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The ability to predict the outcome of selection and mating decisions enables breeders to make strategically better selection decisions. 
To improve genetic progress, those individuals need to be selected whose offspring can be expected to show high genetic variance next 
to high breeding values. Previously published approaches enable to predict the variance of descendants of 2 future generations for up to 
4 founding haplotypes, or 2 outbred individuals, based on phased genotypes, allele effects, and recombination frequencies. The pur
pose of this study was to develop a general approach for the analytical calculation of the genetic variance in any future generation. The 
core development is an equation for the prediction of the variance of double haploid lines, under the assumption of no selection and 
negligible drift, stemming from an arbitrary number of founder haplotypes. This double haploid variance can be decomposed into gam
etic Mendelian sampling variances (MSVs) of ancestors of the double haploid lines allowing usage for non-double haploid genotypes 
that enables application in animal breeding programs as well as in plant breeding programs. Together with the breeding values of 
the founders, the gametic MSV may be used in new selection criteria. We present our idea of such a criterion that describes the genetic 
level of selected individuals in 4 generations. Since breeding programs do select, the assumption made for predicting variances is clearly 
violated, which decreases the accuracy of predicted gametic MSV caused by changes in allele frequency and linkage disequilibrium. 
Despite violating the assumption, we found high predictive correlations of our criterion to the true genetic level that was obtained by 
means of simulation for the “corn” and “cattle” genome models tested in this study (0.90 and 0.97). In practice, the genotype phases, 
genetic map, and allele effects all need to be estimated meaning inaccuracies in their estimation will lead to inaccurate variance predic
tion. Investigation of variance prediction accuracy when input parameters are estimated was not part of this study.
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Introduction
Traditionally, breeders select the best individuals as parents of 
the next generation, be it based on phenotypes or based on esti
mated breeding values (BVs). This method of truncation selection 
aims to maximize the genetic gain in the short term. If genetic gain 
is to be maximized in the mid or long term, the genetic diversity of 
selected individuals, as well as the compatibility of potential 
mates, should also be considered.

To maximize the response to selection in the long-term, optimum 
contribution selection (OCS) has been developed (Meuwissen 1997). 
When using OCS, the BV is no longer the sole criterion based on 
which selection decisions are made, because OCS also considers 
the relationships among selection candidates. Typically, OCS aims 
to reduce the rate of increase of average coancestry, measured as 
the increase in identity-by-descent relationships among all indivi
duals born per generation. This, in turn, aims to minimize the loss 
of diversity at loci relative to founders or some base generation 
(Woolliams et al. 2015; Meuwissen et al. 2020).

While OCS does limit the rate of inbreeding, it does not directly 
maximize genetic variance of a particular trait. If we consider the 
genetic variance of progeny of a mating as a selection criterion in 
addition to the parent average BV, the expected future genetic 

variance is explicitly considered for selection decisions. Under 

the infinitesimal model, the gametic Mendelian sampling vari

ance (MSV), which is needed to derive the progeny variance, fol

lows from the inbreeding level of individuals (Dempfle 1990). 

However, this is just an expectation and the actual MSVs differ be

yond the effect of homozygosity alone, due to linkage and a finite 

number of loci in the genome (Hill and Weir 2011). For illustration, 

correlations between the estimated gametic MSV of various traits 

and genomic inbreeding levels in dairy cattle have been reported 

to be indeed negative, but very weak, ranging from −0.03 to 

−0.23 (Segelke et al. 2014; Santos et al. 2019).
Several criteria have been developed in animal breeding research 

that aim to select matings or animals in such a manner that the 

fraction of their offspring showing a BV higher than a certain selec

tion threshold is maximized (Santos et al. 2019; Wellmann and 

Bennewitz 2019; Bijma et al. 2020). A similar criterion for the selec

tion of promising crosses known as the “usefulness criterion” has 

been proposed in plant breeding research by Schnell and Utz 

(1975). According to its original definition, the usefulness criterion 

describes the expected BV of the best inbred line that can be se
lected among a defined number of sister inbred lines obtained 
from a cross of inbred lines. All these criteria have in common 
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that they do not only consider the BV of individuals, or the average 
BV of parents, but also the expected distribution of BVs of progeny of 
a mating or a cross. In Niehoff et al. (2024), we recently proposed a 
new criterion (ExpBVSelGrOff) that aims to maximize the BVs of 
grandoffspring of a particular mating. For this criterion, not only 
the distribution of BVs of the offspring, as considered in all proposed 
criteria before, but also the distribution of BVs of the grandoffspring 
are considered. The key component that enabled this development 
was the prediction of the gametic MSV of selected offspring that we 
assumed have the same gametic MSV as random offspring. Our 
proof-of-concept study (Niehoff et al. 2024), which used simulations, 
showed that considering an additional future generation in the se
lection criterion results in higher genetic gain than the usefulness 
criterion (Schnell and Utz 1975) or Index5 (Bijma et al. 2020) without 
compromising diversity.

The distribution of BVs for polygenic traits of progeny of a mating 
is typically assumed to follow a normal distribution that can be 
described by a mean and a variance. The expected average BV of 
offspring is equal to the parent average BV. The variance in the off
spring generation can be obtained by simulating offspring in silico 
(Segelke et al. 2014; Mohammadi et al. 2015) or with analytical ap
proaches developed in plant breeding research (Lehermeier et al. 
2017; Osthushenrich et al. 2017; Allier, Moreau, et al. 2019; Wolfe 
et al. 2021) and in animal breeding research (Bonk et al. 2016; 
Santos et al. 2019; de Abreu Santos et al. 2020; Musa and Reinsch 
2023). Both in silico simulations and analytical approaches require 
the same information as input, namely phased genotype informa
tion of potential parents of a mating, marker effects, and recombin
ation frequencies between markers.

Generally, the focus of approaches in animal breeding is to predict 
the variance of BVs of gametes produced by an animal. The ap
proaches developed in plant breeding focus on predicting the vari
ance of lines produced from a cross of 2 fully inbred founder lines, 
either obtained after several rounds of selfing or by creating double 
haploids (DHs). A significant extension to calculate genetic variances 
for more complex crosses in which up to 4 different haplotypes, i.e. 4 
different fully inbred parents, may be involved, was proposed by 
Allier, Moreau, et al. (2019). In Niehoff et al. (2024), we showed how 
the variance of DH lines derived from 4 fully inbred founder lines 
can be used to derive the average gametic MSV of offspring of a mat
ing of 2 outbred individuals that enables planning 2 generations 
ahead in an animal breeding setting. We speculated that new selec
tion criteria can be devised that look even more generations ahead if 
there were methods to predict the gametic MSV of a further future 
generation of descendants. Thus far, no other approaches have 
been presented that enable planning more than 2 generations ahead, 
i.e. considering more than 4 founding haplotypes.

In this paper, we present a method to calculate the variance of DH 
lines derived from an arbitrary number of fully inbred founder lines 
analytically, building upon the approach by Allier, Moreau, et al. 
(2019), and expectations under the infinitesimal model. Equations 
to convert these DH variances into gametic MSV are also presented, 
and the equations are validated by comparison to variances of MSV 
computed from simulated descendants. These gametic MSVs enable 
further development of new criteria that look even more generations 
ahead. For livestock breeding, such a criterion could look like the cri
terion presented in Equation (1). This criterion aims to predict the ex
pected average genetic level, or BV when ignoring non-additive 
effects, of selected individuals in the F4 generation (Expected 
Breeding Value of Selected Great-Great-Grand-Offspring). These 
are great-great-grandoffspring to their founders that need to be se
lected in the current generation. This criterion can be understood 
as adding up the selection differential that is expected in future 

generations. In addition to the BVs of the founders, this criterion re
quires knowledge of the genetic variation within families in each fu
ture generation that is being considered. We introduce this criterion 
here to explain why we are interested in predicting genetic variation 
in future generations. The details of this criterion are discussed fur
ther in the Discussion section, as the main focus of this study is on de
veloping equations to predict future genetic variances.

ExpBVSelGrGrGrOff

=
BVAB + BVCD + BVEF + BVGH + BVIJ + BVKL + BVMN + BVOP

8
+

iF1
σF1 ABxCD + σF1 EFxGH + σF1 IJxKL + σF1 MNxOP

4

􏼐 􏼑
+

iF2
σF1 ABCDxEFGH + σF1 IJKLxMNOP

2

􏼐 􏼑
+

iF3σF1 ABCDEFGHxIJKLMNOP+

iF4

��������������������������������
2σ2

gametes F1 ABCDEFGHxIJKLMNOP

􏽱
(1) 

In practice, the accuracy of variances predicted with our presented 
method depends on the accuracy of estimated phase states, marker 
effects, and recombination frequencies. The prediction accuracy 
will differ between breeding programs, e.g. because of differences 
in sizes of their reference populations used for genomic prediction, 
which is why those effects were not included in this study.

Methods
In this section, we first review the quantitative genetic model that ex
plains how genetic variances are passed from one generation to the 
next (Review of variance transmission). Secondly, we review the predic
tion of DH variances as presented by Allier, Moreau, et al. (2019) as 
this is crucial for the developments presented in this manuscript 
(Review of Allier, Moreau, et al. (2019)). The third subsection starts by 
describing how the genetic variance in a future generation can be de
composed into gametic MSVs of their ancestors (Quantitative genetic 
motivation). This is followed by a detailed description of the key devel
opment of this manuscript, namely the prediction of variances 
among descendants of an arbitrary future generation by considering 
QTL effects and haplotypes of the founders (Connection between infini
tesimal model and haplotype-based approach). Then, we show how these 
variances can be converted to gametic MSV (Conversion to gametic 
MSV). We end by describing the simulation setup we used to validate 
our equations (Validation with simulation).

