
Carbon Sequestration in Agriculture (CIRCASA);
2020. (CIRCASA Deliverable 3.1).

Bray AW, Kim JH, Schrumpf M, et al. The science base
of a strategic research agenda - Executive Summary .
European Union’s Horizon 2020 research and innov-
ation programme grant agreement No 774378 -
Coordination of International Research Cooperation on
soil CArbon Sequestration in Agriculture (CIRCASA);
2019. (CIRCASA Deliverable D1.3)


https://doi.org/10.1016/j.compag.2012.05.016
https://doi.org/10.1016/j.geoderma.2015.11.010
https://doi.org/10.1111/2041-210X.14106
https://doi.org/10.1111/2041-210X.14106
https://doi.org/10.1111/ejss.13137
https://doi.org/10.1038/s41597-020-00675-z
https://doi.org/10.1038/s41597-020-00675-z
https://doi.org/10.1126/science.aaz7005
https://doi.org/10.1126/science.aaz7005

	Towards a modular, multi-ecosystem monitoring, reporting and verification (MRV) framework for soil organic carbon stock change assessment
	Abstract
	Introduction
	Components for a modular MRV framework
	Inventory and classification of current MRV approaches
	Inventory
	National scale
	Subnational to project scale

	Reviewed guidelines and approved methodologies
	Classification characteristics
	Characterization of reviewed MRV systems and methodologies

	Towards an operational, integrative, and multi-ecosystem MRV approach for SOC stock changes
	General considerations
	Monitoring
	Reporting and verification

	Conclusions
	Acknowledgements
	Disclosure statement
	Funding
	Data availability statement
	References


