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Abstract: The recycling of PET trays is highly challenging. The aim of this paper was to investigate the
issues related to the mechanical recycling process and, the correlation between feedstock composition
and the quality of the produced rPET. Four feedstocks with different degrees of impurity were
mechanically recycled at a laboratory pilot scale. The optical and thermal properties of the rPET
products were examined to determine the quality and to seek relations with the starting level of
impurities. The final products of the PET trays’ mechanical recycling were found to be affected by
the presence of impurities (organics) and multi-material (non-PET) elements in the feedstocks. The
rPET products crystallised faster for contaminated feedstocks showed lower molecular mass and
higher yellow index values due to thermal degradation. Yellowing is a crucial parameter in assessing
the thermal degradation of rPET. Injection moulded samples corresponding to higher contamination
levels, reported values of Yellow Index equal to 179 and 177 compared to 15 of mono-PET sample.
The intrinsic viscosity decreased from 0.60 dL/g to just above 0.30 dL/g, and losses were more
significant for soiled or multi-material feedstocks. A method of improving the final quality would
involve the purification of the starting feedstock from impurities.

Keywords: mechanical recycling; impurities; extrusion; plastic degradation; rPET characterisation;
non-bottle PET packaging

1. Introduction

Plastics play a key role in shaping a circular and climate-neutral economy by repli-
cating, in everyday applications, properties such as durability, resource conservation, and
optimised energy efficiency [1]. Additionally, their recyclability facilitates the circularity
of products and a climate-neutral society [2]. To continue building on its potential, plastic
waste must be diverted from landfill and incineration to recycling. The 2022 data showed
that the recycling rate increased to nearly 35% in Europe, but 65% of post-consumer plastics
waste was still sent for energy recovery or to landfill. Indeed, more needs to be done to
increase the circularity of plastics [3]. The current industrial framework for plastic recycling
relies on mechanical recycling technologies that require updating. Beginning with the sort-
ing stage, the increasing variety of packaging placed on the European market necessitates
more accurate sorting technologies to divide them into appropriate streams for recycling
processes. From a technological perspective, emerging methods such as chemical recycling
require substantial capital investment, higher initial costs, and strong institutional and legal
backing [4].

In particular, packaging is the dominant end-use for plastic, constituting 39.1% of total
demand in 2021, with PET (polyethylene terephthalate) among the main used polymers [3].

Recycling 2024, 9, 93. https://doi.org/10.3390/recycling9050093 https://www.mdpi.com/journal/recycling

https://doi.org/10.3390/recycling9050093
https://doi.org/10.3390/recycling9050093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/recycling
https://www.mdpi.com
https://orcid.org/0000-0001-9876-7813
https://orcid.org/0000-0001-8496-6678
https://orcid.org/0000-0002-2174-3220
https://doi.org/10.3390/recycling9050093
https://www.mdpi.com/journal/recycling
https://www.mdpi.com/article/10.3390/recycling9050093?type=check_update&version=1


Recycling 2024, 9, 93 2 of 20

In 2022, 2.3 million tonnes of virgin PET was used for applications such as bottles,
films, sheets (trays), strapping, etc., in Europe, while production from recycled material
reached 1.6 million tonnes [5]. Additionally, the Single-Use Plastic Directive [6] mandates all
PET beverage bottles must contain 25% recycled content by 2025. Moreover, the proposed
Packaging and Packaging Waste Regulation [7] sets even higher recycled content targets
for all PET-based packaging: 30% in 2030 and 50% in 2040. Nevertheless, food-grade
rPET production faced challenges during 2022, a considerable lack of material led to
record-high prices of rPET showing that a structured management of rPET is needed to
address the high demand in Europe [8]. In 2022, the rPET content for bottles was 24%,
which is the average value among the European countries. The average recycled content
rates vary between countries (it ranges from over 30% for Nordic countries to 15% for
Western Europe), depending on the rate of adoption of rPET by producers across the region.
Additionally, the majority of rPET volumes were utilised in the bottle sector, where higher
prices were absorbed in production costs. This was at the expense of volume available for
other applications, namely polyester fibre and trays, which saw a decrease in the share;
only 25% of rPET produced was used for trays and around 15% for polyester fibre [5].
Therefore, more rPET should be produced in order to produce more bottle-grade rPET
and to achieve the bottle-to-bottle requirement in every country but especially to obtain
more high quality, clear, food-grade rPET to produce in other applications, such as trays,
by recycling PET food-packaging [5]. PET trays constitute the second food packaging, after
bottles, in terms of quantity placed on the European market [9,10], with a rate of 21% [5].
Thus, the production of clear food-grade rPET can be increased by identifying technologies
for the recovery of this packaging. Indeed, tray-to-tray closed-loop recycling is gaining
more interest in Europe, some member states have started to sort out PET tray waste [9–14].
Additionally, some recycling facilities, Cirrec, Duiven [15] in The Netherlands and B. for
PET [16] in Italy began to recycle PET trays, producing translucent or opaque rPET. Thus,
recycling capacities for clear mono-material or/and coloured trays are in development, but
producing clear rPET from sorted PET trays is still challenging.