Review of variance transmission
This section reviews the quantitative genetic model that is com
monly used for prediction of variances of BVs of the next gener
ation. The genetic variance of the next generation of a 
population can be modeled as shown in Equation (2) that is based 
on equation 16.21b of Walsh and Lynch (2018) and extended to in
clude the covariance between Mendelian sampling terms passed 
on by the sire and the dam (COV(gamMSSirest

, gamMSDamst )).

σ2
At+1

=
σ2

ASirest

4
+
σ2

ADamst

4
+

COV(ASirest
, ADamst )

2
+ σ2

gamMSSirest

+ σ2
gamMSDamst

+ 2COV(gamMSSirest
, gamMSDamst ) (2) 

where σ2
ASirest 

and σ2
ADamst 

describe the genetic variances of the groups of 
sires and dams at time t, COV(ASirest

, ADamst ) describes the covariance 
of BVs of the mated sires and dams, σ2

gamMSSirest 
and σ2

gamMSDamst 
describe 

the gametic MSVs of the sires and dams at time t, and σ2
At+1 

is the gen
etic variance in the next generation. COV(gamMSSirest

, gamMSDamst ) is 
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the covariance of the gametic Mendelian sampling terms of the sire 
and the dam. It describes how well a gamete with high BV produced 
by the sire predicts the BV of the gamete produced by the dam. Since 
Mendelian sampling events are independent under natural condi
tions, this term is usually assumed to be null. One notable exception 
is the case of DH lines as explained further below. The sum of the 

terms 
σ2

ASirest
4 , 

σ2
ADamst

4 , and 
COV(ASirest

, ADamst )
2 describes the variance of parent 

average BVs. Under random mating, COV(ASirest
, ADamst ) is expected 

to be null as the BV of a sire has a correlation of 0 to the BV of the 
dam. Under assortative mating based on performance, i.e. better 
males are on average mated to better females, this covariance 
term is positive. Under disassortative mating, this covariance term 
is negative.

σ2
At+1

= σ2
AIndividualst

+ 2σ2
gamMSIndividualst

(3) 

In the special case that individuals are selfed like in some plant breed
ing scenarios, Equation (2) can be rewritten as shown in Equation (3). 
This is equivalent to the theoretical case of animals producing full-sib 

offspring with themselves. The intuitive reason for why σ2
AIndividualst 

does 

not need to be divided by anything is that the variance of parent 
averages is identical to the variance of BVs of individuals. With selfing, 
the sire and dam variances are identical and the correlation between 
sire and dam BV is 1. Together, this results in the covariance being 
identical to the variance of BV of the sire and dam.

σ2
At+1

= σ2
AIndividualst

+ 4σ2
gamMSIndividualst

(4) 

In the even more special case that DH progeny is generated from the 
individuals of the population, Equation (2) changes to Equation (4). 
The difference between offspring obtained from selfing to offspring 
obtained by inducing doubling of haploid genomes is that the 
Mendelian sampling events are independent when selfing whereas 
they are not when DH lines are produced. A DH is produced by doub
ling the set of chromosomes of a gamete, implying that the gametic 
Mendelian sampling deviation from the sire’s BV is the same as the 
deviation from the dam’s BV. The correlation between the gametic 
MS deviation of sire and dam is 1, and since the gametic MSV of sire 
and dam is identical, the covariance of the MS deviations 
(COV(gamMSSirest

, gamMSDamst )) is identical to the gametic MSV. 

This also shows that the additive genetic variance of DH lines pro
duced from a single F1 plant is 4 times the additive gametic MSV 
of that F1 plant. More directly, it can be shown that the variance 
among DHs is always 4 times as large as the variance among ga
metes that would be used to produce the DHs as follows: 

Var(BVDH) = Var(2BVgamete) = 22Var(BVgamete) = 4Var(BVgamete) (ploidy- 

level squared). A small intuitive example based on haplotypes and 
recombination for this phenomenon is provided in the Appendix.

Allier, Moreau, et al. (2019) presented an analytical approach to 
calculate the variance of DH lines derived from the cross of 4 fully 
inbred founder lines. The cross in question is shown in Fig. 1. 
Assuming the 4 fully inbred lines are unrelated, one can view a 
2-way F1 parent as shown in Fig. 1 as a non-inbred animal. 
Thus, the variance of DH lines derived from a 4-way cross can 
be decomposed into the gametic MSV of 4-way F1 parents and 
the variance of BVs of these 4-way F1 parents. Under the infinitesi
mal model, the gametic MSV of individuals (σ2

gamMSSirest 
and 

σ2
gamMSDamst 

in Equation (1)) may be predicted based on the indivi
dual’s inbreeding level as σ2

gamMSindividual
= 0.25∗(1 − Findividual)∗σ2

A, 
with σ2

A as the genetic variance in the random mating non-inbred 
base population (Dempfle 1990). Thus, we derive that the expected 

variance of BVs of 4-way F1 individuals is 0.5σ2
A (Equation (5)).

σ2
4−way F1 =

σ2
A first 2−way F1

4
+
σ2

Asecond 2−way F1

4
+ σ2

gamMSfirst 2−way F1
+ σ2

gamMSsecond 2−way F1

=
0
4

+
0
4

+
σ2

A

4
+
σ2

A

4
= 0.5σ2

A

(5) 

This variance, when combined with the gametic MSV of the 4-way 
F1 parents and considering that the variance of DH lines produced 
by a single individual is always 4 times larger than its gametic 
MSV, allows us to derive that the variance of BVs among DH lines 
produced from a 4-way cross of unrelated founders is expected to 
be 1.5 times as large as the additive genetic variance in the base 
population (Equation (6)).

σ2
4−way DH = σ2

4−way F1 + σ̅2
gamMS4−way F1

∗4

= 0.5σ2
A +

σ2
A

4
∗4

= 1.5σ2
A (6) 

Thus, the variance of 4-way F1 parents, who are identical to full- 
sib offspring in an animal breeding setting, together with the vari
ance of DH lines produced by the 4 inbred founders can be used to 
derive the average gametic MSV of a random 4-way F1 parent as 
shown by Niehoff et al. (2024) as (Equation (7)):

σ̅2
gamMS4−way F1

=
(σ2

4−way DH − σ2
4−way F1)

4
(7) 

Review of Allier, Moreau, et al. (2019)
This section reviews and summarizes the key development of Allier, 
Moreau, et al. (2019) that is relevant for this study. The focus is on the 
equations for calculating the variance of a DH family derived from 2 
and 4 fully inbred founder lines without any intermediate step of self
ing. The discussed equations are presented and shown in Table 1 of 
this study, and Supplementary File S1 of Allier, Moreau, et al. (2019). R 
code to calculate these variances is provided in Supplementary File 
S3 of the follow-up study by Allier, Lehermeier, et al. (2019). 
Allier, Moreau, et al. (2019) presented a method to calculate the 
genotypic covariance (Σ jl) in progeny between two loci j and l 
based on the disequilibrium parameter (D jl) in pairs of parental 

Fig. 1. Example for chromosome transmittance to DH lines as in the 
4-way cross considered by Allier, Moreau, et al. (2019). The figure is 
modified from Niehoff et al. (2024).
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lines and the frequency of recombination between the loci (c(1)
jl ) 

in a meiotic event (see Table 1 of Allier, Moreau, et al. 2019). 
The element c(1)

jl can be calculated as follows:

c(1)
jl =

1 − e−2d jl

2 

where d jl is the distance in Morgan units between the loci j and l. 

If both loci are not on the same chromosome, c(1)
jl is 0.5 because 

the two loci are not linked. For this conversion equation from 
Morgan units to recombination frequencies, Haldane’s mapping 
function is assumed here (Haldane 1919), but any other mapping 
function can be used too. If a matrix Σ is constructed with the di
mensions pxp with p QTL in the genome and every element of 
matrix Σ corresponding to Σ jl, the progeny variance can be calcu

lated as σ2
Progeny = β′ Σβ, where β is a p dimensional vector contain

ing QTL effects. The interpretation of matrix element Σ jl is that it 

describes the linkage disequilibrium (LD) between loci j and l in 
the progeny.

The calculation of matrix element Σ jl differs per type of cross 
considered. Here, the most relevant types to consider are DH 
lines produced by 2-way and a 4-way cross. For these types, Σ jl 

can be calculated according to Table 2 S1 in Supplementary 
Material S1 of Allier, Moreau, et al. (2019) and as shown in 
Table 1 here.

DAC
jl , DAD

jl , DBC
jl , DBD

jl , DAB
jl , and DCD

jl are the linkage disequilibria be
tween pairs of loci in the parental haplotypes. These are 0 in case at 
least one locus shows the same allele in both haplotypes, −0.25 in 
case the 2 haplotypes are in repulsion phase, and 0.25 in case the 
haplotypes are in coupling phase. Also, if the indicators j and l refer 
to the same locus and the 2 haplotypes carry different alleles at this 
locus, meaning they would produce a heterozygous F1 individual if 
crossed, then the disequilibrium parameter is 0.25. The values for 
Djl for all possible phase states for two loci are shown in Table 2.

