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Abstract 
In response to the conventional, time-consuming and chemical analysis for water detection in chicken, 

interest in quick, non-destructive methods have risen. The focus of this thesis is on the non-destructive 

method: spectral imaging. Hence, the aim of this study was to validate the possibilities of detecting 

fraud through excessive water addition by using a classification and prediction model utilising spectral 

and chemical data. With positive validation, this study can be used as a backbone for future research 

to optimize the prediction model for fraud detection. In this study, 36 chicken breasts were divided 

into three groups: a control (CO), a moderate water addition of 3-5% (MID) and a high water addition 

of 9-11% (HI). The breasts were imaged with SPECIM line scan spectral cameras and their water and 

protein contents were calculated by oven-drying and DUMAS respectively. The water/protein (w/p) 

ratios of the samples were calculated and a classification and prediction models were developed. The 

study revealed a good classification between the control and the treated groups, having correct 

identification of 78-92%. The classification between the two treatment groups was lower with correct 

identification values of 59-72%, which was expected as the moisture values of these breasts were in 

the end more similar than predicted. For the moisture prediction model, a partial least squares 

regression (PLSR) model was developed by using both the image and chemical data. For this, the most 

accurate model was determined by the lowest prediction residual errors sum of squares (PRESS), the 

highest R2 and the variance. The highest variance was observed at 70%, which meant that the model 

could only predict the exact moisture content only 70% of the time. It is assumed that with a larger 

sample size, the accuracy of the model would increase as well. To conclude, this study validated the 

possibility of using spectral imaging for the detection of water addition fraud in chicken breast by 

positively recognising differences between different treatments and showing possibilities in 

accurately predicting the water content. 
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1 Introduction 
Chicken is a high-protein source of meat and a common food product in the human diet. Its quality 

has become of high importance to consumers and therefore more important for poultry farmers, 

producers and governmental control authorities as well (Ballin & Lametsch, 2008). The U.S. 

Department of Agriculture stated in 2023 that globally, with 33%, poultry is the second most widely 

consumed meat in the world (USDA, 2023). Due to the large demand and consumption of chicken and 

its high nutritional and market value, motivations may arise to look for opportunities to increase profit, 

especially taking into account that controlling bodies can lack in detecting fraud (Frankhuizen, et al., 

2011). This makes chicken meat vulnerable to fraudulent practices within the supply chain (Lianou et 

al., 2021). Therefore, detecting and preventing food fraud in this sector as efficiently as possible is a 

must. Food fraud involves intentional modification of food products and associated documentation 

for economic gain and may lead to issues for food safety, legality and quality depending on the 

activities undertaken or the agents used. Food manufacturers, as part of the assessment of their 

vulnerability to food fraud, need to identify the individual food materials and products that they 

supply and produce that have a history of illegal activity (Manning & Soon, 2019). 

In raw chicken breast meat, one of the most common ways of committing fraud is by adding excessive 

amounts of water (Ballin, 2010; Lianou et al., 2021). The official way to detect excessive water fraud 

is by calculating the water/protein (w/p) ratio. The current regulation states that the w/p ration may 

not exceed a value of 3.4 for chicken breasts (Commission Regulation (EC) No 543/2008 of 16 June 

2008, 2008). The conventional way of determining this ratio is done by separately determining the 

water and protein contents with the use of recognised international organisation for standardisation 

(ISO) methods and other methods of analysis approved by the Council (Commission Regulation (EC) 

No 543/2008 of 16 June 2008, 2008). These methods are utilised to accurately analyse a single 

compound in food (Hussain et al., 2019). Problems with the current methods are that they are 

destructive, time-consuming and expensive (Cheng et al., 2013; Kharbach et al., 2023). For the analysis 

of excessive water addition, it was shown that these methods on their own were vulnerable to false 

negatives as well (Kharbach et al., 2023; Frankhuizen et al., 2011). A study by Frankuizen et al. (2011), 

showed this vulnerability as they experimented by applying the classical wet chemistry procedures on 

different treated chicken breast samples. The samples were treated with excessive amounts of water 

in combination with several different water-retaining agents. The study showed that the current 

analysis gave false negatives for ten samples as the methods could not distinguish between the 

chicken protein and the added protein which functioned as water retaining agent making it seem that 

the fraudulent samples had a legal w/p ratio. This showed that the current methods have flaws in 

identifying possible frauds while it is expensive and time-consuming. Next to this, it means that there 

are already possible methods that fraudsters can use to get away with the fraud they have committed. 