Hitherto, PET trays have been mainly treated as contaminants, as these are removed
from sorted PET bottle feedstocks before recycling, especially because impurities affect the
recycling efficiency [9,11]. The impurities are material or chemical impurities that contam-
inate the plastic waste stream by affecting its sorting potential and its recyclability and
altering the physio-chemical properties of the secondary raw material [17]. Furthermore,
in multi-material streams, impurities are often found within the packaging itself due to
its multi-layered structure, which is difficult to recycle [18]. Most of the sorted PET trays
are not recycled in a circular tray-to-tray system but are rather recycled and used in an
open loop by the fibre and textile industry in what is known as an “open-loop system” [6].
The actual main challenges in closing the PET tray loop are: (i) the high level of organic
contamination into the waste stream [10]; (ii) the waste stream of PET thermoforms is much
more heterogeneous than PET bottles, with many more different types of packaging designs
present ranging from mono/multi-materials to differing colours, lids, labels, etc. [10,19–21];
(iii) trays placed on the market are mostly (almost 60%) multi-layered [6,10]. Indeed, PET
trays have much more complex compositions than bottles, with lids, labels, and absorbers
composed of a broad variety of polymers, but also frequently still contain product residues,
which are challenging to remove during recycling processes. For multilayer streams, me-
chanical recycling is more challenging than mono-material streams. When applied, it
provides blend compatibilisation and opacity to recycled material [22]. Multilayer packag-
ing could be chemically recycled via depolymerisation [22–31] to various monomers, such
as terephthalic acid, which can be repolymerised after purification. Mechanical recycling
includes crushing, washing, and drying the material and then converting it into pellets by
extrusion [32–34].

Although mechanical recycling can result in inferior products at lower yields, it
also comes at lower economic and environmental costs than chemical recycling [35–37].
Hence, mechanical recycling could be preferred to chemical recycling if it results in better,



Recycling 2024, 9, 93 3 of 20

technologically and environmentally balanced results [38,39]. However, it is currently
insufficiently clear to what extent impurities present in the sorted PET tray feedstock can
be removed during mechanical recycling and the impact is of the remaining impurities on
the quality of the produced rPET [21,40,41].

Therefore, this study aims to investigate the quality of rPET that can be made from
the sorted PET tray feedstock with a conventional mechanical recycling process and with
four derived feedstocks that underwent different levels of some pre-sorting. In total,
4 batches of 10–20 kg PET tray feedstocks were prepared with decreasing levels of con-
tamination, ranging from cases where external contaminants (other types of packaging
and organic contaminants) were introduced into the sample to feedstock without exter-
nal contaminants and multi-layer trays (containing contaminants within their structure).
This distinction was made based on a previous study [10] that identified the polymer
composition of each category. The four feedstocks were then mechanically recycled into
washed milled goods, extruded pellets, and injection-moulded plaques. These recycled
PET products were characterised by a focus on purity and optical properties. This study
provided a comprehensive assessment of mechanical recycling limitations associated
with the removal of impurities during washing and of the complex and heterogeneous
PET trays’ feedstock composition, which is missing in the scientific literature.

2. Framework of the Study

The overall approach is reported in Figure 1.
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Four feedstocks of different combinations of PET tray categories were recycled and
analysed. The composition of the starting feedstock was determined—based on data
from a previous study [10] about PET tray characterisation and mechanical recycling—to
define the weight percentage and category composition of the feedstocks. The feedstocks
were prepared by sorting a bale of PET tray sorted products into the different categories.
Only the transparent categories have been analysed considering that the study’s objective
was to obtain food-grade, transparent, high-quality rPET from PET trays. Mechanical
treatments were applied at a laboratory pilot scale on 15 kg of material, such as rinsing,
coarse shredding, hot alkaline washing, rinsing (pH neutralisation), elutriation, drying,
milling treatments, and extrusion and injection moulding in plaques for thermal and
optical analyses. The flake samples resulting from the mechanical recycling steps, the
pellets resulting from the extrusion step, and the rPET test samples obtained from the
injection moulding were studied using the following chemical and thermal analyses: DSC
(Differential Scanner Calorimetry), ATR-FTIR (Attenuated total reflection Fourier-transform
infrared spectroscopy), intrinsic viscosity measurement, NIR-flake analysis. Compression-
moulded sheets of washed flakes and extruded pellets were also optically analysed through
colour and haze measurements and microscope analysis.

These analyses, carried out in the same manner at each step of the applied mechani-
cal process (after washing, extrusion, injection moulding), allowed a final comparison
of the same parameters for all steps for the different feedstocks considered, and thus
identified the relationship between contaminants present in the starting feedstock and
the applied process.

3. Results
3.1. Yield of the Mechanical Recycling Process

After implementing the pilot scale mechanical recycling process, the products ob-
tained underwent characterisation and mass balancing. Table S1 shows the composition
of the resulting flakes in terms of PET content, and other polymers obtained from IR
and NIR flakes analyses. These data provided an initial insight into the separation
efficiency of contamination materials during the mechanical process. Based on this
first analysis, an increasing value of PET content can be observed from sample T.1 to
sample T.4. Sample T.2 has the lowest PET concentration and the highest level of con-
tamination (mainly PE and PP). Sample T.1, despite containing the sorting errors and the
PET trays categories (as Sample T.2), appears to have a higher PET content than sample
T.2, which can be attributed to the presence of PET bottles in the T.1 feedstock. Even in
the pictures (shown in Table S1), the presence of coloured films is evident, distinct from
the transparent PET flakes. By averaging the results of the weight percentages obtained
from the two analyses, the average PET content (cPET) in the flakes resulting from the
4 mechanical recycling tests was defined (Table S2). Table S2 shows the resultant content
of PET from the average of saponification and NIR flake analyses. The average cPET

values were used for the mass balance to determine the yield of the washing step.
Applying the equations described in Section 3.2 allowed obtaining the ηPET and the

mass recovery for each treatment, which are reported in Figure 2 and Table S3.
Notably, the second test exhibits the lowest values for recovered mass and PET yield,

attributable to a high level of contamination in this feedstock. It is noteworthy that the
first feedstock, despite its more heterogeneous composition compared to other feedstocks,
demonstrates a high PET content, only 3 percentage points lower than the fourth feedstock,
characterised by lower contamination and a higher initial feedstock PET content. This
anomaly might be attributed to PET bottles in the first feedstock which enhanced the
yields instead of jeopardising them. As expected, the fourth feedstock delivers the most
favourable results, given its initial composition, which lacks subcomponents that could
impact the data, and a mono-material composition in the feedstock. As expected, feedstock
3 yields slightly lower than the fourth test.
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Figure 2. PET yields and recovered mass (Rm) of the four recycling tests with four different PET
tray feedstocks.

