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Gut microbiota wellbeing index predicts
overall health in a cohort of 1000 infants

Brandon Hickman 1 , Anne Salonen 1, Alise J. Ponsero 1, Roosa Jokela 1,
Kaija-Leena Kolho 1,2, Willem M. de Vos 1,3 & Katri Korpela1

The human gutmicrobiota is central in regulating all facets of host physiology,
and in early life it is thought to influence the host’s immune system and
metabolism, affecting long-term health. However, longitudinally monitored
cohorts with parallel analysis of faecal samples and health data are scarce. In
our observational study we describe the gut microbiota development in the
first 2 years of life and create a gut microbiota wellbeing index based on the
microbiota development and health data in a cohort of nearly 1000 infants
using clustering and trajectory modelling. We show that infants’ gut micro-
biota development is highly predictable, following one of five trajectories,
dependent on infant exposures, and predictive of later health outcomes. We
characterise the natural healthy gutmicrobiota trajectory and several different
dysbiotic trajectories associated with different health outcomes. Bifido-
bacterium and Bacteroides appear as early keystone organisms, directing
microbiota development and consistently predicting positive health out-
comes. A microbiota wellbeing index, based on the healthy development tra-
jectory, is predictive of general health over thefirst 5 years. The results indicate
that gut microbiota succession is part of infant physiological development,
predictable, and malleable. This information can be utilised to improve the
predictions of individual health risks.

The human gutmicrobiota plays an essential role in health, and in early
life the gut microbiota is thought to influence the programming of the
host’s immune system,metabolism, and even nervous system1–4. Initial
colonization of the human gut by bacteria occurs at birth by maternal
gut microbes5–7 and further develops through ecological succession in
the first years of life8,9. It’s been shown that successional stages in gut
microbiota appear at specific timewindows in infant development in a
strikingly similar manner throughout the world, suggesting that
humans may have adapted to relying on these age-dependent micro-
bial signals as a guide to physiological maturation8,10. Indeed, several
studies have shown that early life gut microbiota composition is pre-
dictive of later immune health2,11–13 and adiposity14–16, and studies in
animal models have shown these effects to be causal17–19.

Early life gut microbiota composition and development is influ-
enced by many factors, notably birth mode, diet, and antibiotic
use8,20–23. Many infants are subjected to microbiota-disrupting treat-
ments or develop chronic diseases in early life and hence the gut
microbiota development in such infantsmaynot represent theoptimal
healthy pattern24. Furthermore, many studies that addressed the
longitudinal microbiota development suffered from limited temporal
resolution or did not follow in parallel the child’s health2,20,25 Conse-
quently, the natural, undisturbed trajectory of microbiota develop-
ment has not been thoroughly described20,25. It is not known if a single
healthy development pattern can be identified, or whether different
developmental patterns can lead to the same health outcomes. In
addition, the relative contributions of initial gut microbiota
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colonisation (i.e., priority effects), postnatal exposures, and stochas-
ticity, which in gut microbiota studies is often assumed to be strong,
on the individual microbiota development have not been established.

Specific microbial taxa have been linked with various health out-
comes in infants26,27. However, it is commonly postulated that the
impact of gut microbiota on host health is not dependent on an indi-
vidual taxon but on the overall community structure28. While often
used, the term dysbiosis has not been defined in infants due to lack of
data to support the long-term health associations of specific commu-
nity types. We hypothesized that gut microbiota succession is part of
an infant’s physiological development, linked with the maturation of
the immune system, closely associatedwith nutrition,metabolism, and
growth, and may thus serve as an indicator of overall health and
wellbeing in infants. Altered microbiota maturity indices in infancy
have been associated to adverse health outcomes29,30, but without
reference to a normal healthy development, they are difficult to
interpret. By utilising the Helmi cohort31, a large longitudinal birth
cohort of 984 infants monitored for associated health outcomes until
5 years of age, and 6203 faecal samples collected within the first two
years of life, we describe a trajectory of undisturbed natural gut
microbiota development in infants and create an index of gut micro-
biota wellbeing as an indicator of healthy infant development, thus
defining “eubiosis” and “dysbiosis” in a large cohort.

Results
Impact of exposures andpriority effect on infant gutmicrobiota
Utilising the 16S rRNA gene amplicon sequences of 984 infants (50.7%
male; 49.3% female), 768 mothers, and 515 fathers, comprising 7211
faecal samples, in unsupervised principal coordinates analysis using
log-Pearson distance (Fig. 1a), we observed a clear age gradient in the
gut microbiota composition, with the infant gut microbiota gradually
approaching, but not reaching, the adult-like composition over the
first two years of life (age p =0.001, R2 =0.18; 104weeks vs adult
p =0.001, R2 =0.21). The infant gut microbiota composition varied
greatly between individuals in the first 6months (26weeks) but con-
verged thereafter (Fig. 1a–c). Birth mode was associated with the
development (Fig. 1b, c). In the vaginally born infants not exposed to
intrapartum antibiotics (VD), we observed an increase in principal
component (PC) 2 scores in the first 26weeks, and an increase in
PC1 scores from26 to 104weeks (Fig. 1b, c). C-section birth (CS), and to
a lesser extent, intrapartum antibiotic exposure during vaginal birth
(V-ABX), altered this pattern, as these infants had consistently high
PC2 scores already at 3weeks (CS compared to VD, p <0.001 at
3–78weeks; p =0.003 at 104weeks), but rather showed a constant
increase in PC1 scores already during the early weeks (PC 1 scores CS
compared to VD, p <0.01).

To identify factors (Supplementary Data 1) influencing the gut
microbiota, we analysed the associations of background variables with
the ordination (envfit) and performed permutational multivariate
analysis of variance (adonis2) (Fig. 1d). The major determinant of PC1
scores was age (R2 = 0.178 in adonis2). In addition, solid food con-
sumption (R2 =0.02), use of antibiotics (R2 =0.0008), time spent with
non-parental carer (R2 = 0.005), and use of gut-targeting medications
(laxative/antiflatulence/antidiarrheal/constipation; R2 =0.004 each)
were significantly associated with PC1, after adjusting for age. Breast-
feeding (R2 =0.004) and probiotic consumption had the opposite
association, but the latter was not significant in a multivariate model
(p = 0.99). The major driver of PC2 scores was birth mode (R2 =0.02)
and having siblings (R2 =0.007).

To assess the predictability of microbiota development, we built
multivariate regressionmodels for the PC scores by age and quantified
the variance explained by each factor at each time point. The most
important determinant of gutmicrobiota composition was birthmode
in the first 26weeks, defecation rate throughout the first year, and diet
and family composition from 1 to 2 years (52–104weeks) (Fig. 2a).

Maternal characteristics had amodest and consistent impact at all time
points, while maternal microbiota composition (mother’s PC scores)
became influential at 26weeks (1.22% of variation explained, p = 0.017)
increasing with time (5.12% at 104weeks, p <0.0001) (Fig. 2a).