Extension to arbitrary number of founder 
haplotypes
In the previous subsections, we described the general quantitative 
genetic model for variance transmission and the method of Allier, 
Moreau, et al. (2019) that enabled us to predict the variance of DH 
lines based on up to 4 founder haplotypes, recombination frequen
cies, and allele effects. This section describes the new development 
of this study that allows to calculate the variance among DH lines 
from any number of founding haplotypes. We start with describing 
the calculation from a quantitative genetic perspective using the in
finitesimal model based on inbreeding and coancestry to give better 
intuition for the exact calculation based on QTL effects, haplotypes, 
and recombination frequencies, which is presented at the end of 
Connection between infinitesimal model and haplotype-based approach.

Quantitative genetic motivation
To illustrate the general principle, suppose 16 unrelated haplotypes 
A–P are available as founders from which DH offspring are derived. 
A crossing plan for these founders and their offspring, 

grandoffspring, and so forth could look like the plan depicted in 
Table 3. The crossing plan design is comparable to a multiparent ad
vanced generation intercross population design, abbreviated 
‘MAGIC’, as depicted in Fig. 1 of Scott et al. (2020) to which we refer 
the interested reader for visualization.

The gametic MSV of each of the founders in Table 3 is 0 since they 
are all fully homozygous. Under the infinitesimal model, the gametic 
MSV of each of their descendants is assumed to be 0.25σ2

A, as they are 
all non-inbred given that the founders are all unrelated in 
this example. The only exception are the DH individuals in generation 
5, whose gametic MSV is 0 because DHs are completely homozygous.

As a general principle, the genetic variance in each of the 
groups in the crossing plan up to generation 4 is determined 
by two factors. First, it includes the variance of the parent aver
age BVs, which is calculated as the sum of the genetic variances 
of both parent groups divided by 4. Second, it also includes the 
gametic MSV of both parents, as expressed by Equation (2). 
The variances in the direct offspring groups of the founders, 
AxB, CxD, ExF, GxH, IxJ, KxL, MxN, and OxP, which plant bree
ders would call F1, or S0 (=0 rounds of selfing), is 0σ2

A. Each indi
vidual in generation 1 is expected to show a gametic variance of 
0.25σ2

A. As a consequence, the within group variance in gener
ation 2 is expected to be 0.5σ2

A. The variance of parent average 
BVs is 0.25σ2

A for generation 3. The variance in each group in gen
eration 3 is thus 0.75σ2

A. Following the same procedure, the gen
etic variance within each group in generation 4 is expected to be 
0.875σ2

A. The genetic variance of DH lines produced by doubling 
the chromosomes of gametes produced by the group in gener
ation 4 is 1.875σ2

A. This is because the individuals of generation 
4 are not mated to each other. This means that the variance of 
parent average BVs is the same as the variance of group 
“ABCDEFGHxIJKLMNOP”, and the DH MSV is always 4 times lar
ger than the gametic MSV (see Equation (4)). The variances for 
each group as well as their calculation are shown in Table 4. 
Following the presented principles, the calculation as shown 
in Table 4 can be extended to any number of generations. 
Table 4 also shows that the genetic variance of any group can 
be decomposed into gametic MSV of their ancestors.

Connection between infinitesimal model and 
haplotype-based approach
As shown in Table 1, the matrix elements Σ jl of Σ can be calculated 
with 4(1 − 2c(1)

jl )DAB
jl for the DH variance based on a 2-way cross. For 

brevity of the explanation here, we will write all crossover probabil
ities c(1)

jl in a matrix c and all linkage disequilibrium parameters be
tween 2 parents D jl in a matrix D. Expressing the DH variance as 

Table 1. Matrix element Σ jl for QTLs j and l for DH progeny, 
depending on the cross design.

Σ jl

2-way 4(1 − 2c(1)
jl )DAB

jl

4-way (1 − 2c(1)
jl )2(DAB

jl + DCD
jl ) + (1 − 2c(1)

jl )(DAC
jl + DAD

jl + DBC
jl + DBD

jl )

Table 2. Value of linkage disequilibrium parameter Djl for 
different phase states when comparing 2 haplotypes.

Type Phase(H1j − H1l / H2j − H2l ) Djl

Double heterozygous 1-1/0-0 0.25
1-0/0-1 −0.25

Single homozygous 0-1/0-0 0
1-0/0-0 0
0-1/1-1 0
1-0/1-1 0

Double homozygous 1-1/1-1 0
0-0/0-0 0
1-0/1-0 0
0-1/0-1 0

The genome in this example has only two loci. The linkage disequilibrium 
parameter D here refers to the linkage between loci j and l where j ≠ l.  
H1j is an indicator for the allele on haplotype 1 at locus j, and H1l is an indicator 
for the allele on haplotype 1 at locus l and so forth.
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σ2
2−way DH = β′[4(11′ − 2c)⊙D]β makes the equation easier to read. 

The term 11′ has dimensions pxp and is a matrix of ones, i.e. 
the outer product of a vector of ones. The “⊙” indicates the 
Hadamard product, i.e. element-wise matrix multiplication. To con
vert to gametic variance, division by 4 is required, so we can write 
σ2

2−way F1 gametes = β′[(11′ − 2c)⊙D]β. To give some interpretation, as
sume a trait is controlled by many loci that are all independent, 
i.e. unlinked. Then, the off-diagonal elements of c, so the recombin
ation frequencies between loci, are 0.5 and the diagonal ele
ments are 0. Consequently, the term (11′ − 2c)⊙D will result in 
a matrix of 0s, except for diagonal elements where values will 
be 0.25 in case haplotype A carries different alleles than 

haplotype B at the corresponding loci. The fraction of loci at 
which A and B are identical is the same as the homozygosity le
vel of offspring produced by crossing A with B. In addition to the 
assumption that the trait is controlled by many loci, let us as
sume, for simplicity, that the beneficial alleles at all loci have 
the same effect size. Note that this is not necessarily the same 
assumption as in infinitesimal models (Walsh and Lynch 2018) 
but very similar. This assumption means that every heterozy
gous locus will create the same amount of variance in the 
gametes produced by an individual. Since we assumed 
independent loci in this example, there is no covariance be
tween loci in the gametes. Therefore, the variances generated 

Table 3. Example crossing plan for haplotypes A–P.

Founder haplotypes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gen0 AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP

Gen1 AxB CxD ExF GxH IxJ KxL MxN OxP

Gen2 ABxCD EFxGH IJxKL MNxOP

Gen3 ABCDxEFGH IJKLxMNOP

Gen4 ABCDEFGHxIJKLMNOP

Gen5 DHs ABCDEFGHIJKLMNOP

Groups of individuals shown as “ABxCD”, for example, refer to individuals produced by the gametes of “AxB” and “CxD”, i.e. recombination only occurs between 
haplotypes within a parent and no recombination occurs between chromosomes from the mother (“AxB”) and the father (“CxD”). The individuals “DHs 
ABCDEFGHIJKLMNOP” are DH lines produced from gametes of individuals of “ABCDEFGHxIJKLMNOP.”

Table 4. Genetic variances and gametic MSVs for each of the descendant’s group types shown in Table 3.

Generation Groups Genetic variance Gametic MSV

Gen0 AA, BB, CC, DD, EE, FF, GG, HH,  
II, JJ, KK, LL, MM, NN, OO, PP  
(founding haplotypes)

0 0

Gen1 AxB, CxD, ExF, GxH,  
IxJ, KxL, MxN, OxP  
(F1s)

var(BVA)
4

+
var(BVB)

4
+ σ2

gamMSAxA
+ σ2

gamMSBxB  

0
4

+
0
4

+ 0 + 0 = 0 

1
4

Gen2 ABxCD, EFxGH, IJxKL, MNxOP  
(F1s)

var(BVAxB)
4

+
var(BVCxD)

4
+ σ2

gamMSAxB
+ σ2

gamMSCxD  

0
4

+
0
4

+
1
4

+
1
4

=
1
2

= 0.5 

1
4

Gen3 ABCDxEFGH, IJKLxMNOP  
(F1s)

var(BVABxCD)
4

+
var(BVEFxGH)

4
+ σ2

gamMSABxCD
+ σ2

gamMSEFxGH  

0.5
4

+
0.5
4

+
1
4

+
1
4

=
6
8

= 0.75 

1
4

Gen4 ABCDEFGHxIJKLMNOP  
(F1s)

var(BVABCDxEFGH)
4

+
var(BVIJKLxMNOP)

4
+ σ2

gamMSABCDxEFGH
+ σ2

gamMSIJKLxMNOP  

0.75
4

+
0.75

4
+

1
4

+
1
4

=
14
16

= 0.875 

1
4

Gen5 DHs ABCDEFGHIJKLMNOP  
(DHs)

var(BVABCDEFGHxIJKLMNOP)+ 4σ2
gamMSABCDEFGHxIJKLMNOP  

0.875 + 4
1
4

= 1.875

0,  
not relevant

The genetic variance is the variance of BVs among members of the same group. The gametic MSV is the average gametic MSV of individuals of the group (e.g. the 
average of individuals of the 4-way cross ABxCD). Units are genetic variance σ2

A. The individuals in generation 5 are DHs.
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by all heterozygous loci can directly be summed to get the gam
etic MSV. Assume that all QTLs are used to measure the average 
heterozygosity, or assume that the subset of (marker) loci used 
to measure the homozygosity level (homozygosity = 1 − hetero
zygosity) represents the homozygosity level at QTL reasonably 
well. Then, it becomes clear that an individual’s homozygosity 
level, or inbreeding level, is a perfect predictor for its gametic 
MSV. This is reflected in the expectation of the gametic MSV as 
σ2

gamMSindividual
= 0.25(1 − Findividual)σ2

A (Dempfle 1990) under the in
finitesimal model.