The samples’ intrinsic viscosity and molecular weight values were determined and
shown in Table S4 and Figure 3.
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Figure 3. Comparison of intrinsic viscosity values.

The intrinsic viscosity value of the reference sample 0 (related to only shredded, not-
washed products) is comparably low compared to the other 4 samples, implying that
the degradation of PET chains can be attributed to the extrusion and injection-moulding
processes at high temperatures. The relatively elevated IV value of Sample 1 in comparison
to the values of Samples 2, 3, and 4 can be linked to the presence of bottles in the first
feedstock, which is characterised by a higher IV value than trays (0.8 dL/g [42]).

Unexpectedly, the IV of flakes of Sample 1 is the lowest. Presumably, the small sample
of flakes, taken for the IV measurements, was not representative of the whole. In contrast,
the results after extrusion are well-aligned with the expectation, as these samples are
well-mixed during processing. The intrinsic viscosity of all extruded samples significantly
decreased, and samples 0 and 1 exhibit the highest values. The reduction in intrinsic
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viscosity of the samples probably arose from a combination of thermal and mechanical
degradation that can occur during extrusion [43,44].

Furthermore, there were subtle variations in IV between extrusion and injection
moulding, with values showing both increases and decreases. The IV values of samples 0,
1, and 2 even reduced after injection moulding, while samples 3 and 4 slightly increased.
However, the values remain notably low compared to the starting values (at least 0.62 dL/g)
or the value required for further applications. Indeed, all samples necessitated further
molecular weight-increasing processes, such as solid-state polymerisation (SSP) [45], to
reach a higher level for industrial applications.

The contamination in the recycled samples could also justify this high decrease of
IV, contaminants which could generate acid compounds, induce chain scission processes
and lead to the reduction of intrinsic viscosity and average molecular weight of recycled
resins [46,47]. So, these results underscored the importance of purity in maintaining the
intrinsic viscosity of PET during melt processing [48].

3.2. Crystallinity Evaluation

All the data derived from the DSC thermograms have been listed in Tables S8 and S9.
This encompasses the peak of melting temperature (Tm), degree of crystallinity (Xc) values,
onset of cooling temperature (Tc,onset) and glass transition temperature (Tg) for the washed
milled goods, the extruded pellets, and the injection moulded plaques made from the
5 different feedstocks.

Figure 4 (and Tables S5 and S6) indicates the derived degrees of crystallisation for the
different samples ranged from 30% to almost 33% for washed flakes, between 28% and 32%
for pellets, and between 31% and 38% for injection moulded samples, with higher values
for the injection-moulded samples.
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the recycling process.

The flakes’ Xc was slightly higher than the Xc of the extruded pellets, except the
reference sample. The differences are comparable, with a high increase with the injection
moulding. The chains are oriented during injection, so they crystallise more easily. Also,
the crystallisation of recycled PET is facilitated by contaminants, such as PVC, nucleating
agents and adhesives [48]. Thermo-mechanical degradation induces profound alterations
in the microstructure and characteristics of PET during the recycling process. Injection
moulding treatment exhibits a noteworthy surge in the degree of crystallinity, causing sub-
stantial embrittlement of the recycled material. After three reprocessing steps (hot-washing,
extrusion, moulding), the material experiences a complete loss of plastic deformation
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properties. The chain scission reactions triggered by thermo-mechanical degradation can
lead to a non-uniform distribution of polymeric chain lengths in the molten state. This, in
turn, modifies the amorphous and crystalline microstructure in recycled PET due to chain
rearrangement during cooling [49].

Similar behaviour can be observed in the fT values obtained from the IR analysis
(Table S7), for which fT values for extruded and moulded (higher than 0.14) could be
related to a high degree of crystallinity. The samples’ molecular weight (see Table S4)
diminishes step by step, facilitating the formation of a more perfect crystal structure [50].

The observed trend indicates an increase in crystallinity from extrusion to injection
moulding. This stems from thermo-oxidative degradation, which promotes the formation
of crystallites containing low molar mass cyclic and linear oligomers. Consequently, Tm
(melting temperature) decreased [51], except for the reference sample 0, possibly due to the
absence of contaminants.

In Figure S1, the glass transition temperature Tg values are shown, which are charac-
terised by slight variation and range from 74 to 86 ◦C for flake samples, from 72 ◦C to 80 ◦C
for compression-moulded pellets, and between 73 ◦C and 83 ◦C for injection moulded
plaques. All the observed Tg values of the samples were found to be between the reported
minimum and maximum Tg values for virgin PET, namely between 69–115 ◦C [52].

IR spectra were examined to qualitatively and quantitatively assess the sample’s de-
gree of crystallisation and the extent of sample degradation induced by the mechanical
process. A comparison of normalised spectra of samples of the different steps was ac-
complished by merging different studies [44,52,53]. The evaluations have been reported
in Table S8.

The main observations obtained by comparing spectra between post-hot-washing
flakes, extrusion and injection moulding are explained, with considerations on material
crystallinity and degradation [54,55].

The CH2 wagging vibration detected in correspondence with the wavelength of
1340 cm−1 corresponds to the trans conformers of the ethylene glycol moiety. A shift in
the peak position to a higher wavenumber (1342 cm−1) indicates that the ethylene glycol
segment is present in a highly ordered structure, such as in thermally crystallised PET [53].
As shown in Figures S4 and S5, all samples show characteristic peaks of increased crys-
tallinity at these wavelengths for extruded and injection moulded samples in comparison
to flakes. Additionally, all samples present increased in peak intensity at 1470 cm−1, which
was linked to the crystallisation and appeared after trans-conformation of the ethylene
glycol segment [44].