We added the infants’ previous time points’ microbiota compo-
sition (PC scores) into the models, discovering that it was by far the
most influential factor determining the current composition, explain-
ing 59% of the variation in the 6weeks’ samples (Fig. 2b, Supplemen-
tary Fig. 1a, p < 0.001). With the previous composition included, the
impact of birth mode decreased or disappeared, demonstrating that
the effect of birth mode on gut microbiota is due to its effects on the
initial colonization. The impact of the initial compositionwas tested by
replacing the previous time points’ PC scores with the 3weeks’ PC
scores (Fig. 2c, Supplementary Fig. 1b). The effect of the initial com-
position was strong for the first 26weeks (over 10%), and still sig-
nificant (1.7%) at 52weeks (p < 0.001), highlighting the long-term
importance of initial inoculation (Fig. 2b, c, Supplementary Fig. 1a, b).

The predictability of gut microbiota development was tested
using model-based simulation in infants with full time series and
complete background information (N = 98). Based on the background
information (Fig. 2b) and the microbiota composition at 3weeks, we
used parameter estimates from the model that included the previous
time points’microbiota composition to simulate the PC scores of each
infant over time. The simulated microbiota development followed
strikingly close to the observed patterns, achieving a correlation of
0.84, showing that the early life microbiota development is highly
predictable with moderate stochasticity.

The impact of exposures was further assessed at each time point
by projecting them onto the age-specific ordination using envfit. High
maternal BMI, long duration of ruptured membranes, high gestational
age, and formula feeding in parallel to high defecation rate had a
similar butweaker impact on the gutmicrobiota asCS andV-ABX in the
first 26weeks (Supplementary Fig. 2). Maternal and infant probiotic
use prior to sample collection had an impact like that of breastfeeding,
while high appetite, siblings, and pacifier use were associated with
formula-fed-like microbiota composition at 9months (36weeks) and
beyond (Supplementary Fig. 2). Some associations may have been
driven partly by confounders. For example, defecation rate, indicative
of transit time, was strongly associated with breastfeeding—breast-
feeding correlated with high defecation rate at 6 (p =0.012) and 12
(p = 0.017) weeks but had the opposite association at 36 (p =0.035), 78
(p = 0.007), and 104 (p = 0.006) weeks. Infants with a high appetite
were more likely fed formula (p < 0.05) at 78weeks (18months). The
PC scoreswere correlatedwith the individualmicrobial taxa to identify
indicator organisms of overall microbial composition. These were
Bifidobacterium at 3–26weeks, Bacillus at 39weeks, Collinsella at
12months (52weeks), Enterococcus at 78weeks, and Christensenella at
104weeks (Supplementary Fig. 2).

We then looked further into the taxonomic associations of the
most important exposures. The abundant microbial families could be
divided into those that naturally decline with age (Bifidobactericeae,
Bacteroidaceae, Enterobactericeae), peak at 26–52weeks (Veillonella-
ceae), or increase with age (Lachnospiraceae, Ruminococcaceae)
(Fig. 2d). These patterns were affected by the infant’s exposures. CS
birth was strongly associated (p < 0.001) with delayed colonization by
the genera Bacteroides, Parabacteroides, Bifidobacterium, and Col-
linsella (Fig. 2d, Supplementary Data 2). V-ABX had a CS-like impact
mainly on the Gram-positive organisms (Fig. 2d). Breastfeeding was
associated with increased relative abundance of Lactobacillaceae at 3
and 26–52weeks (p <0.001), Bacteroidaceae at 6weeks (p < 0.001),
and Bifidobacteriaceae at 36–52weeks (p <0.01), and a consistent
decrease in Lachnospiraceae in the first two years of life (p <0.001).
Exclusive formula feeding was associated with advanced microbiota
maturation indicated by faster Enterobacteriaceae decline, earlier
Veillonellaceae peak and earlier increase in Lachnospiraceae (Fig. 2d,
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Supplementary Data 3). In the first weeks of life, having siblings was
associated with increased relative abundance of Bifidobacteriaceae
(p < 0.0001) and Lactobacillaceae (p =0.007, Fig. 2d). The sibling
effect on Bifidobacteriaceae was evident already at 3weeks in the
vaginally born (p < 0.0001), but not in the CS born (p =0.736, Sup-
plementary Data 4), suggesting that the effect is mediated bymaternal
gut microbiota. Indeed, we found that multiparous mothers had sig-
nificantly higher relative faecal abundance of Bifidobacterium com-
pared to primiparousmothers (p <0.05). After 26weeks, siblings had a
more widespread impact, being associated with increased relative
abundance of Ruminococcaceae and decreased Lachnospiraceae

(Fig. 2d). In addition, green stool colour was associated with reduced
relative abundance of Bifidobacterium at 6 and 13weeks (p = 0.007).

The most important microbial taxa affecting gut microbiota
development at each time point were identified using multivariate
analysis of variance with the previous time points’ taxonomic com-
position as the explanatory variables. Bifidobacterium and Bacteroides
were the most influential taxa throughout the first 2 years, having an
especially strong influence in the first months, while Veillonella and
Collinsella became dominant influencers at 52–78weeks (Supple-
mentary Fig. 3). In the first 26weeks, the relative abundances of Bifi-
dobacteriaceae and Bacteroidaceae at a given time point were
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Fig. 1 | Infant gut microbiota in 984 infants ranging from 3weeks to 2 years.
a Principal coordinates (PC) analysis on Pearson correlation distances of log-
transformed relative abundances of microbial genera. Colour shows the infant age
from 3 to 104weeks. Parent microbiota is represented as black. b PC Component
2 score against age and birth mode. Group median values are represented by the

large circles. c PC Component 1 score against age and birth mode. Comparisons of
birthmodes (C-section and Vaginal ABX to vaginally born infants) are represented
with P-values are provided are colour-coded by comparison at the bottom (b) / left
(c) of the panel based on a two-sided T-test. d Significant associations between the
PC ordination and factors influencing gut microbiota according to envfit.
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negatively correlatedwith the next time point’s relative abundances of
Clostridiaceae, Enterobactericeae, andRuminococcaceae, andpositively
with members of Bacilli, Actinobacteria and Bacteroidia (Supplemen-
tary Fig. 4).

Microbiota community types in infants
To identify the main microbiota community types in the infants, we
clustered the infant samples at the genus level using K-means clus-
tering and log-pearson distance, identifying four community types
(Fig. 3a). We tested additional distance metrics alongside the log-
pearson derived community types: Bray-Curtis, Jaccard andAitchinson
(Supplementary Fig. 5a–c). The same community types are replicated
irrespective of the distance metric and see an overall similarity
between the metrics. Community types 1 and 2 (C1 and C2) char-
acterized the first 26weeks’ microbiota, C3 was common at
39–52weeks and C4 thereafter. C1 was dominated by Bifidobacterium
(39.2% relative abundance) and Bacteroides (12.8%), together with
other members of Actinobacteria and Bacteroidia covering over 50%
of the relative abundance on average (Fig. 1b). Community type 2 (C2)

was nearly devoid of bifidobacteria (4.8%), having a high relative
abundance ofClostridiaceae (13.4%), and Enterobacteriaceae (25.7%). In
community type 3 (C3), Bifidobacteriaceae (27.3%), Lachnospiraceae
(18.5%), and Veillonellaceae (20.1%) were the dominant families, and
community type 4 (C4) was dominated by Lachnospiraceae (30.0%)
and Ruminococcaceae (30.0%) (Supplementary Data 5).