It is therefore essential that non-destructive methods should be explored which can be used as a rapid 

test to detect fraud. In case these non-destructive methods have similar accuracy compared to the 

conventional methods, these can be used to replace the current methods. 

Therefore, it is necessary to research other methods which can analyse water and proteins. One of 

these methods is near-infrared (NIR) spectroscopy. NIR spectroscopy is a type of high-energy 

vibrational spectroscopy and analyses between the wavelength range from 400 to 1700 nm (Pasquini, 

2018). NIR is a non-invasive and non-destructive method suitable for in-line use and minimal sample 

preparation is needed (Pasquini, 2003). The NIR spectral ranges occur mainly by exciting overtones, 

combinations and resonances of fundamental vibrational modes and are mostly associated with 

anharmonic vibrational modes of molecular functional groups containing C-H, O-H, N-H and S-H 

https://www.sciencedirect.com/topics/food-science/food-product
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(Weyer & LO, 2006). Next to this, vibrations of strong chemical bonds, such as a carbonyl group, can 

be detected by NIR spectroscopy as well (Pasquini, 2003, 2018). 

As mentioned, NIR spectroscopy is rapid and non-destructive. In current literature, it has been shown 

that moisture and protein content could be determined by NIR-spectroscopy. However, to have 

qualitative and quantitative analysis, data mining and chemometrics are essentially required (Cheng 

et al., 2013). Next to this, NIR spectroscopy on its own lacks the visualisation of the whole product. To 

visualise the product, imaging is required. Imaging is the science and technology of acquiring spatial 

and temporal data information from objects. Another rapid, non-destructive method which combines 

spectroscopy and imaging is spectral imaging (Garini et al., 2006). 

Spectral imaging has often been used for food products as a non-invasive analysis. Line-scan spectral 

imaging techniques have been intensively researched and developed for measuring the physical, 

chemical and biological properties of a broad range of foods and biological materials. The application 

scope has been expanded rapidly into many food and agricultural areas. The techniques have been 

intensively researched and developed with the use of different physical principles and wavelength 

ranges (Qin et al., 2017). Spectral imaging has been shown to measure the physical, chemical, and 

biological properties of food products for surface, subsurface and internal evaluations (Qin et al., 

2017). 

Spectral imaging has been used in several ways for the non-invasive analysis of properties in broiler 

chickens. It has been effectively used in combination with an algorithm for the inspection of 

wholesome chicken and systematically diseased chicken with accuracy and speed compared to human 

inspection (Chao et al., 2008; Yang et al., 2009). The freshness of chicken is an important aspect where 

fraud can be committed. An example of this is the detection of intact chicken breast muscle using NIR 

spectroscopy (Alexandrakis et al., 2012) where the researchers analysed the differences in reflectance 

of chicken breasts that were left for spoilage for 0, 4, 8 and 14 days. As it was known that NIR 

spectroscopy can analyse a possible increase of amides and amines, it was expected that protein 

hydrolysis would increase meaning that the differences in freshness could be analysed. Next to this, 

Xiong et al. (2015) studied the prediction of the Thiobarbituric acid reactive substances (TBARS) value 

of chicken meat for freshness evaluation. They analysed chicken meat during refrigerated storage with 

samples of 0, 3, 6, and 9 days old. He et al. (2023) determined the moisture content in chicken breasts 

by spectral imaging. In this study, the raw spectra were pre-processed and PLS models were 

constructed for the prediction of moisture, protein and ash. With the most optimal models, the 

moisture, protein and ash distributions were visualised. 