Furthermore, all extruded samples show increases in peak intensity at 845 and
973 cm−1 related to the trans-conformation of the ethylene glycol segment that occurs
during crystallisation [44], which can be attributable to the extrusion step. This indicated
that samples subjected to thermo-mechanical treatments underwent degradation and an
increase in the level of crystallinity.

3.3. Optical Properties

The optical properties of compression moulded rPET sheets and the injection moulded
plaques were measured.

Table S9 and Figure S1 show the CieLab values, revealing a prevalent green tone
(a* negative) and notably elevated yellow values (b* positive) across all samples. Ad-
ditionally, the low L* values indicate a generally greyish colouration, particularly in
the case of injection-moulded plaques where L* values are relatively low, resulting in
a darker appearance. The b* values for these samples are noticeably high, indicating
a dominant yellow colour. This observation aligns with the elevated YI (yellow index)
values shown in Figure 5.
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Figure 5. Yellow index comparison for the different samples.

Yellowing of recycled poly(ethylene terephthalate) during reprocessing at high temper-
atures (280–300 ◦C) may also result in reduced quality [56,57], indeed yellowing increases
due to hydroxylated aromatic rings, quinones and stilbene quinones formation [58–60].
Namely the PET yellowing is caused by the possible oxidation or degradation reactions
occurring during the mechanical recycling in presence of water and O2 [61,62]. Indeed, the
chain scission often generated polymer radicals with hydroxyl and carboxyl end groups.
These groups acted as catalyst to promote further degradation [44,63]. Yellowing is a crucial
parameter in assessing the quality of PET, as it can substantially impact the material’s visual
appearance and overall quality [58,63].

In this case, the increases in YI values are more marked for samples 1 and 2, corre-
sponding to higher contamination levels.

Finally, optical microscopy images were analysed to detect the presence of impu-
rities and contaminants by close optical investigation of the sheets obtained by com-
pression moulding from the washed flakes. The analysis allows for quantifying these
impurities across all samples, facilitating a comparative assessment of purity levels
among the different samples.

Upon thorough examination of the microscopic images presented in Figures S7 and S8
and the X and Y values (shown in Table 1), it is evident—even upon initial inspection—that
the findings align with those obtained through other analyses, including optical colour
analysis and pictures.

Table 1. Counting impurities resulting from microscopic pictures (Y) and photos (X).

Sample X Y

T.1 1 717
T.2 2 950
T.3 4.5 1473
T.4 7 1735

E.0 7 1925
E.1 1.5 509
E.2 1.5 589
E.3 5 1284
E.4 6 1402

T.1: Sample 1 flakes; T.2: Sample 2 flakes; T.3: Sample 3 flakes; T.4: Sample 4 flakes; E.0: Sample 0 extruded;
E.1: Sample 1 extruded; E.2: Sample 2 extruded; E.3: Sample 3 extruded; E.4: Sample 4 extruded.
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The reference sample (0) exhibits more clear sheets and plaques. Indeed, higher scores
of X and Y denote a greater number of transparent squares. X and Y values relate with
optical impurities and hence the presence of extraneous material, but also yellow and
brown shades related to effects of degradation. Notably, sheets of flakes and pellets from
test 3 and 4 displayed higher X and Y values (X higher than 5, and Y greater than 1000),
which can be attributed to a lower level of contamination; the opposite samples of test 1
and 2 are characterised by higher contaminations and higher evidence of PET degradation.
In particular, the extruded samples had lower scores.

4. Materials and Methods
4.1. Materials

A sample of 300 kg PET tray sorted product (DKR 328-5 [64]) in the form of a pressed
bale was picked up from the sorting plant Attero, Wijster (Drenthe, the Netherlands).
It was sorted [10] into different transparent PET tray categories (12 main categories
and 2 sub-categories) based on the previous use (e.g., food-grade package categories)
manually through visual product inspection based on label descriptions. In this study,
16 (clear) of the 20 categories identified by Santomasi et al. were used. In particular, for
categories 1 and 5, mono-material subcategories (1a and 5c) could not be distinguished
during manual selection and so were considered in the same category. The material
composition of the feedstocks (Table 2) was calculated from two datasets: data of the
sorting phase on the level of packaging categories and average material compositions of
PET tray categories [10]. The four different types of PET feedstock were mechanically
recycled, starting with the industrially PET tray SPs (PET sorted products are denoted
with “PET trays SPs”, and correspond to one of the output products from the sorting
plant according to DKR 328-5) and gradually reducing the complexity by manually
removing different packaging components and objects.

Table 2. The four different types of PET feedstock that were mechanically recycled.

Sample Feedstocks Composition Impurity Concentration * PET Concentration

0
Reference sample, mono-material PET

tray from producer (not waste),
without objects

0% 100%

1

Industrial PET tray SPs from Dutch
system, including faulty sorted objects

and attached residual waste (only
non-coloured waste)

19.03% 80.97%

2

Industrial PET tray SPs from Dutch
system, excluding faulty sorted objects

and attached residual waste (only
non-coloured waste)

15.52% 84.48%

3

Complete PET trays, including
packaging components made from

non-PET polymers such as labels, caps
and closures (only non-coloured waste)

4.33% 95.67%

4

PET trays, excluding packaging
components made from non-PET
polymers such as labels, caps and

closures (only non-coloured waste)

1.48% 98.52%

* the concentration of impurities has been estimated as the percentage content of polymers other than PET in the
feedstock (thus corresponding to the complement to cPET

f eedstock).