Microbial richness varied significantly between community types,
being highest in C4 and lowest in C2 (Fig. 3c), and generally showing an
increasing association with infant age. The relative abundance of
potential pathobionts was the most abundant in C2 (Fig. 3d). Stool
colour was significantly different between the different community
types (p <0.0001, c2 test, Supplementary Fig. 6), with C1 and C2 being
more likely to have yellow andgreen colour stoolwhileC3 andC4were
observed mostly in brown stool, representing the change in stool
composition when the amount of solid foods increases in infants’ diet
after 6months. In the early months (C1 and C2) green stool was more
likely to occur in C2 (p < 0.0001).

To explain the infants’ community type, we used recursive parti-
tioning. A model with 4 variables explained 56% of the variation in

Fig. 2 | Impact of exposures and priority effects. a Variance in principal com-
ponent (PC) scores partitioned to different types of early exposures at each time
point according to multivariate regression. b Variance in PC scores attributable to
early exposures (Other variables) and the previous time points’ PC scores.
c Variance in PC scores attributable to early exposures (Other variables) and the
first time point’s PC scores. d Associations between abundant microbial families,

birth mode, breastfeeding, and siblings. Comparisons of Birthmode (C-section and
Vaginal ABX to Vaginal), Diet (Breastmilk and Mixed to Formula) and Siblings (No
Siblings to Siblings) are represented with P-values denoted by colour-coded
asterisks at the bottom of the panel based on generalised linear models:
***p <0.001; **p <0.01; *p <0.05. The data are presented as mean values +/− SEM.
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community types (Fig. 4a). Age was the most important explanatory
variable. The early communities, C1 and C2, were dependent on birth
mode, siblings, and bifidobacteria-containing probiotics (ever taken
prior to the sample), C1 being typical in the first 6months of life in the
vaginally born infants that had not been exposed to intrapartum
antibiotics. Before the age of 6months, CS-born infants were typically
in C2, but by 6months those that had siblings hadoften transitioned to
C1. The V-ABX infants’ samples were also classified into C2 before the
age of 6months, unless they had received bifidobacteria-containing
probioticsor had siblings,which facilitated their transition toC1. At the
age of 9months,most infants were inC3. At 12months, having siblings
promoted early transition to C4. After 12months, most infants were in
C4 (Fig. 4a).

We tested the associations between community types at each
time point and health outcomes at 2 and 5 years and discovered that

C2 was associated with increased risk of undesirable health outcomes,
especially allergic diseases (Fig. 4b, Supplementary Fig. 6, Supple-
mentary Data 6). Children in C3 before the age of 6months had an
increased risk of allergic diseases and height-for-age Z-score < −1 sd at
5 years. Early transition to C4 (12months) was associated with height-
for-age Z-score < −1 sd at 2 years, but at 2 years, C4 was negatively
associated with concurrent asthma diagnosis. At 12months, C1 was
associated with having had gastrointestinal infections.

Developmental trajectories
As the microbiota development was found to follow a consistent and
predictable pattern in the individual infants, we utilized group-based
trajectory modelling of the microbiota cluster scores to identify dif-
ferent patterns of microbiota development. Five distinct develop-
mental trajectories were identified, with differences that mostly

−
1.

5

−
1.

0

−
0.

5

0.
0

0.
5

1.
0

−2

−1

0

1

2

Component 1

C
om

po
ne

nt
 2

0.00

0.25

0.50

0.75

1.00

1 2 3 4
Community type

R
el

at
iv

e 
ab

un
da

nc
e 

(%
)

Akkermansia
Klebsiella
Escherichia.Shigella
Enterobacter
Veillonella
Megasphaera
Dialister
Ruminococcus
Gemmiger
Faecalibacterium
Roseburia
Lachnospiracea.incertae.sedis
Lachnospira
Fusicatenibacter
Enterocloster
Eisenbergiella
Coprococcus
Blautia
Anaerostipes
Agathobacter
Sarcina
Streptococcus
Pediococcus
Prevotella
Parabacteroides
Bacteroides
Collinsella
Bifidobacterium

***

***

***

0

100

200

300

400

1 2 3 4
Community type

M
ic

ro
bi

al
 R

ic
hn

es
s

***

*

***

0.00

0.25

0.50

0.75

1.00

1 2 3 4
Community type

R
el

at
iv

e 
ab

un
da

nc
e 

of
 p

at
ho

bi
on

ts

Community
type

1
2
3
4

ba

dc

Fig. 3 | Microbiota community types. a Principal coordinates (PC) analysis on
Pearson correlation distances of log-transformed relative abundances of microbial
genera. Circle colour represents community type: C1: 2033 (green), C2: 1016 (blue),
C3: 1100 (orange), and C4: 1932 (red). Histograms showdistribution by community
type for corresponding PC. b Average genus-level microbiota composition by
community type (“C”) in infants. Unallocated percentages are due to additional
genera not shown. c Microbial richness (number of species). Significance of the
difference to C1 is indicated by the asterisks:***p <0.001; **p <0.01; *p <0.05. All p-

values < 2.26e-16. d Relative abundance of pathobionts by community type. Sig-
nificanceof the difference to C1 is indicated by the asterisks: ***p <0.001; **p <0.01;
*p <0.05 (p < 2.26e-16 (C1-C2), p =0.023(C1-C3), p < 2.2e-16 (C1-C4)). Box plots
show the median as centre line and interquantile range, and whiskers show the
minimum andmaximum quantile range Comparisions for (c, d) were done using a
two-sided Wilcox rank sum test, and no adjustments were made for multiple
testing.
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manifested over the first 6months. Trajectory 1 (T1) was the most
commonone (N = 388, 47%), characterized by stable C1membership in
the first 6months, transition to C3 by 9months, and to C4 by
12–18months (Fig. 5a). These infants had a high initial relative abun-
dance of Bifidobacterium, which declined gradually, being replaced
initially by Veillonella and then by Faecalibacterium and members of
Lachnospiraceae (Supplementary Fig. 8a). Infants in trajectory 2 (T2,
N = 95, 11%)were initially in C1, butmoved toC2 before transitioning to
C3 (Fig. 5b), showing a rapid decline in Bifidobacterium and a transient
increase in Clostridium and Klebsiella (Fig. 5b, Supplementary Fig. 8b).
Infants inT3 (N = 78, 9%) began inC1 but oscillated repeatedly between
C1 and C2 in the first 6months (Fig. 5c, Supplementary Fig. 8c). The
reverse pattern of T3 was represented by T4 (N = 151, 18%), where
infants that started in C2 oscillated between C1and C2 in the first
6months, showing a peak of Bifidobacterium at 6–9months (Fig. 5d,
Supplementary Fig. 8d). Infants in T5 (N = 116, 14%)were consistently in
C2 throughout the first 6months with a high relative abundance of
Clostridium and Klebsiella (Fig. 5e, Supplementary Fig. 8e). The
intraindividual similarity over time for the 5 trajectories (Supplemen-
tary Fig. 9) shows that microbiota development in general was the
most rapid at 6–9months, with infants in T3 showing the highest
volatility at 3–12weeks, and those in T2 at 9months. Infants in T1 had
generally the most stable microbiota compositions.