The inbreeding level of an individual resulting from the 
cross of A and B can be predicted from the coefficient of coan
cestry between A and B as FAxB = fAB (Falconer and Mackay 
1996, chapter 5). In the same way, the expected inbreeding co
efficient of an individual ABxCD can be derived from the coan
cestry of its founders as FABxCD = 1

4 ( fAC + fAD + fBC + fBD). That is, 
the inbreeding coefficient, and thus the gametic MSV, can 
be derived by consideration of the coancestries of the foun
ders. What is shown here for ABxCD individuals can be 
extended to the inbreeding coefficient calculation of any fu
ture individual.

The prediction of genetic variance of 4-way DHs expressed 
based on coancestries of their founders is shown in Equation (8).

σ2
DHABCD

= 4σ2
gamMSABxCD

+ σ2
parent averageABxCD

= 4∗0.25(1 − F̅ABxCD)σ2
A + 2∗0.25 1 −

1
2

(FAxB + FCxD)
􏼒 􏼓

σ2
A

= 4∗0.25 1 −
1
4

( fAC + fAD + fBC + fBD)
􏼒 􏼓

σ2
A

+ 2∗0.25 1 −
1
2

( fAB + fCD)
􏼒 􏼓

σ2
A (8) 

The genetic variance of DH families based on any number of foun
ders can be predicted based on the coancestry between founders. 
Here, we show equations for 8-way crosses and 16-way crosses for 
the prediction based on inbreeding levels (Equations (9) and (10)). 
We also show the same equations based on coancestry between 
parents as the predictor of their offspring homozygosity level 
(Equations (11) and (12)). These equations help to visualize the 
pattern by which equations evolve for higher-order crosses and 
establish a better connection to haplotype-based predictions 
that will be presented later. The equations show that the number 
of coancestries required to derive the inbreeding level of F1s is 
growing exponentially (4 for 4-way F1, 16 for 8-way F1, and 64 
for 16-way F1). Regardless of the number of coancestries, how
ever, the expectation of the gametic MSV for a given inbreeding le

vel is always the same (e.g. for F = 0, 0.25σ2
A). As shown with 

Equation (2) before, the variance among the parental average 
BVs of individuals in the offspring generation is, under random 
mating, half the genetic variance of the parental generation. 
This explains why the factor by which the gametic MSV is multi
plied decays by a half with each step to an older generation start
ing from the X-way F1 generation (so from 2 to 1 to 0.5, and, 
although not shown, then 0.25, 0.125, and so on) (e.g. see 
Equation (12)). This factor ensures that the variance is estimated 
on the right level as can be noticed by considering Table 4. 
Table 4 shows that the expected variance increases asymptotical
ly to 1 for F1s the more unrelated founders are involved in the 
cross (0, 0.5, 0.75, and 0.875 for F1s of 2-way, 4-way, 8-way, and 
16-way crosses, respectively). By extension, the expected variance 
among DH offspring increases asymptotically to 2 (1, 1.5, 1.75, and 

1.875 for DHs of 2-way, 4-way, 8-way, and 16-way crosses, respect
ively). Equations (8–12) match these expectations.

σ2
DHABCDEFGH

= 4σ2
gamMSABCDxEFGH

+ σ2
parent averageABCDxEFGH

= 4 ∗ 0.25(1 − F̅ABCDxEFGH)σ2
A

+ 2 ∗ 0.25 1 −
1
2

(F̅ABxCD + F̅EFxGH)
􏼒 􏼓

σ2
A

+ 1 ∗ 0.25 1 −
1
2

(FAxB + FCxD)
􏼒 􏼓

σ2
A (9) 

σ2
DHABCDEFGHIJKLMNOP

= 4∗0.25(1 − F̅ABCDEFGHxIJKLMNOP)σ2
A

+2∗0.25 1 −
1
2

(F̅ABCDxEFGH + F̅IJKLxMNOP)
􏼒 􏼓

σ2
A

+1∗0.25 1 −
1
4

(F̅ABxCD + F̅EFxGH + F̅IJxKL + F̅MNxOP)
􏼒 􏼓

σ2
A

+
1
2
∗0.25 1 −

1
8

(FAxB + FCxD + FExF + FGxH + FIxJ + FKxL +FMxN + FOxP)
􏼒 􏼓

σ2
A

(10) 

σ2
DHABCDEFGH

= 4σ2
gamMSABCDxEFGH

+ σ2
parent averageABCDxEFGH

= 4 ∗ 0.25 1 −
1
16

fAE + fAF + fAG + fAH + fBE + fBF + fBG + fBH+
fCE + fCF + fCG + fCH + fDE + fDF + fDG + fDH

􏼒 􏼓􏼒 􏼓

σ2
A

+ 2 ∗ 0.25 1 −
1
8

( fAC + fAD + fBC + fBD + fEG + fEH + fFG + fFH)
􏼒 􏼓

σ2
A

+ 1 ∗ 0.25 1 −
1
4

( fAB + fCD + fEF + fGH)
􏼒 􏼓

σ2
A

(11) 

σ2
DHABCDEFGHIJKLMNOP

= 4σ2
gamMSABCDEFGHxIJKLMNOP

+ σ2
parent averageABCDEFGHxIJKLMNOP

= 4∗0.25 1 −
1
64

fAI + fAJ + fAK + fAL + fAM + fAN + fAO + fAP+
fBI + fBJ + fBK + fBL + fBM + fBN + fBO + fBP+
fCI + fCJ + fCK + fCL + fCM + fCN + fCO + fCP+
fDI + fDJ + fDK + fDL + fDM + fDN + fDO + fDP+
fEI + fEJ + fEK + fEL + fEM + fEN + fEO + fEP+
fFI + fFJ + fFK + fFL + fFM + fFN + fFO + fFP+
fGI + fGJ + fGK + fGL + fGM + fGN + fGO + fGP+
fHI + fHJ + fHK + fHL + fHM + fHN + fHO + fHP

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

σ2
A

+ 2∗0.25 1 −
1
32

fAE + fAF + fAG + fAH + fBE + fBF + fBG + fBH+
fCE + fCF + fCG + fCH + fDE + fDF + fDG + fDH+
fIM + fIN + fIO + fIP + fJM + fJN + fJO + fJP+
fKM + fKN + fKO + fKP + fLM + fLN + fLO + fLP

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠
σ2

A

+ 1∗0.25 1 −
1
16

fAC + fAD + fBC + fBD + fEG + fEH + fFG + fFH+
fIK + fIL + fJK + fJL + fMO + fMP + fNO + fNP

􏼒 􏼓􏼒 􏼓

σ2
A

+
1
2
∗0.25 1 −

1
8

( fAB + fCD + fEF + fGH + fIJ + fKL + fMN + fOP)
􏼒 􏼓

σ2
A

(12) 

Until here, we assumed that all loci are independent so that we 
could pretend that (1 − 4av(diag(DAB))) = fAB, i.e. the coancestry is 
perfectly correlated to the average entry on the diagonal in the 
disequilibrium matrix. In reality, alleles are linked, which is ig
nored by inbreeding or coancestry-based predictions. Their poor 
predictive ability was reported in dairy cattle (Segelke et al. 2014; 
Santos et al. 2019). Thus, linkage disequilibrium, which causes co
variance between alleles in descendants, should not be ignored. 
To account for linkage, one needs to make the following modifica
tion to the coancestry-based equations above: swap the coances
try terms ((1 − 0.25f )σ2

A) with the respective disequilibrium 
indicators (D) multiplied with the allele effect of the paternal 
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haplotype (βpat) and the maternal haplotype (βmat), which for sim
plicity we assume to be identical here (βpat = βmat), multiplied with 
(11′ − 2c)m, where m is the number of meiosis, to account for link
age disequilibrium decay by recombination. In short, swap 
(1 − 0.25f )σ2

A with β′[(11′ − 2c)m ⊙ D]β.
The result of the modifications for an 8-way cross is shown in 

Equation (13).
Equation (13) can be simplified further to improve readability and 

to reduce the number of matrix multiplications which conse
quently reduces computation time. First, the allele effect vectors 

β can be removed so that (11′ − 2c)m⊙D calculations can be 
made and summed up. The sum, which is then the matrix Σ, 
can be multiplied with the QTL effect vector β so that 

σ2
DH Progeny = β′ Σβ. Second, all D matrices that are to be multiplied 

with the same linkage disequilibrium decay matrix , i.e. matrices 
with the same power of m, can be summed up. Lastly, the factors 

like 1
16, 

1
8, and 1

4, which express nothing other than that the var

iances are to be averaged, can be combined with the factors (4, 
2, and 1) in front of the parentheses that scale the average gametic 
MSVs to the right level. For the 8-way cross, their multiplications 

are 4
16, 

2
8, and 14, i.e. the results are all identical. These factor multi

plications are also all identical for 4-way, 16-way, or any other 
X-way cross. They only depend on the number of founding haplo
types. The general expression based on the number of haplotypes 

is thus 4
number of founder haplotypes

􏼐 􏼑2
. Altogether, for the prediction of 

the matrix element Σ jl for an 8-way cross, we arrive at Equation 

(14), and at Equation (15) for a 16-way cross.