Then, 15 kg of waste was prepared to compose 4 feedstocks, and each fraction was
weighed, as shown in Table 2 (and Table S10 in Supplementary Materials). The feedstock
used in Test 1 is the most heterogenous, and its composition reflects the sorted PET tray
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product, including all PET tray categories and sorting errors (i.e., PE films, paper, organic
contaminants, but also clear PET bottles, see Table S10). Thus, the first feedstock is the
most contaminated, and the other three feedstocks analysed stepwise contain fewer
impurities. Hence, feedstock 2 is largely the same as feedstock 1—only non-PET-tray
sorting errors are excluded. Feedstock 3 consists of PET tray categories designated
as highly recyclable through mechanical processes: bowls and fresh salad trays (2);
clamshells and top-sealed trays with moisture absorber (3b); smearable salad trays (4);
jars (10); loose lids and caps (11); clamshells and top-sealed trays for fresh fruit (3);
clamshells and top-sealed trays for fruit with PE bubble wrap inlay (3a); clamshells for
cookies and bakery products (5); non-food blisters (6); container for eggs (8). The fourth
feedstock is largely the same as the third, although non-PET packaging components
(such as paper labels or of other polymers, closure films made of other polymers and
materials) were removed. The fourth feedstock represents an almost ideal feedstock of
PET trays with a minimal level of impurities.

4.2. Mechanical Recycling Treatment

The mechanical recycling pilot plant comprises a shredder, a washing tank with baffles
and a stirrer, containers for sink-float separation, a centrifuge, a fine mill and an oven. The
applied process was defined from the combination of real plant processes [15,16], literature
analyses [65], and internal protocols of Wageningen Research settled to the quantities that
can be processed at the laboratory pilot plant level.

Of each feedstock, 15 kg samples were prepared. The dry-matter contents of these
feedstocks were measured. After that, the feedstock was first rinsed to remove the abundant
attached dirt and product residues. Most of the dirt was already removed by pre-rinsing,
and less dirt will become enclosed in the ultimate PET flakes. In this case, the process
started with 15 kg of feedstock divided into three roughly equal batches to be rinsed; 5 kg
of dirty trays at a time were stirred for 5 min into the washing tank with cold tap water.
Three times, the sludges of three dimensions (6 mm square mesh, 3 mm square mesh, and
0.5 mm round mesh) were sieved from the rinsing water and dried in an oven at 65 ◦C to
calculate the net dry sludge weight.

Afterwards, the feedstocks were milled using a Weima single-shaft shredder equipped
with a 3 cm sieve plate. The total weight of the moist milled goods, the dry matter content
average and standard deviation (dm2) were determined. At this point, the weight of the
shredded material was greater than the starting 15 kg due to the increase in water content
from the rinsing phase. Thus, 12.5 kg of wet shredded material was sent to hot washing
(to respect the proportions with water 1:8) with 100 L of water. The washing process of
waste PET trays was carried out at 85 ◦C in 0.25 M solution of sodium hydroxide (NaOH;
M = 40.0 g mol−1, ρ = 2.13 g cm−3, Sigma-Aldrich), with constant stirring at the mixing
speed 800–1000 rpm for 15 min. After washing, the solution was filtered and PET flakes
were washed on 3 sieves (6 mm square mesh, 3 mm square mesh, and 0.5 round mesh) to
sort the residual sludge from the flakes. The flakes were rinsed with cold tap water until
the alkaline pH was neutralised. Again, three sludge types were collected from the rinsing
water. Next, the sink–float separation was operated with tap water, adding PET-washed
goods in containers, stirring and letting the flakes settle for 1 min. The floating fraction was
scooped off from the top with a sieve, and the sinking fractions were collected separately
from the bottom. In the end, all the sinking and floating fractions were dried first in the
centrifuge and then placed for 12 h at 75 ◦C in the oven.

The treatment yielded the following: washed and dried PET flakes, waste sludge
(collected in three different sizes), and wastewater. The recovered mass was determined by
the ratio of the weights of products and starting feedstock.

For waste samples, the dry-matter content of each category was determined on a
waste sample before the start of the process and after milling. The dry matter content
(dm1 and dm2) was determined by the ratio between the average dry weight and the
average gross weight.
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After the washing process, yields ( ηPET), in terms of recovered PET material, were
calculated from the material composition data of the different categories (sorting errors,
subcomponents of packaging) composing the feedstocks (cPET

f eedstock), applying Equation (1):

ηPET =
cPET

sinking f raction ∗ mdm
sinking f raction

cPET
f eedstock ∗ mgross

f eedstock ∗ nmc
(1)

where
mdm

sinking f raction is the dried weight of the sinking fraction;

cPET
sinking f raction is defined by SIRO-PAD analysis and saponification testing on post-

washing-recovered sinking fraction flakes (see Table S11);
cPET

f eedstock is the concentration of PET in the feedstock;

mgross
f eedstock is 12.5 kg of dirty milled flakes per category;

nmc is net material content.
Moreover, the recovery of mass (Rsinking f raction

m ) was calculated as quotient of the dry
sinking fraction weight and the dry feedstock weight, derived from the gross feedstock
weight per the dry matter content:

Rsinking f raction
m =

mdm
sinking f raction

mgross
f eedstock ∗ dm

(2)

Table S12 illustrates the codes assigned to the samples in their corresponding treatments.
The washing and shredding treatments encompassed 4 tests, while extrusion and

injection moulding were conducted on 1 additional reference sample. This reference sample
was produced from freshly produced mono PET trays (without any other component)
directly obtained from the producer [66]. These trays underwent all treatment steps except
rinsing, washing and sink–float separation, as it was already a clean production trays. This
reference sample represents the absence of contaminants in the feedstock.

The washed milled flakes were dried at 105 ◦C for 12 h using a desiccant dryer before
the next treatments. The drying process (105 ◦C overnight) and subsequent extrusion were
also applied to virgin trays obtained from the manufacturer [66] after milling at a sieve size
of 8 mm.