We compared the trajectories to our earlier data on average infant
gut microbiota compositions around the world at class/phylum level,

collected from 30 studies and 5732 infants in the first two years of life8.
T1 resembled most closely the global normal development pattern,
while T2 and T3 resembled the average compromised pattern (Fig. 5f).
These results indicate that the trajectories that we identified here in a
Finnish cohort can be recapitulated, at least partly, in other cohorts.

Associations between background factors and trajectory mem-
bership were assessed using the χ2 test (Fig. 5g). Trajectories 1–3 were
associated with vaginal delivery, while T4 and T5 were associated with
CS birth and antibiotic prophylaxis during vaginal birth. In contrast to
the other trajectories, T1 was associatedwith having siblings, living in a
single-family house, and no formula feeding in the first 12months. The
transition to C2 exhibited by infants in T2may have been promoted by
formula feeding or lack of siblings, and potentially reflected in symp-
toms, as these infants were more likely than others to have received
probiotics. The only identifiable reasons for the fluctuations between
C1 and C2 in T3 was the lack of siblings in T3 and the possibly lower
socioeconomic status indicated by housing type. Perhaps counter-
intuitively, infants in T3 were less likely than others to have received
antibiotics in the first 3months. The spontaneous microbiota correc-
tion in T4 may have been driven by breastfeeding, or other factors
related to higher socioeconomic status.

The trajectories were tested for associations with infant health
and wellbeing (Supplementary Data 7, FDR adusted p-values Supple-
mentary Data 8) over the follow-up from birth to 2 (N = 984) and
5 years (N = 496) of age (Fig. 5h), and fever and several infection types
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Fig. 4 | Community type determinants and health associations. a Partitioning
tree of the determinants of microbiota community types. P-values from χ2 test for
the split and percentages (shown in brackets) of infants following the rule are
shown. b Transitions between community types over time and the associations

with health outcomes by 5 years (p <0.05) at different ages using a negative gen-
eralized linear model (Supplementary Fig. 5, Supplementary Data 6). Lines repre-
senting < 5 infants are omitted. Adjustments are made for multiple comparisions.
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which were recorded at 0–3, 0–6, 6–12 and 12–24months. After
adjusting for parental allergies and education level, maternal BMI,
paternal smoking, maternal smoking prior to pregnancy, gestational
diabetes, pregnancy weight gain, infant sex, pets, siblings, birthmode
and the sequencing run ID used at each time point, T1 was negatively
associated with the following: reduced risk of reported allergy symp-
toms in thefirst 2 years, upper respiratory infections in thefirst 2 years,
fever reported in 0–6months, doctor-diagnosed allergic rhinitis at
5 years, ISO-BMI Z-scores32 >1 standard deviation (>+1 SD) at 5 years,
and height-for-age Z-scores less than −1 standard deviation (<−1 SD) at
2 and 5 years. T2 was associated with an increased risk of atopy at
2 years, and parent-reported allergy symptoms during the first 2 years
(p < 0.05, p < 0.01, and p <0.05 respectively). T3 was associated with a
decrease rick of parent reported allergy symptoms at 2 year
(p < 0.001). T4 andT5were both associatedwith height-for-age < −1 SD
at 2 years, and upper respiratory infections and fever between
0–6months (p <0.01; p <0.05; p < 0.001). However, possibly due to
the microbiota correction in T4, these infants did not have the
increased risk for altered growth or diagnosed allergic rhinitis at
5 years that were observed in T5 (p < 0.05). T5 was additionally asso-
ciated with increased rick of being diagnosed with atopy at 5 year
(p < 0.05). Trajectory membership was more strongly associated with

health outcomes than community type membership at any given time
point (Supplementary Data 9), indicating that longitudinal analysis of
development is more informative than single time points.

As an alternative way to represent microbiota development, we
constructed a microbiota maturity index based on age-associated
microbes. We found only minimal associations between the maturity
index and health outcomes at different ages, mostly regarding growth
(Supplementary Fig. 10a). We then compared the index to the trajec-
tories,which didnot greatly differ (Supplementary Fig. 10b), indicating
that the maturity index was an insufficient representation of micro-
biota development. In the total data, we identified a set of bacterial
genera associated with age (Supplementary Fig. 10c–g). Overall, the
taxa displayed similar patterns across the trajectories, being broadly
divided into early (members of Actinobacteria, Bacteroidia, Enter-
obacteria, Negativicutes, Bacilli) and late infancy (mainly Clostridia)
groups. However, certain key groups such as Bifidobacterium and
Bacteroides showed different temporal patterns in the different tra-
jectories (Supplementary Fig. 10c–g). Species level community type
and developmental trajectories were tested in addition to the genus
level. The PC space and community type are highly similar to genus
level (Supplementary Fig. 11a). Using the same criteria for trajectory
creation we show that the background factor-trajectory associations

Fig. 5 | Microbiota development trajectories, determinants, and associations
with health outcomes. Transitions between microbiota community types
(C1:green, C2:blue, C3: orange, C4: red) by trajectory (a–e). Comparison between
the trajectories (T1: blue, T2:green T3: violet, T4: yellow, T5: red) and average gut
microbiota composition in global reference data representing 30 studies from5732
infants divided into the normal (born vaginally, not exposed to antibiotics, and
breastfed), and the compromised group (C-section born, antibiotic exposed or not
breastfed)8. The trend line amd 95% confidence interval (shaded area) are obtained

from a regression model with the third degree polynomial of log-transformed age,
weighted by the size of the cohort. f The global data are cross-sectional averages,
and thus represent very broad general patterns. Associations between trajectories
and infant exposures, based on c2 test on contingency tables (g), and between
trajectories and health outcomes using logistic regression model (h). P-values
denoted by asterisks at the bottom of each panel: ***p <0.001; **p <0.01; *p <0.05.
Adjustments were made for multiple comparisons for g, h.
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are similar as the genus level, with minor differences (Supplementary
Fig. 11b, c).