Σ jl =

(1 − 2c(1)
jl )1 DAE

jl + DAF
jl + DAG

jl + DAH
jl + DBE

jl + DBF
jl + DBG

jl + DBH
jl +

DCE
jl + DCF

jl + DCG
jl + DCH

jl + DDE
jl + DDF

jl + DDG
jl + DDH

jl

􏼠 􏼡

+

(1 − 2c(1)
jl )2(DAC

jl + DAD
jl + DBC

jl + DBD
jl + DEG

jl + DEH
jl + DFG

jl + DFH
jl )+

(1 − 2c(1)
jl )3(DAB

jl + DCD
jl + DEF

jl + DGH
jl )

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∗
4
8

􏼒 􏼓2

(14) 

Σ jl =

(1 − 2c(1)
jl )1

DAI
jl + DAJ

jl + DAK
jl + DAL

jl + DAM
jl + DAN

jl + DAO
jl + DAP

jl +
DBI

jl + DBJ
jl + DBK

jl + DBL
jl + DBM

jl + DBN
jl + DBO

jl + DBP
jl +

DCI
jl + DCJ

jl + DCK
jl + DCL

jl + DCM
jl + DCN

jl + DCO
jl + DCP

jl +
DDI

jl + DDJ
jl + DDK

jl + DDL
jl + DDM

jl + DDN
jl + DDO

jl + DDP
jl +

DEI
jl + DEJ

jl + DEK
jl + DEL

jl + DEM
jl + DEN

jl + DEO
jl + DEP

jl +
DFI

jl + DFJ
jl + DFK

jl + DFL
jl + DFM

jl + DFN
jl + DFO

jl + DFP
jl +

DGI
jl + DGJ

jl + DGK
jl + DGL

jl + DGF
jl + DGN

jl + DGO
jl + DGP

jl +
DHI

jl + DHJ
jl + DHK

jl + DHL
jl + DHM

jl + DHN
jl + DHO

jl + DHP
jl

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

(1 − 2c(1)
jl )2

DAE
jl + DAF

jl + DAG
jl + DAH

jl + DBE
jl + DBF

jl + DBG
jl + DBH

jl +
DCE

jl + DCF
jl + DCG

jl + DCH
jl + DDE

jl + DDF
jl + DDG

jl + DDH
jl +

DIM
jl + DIN

jl + DIO
jl + DIP

jl + DJM
jl + DJN

jl + DJO
jl + DJP

jl +
DKM

jl + DKN
jl + DKO

jl + DKP
jl + DLM

jl + DLN
jl + DLO

jl + DLP
jl

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

+

(1 − 2c(1)
jl )3

DAC
jl + DAD

jl + DBC
jl + DBD

jl + DEG
jl + DEH

jl + DFG
jl + DFH

jl +
DIK

jl + DIL
jl + DJK

jl + DJL
jl + DMO

jl + DMP
jl + DNO

jl + DNP
jl

􏼠 􏼡

+

(1 − 2c(1)
jl )4(DAB

jl + DCD
jl + DEF

jl + DGH
jl + DIJ

jl + DKL
jl + DMN

jl + DOP
jl )

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∗
4
16

􏼒 􏼓2

(15) 

In general, the approach to calculate the variance among DH lines 
derived from any number of founding haplotypes can be calcu
lated as presented in Equation (16) below. In words, the number 
of founders allowed to be used in the equation is 1, 2, 4, 8, 16, 
32, 64, and so on. mik indicates how many meiotic events are in be
tween the generation of DH lines and the generation in which 
the allele at locus j derived from founder i and the allele at locus 
l derived from founder k could have been combined in the same 

individual. Note that the number of founders required as input 
for Equation 16 is out of the set of 2m but that does not mean 
that all founders actually have to be unique. For example, if 
the phased genotype of the same homozygous line is used at 
founder positions BB, CC, and DD (compare Table 3), then this 
is like backcrossing the offspring AxB back to BB (BB is identical 
to genotypes used at positions for CC and DD here). Also note 
that any degree of kinship between the founders is possible for 
use of the equation.

Σ jl =
4
N

􏼒 􏼓2􏽘N

i=1

􏽘N

k>i

(1 − 2c(1)
jl )mik Dik

jl (16) 

with {(i, k)|i, k ∈ {1, 2, 3, 4, . . .N}, k > i}, the number of founder hap
lotypes N as an element of 2m m ∈ Z+, and with m meiotic events 
between the generation in which haplotypes i and k could be 
combined in a genome and the generation of DHs.

Conversion to gametic MSV
Most users are likely not interested in the variance of DH lines ex
pected from a high order cross but rather in the expected gametic 
MSV of an individual in a future generation. To convert the 
variances expected among DH lines into the expected gametic 
MSV of a single individual, the same calculations as in Table 4
need to be done. For example, suppose the same crossing plan 
as in Table 3 shall be done and suppose the interest is in the aver
age expected gametic MSV of individuals ABCDEFGHxIJKLMNOP. 
Then, the variances of DH lines produced by every group of indi
viduals shown in Table 3 need to be calculated with the corre
sponding analytical equation. Based on the DH variances, the 
gametic MSVs can be worked out as shown in Table 5 for the 
case of 16 founding haplotypes. A numerical example is given 
in Supplementary Material 1.

Validation with simulation
Scenario without selection
To confirm that the equations accurately describe the intended 
property, we conducted a simulated experiment. We compared 
the outcomes based on simulated progeny with the prediction 
based on our developed equation for (1) the genetic variance 
among DH lines of a 16-way cross, (2) the gametic MSV of 

σ2
DHABCDEFGH

= 4∗
1

16

β′[(11′ − 2c)1⊙DAE]β + β′[(11′ − 2c)1⊙DAF]β + β′[(11′ − 2c)1⊙DAG]β + β′[(11′ − 2c)1⊙DAH]β+

β′[(11′ − 2c)1⊙DBE]β + β′[(11′ − 2c)1⊙DBF]β + β′[(11′ − 2c)1⊙DBG]β + β′[(11′ − 2c)1⊙DBH]β+

β′[(11′ − 2c)1⊙DCE]β + β′[(11′ − 2c)1⊙DCF]β + β′[(11′ − 2c)1⊙DCG]β + β′[(11′ − 2c)1⊙DCH]β+

β′[(11′ − 2c)1⊙DDE]β + β′[(11′ − 2c)1⊙DDF]β + β′[(11′ − 2c)1⊙DDG]β + β′[(11′ − 2c)1⊙DDH]β

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

+ 2∗
1
8

β′[(11′ − 2c)2⊙DAC]β + β′[(11′ − 2c)2⊙DAD]β + β′[(11′ − 2c)2⊙DBC]β + β′[(11′ − 2c)2⊙DBD]β+

β′[(11′ − 2c)2⊙DEG]β + β′[(11′ − 2c)2⊙DEH]β + β′[(11′ − 2c)2⊙DFG]β + β′[(11′ − 2c)2⊙DFH]β

􏼠 􏼡􏼠 􏼡

+ 1∗
1
4

(β′[(11′ − 2c)3⊙DAB]β + β′[(11′ − 2c)3⊙DCD]β + β′[(11′ − 2c)3⊙DEF]β + β′[(11′ − 2c)3⊙DGH]β)
􏼒 􏼓

(13)  
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16-way F1 individuals, (3) the gametic Mendelian sampling co
variance between two correlated traits in the gametes produced 
by 16-way F1 individuals, and (4) the correlation between two 
traits in the gametes produced by 16-way F1 individuals.

We simulated 100 16-way crosses using the same genetic 
linkage map and 57 real Iodent maize inbred lines as founder hap
lotypes as used by Allier, Moreau, et al. (2019) and provided in their 
Supplementary File S4. More information about the data set is not 
necessary for the purpose of the simulation in this study but the 
interested reader is referred to the paper of Allier, Moreau, et al. 
(2019) for a detailed description. This genome model is referred 
to as “corn” in our study.

We used the simulation software MoBPS version 1.11.40 of Pook 
et al. (2020). By default, MoBPS uses Haldane’s mapping function to 
convert genetic distances to recombination rates. We modeled 2 
arbitrary traits each controlled by 500 additive QTLs. QTL effects 
were drawn so that the correlation between the traits roughly 
matched 0.7. The genetic variance of trait 1 was arbitrarily chosen 
as 1, and the genetic variance of trait 2 was set to 100. For each of 
the 100 16-way crosses, 10,000 individuals were simulated for 
every group shown in Table 3. Mating between members of differ
ent groups was random. In addition, every individual only had 1 
offspring to reduce drift due to variation in parental contributions 
and thus to reduce deviations from the expected outcome without 
drift. For example, 10,000 individuals were simulated for groups 
AxB and CxD each. To form group (AxB)x(CxD), an individual of 
group AxB was mated with a random individual of group CxD to 
produce 1 offspring and these individuals were never used as par
ents again. The process was repeated for all remaining 9,999 indi
viduals of group (AxB)x(CxD).

Genetic covariances were calculated analytically by multiplying 
matrix element Σ jl with the respective allele effects of both traits in
stead of 2 times the effect of the same trait as one would do for gen
etic variances (COVProgeny(Trait1, Trait2) = β′Trait1 ΣβTrait2, with βTrait1 

and βTrait2 as vectors with allele substitution effects of trait 1 and 2). 
When using the analytical approach, the correlations were calcu
lated based on the derived variances and covariances of the traits: 
COR(Trait1, Trait2) = COV(Trait1, Trait2)��������������������

VAR(Trait1)VAR(Trait2)
√ .