Compounding extrusion was performed using a Berstorff ZE 25, KraussMaffei, Mu-
nich, Gemany (25 mm, 40D) co-rotating twin screw extruder with strain pelletising. Pro-
cessing conditions are shown in Table S13. The extruded filament was water-cooled in a
trough and pelletised with a rotating knife. The degassing unit in the extruder had to be
switched off, as the viscosity of the material was too low.

Later, rPET granulates were injection moulded into 5 test specimens. These test speci-
mens were manufactured using a DEMAG D25NC IV, Sumitomo (SHI), Wiehe, Germany
injection moulding machine. Materials were processed at a cylinder temperature of 275 ◦C,
and the mould temperature was set at 70 ◦C. Again, before injection moulding, materials
were dried at 105 ◦C for 12 h using a desiccant dryer to prevent hydrolysis [67,68].

At each step of the applied mechanical process, the obtained products (flakes, pellets,
and plaques) were characterised.

4.3. Material Characterisation

The material composition of the post-washing sinking flakes (30–40 g) was determined
with an IOSYS-SIROpad NIR analyser, IOSYS-Seidel e.K. (Ratingen, Germany) [69] through
a near-infrared measuring system for plastic flakes and granules (non-black), allowing
measurement of the concentration of PET in the recovered product (cPET

sinking f raction).
Additionally, saponification [70] was applied to determine the material composition

of flakes, pellets, and plaques. Roughly 5 g of rPET samples was dissolved in a solution
NaOH 4 M, 20 g NaOH (NaOH; M = 40.0 g mol−1, ρ = 2.13 g cm−3, Sigma-Aldrich,
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St. Louis, MO, USA), 200 mL of demineralised water, 250 mg MTOAB (methyl-trioctyl
ammonium bromide) using 250 mL glass Scott bottles. These were placed with their
bottoms in a water bath at 95 ◦C with magnetic stirring bars and stirred at 300 rpm
for 16 h. Then, the solutions were filtered and dried in aluminium trays in the oven at
105 ◦C for 2 h. By weighing this residue, it was possible to determine the amount of
PET in the packaging component under the assumption that the residual material is not
saponifiable, which is valid for most other materials and polymers. These residues were
then analysed with IR to identify the type of material.

The IR technique was used to identify the different materials, but in particular to
detect the differences between the post-washed samples and the extruded and injection
moulded ones in order to identify the crystal structure in comparison. The Alpha II Fourier-
transform infrared spectroscopy (FTIR) instrument equipped with a platinum ATR single
reflection diamond sampling module (Bruker Optics, Ettlingen, Germany) was used to
record IR spectra between the wavenumber range of 400–4000 cm−1 at a resolution of
4 cm−1 [71], controlled by Optics User Software (OPUS) version 8.1. Infrared spectroscopy
is a valuable tool for studying molecular structure, and it has been widely used in the study
of PET [72,73]. IR conformational bands have been used to follow PET’s crystallisation
process and assess the presence of the crystalline phase in the analysed samples. In
particular, the fraction of glycolic segment in trans conformation (fT) is obtained as:

fT =
A1340

A1340 + kA1370
(3)

In Equation (3), Ai is the integrated absorption intensity of the infrared absorp-
tion bands that have a maximum at wave number i, and k is a constant derived by
Bertoldo et al. [74] for a free-standing reference PET film of 20 mm thickness and is equal
to 6.7.

In support of these measurements, DSC studies [75] were also carried out twofold on
samples of 10–15 mg of flakes, pellets and injection moulded samples, with a Perkin Elmer
DSC-8000 calorimeter to obtain thermograms of samples of the different tests. A specific
program was carried out: conditioning for 5 min at 0 ◦C, heating at 10 ◦C per minute to
300 ◦C, cooling to 0 ◦C, conditioning for 5 min at 0 ◦C, heating at 10 ◦C per minute to
300 ◦C. The degree of crystallinity was determined from the melting peak and the cold
crystallisation peak according to the method of Torres et al. [48]:

Xc(wt.%) = 100
∆Hm (T m)− |∆H c (T c)|

∆H0
m
(
T0

m
) (4)

where Xc is the degree of crystallinity; ∆Hm (Tm) is the enthalpy of fusion measured at
the melting point, Tm; and ∆H0

m (T0
m) is the enthalpy of fusion of the totally crystalline (is

invariably taken as the value at the equilibrium melting point) polymer measured at the
equilibrium melting point, T0

m.
The intrinsic viscosity (IV) was determined according to ASTM D4603-03 [76,77].

Samples of 250 mg rPET flakes, pellets and plaques were dissolved in 50 mL phe-
nol/tetrachloroethane (60/40 w/w) at 100 ◦C for 30 min. After preparing the solution,
the viscosities were determined in calibrated Cannon–Fenske capillaries of type 100 (as
well as a reference solvent) at 30 ◦C. The intrinsic viscosity (η) was calculated by using
the Billmeyer [78] relationship:

η =
0.25(ηr − 1 + 3ln ηr)

C
(5)

Two samples per type were evaluated; the results are presented as the average and
standard deviations of the two measurements. Subsequently, the viscosity–average molecu-
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lar weight (Mw) of the samples could be calculated based on the viscosity data with the
following expression [48]:

Mw = (
η

K
)

1
α (6)

where K = 7.44 × 10−4 and α = 0.648.

4.4. Optical Analyses

To analyse the optical properties and colour of the washed PET flakes and extruded
pellets, a few grams (5–10 g) were compression moulded in a hydraulic press [79]. A PHI
hydraulic press, which is composed of electrically heated platens, was used. These platens
were heated at 280 ◦C for 5 min to allow the melting of the samples and then pressed,
applying minimum pressure, between two steel plates separated by Teflon sheets. Cooling
was performed as fast as possible in iced water at 0 ◦C to avoid PET crystallisation and to
obtain amorphous PET foils 20 cm in diameter and less than 1 mm thick. Then, these PET
foils were studied through optical analysis.