Microbiota wellbeing index
Due to the inability of the maturity index to differentiate between
different developmental trajectories and to capture various health
associations, an alternative method to characterise microbiota
wellbeing was devised. Because T1 was the most common pattern,
associated with vaginal birth and positive health outcomes, and
most representative of the normal gut microbiota development
globally, we took this pattern to represent the natural undisturbed
gut microbiota development (“eubiosis”). To identify microbes
associated with natural gut microbiota development, we formed a
reference group of infants in T1 that did not have diagnosed allergic
diseases, allergic symptoms or atypical growth (absolute WHO Z-
scores > 2 SD) during the first 5 years of life (N = 198). We used
logistic regression to identifymicrobes predictive ofmembership in
the reference group at different ages. The estimates from themodel
for the predictive bacteria were used as microbiota wellbeing
influence scores, positive scores indicating that the microbe was
associated with the reference. The strongest overall positive
microbiota wellbeing association was seen in Bifidobacterium and
Bacteroides, which were consistently indicative of the reference gut
microbiota (Supplementary Fig. 6a). Most taxa showed an age-
dependent association, either becoming increasingly positive with
age (Eisenbergiella, Oscillibacter, Parabacteroides, Anaerostipes,
Streptococcus), increasingly negative with age (Lachnospira, Faeca-
licatena, Lacrimispora, Klebsiella, Sutterella), showing a transient
negative association (Roseburia, Faecalibacterium), or a transient
positive association (Citrobacter, Blautia, Gemmiger, Hungatella).
The amount of variance of the index explained by each microbe by
time point further elucidates the age-dependency (Supplementary
Fig. 12). The indicator microbes were individually assessed against
the health outcomes at each time point (Supplementary fig. 13),
verifying that these microbes were associated with health and
wellbeing in a consistent manner.

The relative abundances of the indicatormicrobes were used to
create a microbiota wellbeing index (MWI), representing the
microbiota-based estimated likelihood of belonging to the refer-
ence group. The MWI was significantly lower in infants with an
allergic disease or growth differences (Fig. 6b) and in more detailed
analysis the MWI was associated with several different types of
health outcomes from allergic diseases to growth at both 2
and 5 years of age (Supplementary Data 7), and the incidence of
infections (Fig. 6c).

MWI was reduced in CS (p < 0.0001) and V-ABX exposed
(p < 0.0001 at 3–6weeks, p < 0.0513-104weeks) infants throughout
thefirst 2 years (Fig. 6d).Having siblings increasedMWI in the vaginally
born not antibiotic exposed (p <0.0001 at 3weeks, p = 0.003 at
26weeks, p =0.008 at 104weeks), but in the V-ABX infants the effect
was not observed until 26weeks (p =0.003), and inCS infants not until
78weeks (p = 0.02).When analysed together, the impact of siblings on
theCS/V-ABX infantswas significant butweak at 3weeks, strengthened
at 26weeks and remained significant until 104weeks
(p = 0.01,p =0.0003, p =0.007, respectively). Exclusive breastfeeding
created a modest increase on the WMI in the vaginally born non-
antibiotic exposed infants at 13weeks (p =0.034), but themain impact
of breastfeeding was observed at the time of solid foods’ introduction
(26weeks), when those that were no longer breastfed experienced a
significant drop in MWI (p = 0.001 at 26weeks, p = 0.002 at 39weeks,
p =0.038 at 52weeks), while breastfed infants retained a high MWI.
Breastfeeding was not associated with MWI in the C-section born
infants, but modestly increased MWI in the V-ABX infants in the first
13weeks (p <0.05). When analysed together, breastfeeding increased
MWI in the CS/V-ABX infants in the first 13weeks (p < 0.01).

Discussion
Utilising a longitudinal cohort of 984 term-born infants followed from
birth to the age of 2–5 years, we delineated the general patterns and
determinants of gut microbiota development in the first 2 years of life
and created a gut microbiota wellbeing index, that was associated with
the health andwellbeing of the child. Our results show that early-life gut
microbiota development is highly predictable, dependent on infant
exposures and thus malleable, and predictive of physiological devel-
opment of the host. These results highlight the importance of biotic
interactions in the gut on both host and microbiota development.

We identified four community types in infants, mainly differ-
entiated by the relative abundance of Bifidobacteriaceae, Enter-
obacteriaceae, Clostridiaceae, Veillonellaceae, Lachnospiraceae, and
Ruminococcaceae, andbasedon the dynamicsof the community types,
five major developmental trajectories. Our results recapitulate and
extend the results from previous studies with lower numbers of
infants, shorter time courses and shallower sampling addressing infant
microbiota clusters26 and trajectories20,25. We show that the infant
microbiota development is not stochastic but follows specific tem-
poral development trajectories where the initial composition has a
profound long-term impact. The community types at different ages
and the developmental trajectories were associated with host health
outcomes at 2 and 5 years, supporting the notion that the overall gut
microbiota balance may influence the long-term physiological devel-
opment of infants. Especially in compositional data, where the relative
abundances of different taxa are interdependent, the approach of
identifying microbial community types and trajectories linked with
host outcomesmaybemoremeaningful than analyzing individual taxa
as separate entities. By utilizing different distancemetricswith the log-
pearson derived community types, we show that similar patterns exist
regardless of the metric used.

Capitalizing on the large longitudinally monitored HELMi cohort,
we characterized gut microbiota development in infants in relation to
health. We discovered that there was one health-associated develop-
mental trajectory, and several trajectories associated with different
types of undesired health outcomes and symptoms. We thus defined
the healthy microbiota development, eubiosis, and several deviating,
or dysbiotic, patterns in the infant gut. Importantly, not all infants
follow the same trajectory and thus a general maturity index may not
capture the full spectrum of developmental differences. The health-
associated trajectory, T1, was the most common trajectory and asso-
ciated with vaginal birth without antibiotic exposure, breastfeeding
and having siblings—all factors known to contribute positively to
healthy gut microbiota in infants33,34. The development of the most
abundant taxa followed a similar pattern in T1 as we have previously
observed globally in vaginally born breastfed infants8. This indicates
that this trajectory may indeed represent the natural gut microbiota
development in human infants beyond this cohort. Notably, a recent
study10 suggested that infants from Northern Europe exhibit a unique
microbiota composition with high abundance of Bacteroides spp. This
may reflect the uniqueness of the particular cohort or may be a tech-
nical artefact emerging from DNA extraction or PCR bias, and not
present in our data. It is however possible that our results do not
generalise to populations with very different genetic backgrounds or
lifestyle patterns.