Next to chicken, other meats have been analysed as well by using spectral imaging. Research has 

shown that properties like moisture content, proteins, and lipids can be analysed by spectral imaging 

(Barbin et al., 2015; Qin et al., 2017). Wang et al. (2017) determined the moisture content, of pork 

meat with the use of NIR-spectroscopy. The detection models used were based on a three-wavelength 

method, a partial least squares regression (PLSR) method, and a successive projection algorithm which 

allowed to select several featured wavelengths to reduce redundancy. For the moisture content 

analysis, three pieces of meat samples weighing around 5 grams were put in the oven at 105°C for 16 

hours. The moisture content was calculated from the percentage weight loss (AOAC, 2005). ElMasry 

and Wold (2008) showed that the fat and moisture content of different fish species could be analysed 

by NIR spectrometry and PLSR. Next to this, ElMasry and Wold (2008) visually mapped the water and 

fat distribution as well, visualising it by a NIR imaging system. Another study on the quality properties 

of differently brined turkey hams was conducted which showed clear differences in reflection results 

with the different moisture contents (ElMasry et al., 2011). It hereby showed that an increase in 
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moisture content should be clearly visible and therefore it should be possible to detect fraud with the 

addition of water. 

Research has been executed utilizing spectral imaging to assess the quality attributes of meat, such as 

water content, pH, fat and protein content. For fraud control in meat, adulteration, freshness, muscle 

discrimination and the farming system were tested (Mendez et al., 2019). Based on current literature, 

most experiments were conducted in processed meats, for example minced beef or sausages 

(McGrath et al., 2018; Mendez et al., 2019). Even though it has been shown that water can be detected 

with the use of spectral imaging, no literature was found on the detection of food fraud by excessive 

water addition by spectral imaging. Based on the found literature, it showed that spectral imaging is 

rapid, non-destructive, and it is possible to visualise water. In Annex VIII part A of the European 

regulation No 1169/2011 of the European Parliament and of the Council of 25 October 2011, it is 

stated that added water exceeding 5% of the total weight of the final product must be listed on the 

ingredient list. Therefore, this study aims to explore its possibilities to predict and detect food fraud 

by excessive water addition in chicken breast. 

In this validation study, excessive water injection was visually mapped in intact chicken breasts using 

a calibrated prediction model of water and protein. These models were made with NIR spectroscopy 

and spectral imaging data of chicken breasts with determined water and protein contents. 

This study aimed to validate the accuracy of the spectral imaging method in distinguishing between 

non-fraudulent and fraudulent chicken breasts. To achieve this aim, the following research questions 

and sub-questions are proposed: 

To what extent can spectral imaging visually map and predict fraud by excessive water addition? 

• How can spectral imaging distinguish between a legal and a fraudulent sample? 

• To what extent can spectral imaging detect different concentrations of water in the chicken 

breast? 

• How accurate will the PLSR and the classification models obtained from the spectral data be 

for the visual mapping and identification of the chicken samples? 

Based on previous research, it was hypothesised that with spectral imaging combined with a well-

designed model made with a large data set, it should be able to distinguish between fraudulent and 

non-fraudulent samples. Due to the limited data set, however, the accuracy of the model could be 

limited. The classification between different treated samples is expected to be accurate as the treated 

samples contain significantly more water compared to the non-treated control samples.  
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B 

2 Materials and methods 
The chicken breast samples were weighed and injected with a water solution according to their sample 

group and weight. Afterwards, the samples were imaged by spectral imaging to obtain the average 

spectra of each of the breasts. For quantitative data collection, the chicken breasts were prepared for 

both water and protein analysis. The acquired images were analysed and annotated with perClass 

Mira (perClass BV, Delft, Netherlands) and were exported to MATLAB (MathWorks, Massachusetts, 