A Konica Minolta Chroma meter CR-5, Konica Minolta INC. (Tokyo, Japan) was used
to determine the colour of compression moulded sheets and injection moulded plaques
according to the CIEL*a*b* method [80,81]. A white tile was used as a background reference.
This yielded three colour parameters: L*(100 = white; 0 = black), a* (positive = red; negative
= green; 0 = grey), and b* (positive = yellow; negative = blue; 0 = grey). The total colour
difference ∆E and the yellowness (YI) of the samples were calculated as:

∆E = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 (7)

Indeed, the yellow index as [82]:

YI = 142.86 × b*/L* (8)

Additionally, haze measurements were determined by using the colour measure-
ment on the same samples and with the Konica Minolta Chroma meter CR-5, recording
4 measures for each sample. Then, the total colour difference, yellowing, and haze, were
determined between the rPET sheets and mono-PET tray products, which were used as a
standard reference.

Optical studies were performed on obtained rPET sheets utilising BRESSER Sci-
ence MPO 401 Microscope Bresser GmbH (Rhede, Germany) [83], equipped with an
objective lens having magnification from 40 to 1000. For the analysis of PET foils, 4×
and 10× magnifying camera lenses were employed to obtain well-defined images,
taken by the BRESSER MikroCam II 20 MP 1′′ microscope camera (Bresser GmbH,
Rhede, Germany).

Additionally, photos were taken of the PET sheets in the lightning cabinet under
controlled (fixed) lightening conditions (see Figure S2). The photos from the lighting
cabinet and the images from the microscope were analysed for visible imperfections. These
imperfections were counted by creating a square grid on the images and counting the
squares affected by the visible light, yellow, dark impurities, wires, and drops concerning
transparent squares. This gave two values, named X, quantifying the squares in the grid
that are not affected by coarse impurities in the regular photo (Figure S2), and Y, quantifying
the squares in the grid that are not affected by micro impurities on microscope images
(Figure S3). Lower values of these factors correspond to low optical quality and thus
increased impurity content.

5. Discussion

The prominent outcome observed is the brown discolouration of rPET during heating
processes [61], which significantly limits its potential applications. Furthermore, the PET
waste underwent processing at a temperature of 280 ◦C, resulting in degradation reactions
and a subsequent decrease in molecular weight.
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The brown colouration is likely linked to thermal degradation, a phenomenon often
associated in the literature with specific contaminants. This involves the formation of
particular alcohols and acids, with the acids serving as catalysts for chain scission reactions
during the melt processing of PET waste [84,85]. Notably, the most detrimental acids to the
post-consumer PET recycling process include acetic acid, originating from the degradation
of poly(vinyl acetate) closures; abietic acid from adhesives; and hydrochloric acid from
PVC [44].

In rPET, however, various contaminants can be present. Paci and Mantia [86]
observed the impact of a small quantity of PVC during the melt processing of PET,
reporting that even a minimal presence of PVC (as low as 100 ppm) would enhance
PET chain scission due to the catalytic effect of hydrogen chloride evolving during PVC
degradation [87]. Barrier layers in PET packaging materials can be a further cause of
yellow discolouration in thermally treated PET. It is supposed that foreign polymers
or impurities in PET flakes may contribute to yellow discolouration [58]. Additionally,
other studies [58,88,89] have demonstrated that the presence of PVC and PA leads to
discolouration of PET during processing. PVC often originates from sorting errors
and packaging components, PA or EVOH is a widely used additive which reduces the
gas permeability in polymers, as in top-sealed trays, the top film might contain them
to render sufficient low gas permeability and when these top-films are insufficiently
removed during recycling they might cause discolouration. In this case, Sample 1 may
have been affected by the presence of PVC, as it might have been included due to sorting
errors in the feedstock of test 1. Instead, PVC was likely absent in the other samples,
which consisted exclusively of PET tray categories (see [10]).

The removal of contaminants from PET waste stands as a crucial step in the me-
chanical recycling process, as elevated levels of contamination by other materials
contribute significantly to the deterioration of PET during processing. In light of the
compositional analysis results from this study regarding the washed flakes, no trace
amounts of PVC or PA were identified in the cleaned flakes, also for Sample 1. There-
fore, PVC does not seem to provide an explanation for the discolouration observed
in the extruded and injected recycled PET. Pressure-sensitive adhesives (PSA) on the
other hand are present in PET trays and might explain this discolouration. There are
numerous production variants of PSA on the market; indeed, PSA could be produced
using waxes such as rosin esters or by utilising poly(vinyl acetate). The most common
type of PSA is based on polyacrylates, often produced with monomers like 2-ethylhexyl
acrylate, n-butyl acrylate, and acrylic acid [90].

The thermal degradation of acrylic pressure-sensitive adhesives occurs at 250 ◦C,
leading to the formation of unsaturated monomers like butyl acrylate and butyl methacry-
late [91,92]. Indeed, the applied treatment temperature on PET waste is precisely 250 ◦C.
Consequently, a plausible hypothesis to explain the discolouration could be linked to the
“sticky” residue detected during the saponification process. This residue, possibly com-
prising PSA from the numerous labels on PET trays, might persist on the tray even in the
4th test (feedstock without labels, top films, etc.) after removing other elements, especially
considering the impossibility in this study to apply the filter and degassing equipment.