Each trajectory was associated with a unique health profile (Sup-
plementary Data 9), suggesting that the sequence of microbiota
development in the first 6months, rather than simply microbiota
composition at a given time point, influences infant development.
Spontaneous correction of gut microbiota by 6months, as was
observed in trajectory 4, ameliorated some, but not all, of the health
risks associated with the earlier dysbiotic composition, indicating that
the time window for gut microbiota correction and healthy immune
imprinting in infants may close before the age of 6months. While the
health outcomes were primarily recorded at or after 2 years of age,
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fever and infections were recorded earlier.These could themselves
alter the gut microbiota and thus reverse causation cannot be ruled
out. High body temperatures has been seen to influence levels of bile
acid in serum and intestine in a mouse study35, while a systematic
review showed an increase Enterococcus, and a decrease in Firmicutes,
Lachnospiraceae,Ruminococcaceae, andRuminococcus in patientswith
respiratory infections, although the direction of the association is not
clear. The gut-lung axis36 suggests the gut microbiota may have an
effect on the propensity for respiratory tract infections37,38. Healthy gut
microbiota development in infants was characterized by high and
stable relative abundance of Bifidobacterium in the first year, and low
relative abundance of pathobionts. Indeed, the Bifidobacterium genus
emerged as a key indicator of gutmicrobiotawellbeing throughout the
first two years of life. It appears likely that Bifidobacterium spp. have

both direct beneficial effects on the host39 and a strong guiding influ-
ence on the gut microbiota, as they were the most important early
driver of gut microbiota development, together with Bacteroides. We
have previously shown that supplementation of C-section born infants
with infant gut adapted Bifidobacterium spp. can ameliorate the C-
section-induced microbiota imbalance40, and reduce the incidence of
allergic disease41, experimentally validating the important role of Bifi-
dobacterium spp. in infants. Indeed, Bifidobacterium spp. are one of the
most clearly health-associated gut bacteria in infants42,43, where their
early abundance predicts positive later health outcomes43,44, and are
associated with beneficial effects in adults, as well45–47. There is much
less information on the role of Bacteroides spp. in infant health, but
they have been associated with positive effects on
neurodevelopment48.

Fig. 6 | Microbiota wellbeing index (MWI). a Wellbeing index and microbial
associations, measured as estimates from a logistic regression model predicting
membership to the reference group. Top bar colours represent the bacterial class.
bWellbeing index values over time for Reference (green;) defined as children with
no diagnosed allergic diseases or growth below or above the 2 sd during the first
5 years of life in T1, Growth differences (orange) defined as those children with
weight below/above the 2 sd and height <2 sd during the first 5 years of life, and

Allergic diseases (purple) defined as those children with allergy, atopy, rhinitis or
asthma during the first 5 years of life, showing themeans (lines) and the percentage
(0.5,0.8,0.95) of the population within the scale. c Area under the curve (AUC)
values from logistic regression models predicting health outcomes with MWI
measured at different ages: ***p <0.001, **p <0.01, *p <0.05, · p <0.1. Only pro-
spective associations are included. d Associations between MWI and infant expo-
sures. No adjustments were made for multiple comparisions.
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A key trait that certain infant-adapted species of Bifidobacterium
and Bacteroides is the humanmilk oligosaccharide (HMO) utilization49.
Their ability to unlock substrates fromHMOs likely critically influences
the growth of other beneficial taxa50–52 in addition to transforming
HMOs into short-chain fatty acids (SCFAs) thatmay contribute to child
nutrition and immune development, e.g., reducing the risk of atopic-
related outcomes in childhood53. Indeed, we recently showed that
infant gut communities with low Bacteroides and Bifidobacterium
abundances have reduced relative abundance of carbohydrate degra-
dation pathways54. Furthermore, Bifidobacterium spp. have inhibitory
effects against taxa such as staphylococci and streptococci55,56. Our
results support the important role of species of Bifidobacterium and
Bacteroides spp. as keystone organisms in the infant gut, as we and
others have suggested57, regulating the overall composition through
both facilitative and inhibitory effects. Notably, Bifidobacterium and
Bacteroides are the two genera that are consistently depleted in CS
born infants8,58, as also shown in our data, because they are dependent
on vertical transmission from the mother’s gut at birth5,6.

Beyond Bifidobacterium and Bacteroides spp., Lactobacillus,
Roseburia, Anaerobutyricum, and Eubacterium spp. were among the
top indicators of a healthy early-life gut microbiota. Many strains of
lactic acidbacteria are used asprobiotics and have been shown to have
some beneficial effects on the gut microbiota of infants59,60, partly due
to their bacteriocin production that can inhibit the growth of
pathobionts61, and e.g., Limosilactobacillus reuteri has reportedly been
effective in the treatment of colic62. Eubacterium rectale and E. hallii (or
Anaerobutyricumhallii) have been identified as key butyrate producers
in early life60,63, that cross-feed with Bifidobacterium and Akkermansia
spp51,64. In order to have amore generalMWI that ismore accessible we
did not use alpha diversity or very uncommon taxa in the wellbeing
index development as these indeed may vary between cohorts.To the
best of our knowledge, this is the first study proposing a gut micro-
biota index associated to wellbeing and health in children, where the
prospective setting allows addressing directionality. Analogous
approaches have been taken in adults, and the indicator organisms
that we identified were partly similar to those included in an adult Gut
Microbiome Health Index65–67. Despite the compositional differences
between the infant and adult microbiota, notable parallels in terms of
dysbiosis indicators included Flavonifractor, Blautia, Clostridium,
Klebsiella, and Veillonella species. These similarities support the gen-
erality of our results and suggest that theymayapply to infants inother
cohorts, as well. The genera Clostridium and Klebsiella contain many
known pathogens68. Species of Veillonella produce H2, that has been
associated with colic in infants69.

Our results show that the initial delay in the colonization of the
gut by keystone HMO-utilising bacteria alters the long-term develop-
mental trajectory of the gut microbiota due to their dominant ecolo-
gical role. Indeed, priority effects emerged as the strongest influence
on gut microbiota development, implicating ecological interactions
between bacteria, determined by birth mode-induced priority effects,
rather than postnatal external influences, as the major driver of gut
microbiota dynamics in infants. The importance of initial community
assembly and HMO metabolism on infant gut-associated bifido-
bacterial communities hasbeen experimentally validated50. Our results
highlight the importance of the initial inoculum that an infant receives
at birth from the mother, even though maternal gut microbiota com-
position does not strongly influence the neonatal gut microbiota;
specific maternal microbes are selected by the infant’s diet and gut
environment - hence thematernal composition is not maintained until
it begins to reshape when the infant transitions to solid foods. The
predictability of microbiota development analysis only included the
first two PCs and thus some variation is absent from the model.

Notably, all the taxa reduced in CS-born infants were indicators of
a healthy gut microbiota. Intrapartum antibiotic exposure in vaginal
deliveries reduced mainly the Gram-positive bacteria but not the

Gram-negative ones, i.e., affected only a part of the microbiota,
explaining its milder impact on MWI. While the overall microbiota
composition usually normalises by 12months after CS birth58,70, the
MWI was still significantly reduced in CS-born and antibiotic exposed
infants at 2 years, showing that the health-associated microbiota
recovers slower than the overall composition. However, the recovery
was accelerated by exclusive breastfeeding and in those with siblings.
While siblings emerged asone themost influential factors supporting a
healthy gut microbiota development, the early impact of siblings
appeared to arise through maternal transmission of infant-adapted
Bifidobacterium spp., as the effect was delayed in C-section born
infants71. Together with earlier results on the effect of family size on
infant microbiota variation71,72, our results highlight the metacommu-
nity structure of human gut microbiota and the importance of vertical
transfer of microbes at birth. Our results suggest that siblings begin to
exert a direct influence on the gut microbiota of infants after the first
6months, mainly by introducing Ruminococcaceae that are indicative
of microbiota maturation. Interestingly, having older siblings has long
been known to be protective against allergic diseases72,73 This was
originally attributed to lower levels of hygiene and increased trans-
mission of infections, but our results indicate that the protective
impact of siblings may be mediated by the increased transmission of
beneficial gut microbes, rather than pathogens. A similar finding was
recently shown in a large cohort of infants where sibling-induced
microbiota maturation at 1 year was associated with lower risk of food
allergy73. We have previously discovered that the number of siblings is
positively associated with Proteobacteria and Firmicutes in dust
microbiota of Finnish homes, suggesting increased intra-familial
microbial transfer in homes with multiple children73.