Scenario with selection
The setup above aims to validate our algebraic approach with si
mulated data. From a practical perspective, the most interesting 
application of gametic MSV would likely be the inclusion in a se
lection criterion. The gametic MSVs calculated based on equa
tions developed in this study are an expectation for a random 
individual that has been produced from unselected ancestors by 
random mating. Here, “unselected” refers to focal individuals 
and all ancestors between the focal individuals and the founders, 
but not to the founders themselves as these may be selected. 
However, breeding programs do select every generation. Since se
lection can change the linkage disequilibrium and allele frequen
cies, gametic MSVs of individuals produced by selected parents 
may deviate from the prediction under the assumption of no se
lection, i.e. the assumption that allele frequencies do not change 
and that only recombination influences linkage disequilibrium.

To check the predictive ability of gametic MSV in case selection is 
applied in every generation, we conducted a second experiment simi
lar to the first one with the exception that 60,000 individuals were si
mulated per group and the best 3,000 of every group were selected 
(5% selected) for the first trait. The predictive ability may be lower com
pared to the 10,000-individual scenario simply because less individuals 
are selected. To account for potentially lower predictive ability due to a 
lower number of individuals, we simulated the same crossing scheme 
again without selection and only 3,000 individuals in every group. We 
only report the gametic MSV of this second experiment.

We hypothesized that the predictive ability will be higher the 
more QTLs are segregating independently because the allele fre
quencies would change less since a genome with more effectively 
independent QTL is closer to the assumption made under the infini
tesimal model. All QTLs on the same chromosome are linked to 
some extent, which implies that the number of QTL in a genome 
that is effectively independent is less than the actual number of 
QTL. If one imagined all QTL on a chromosome to be perfectly linked 
in a crude approximation, one can see each chromosome as a QTL. 
Thus, the corn genome would effectively only have 10 independent 
loci because of its 10 chromosomes. To investigate the influence of 
the deviation from the infinitesimal model, we repeated the same 

Table 5. Calculation of gametic MSV for a random individual of a group based on calculated DH variances.

Calculated DH variance Gametic MSV

Generation 0 0 0

Generation 1 σ2
2−way DH AB

σ2
gamMSAxB 

=
σ2

2−way DH AB

4

Generation 2 σ2
4−way DH ABCD σ2

gamMSABxCD 
=

(σ2
4−way DH ABCD − σ2

4−way F1 ABxCD)

4  

σ2
4−way F1 ABxCD = σ2

gamMSAxB
+ σ2

gamMSCxD

Generation 3 σ2
8−way DH ABCDEFGH σ2

gamMSABCDxEFGH 
=

(σ2
8−way DH ABCDEFGH − σ2

8−way F1 ABCDxEFGH)

4  

σ2
8−way F1 ABCDxEFGH =

σ2
4−way F1 ABxCD

4
+
σ2

4−way F1 EFxGH

4 
+ σ2

gamMSABxCD
+ σ2

gamMSEFxGH

Generation 4 σ2
16−way DH ABCDEFGHIJKLMNOP σ2

gamMSABCDEFGHxIJKLMNOP 
=

(σ2
16−way DH ABCDEFGHIJKLMNOP − σ2

16−way F1 ABCDEFGHxIJKLMNOP)

4  

σ2
16−way F1 ABCDEFGHxIJKLMNOP =

σ2
8−way F1 ABCDxEFGH

4
+
σ2

8−way F1 IJKLxMNOP

4 
+ σ2

gamMSABCDxEFGH
+ σ2

gamMSIJKLxMNOP

Only one group per generation is shown as an example.
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analysis with a genome that has 3 times the number of chromo
somes as corn. We call this the “cattle” scenario hereafter as cattle 
have 30 chromosome pairs if including sex chromosomes. This arti
ficial cattle genome was created by taking the genome of corn and 
tripling it, i.e. all SNPs on chromosome 1 have the same genetic 
map position, allele frequency, and linkage disequilibrium as those 
on chromosomes 11 and 21. For the first 10 chromosomes of cattle 
individuals, chromosomes 1–10 of the 57 corn individuals were 
used, i.e. the cattle and corn individuals are identical in their first 
10 chromosomes. For chromosomes 11–30, the respective relevant 
chromosome (linkage group) was sampled from the 57 corn indivi
duals randomly without replacement. We decided to use this 
reshuffling strategy to avoid creating additional artificial between- 
chromosome linkage disequilibrium of loci that are actually just 
copies of a single locus in the corn genome model. The allele substi
tution effects were multiplied by 

�����
1/3

􏽰
so that the gametic MSVs ob

tained with the cattle genome model roughly match the level of the 
corn genome. This was done for display purposes.

To understand the differences between the corn and cattle scenario, 
we did some simple analysis of (1) the change of frequency of the bene
ficial allele, (2) the average homozygosity level, and (3) the change in 
within-chromosome linkage disequilibrium. For this analysis, only 
QTLs that were segregating among the 16 founders of each cross were 
included and results averaged over all 100 16-way crosses.

The change in allele frequency is reported as the average difference 
between the frequency of the beneficial allele in the last generation 
(RANDOM selection scenario), or the selected individuals in the last 
generation (SELECTED scenario), to the frequency in the founders 

(AFfocal individuals − AF founder). The reported homozygosity level is the 
average percentage of QTLs that are homozygous.

The linkage disequilibrium between two loci was calculated ac
cording to Falconer and Mackay (1996) as D = fABfab − fAbfaB, with 
fAB (fab) as the frequency of haplotypes with two beneficial (dele
terious) alleles, and fAb and faB as the frequencies of haplotypes 
with the beneficial and deleterious alleles in repulsion phase. D 
has a positive (negative) sign when more (less) haplotypes are in 
coupling phase than expected under linkage equilibrium. 
Positive disequilibrium causes a higher genetic variance than ex
pected under linkage equilibrium (Walsh and Lynch 2018). Our 
interest for analyzing the LD was to see if selection has a notice
able effect on LD which in turn would influence the gametic 
MSV of selected individuals. LD between loci located on different 
chromosomes does not impact the gametic MSV of an individual 
as the alleles will be unlinked in the gametes. Only within- 
chromosome LD cannot be entirely broken down by meiosis. 
Thus, we only analyzed the within-chromosome LD. We report 
the difference in average LD between individuals of the last gener
ation of the RANDOM selection scenario and unselected indivi
duals in the last generation of the SELECTED scenario 
(D̅last generation SELECTED − D̅last generation RANDOM).

Results
Scenario without selection
The predictions based on analytical equations matched the 
simulation-based predictions very well with correlations of all 

a b

c d

Fig. 2. Comparison between analytically predicted (derivation) and empirical (in silico) properties of descendant individuals of 100 16-way crosses in 
which 10,000 individuals were simulated at every crossing step. Shown are a) the variances of BVs of trait 1 for each of the 16-way DH descendant groups; 
b) the average gametic MSV of trait 1 of 16-way F1 descendants; c) the average gametic Mendelian sampling covariance of trait 1 and trait 2 of 16-way F1 
descendants; and d) the correlation of BVs for trait 1 and trait 2 in gametes produced by a 16-way random F1 descendant. Correlations between predicted 
and empirical properties are indicated within each plot. The red dashed lines have an intercept of 0 and a slope of 1 to aid visualization.
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investigated variables above 0.98 (Fig. 2). Note that not only all 
correlations are high but also the range of values of the in silico 
predictions and analytical predictions match very well. In some 
plots of Fig. 2, more than 50% of the points appear to be below 
the indicated ideal regression lines, meaning that the algebraic 
method predicts slightly higher values than expected from the 
simulation-based approach. This discrepancy is small with the 
simulation-based predictions being on average 0.46%, 0.95%, 

1.83%, and 0.35% (
av(VDHanalytical

) − av(VDHsimulated
)

av(VDHanalytical
)

∗100% ) lower 

than the analytical predictions for the DH variance, the 16-way 
F1 gametic MSV, the gametic MS covariance, and the gametic 
MS correlation (plot A to plot D in Fig. 2), respectively. We hy
pothesize that this small discrepancy is the result of noise of the 
stochastic process of simulation. Thus, we conclude that the ana
lytical approach not only has a high predictive power but accur
ately describes the property it was designed to measure.

Scenario with selection
The predictive correlation for the gametic MSV of selected 16-way 
F1 individuals produced from selected 8-way F1 individuals, 
which are themselves produced from selected 4-way F1 indivi
duals, had a value of 0.511 and 0.705 for the corn and cattle gen
ome, respectively. This was considerably lower than in the case 
in which no selection was applied (0.989 and 0.985) (see Fig. 3). 
Furthermore, the discrepancy between the analytical prediction 

and the observed gametic MSV of individuals produced from se
lected ancestors was substantially higher: 27% for corn and 21% 
for cattle, compared to just 1% in the scenario without selection.

The distribution of points in the cloud of the 3,000-individual 
setup for corn (plot B in Fig. 3) is very similar to the distribution 
in the 10,000-individual setup (plot B in Fig. 2) because the simu
lated crossing scheme was the same. The slightly lower predictive 
correlation in the 3,000-individual scenario compared to the 
10,000-individual setup may be attributed to a slightly higher sam
pling error due to the smaller group sizes but is not appreciable.