United States) for classification and modelling of the moisture content. Figure 1A shows a flow chart 

with an overview of the whole experiment and Figure 1B shows a timeline of the whole experiment. 
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Figure 1: Overview of the experiment containing the specific processes (1A) and timeline (1B). The overview describes the processes of 
the sample preparation, spectral imaging, perClass Mira, drying, DUMAS, MATLAB, and the prediction model. The timeline ranges from 
March 2024-July 2024. In grey indicated is the timeline of the specific projects. 
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2.1 Sample collection 
A total of 36 chicken breast fillets were purchased from four different local butchers (nine breast fillets 

per butcher) located in Wageningen (two butchers) and Rhenen (two butchers), The Netherlands, to 

increase the variability of this research. Samples were purchased on 12/03/2024. The butchers were 

Elings (EL), Natuurslagerij Van Santen (SA), Hermsen (HR) and Gert Driessen (GF). On average, the 

weight of the individual chicken breasts was 200 g, except for the chicken breasts of GF, which were 

around 300 g per breast. The samples were divided into three groups with 12 (n) samples per group 

(three breasts per butcher): a control group of no water injection (CO), 3-5% of total weight gain in 

water addition (MID) and 9-11% of total weight gain in water addition (HI). A range of percentages 

was used for this experiment, as it was difficult to exactly inject the right percentage of solution. It 

was possible to use ranges, as this study is mainly for validation of spectral imaging being able to 

differentiate between fraudulent and non-fraudulent chicken breasts. 

2.2 Sample preparation 
The MID and HI samples were weighed before injection to determine the required injection volume. 

The injected solution comprised 92.5% water, 5% sodium-tripolyphosphate and 2.5% sodium chloride, 

to closely mirror realistic cases of fraud by water injection (Zheng et al., 1999). Samples were injected 

with the calculated amount of solution using a 5 mL and 10 mL syringe containing a 0.80 x 38mm 

needle. After injection, the samples were weighed again to ensure the lack of solution leakage. If this 

was the case, the samples were injected and weighed again until the sufficient weight was met. After 

spectral imaging, samples were prepared for moisture and protein content analyses. This was done 

by homogenising the samples according to AOAC Official Method 983.18 using a blender. 

2.3 Spectral imaging and sample annotation 
A line scan spectral imaging system containing FX10 and FX17 cameras (SPECIM, Oulu, Finland) was 

used. The system uses two LED bars and 500W halogen lamps (EFFILUX, Les Ulis, France) for scanning 

visible light and infrared light, respectively. A Teflon tile and closed shutter were applied for white and 

black calibration. The FX10 camera measures wavelengths between 400-1000 nm over 224 wavebands 

and FX17 measures wavelengths between 935-1700 nm over 112 wavebands. The obtained images 

consist of a 3D data structure where two dimensions are the spatial information and the last 

dimension stands for spectral information or number of wavelengths (I (x,y,λ)). The FX10 and FX17 

images were acquired with waveband steps of 3 and 7 nm steps, respectively. The spectral image 

scanning was conducted nine times, having four samples per scan. All samples were first scanned with 

the FX10 camera and afterwards with the FX17. 

After all samples were scanned, the images were annotated individually to determine the average 

spectrum per chicken breast. The annotating was done with perClass Mira which made it possible to 

further analyse the images. After annotation, the samples were exported to MATLAB for further 

analysis. 

2.4 Moisture content 
To determine the moisture content, an oven drying method was followed according to AOAC Official 

Method 934.01. First, the aluminium cricibles were dried and weight (w1). Afterwards, the samples 

were prepared in duplicate and weighed before and after drying (wt and w2 respectively). The 

moisture content was eventually calculated by subtracting both weights and the values were given in 

percentages of the sample: 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) = 100 −
(𝑤2 − 𝑤1)

𝑤𝑡
∗ 100 
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2.5 Protein content 
To determine the total protein content of the samples, a DUMAS method was used. With this method, 

the total N content was measured. With this obtained data and a nitrogen-to-protein conversion 

factor, the total amount of protein was determined. The samples were prepared by first freeze-drying 

the chicken breasts. Afterwards, the samples were ground into a fine powder, of which 5 mg were 

weighed in duplicate for the DUMAS analysis. After the DUMAS analysis, the nitrogen content of the 

samples was determined. The nitrogen values were multiplied with a conversion factor of 6.25 to 

obtain the percentage protein content of the dry weight (Pdw) (Hall & Schönfeldt, 2013). To calculate 

the percentage of protein of the total sample, the formula below was applied: 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 (%) = (100 − 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒(%)) ∗ (
𝑃𝑑𝑤(%)