Our results show that exclusive breastfeeding is insufficient in
restoring the gut microbiota of CS-born infants. This indicates that
breastmilk is not a sufficient source of gut microbes to the infant but
promotes the growth of microbes that an infant receives during vagi-
nal birth. Bacteria with mucus-degrading capacity, such as Akkerman-
sia and Ruminococcus, were associated with lack of breastfeeding in
the first months, likely as an indication of a substrate-starved micro-
biota relying on host-derived mucus. Indeed, the gut microbiota of
formula-fed infants has been shown to exhibit increased mucus-
degrading activity linked to Bacteroides spp. and associated with
weakened gut barrier74. Furthermore, infants who were weaned at the
time of solid foods’ introduction experienced a drop in MWI, sug-
gesting that continued breastfeeding through the first year, as
recommended by WHO, may help the gut microbiota adapt to the
new diet.

Our study faces limitations as it focuses entirely on the bacter-
iome of the gut and does not consider the other gut microbiota
including fungi, eukaryotes, phage and viruses.As all children fromour
cohort are located entirely in Finland, little variation in terms of diet,
genetics, lifestyle, ethnicity or geographic location are taken into
account in our study.While race andgeography are possible sources of
variation, its believed that human behaviour, such as birth mode and
breastfeeding, have larger impacts on microbial colonization75.

A specific pattern of health-associated infant gut microbiota
development was characterized, hallmarked by high and gradually
declining relative abundance of Bifidobacterium. A microbiota well-
being index based on the natural developmental trajectory was con-
sistently and significantly reduced in infants that had current or later
health problems, indicating that such an algorithm can be used to
identify infants at risk of developing allergic diseases or symptoms and
highlighting the importance of gut microbiota to overall health and
wellbeing of children. We identified Bifidobacterium and Bacteroides
as key taxonomic groups in the infant gut, affecting the community
assembly and host physiological development. Ongoing research is
focused on improving the understanding of allergy development in
children with regards to gut microbiota development.
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Methods
This study has received written informed consent from parents/guar-
dians for use of samples and data from the children used in this study.
The study was approved by the ethical committee of The Hospital
District of Helsinki and Uusimaa, Finland (263/13/03/03 2015) and
performed in accordance with the principles of the Helsinki
Declaration.

Study population
Our observation stuy uses the HELMi cohort31, a longitudinal birth
cohort from the Helsinki metropolitan area, Finland. In total 1055
infants and their parents were enroled in during the recruitment per-
iod (February 2016–March 2018). Only healthy, term, singleton infants
born on gestational weeks 37–42 with birth weight exceeding 2.5 kg
were included in the cohort31. Stool samples were collected from
infants at ages 3 and 6weeks, and 3, 9, 12, 18 and 24months, and from
parents near the delivery. Stool samples were collected and frozen
(−20°) at home by the parents31. Samples were later transferred to
−80 °C storage at the laboratory by the parents. We utilized the sam-
ples from 967 infants, 768 mothers, and 515 fathers, comprising 7211
faecal samples. Questionnaire data on lifestyle, environmental expo-
sures, and the child’s diet, health and wellbeing were collected with
online questionnaires at different time intervals from weekly to one-
time questionnaires until 2 years, as previously described in detail
(cohort profile). In addition, we used follow-up data for 496 children at
4–5 years, which included information about the health and wellbeing
of the children. Families with infants with a diagnosis of a serious long-
term illness (other than allergic diseases) by 2 years were excluded
(N = 31). Both biological and non-biological fathers (N = 6) were inclu-
ded and are referred to as fathers, however variables on health and
disease history were linked to the biological father. Socioeconomic
background variables (e.g., level of education) addressed the acting
guardian. Supplementary Data 1 lists the variables used in the study.

Child health, development, and well-being Health-related data
(Supplementary Data 7) used in this study were collected from the
parent-filled questionnaires and consisted of two types of variables:

(a) Doctor’s diagnosis on allergic diseases at 2 years, and/or
diagnosis on atopic dermatitis, allergic rhinitis and/or asthma at
5 years; phenotypic allergy i.e., symptoms of above-mentioned allergic
diseases at 2 and/or 5 years of age, based on the International Study of
Asthma and Allergies in Childhood (ISAAC) questionnaire76; age-
adjusted height or weight > 2 or <−2 SD at 2 and/or 5 years based on
nurse’s measurements in postnatal care visits and transformed to age-
dependent WHO z-scores32, the occurrence of lower and upper
respiratory infections, gastrointestinal (GI) infections, ear infections,
pox infections, or fever. Infections which didn’t fall into one of these
categories were few (N < 5) and were excluded.

(b) Normal variations and/or parents’ subjective assessment of
child development or well-being was addressed using the following
variables: age-adjusted height or weight > 1 or <−1 SD at 2 and/or
5 years based on nurse’s measurements in postnatal care visits and
transformed to age-dependent WHO z-scores32, the lower median of
parents’ assessment of child’s general health by a 0–100mm visual
analogue scale (VAS), collected every 3months until age of 2; gastro-
intestinal function (defecation rate, parent-perceived stomach pain
intensity and flatulence) until 2 years. Crying was addressed in the
neonatal phase, grouping infants to upper and lowermedian based on
daily crying time, averaged for weekly records by the age of 3months.

Microbiota analysis
Bacterial DNAwas extracted from the faecal samples using apreviously
described bead beating method77 (Ambion MagMAX™ Total Nucleic
Acid Isolation Kit (Life Technologies)) and KingFisherTM Flex-
automated purification system (ThermoFisher Scientific) as pre-
viously described71. The 16S rRNA gene amplicon sequencing was

performed using Illumina MiSeq and HiSeq platforms for V3-V4 (pri-
mers 341 F/785 R)71 at the Functional Genomics Unit and Institute for
Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
The sequencing reads were processed using R package mare78, which
relies on USEARCH79 for quality filtering, chimera detection, and
taxonomic annotation. Forward reads (V3), truncated to 150 bases,
were used80. Reads occurring <50 times were excluded as potentially
erroneous. The taxonomic annotation was performed using
USEARCH79 by mapping the reads to the Ribosomal Database Project
taxonomy database version 1881, restricted to known gut-associated
taxa. Taxonomic annotations were verified using RDP classifier and in
cases of disagreement, the Blast annotation was used. Potential con-
taminants were filtered by removing reads appearing in negative
controls (PCR or extraction blanks) in corresponding numbers fromall
samples. The impact of the technical variation on this dataset is thor-
oughly explored in Jokela, et al.82. The sequencing depth cut-off was
chosen to be 3000 reads after QC to samples collected at 3months or
before and to 5000 paired reads for the remaining samples based on
species richness to sequencing depth evaluations. Richness was cal-
culated as the number of species-level taxonomic groups in the sam-
ple. Lower sequencing depth and cross-platform sequencing have
been shown to not adversely affect biological results.