An alternative explanation for the excessive browning could be the presence of residual
PE [93]. Finally, the significant shear force in the injection moulding machine might also
have contributed to the browning reaction, particularly in the 4th pilot test, where residual
PE should be minimal. Indeed, the fundamental difference between samples 1 and 2
compared to tests 3, 4, and the reference test 0 lies in the fact that samples 1 and 2 also
include multi-material trays (mainly composed of PE/PET layers) in the starting feedstock.
For these, PE impurity could be the main cause of degradation for Sample 1 and 2, as it
could not be removed through mechanical recycling. It is crucial to note that the obtained
rPET from this experimental study represents an initial attempt and that there is room for
improvement through additional tests and deeper investigations. The analyses conducted
on rPET have highlighted two main factors contributing to its degradation: the alteration
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of the material itself and the influence of external impurities that were not completely
removed by the applied treatment.

Typically, rPET from bottles undergoes solid state polycondensation (SSP) treatment
to enhance its molecular weight and colour characteristics [94,95], which could also be a
viable approach for rPET derived from PET trays. Additionally, blending recycled flakes in
certain ratios with virgin PET flakes might still yield higher quality rPET. Further analyses
could be carried out, including a solid-state polymerization (SSP) treatment, which would
increase the intrinsic viscosity of the polymer and could minimise the effects of degradation
induced by recycling and impurities. This treatment could thus provide insights into the
nature of the degradation, particularly if it allows overcoming the current limitations of the
recycling process.

Moreover, the idea of studying alternative technologies to be associated with me-
chanical recycling for waste streams containing multi-material packaging is crucial. Such
packaging, often made up of layers of different materials (such as PET combined with other
polymers or aluminum), poses greater challenges in recycling, as the different components
require specific treatments. Technologies like chemical recycling, selective dissolution [96],
delamination [97], compatibilisation [98]; gasification, pyrolysis, fluid-catalyzed cracking,
and hydrocracking [99]; or advanced separation systems could be explored to address these
complex cases [18].

In summary, further investigation into treatments such as SSP and the adoption of
complementary technologies alongside mechanical recycling could significantly improve
the quality of recycled rPET, making it more suitable for high-quality applications.

6. Conclusions

Four different feedstocks of PET trays with a decreasing level of impurities have been
mechanically processed. The purer feedstocks were recycled into washed flakes with high
PET concentrations and hence low levels of contamination, whereas the more impure
feedstocks also resulted in a less pure rPET product. All produced rPET products were
found to be degraded especially after thermal treatments after extrusion and injection
moulding treatments. During thermal processing the rPETs experience a drop in intrinsic
viscosity, decreasing from 0.60 dL/g to just above 0.30 dL/g, and consequently in molecular
weight, these decreases are more significant when the feedstock is soiled or composed of
multiple materials, a growth in degrees of crystallinity and intensification of the yellowing
index, accompanied by the presence of microscopic-level contamination and a high level of
degradation as identified through IR analysis.

In conclusion, the impurity content in PET tray feedstock significantly affects the
resultant recycled material, including the PET recovery rate, optical properties, as well as
crystallinity and intrinsic viscosity. Notably, while Sample 1, with an impurity content of
19.03%, was expected to show the lowest performance, Sample 2, despite having about
3.51% less impurities, exhibited the lowest quality. This suggests that not only the impurity
content but also the type of impurities plays a crucial role. Indeed, for Sample 1, the added
sorting errors were also composed by PET bottles, which improved the overall results.
Meanwhile, the reference sample 0 demonstrates the least impact of degradation across all
factors, thanks to the absence of impurities in the initial feedstock.

Additionally, samples 1 and 2 are constituted of multi-material trays, for which other
solutions need to be addressed to increase the possibility of valorisation. For example, to
promote the valorisation of sorted PET tray waste and to increase the production of rPET
via mechanical recycling, technology needs to be improved. Further research should be
conducted to identify practical solutions for minimising the degradation of the resulting
rPET and recycling the multi-material fraction. Recycling companies need to continue
improving the recycling processes and add additional treatments to the process to restore
the molecular weight of the rPET product. Additionally, PET trays should be re-designed
for recycling and be composed of only PET with labels and other packaging components
that can be removed completely in the mechanical recycling process. Those PET trays
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that cannot be redesigned for recycling need to be marked in such a manner that sorting
companies can recognise and remove them.
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www.mdpi.com/article/10.3390/recycling9050093/s1, Figure S1. Temperature of glass transition (◦C)
derived from the 1st heating run; Figure S2. Square grid for visual counting on photos of compression
moulded rPET sheets for categories; Figure S3. Example of the square grid for visual counting on
microscope images of compression moulded rPET sheets: (a) Magnitude 4×; (b) Magnitude 10×;
Figure S4. Spectra comparison between flake, extruded and injection moulded samples wavelength
1300–1600 cm−1; Figure S5. Spectra comparison between flake, extruded and injection moulded
samples wavelength 700–1100 cm−1; Figure S6. L*a*b* values into the 3D space for all samples;
Figure S7. Optical microscope photos of compression moulded sheets from post-washed flakes;
Figure S8. Optical microscope photos of compression moulded sheets from extrusion. m fraction
composition per sample; Table S2. PET content (weight percentage) in the post-washing flake samples;
Table S3. Yields of PET content and recovered mass (Rm); Table S4. Intrinsic viscosity and molecular
weight values of post-washing, extruded, and injection-moulded samples; Table S5. DSC data for
rPET flakes: melting temperature, onset of cooling temperature, degree of crystallinity values and
glass transition temperature; Table S6. DSC data for category: melting temperature (Tm), onset of
crystallisation temperature (Tc), degree of crystallinity values (Xc) and glass transition temperature
(Tg); Table S7. fT values obtained from the IR analysis comparison among flakes, pellets and plaques;
Table S8. Main peaks of PET samples (post-washed, extruded, injection moulded); Table S9. Haze,
CieLab and yellow index values of samples. Table S10. Feedstocks composition in terms of weight and
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