The predictive correlation for the gametic MSV of cattle was 
much better than the one for corn in case individuals were selected 
(compare plot A with plot C in Fig. 3). The change in allele frequency 
and the homozygosity levels were not significantly different be
tween the corn and cattle scenario when no selection was applied 
(Welch 2-sample t-test, function “t.test()” in R). However, in the 
SELECTED scenario, the allele frequencies changed much more 
for both genomes leading to higher homozygosity levels, as shown 
in Table 6. Relative to the RANDOM scenario, the individuals of 
the SELECTED scenario also showed more negative linkage disequi
librium between beneficial loci. Overall, the changes induced by se
lection seem to affect the corn genome stronger than the cattle 
genome with P-values of the t-test being much lower than 0.001.

We were interested to what extend the lower prediction accuracy 
for the gametic MSV of selected 16-way F1 individuals would lead to 
different selection decisions. For this comparison, we used data 
from the scenario with selection. The gametic MSV of 16-way F1 

a b

c d

Fig. 3. Comparison between analytically predicted (derivation) gametic MSV, which does not consider selection, and observed gametic MSV (in silico) of 
16-way F1 individuals for 100 16-way crosses when selection is applied in every group a, c) and without selection b, d). Solid black lines indicate estimated 
regression lines. Blue arrows highlight the difference between the average analytical and empirical prediction. The difference in percentage is indicated 
in blue. Correlations between predicted and empirical properties are indicated within each plot. The red dashed lines have an intercept of 0 and a slope of 
1 to aid visualization.
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individuals and the gametic MSV of all their ancestors were pre
dicted with the presented analytical approach (“Derivation” in 
Table 7). These variances were used as input to calculate the 
ExpBVSelGrGrGrOff criterion, and the result was compared to the 
average genetic level of selected individuals in the F4 that were pro
duced by mating selected “F1 ABCDEFGHxIJKLMNOP” at random in 
the simulation. The Pearson correlation coefficient and Spearman’s 
rank correlation coefficient between the observed genetic level and 
the level predicted by the ExpBVSelGrGrGrOff criterion as well as the 
parent average BV are shown in Table 7.

Despite the intermediate accuracy (0.511 for corn, 0.705 for 
cattle) for the prediction of gametic MSV of selected 16-way F1 in
dividuals with the presented analytical approach, the prediction 
accuracy for the genetic level (Pearson correlation) and the rank
ing (Spearman correlation) was still high (>0.86). This means that 
some sets of 16-founder combinations will be selected that would 
not be selected if selection was accounted for in the variance pre
diction. However, the difference in selection decisions in likely to 
be relatively small. Using gametic MSV predicted under the 
assumption of no selection for the ExpBVSelGrGrGrOff criterion re
sulted in a small overestimation of genetic gain (Supplementary 
Material 3), which is due to gametic MSV of selected individuals 
being smaller than that of unselected ones (Fig. 3). The parent 
average BV appears to be an intermediate (corn) to good (cattle) 
predictor of the genetic level in the F4 generation. For breeding 
programs, this means that e.g. preselection decisions can 
be made based on estimated BVs while only using the 
ExpBVSelGrGrGrOff criterion for final decisions. This would reduce 
the complexity by only evaluating a limited set of founders, while 
the preselection step is not expected to cause the final selection 
decisions to be very different. Visualization of this small experi
ment can be found in Supplementary Material 3.

Discussion
Approaches for predicting genetic variance of descendants (Bonk 
et al. 2016; Lehermeier et al. 2017; Osthushenrich et al. 2017; Allier, 
Moreau, et al. 2019; Wolfe et al. 2021) or gametes (Santos et al. 2019; 
Musa and Reinsch 2023) based on expected recombination fre
quencies and haplotype information of parents have been pub
lished in recent years. All previous approaches are limited in 
that they can only consider 2 or at most 4 haplotypes. This limita
tion has been lifted with the approach presented here that allows 
to consider any number of founder haplotypes. Note that al
though the number of haplotypes required as input in Equation 
(16) is a power of 2, in principle, any number of haplotypes can 
be evaluated. If less lines shall be used than required, for inbred 
lines, the actual haplotypes may be used in positions for founders 
“AA” and “BB” as the outcome AxB is identical to the parent. For 
non-fully inbred individuals, the paternal haplotype may be 

used in positions for founders “AA” and “BB” and the maternal 
one in positions for “CC” and “DD” for example.

We compared results of the analytical derivation with simulated 
individuals and found very high correlations (all above 0.98, see 
Fig. 2). The correlations are not 1 because of Monte Carlo errors, 
or in genetic terms, because of genetic drift in the simulation. 
Drift occurs in populations that are not infinitely large. Allier, 
Moreau, et al. (2019) made a similar comparison for variances of 
4-way crosses (see their Fig. 3) and reported higher correlations. 
This is likely because they simulated 50,000 progenies instead of 
10,000 as we did, and because they considered fewer generations 
than we did. Both are expected to result in less drift. Thus, we do 
not deem our lower predictive correlations a reason for concern. 
This stochasticity is also the reason for the small apparent overesti
mation with the analytical method. We do not believe that overesti
mation is an actual effect of the proposed equations but rather 
caused by loss of variance due to drift in the simulated case. We 
chose a smaller number of individuals than Allier, Moreau, et al. 
(2019) for computational reasons. We included examples for the 
prediction of covariances and correlations between traits to illus
trate that the developed equations do not only work for variances. 
Use cases may be scenarios in which breeders would like to change 
the correlation in the population toward a more favorable direction 
as discussed in literature (Abed and Belzile 2019; Neyhart et al. 2019; 
Wartha and Lorenz 2024).

Our approach may be understood as an extension of the equa
tion presented by Allier, Moreau, et al. (2019) for calculating DH var
iances. In real-life breeding applications, breeders may be reluctant 
to create DH families based on crosses of higher orders than 4 be
cause every higher order requires 1 more generation of crossing 
without selection. This increases the generation interval considered 
in the breeder’s equation and thus decreases the genetic gain per 
unit time. That is why we do not expect large interest in the predic
tion of the DH variance itself but rather in the gametic MSV that can 
be calculated based on the DH variance. The creation of DHs is im
possible in most livestock species, but we consider the DH variance 

Table 6. Average allele frequency change and homozygosity level for the tested scenarios as well as the difference in mean disequilibrium 
between beneficial alleles between RANDOM and selection scenarios.

Allele frequency change 
(in percentage points)

Homozygosity level (%) Difference in disequilibrium

RANDOM SELECTED RANDOM SELECTED

Corn 0.006 5.2 68.1 71.0 −0.00027
Cattle −0.003 3.1 67.8 69.7 −0.00014
Difference between corn and cattle n.s. * n.s. * *

Significance levels are indicated with “n.s.” for non-significant (P > 0.05) and “*” for significant with P-values lower than 0.001.

Table 7. Pearson’s correlation coefficient and Spearman’s rank 
correlation coefficient between different predictors and the 
observed genetic level in 16-way F1 individuals when the 5% best 
are selected every generation.

Observed genetic level

Pearson 
correlation

Spearman 
correlation

Corn Derivation 0.899 0.865
Parent average BV 0.693 0.634

Cattle Derivation 0.974 0.966
Parent average BV 0.858 0.826
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just as a theoretical concept needed as a stepping stone to derive 
gametic MSV. The gametic MSV is a parameter that can be consid
ered directly in selection in animal breeding. A few studies proposed 
to consider the gametic MSV of selection candidates (Santos et al. 
2019; Wellmann and Bennewitz 2019; Bijma et al. 2020). Recently, 
we extended this idea by also considering the expected gametic 
MSV of offspring (Niehoff et al. 2024) to maximize genetic gain in 
the grandoffspring generation. This extends the planning horizon 
by 1 additional generation. Being able to calculate the gametic 
MSV of descendants in even more distant future generations en
ables to extend the planning horizon even further, which might 
bring benefits for breeding programs. We presented our idea of 
such a criterion for livestock breeding in Equation (1).

The equation for the ExpBVSelGrGrGrOff criterion is conceptually 
very similar to the one we presented in Niehoff et al. (2024) with the 
exception that this equation is simplified by being completely free 
of parameters describing the unknown mating partner from the 
population for individuals in the last generation. These parameters 
would be needed for animal breeding considerations because the 
“F1 ABCDEFGHxIJKLMNOP” individuals will be mated to selected ani
mals of the population which in turn would require including terms 
that describe the variance of BVs of the population. Essentially, we 
avoid this by not assuming anything about the variance of gametic 
BVs produced by individuals of the population that are mated to the 
“F1 ABCDEFGHxIJKLMNOP” individuals. Instead, we simply take twice 
the genetic variance of gametes produced by the 16-way F1 
(2σ2

gametes F1 ABCDEFGHxIJKLMNOP) which approximates the variance of ga
metes produced by the individuals of the population that would be 
mated to individuals “F1 ABCDEFGHxIJKLMNOP” by assuming their 
gametic variance would be equally as high. This is in line with the ap
proximation for the gametic MSV for the random mating partner of 
the population considered in the Index5 by Bijma et al. (2020). Bijma 
et al. (2020) used a first-order Taylor series to derive that the gametic 
MSV should be multiplied by 2. The result is however the same in that 
they multiply the variance of gametes by 2 to approximate the off
spring variance. As a consequence, the criterion as presented here 
strictly describes the BV of selected F4 individuals that have the 
same selected F3 individuals as sires and dams. A worked out numer
ical example for the calculation of the ExpBVSelGrGrGrOff criterion 
can be found in Supplementary Material 1.