100
) 

2.6 Water/protein determination 
After calculating both the water and protein content, first, The moisture and protein values were 

averaged. After this, the water/protein (w/p) ratio could be calculated. This was done by taking the 

weights of the protein data and the known percentage of moisture for all samples. As the percentage 

of moisture was known, the percentage of dry matter was known as well. Using the dry matter 

percentage, the total weight was extrapolated from the known dried weight. Having these values, the 

total protein content and moisture content were calculated. These two values were then divided by 

each other to determine the w/p ratio. This gave the following formula:  

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(%) = 100 − 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒(%) 

 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑔) =
𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑔)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(%)
∗ 100 

 

𝐷𝑟𝑦, 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑔) = 𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑔) ∗
𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡, 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒(%)

100
 

 

𝑤 𝑝 𝑟𝑎𝑡𝑖𝑜 =
𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑔)

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑚𝑔)
⁄  ≤ 3.4 

 

As mentioned, it is stated that the w/p ratio may not be more than 3.4. If the sample exceeds the 

value of 3.4, it is perceived as a non-legal sample. 

 

 

 

  



8 
 

2.7 Data analysis 

2.7.1 Prediction model 
For the prediction of the moisture content, a regression model was made. The regression model was 

made by applying partial least squares regression (PLSR). It compresses the spectral data into 

components called latent variables (LVs) which describe the maximum covariance between the 

spectral and experimental data (ElMasry, Sun, et al., 2011). It is therefore why PLSR is a good analysis 

for making prediction models of experimented data with specific wavelengths. Before performing 

PLSR, it is necessary to determine the number of LVs. To obtain an accurate model, high variance is 

required with limited LV to prevent overfitting of the model. Factors important for the determination 

of LVs are obtaining the lowest possible mean squared error (MSE) and the prediction residual errors 

sum of squares (PRESS) and the highest cumulative variation (ElMasry, Sun, et al., 2011; Wang et al., 

2017). 

This model can be used to visually map the prediction of the water and protein content. PLSR can be 

applied using the full spectra, however, by selecting the area with the most relevant wavelengths, the 

accuracy of the PLSR model can be improved (Osborne et al., 1997). As well as for the PCA analysis, 

the data was split into a training and test set to prevent overconfidence in regression (Barbin et al., 

2015). The PLSR model was built with the training set and applied to the test set. The developed model 

was afterwards applied to the acquired images in perClass Mira. 

2.7.2 Wavelength selection 
To make the model as accurate as possible, a Pearson correlation analysis was conducted for this study 

to select specific key wavelengths. Pearson statistical correlation was used as this showed how two 

vectors are correlated. For both FX10 and FX17, the wavelength range of water will be used to observe 

which wavelengths specifically correlate the best. Negative values in Pearson correlation analysis 

mean that there is a negative correlation between the moisture values and the specific wavelengths 

(Homayouni & Roux, 2004; Mu et al., 2018). As the spectral imaging is in reflectance mode, a negative 

correlation means that there is a through at these specific wavelengths which then possibly 

corresponds to water in the samples. 

2.7.3 Confusion matrix 
To identify possible correlations between the samples a confusion matrix was developed. A confusion 

matrix provides an overview of how often a certain sample is detected correctly, and how often it is 

classified as another sample (Ruuska et al., 2018). First, the data was split into a training and a test 

set. Splitting the data is a widely used study design in high-dimensional settings. It divides the data as 

a means of estimating classification accuracy. This, in combination with a corresponding classifier 

developed on the training data and applied to the test data, helps make an accurate confusion matrix 

(Dobbin & Simon, 2011). Before making the correlation matrix a principal component analysis (PCA) 

was applied to lower the number of dimensions, enhancing the interpretability of the data while 

minimizing the data loss (Jolliffe & Cadima, 2016). It is important to find the right balance between 

the PCA value and the accuracy of the data. Having a too high PCA value would lead to an inaccurate 

read of the data. By trial and error, a suitable number of components were applied for the PCA. 