Statistical analysis
The statistical analysis was performed using R version 4.2.2. The
principal coordinates analysis was performed on Pearson correlation
distances of log-transformed relative abundances of microbial genera
using the vegan package83. K-means clusteringwas performedwith the
clustering package84 using the log-Pearson distance. Using the gap
statistic, we saw four optimal clusters: Cluster 1 (N = 2033), Cluster 2
(N = 1034), Cluster 3 (N = 1100), Cluster 4 (N = 1932). For the trajectory
analysis, we selected infants that had at least one sample from
3–6weeks, one sample from 3–6months, and one sample from
1–2 years (N = 828 families) to ensure a proper temporal resolution of
development. Trajectories were created using group-based multi-
variate trajectory modelling85 on the clustering scores of each sample
using the GBMT package86. The models used a 3rd degree polynomial,
and the optimal number of groups based on Akaike information cri-
terion (AIC) was 5: T1 (N = 388), T2 (N = 95), T3 (N = 78), T4 (N = 151), T5
(N = 116). Stool colour differences between community type were tes-
ted using the c2 test.

Partitioning tree for cluster membership was created using the
rpart library87.We utilized a complexity factor of 0.001 and aminimum
split for each branch of 100. In creatin the partition tree we utilised 60
variables (Supplementary Data 1) ranging from technical, parental
background, and infant related variables. Of these 60 variables, 5
remained in the partition tree. The relative abundance of potential
pathobionts was calculated by summing the relative abundances of
Klebsiella88, Fusobacterium89, Sutterella90, Bilophila90, Salmonella90,
Haemophilus88, Pseudomonas90, Treponema91, Campylobacter92,
Serratia93, Vibrio90, Proteus, Yersinia90, and Neisseria90.

Associations between health outcomes (31 variables) and clusters
and trajectories was done by performing a logistic regression model
adjusting for mother’s BMI, mother’s and father’s allergies, mother’s
and father’s education level, infant’s sex, presence of pets in the
household, household size (number of people in the home), mother’s
weight gain during pregnancy, and gestational diabetes and run id.
Technical variables were tested against both the baclground factors
and health outcomes at each sampling age (Supplementary Data 10).
Run id was found to be significantly associated with several variables
and hence was included as a confounder For clusters analysis we
performed the analysis separately by time point due to repeat mea-
surements.Weonly tested associations for health outcomesbefore the
outcome took place, except with regards to fever and infections which
were recorderd at 0–3months, 0–6monhts, 6–12months and
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12–24months. Associations between the trajectories with infant
background variables (17 variables) were performed using the χ2 test
on contingency tables for each trajectory against the rest, as well as
separately each trajectoryagainstT1, andfinally each trajectoryagainst
T5. T1 and T5 comparisons were performed as they represent the two
extremes of the trajectories’ patterns.

Comparisons of the relative abundance of the bacterial genera for
categorical data were conducted using the GroupTest functions in
mare78. This function selects an optimalmodel for each taxonusing the
lm function, glm.nb function from the MASS package94 or the gls
function from the nlme package95. The models were adjusted for
probiotic and antibiotic usage prior to sample collection, number of
siblings, birthmode, and diet (exclusive breastfeeding, mixed feeding,
exclusive formula feeding, or one of these with solid foods). Supple-
mentary Data 2, 3, 4, and 5 present the estimate, raw P-value, fold
change, and the adjusted P-value (FDR) for the variables tested, and the
model used for that taxon. P-value adjustment was done in order to
reduce occurrence of false positives.The first two principal coordi-
nates scores were used as response variables to assess the relative
impact of different exposures on microbiota composition at different
timepoints.We formed linear regressionmodelswith the exposures as
explanatory variables and for each exposure variable calculated the
average variance explained between components 1 and 2. Using these
models and the microbiota composition at 3weeks, we simulated the
gut microbiota development in the infants with a full data set (N = 98)
and calculated the correlation between the simulated and observed PC
scores. The function adonis2 in the R package vegan was used to
identify the most important bacterial taxa associated with the follow-
ing time points’ microbiota composition. We created the maturity
index by selecting the genus level bacteria that occur in 40% of the
samples, producing a list of 47 genera. The index was created fitting a
negative binomial generalized linearmodel to predict age basedon the
microbiota, allowing for non-linear associations by including second-
degree polynomials, using the glm.nb function from the MASS
package94.

Microbiota well-being index (MWI) was calculated by identifying a
model that explained membership in the healthy reference cohort
(healthy children), no diagnosed allergic diseases or growth below or
above 2 standard deviation during the first 5 years of life in T1, N = 198,
assigned a value of (1) as compared to healthy children in other tra-
jectories (assigned 0.5) and children with variable health (with sus-
pected or diagnosed allergic diseases or growth below or above
2 standard deviation during the first 5 years, assigned 0). Because the
microbiota composition changed rapidly at 6–9months, we fitted one
model for the first 6months and a second model for >6months,
including taxa that were present in >30% of the samples at the given
age range. A logistic regression model with a second-degree poly-
nomial age interaction with each taxon was fitted and AIC-based
stepwisemodel reductionwas used to arrive at amodel formicrobiota
wellbeing. For each taxon, themodel estimates were used as indices of
microbiota wellbeing influence at each age. We used the prediction of
the model (probability of a sample belonging to the healthy reference
group) as the microbiota wellbeing index. The MWI was normally
distributed and analyzed against birth mode, siblings, and diet by age
using linear regression models. The MWI was analyzed against health
outcomes using logistic regression. To identify the most important
indicatormicrobes at each timepoint, weused a random forestmodel.
Based on the node purity, we identified the top genera and calculated
the amount of variance in the MWI explained by each of the genera by
adding the top genera in a step-wisemanner to a linearmodel, allowing
for microbe-microbe interactions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The HEMLi microbiome 16 s rRNA gene sequences in this study have
been deposited in the European Nucleotide Archive (ENA) under
accession code PRJEB55243, along with limited metadata (collection
date, sex, age inweeks, geographic location, and sequencingmethod).
Additional individual-level metadata, even pseudonymized, are sensi-
tive and are protected by the GDPR and not publicly available. Rea-
sonable data sharing requests based on data processing and material
transfer agreements can be made to Anne Salonen, University of Hel-
sinki, Finland. (anne.salonen@helsinki.fi)

Code availability
The R code used in the study is available at https://github.com/
bhick001/Wellbeing-Index (https://doi.org/10.5281/zenodo.13359211)96
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