This ExpBVSelGrGrGrOff criterion may be used to select and pos
ition individuals in such a way in a mating plan that the BV in the 
great-great-grandoffspring generation is maximized. Please note 
that this is our idea of what a selection criterion looking more genera
tions ahead may look like but other approaches could be possible too. 
Also, note that the proposed equation assumes that the distribution 
of BVs follows a normal distribution. Under directional selection 
and when the gametic MSV is approximately at least a quarter of 
the genetic variance in the previous generation, as in typical livestock 
breeding programs, the distribution of BVs will indeed be very close to 
normal. However, if this assumption is violated, e.g. because the gam
etic MSV of individuals is reduced a lot due to selfing, the BV distribu
tion may deviate from normality in which case equations presented 
by Smith (2021) could be used to better model skewness and kurtosis.

Directional selection ultimately aims at increasing the fre
quency of beneficial alleles. In addition, selection also changes 
the linkage disequilibrium even in the infinitesimal model in 
which changes in allele frequency due to selection are assumed 
negligibly small (Walsh and Lynch 2018, chapters 16 and 24). 
However, for the analytical equations, it is assumed that no selec
tion is happening, i.e. allele frequencies do not change and 
changes in linkage disequilibrium are only due to recombination 
but not due to selection. We included scenarios with selection in 

this study to investigate how much inaccuracy is caused by the 
obvious violation of the no-selection assumption in our gametic 
MSV prediction. We focus only on the gametic MSV as this is the 
most relevant metric and we believe we have sufficiently proven 
that we can predict all other properties well in the RANDOM scen
ario. The predictive ability for gametic MSV in the selected scen
ario was much lower than in the RANDOM scenarios, which 
emphasizes the clear deviation of real genomes with genes linked 
on chromosomes from the assumptions of the infinitesimal mod
el. In addition, the prediction ability for gametic MSV in the selec
tion scenario was much lower for corn (0.511) than for cattle 
(0.705), highlighting that prediction power is species dependent. 
Similarly, the gametic MSV for corn (27%) was more reduced 
due to selection than the one for cattle (21%). That the genome 
length, and thus the number of crossovers, has an effect on the re
duction of the genetic variance of a population under directional 
selection was shown by Zhang and Hill (2005).

The simulation of the corn genome showed larger changes in 
allele frequency as well as more negative linkage disequilibrium 
than the cattle genome (Table 6). Thus, we conclude that the pre
dictive ability of the gametic MSV with our derivation is higher for 
species with more chromosomes, or better, more effectively inde
pendent loci, since the assumptions of the infinitesimal model are 
likely met better. In practical applications, we would also expect 
that the predictive ability decreases more with higher selection in
tensities and the further ahead the generation for which variances 
are predicted. The higher predictive ability for larger genomes 
(cattle scenario) might also be counteracted by the lower accuracy 
of predicting SNP effects with genomic prediction models as e.g. 
Daetwyler’s formula (Daetwyler et al. 2010) suggests lower predic
tion accuracy for species with larger genomes.

Note that what we call the “cattle” genome is just similar to cattle 
with regard to the number of chromosomes but not regarding 
chromosome length. Based on the genetic map published by 
Melzer et al. (2023), the average Holstein chromosome is about 
0.83 Morgan long whereas the average corn chromosome, and 
thus also the average chromosome in our cattle genome scenario, 
is about 1.9 Morgan. We used three times the corn genome as a 
practical means of increasing the number of effectively independ
ent loci 3-fold with the same trait architecture as in corn to better 
draw conclusions. Results for an actual cattle situation may deviate.

We have used the term “effectively independent” QTL in this 
study without much explanation of its definition so far. Our inspir
ation to consider the number of QTLs that are effectively inde
pendent as a theoretical concept rather than an actual number 
that can be measured stems from the publications of Zhong and 
Jannink (2007) and Wright (1968). In chapter 15, Wright (1968) in
troduces the concept of “independent loci” as the number of un
linked QTL of equal and completely additive effect that would 
produce the same additive genetic variance in F2 as observed in ac
tual F2 individuals obtained from selfing F1 individuals of a cross 
between two homozygous lines. This definition is in line with our 
use of the term “effectively independent QTL” in this study.

Since variances are different in case individuals are selected, one 
might think that we should aim to incorporate the effects of selec
tion in the analytical equations. Although it is a good idea, it is un
fortunately challenging for two reasons. First, we would need to be 
able to predict the allele frequency change in expected selected des
cendant individuals. Second, and this is likely the more challenging 
issue, the alleles in selected individuals are not independent from 
each other even when accounting for linkage and meiosis. This is 
because in a selected individual, the presence of a beneficial allele 
at a locus makes the presence of another beneficial allele at the 
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same or a different locus less likely, even if the two QTLs are on dif
ferent chromosomes. Mathematically speaking, selection induces a 
negative covariance between QTLs (Bulmer 1971). The reader inter
ested in incorporating the effect of selection is referred to chapters 5 
and 8 of Walsh and Lynch (2018) as a starting point.

A straightforward approach to considering selection would be to 
stochastically simulate the mating scheme as done in this study. 
The disadvantage of stochastic simulation is that it takes consider
ably more time than our calculations. For comparison, evaluating 
one 16-way cross took a couple of seconds whereas the simulation 
approach with MoBPS took some minutes. Since the genetic level 
after 4 generations of selection could be predicted with high accur
acy, despite not modeling the effect of selection (see Table 7), a po
tential hybrid approach could be employed. This approach would 
involve evaluating all mating plans analytically and then re
evaluating only the e.g. top 5% by means of simulations.

It may also be that the imprecision of QTL effect estimation 
methods renders all efforts to model allele frequency and linkage 
disequilibrium change meaningless. Even the prediction of the 
next-generation genetic variance, which cannot be influenced by 
selection, may be unsatisfactorily inaccurate in some real breed
ing programs (Rembe et al. 2022; Danguy des Déserts et al. 2023). 
Further studies would be needed for evaluation.

Conclusion
We developed analytical equations that enable to predict the gen
etic variance based on any number of founding haplotypes. This 
variance may be decomposed into gametic MSVs of ancestors 
which may then be used in a selection criterion. The comparison 
of the algebraic prediction obtained with our method with results 
from simulation validated that our equation is estimating var
iances properly. The prediction accuracy for variances of selected 
individuals was much lower. The prediction accuracy of the gen
etic level of individuals in 5 generations was only mildly influ
enced by the inaccurate variance prediction. Given the faster 
prediction with the analytical approach compared to simulation, 
the inaccuracy may be acceptable. Further testing is needed to 
evaluate the effect if input parameters are estimated.

Data availability
The MoBPS simulation and R functions to calculate variances are 
provided in Supplementary Material 2 of this paper. The genotypes 
and genetic map used as input are available in Supplementary File 
S4 of Allier, Moreau, et al. (2019). An option to test the functionality 
without the inputs from Allier, Moreau, et al. (2019) is provided in 
the comments in R script. The MoBPS version 1.11.40 that was 
used for this study can be downloaded from Torsten Pook’s 
GitHub repository (https://github.com/tpook92/MoBPS).

Supplemental material available at G3 online.
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Appendix
Example for 4 times higher DH MSV than gametic 
MSV
This example will show the calculation of the gametic MSV and 
the variance of DH progeny developed from a single F1 individ
ual. Suppose only 2 QTLs are affecting a trait. The beneficial al
leles in this example will be indicated by a capital letter (A, B), 
and unfavorable alleles will be indicated with a lowercase letter 
(a, b). Suppose the A allele has an additive effect of 10 units and 
the B allele of 1 unit. The unfavorable alleles have 0 effect. 
Suppose an individual is heterozygous at both of these loci. 
Further, suppose the beneficial alleles are linked in coupling 

phase, i.e. are on the same chromosome. Assume the genetic dis
tance between the A and B loci is 0.26 Morgan. The expected re

combination frequency can be calculated based on Haldane’s 

mapping function (Haldane 1919) with rf = 0.5∗(1 − e−2∗M) with 

M as the genetic distance in units Morgan. According to the gen

etic distance, we expect a recombination frequency of 20%, 

meaning the haplotypes as observed in the individual will be 

broken in 20 out of 100 meiotic events. The expected variance 

of BVs among gametes produced by this individual is 28.25 

whereas the expected variance of BVs among DH lines produced 

from this individual is 113, so 4 times larger. The calculations are 

shown in Tables A1 and A2.

Editor: D.-J. de Koning

Table A2. Calculation of DH MSV of the example considering allele substitution effects and recombination.

DH genotypes Expected frequency DHs DH breeding value (BV) Frequency × (BV − average BV)2

AABB 0.4 22 48.1
AAbb 0.1 20 8.1
aaBB 0.1 2 8.1
aabb 0.4 0 48.1

Average BV: 11 Sum (variance of BV): 113

Table A1. Calculation of gametic MSV of the example considering allele substitution effects and recombination.

Gamete genotypes Expected frequency gametes Gametic breeding value (BV) Frequency × (BV − average BV)2

AB 0.4 11 12.1
Ab 0.1 10 2.025
aB 0.1 1 2.025
ab 0.4 0 12.1

Average BV: 5.5 Sum (variance of BV): 28.25
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