Combining both the splitting method with a PCA, made it possible to make an accurate confusion 

matrix. At last, a classifier is needed to make a confusion matrix. The classifier used for this study was 

least mean squares as this classifier gave the best classification with the least principal components. 

 



9 
 

3 Results and discussion 

3.1 Spectral imaging 
As mentioned, all samples were imaged by two cameras via spectral imaging. Figure 3 visualises two 

example images of the FX10 camera (A) and the FX17 camera (B), respectively. It is important to note 

that the last measurement of FX17 (CO3) was lost due to an unexpected broken lens which meant that 

this data could not be used for analysis. After annotation, the samples were saved and further 

analysed in MATLAB for model development.  

3.2 Moisture content 
As described before, the moisture content was determined by an oven-drying method. All samples 
were tested in duplicate. After obtaining the moisture data, the values were checked for non-realistic 
outliers by applying standard error and were repeated when necessary. The mean and standard 
deviation of all duplicate’s moisture content are shown in Figure 1. After this repetition, all samples 
had realistic values. The moisture content values did not increase as much as expected, as the 
injection-treated samples only showed an increase of 1-2% moisture compared to the untreated 
control samples. This was unexpected as the treated samples were injected with 5% (MID) to 10% (HI). 
Potential reasons for lower moisture contents are that the samples were not able to retain the 
solution as expected. Besides, due to the leakage of all homogenised samples, it was possible that 
during the sampling, moisture was excreted and remained in the vacuum bags. This might have led to 
a lower moisture content from the taken samples than first envisioned. Appendix A provides a table 
containing all the moisture contents including the mean. For follow-up research, it is recommended 
to ensure no moisture is excreted from the homogenised chicken breasts. By properly mixing the 
samples before weighing, the moisture content determination becomes more accurate. Another and 
better option, is to analyse moisture with the fresh samples. Before moisture sampling, the samples 
were stored after injection, homogenised, frozen and defrosted. In between these steps, moisture 
loss can occur as well as a decrease in water-holding capacity (Oliveira et al., 2015). 

Table 1: Average moisture content and standard deviation of samples obtained from the butchers Van Santen (SA), 
Hermsen (HR), Gert Driessen (GF) and Elings (EL). The three treatment groups are: Control (CO), 3-5% moisture addition 
(MID) and 9-11% (HI). 

Sample Moisture (%) Std.dev Sample Moisture (%) Std.dev 

COSA1 73.34 0.422 COHR1 75.04 0.154 

COSA2 73.93 0.148 COHR2 75.24 0.294 

COSA3 74.71 0.013 COHR3 74.84 0.340 

MIDSA1 74.83 0.333 MIDHR1 76.19 0.029 

MIDSA2 74.85 0.367 MIDHR2 76.30 0.176 

MIDSA3 75.40 0.207 MIDHR3 76.38 0.623 

HISA1 75.90 0.067 HIHR1 76.55 0.166 

HISA2 75.26 0.178 HIHR2 76.19 0.420 

HISA3 76.64 0.216 HIHR3 76.58 0.223 

Sample Moisture (%) Std.dev Sample Moisture (%) Std.dev 

COGF1 75.41 0.455 COEL1 73.60 0.154 

COGF2 75.46 0.301 COEL2 73.67 0.347 

COGF3 74.71 0.190 COEL3 73.82 0.086 

MIDGF1 76.12 0.502 MIDEL1 74.06 0.080 

MIDGF2 75.23 0.116 MIDEL2 74.61 0.185 

MIDGF3 75.21 0.370 MIDEL3 74.36 0.144 

HIGF1 75.47 0.293 HIEL1 75.46 0.313 

HIGF2 77.44 0.120 HIEL2 75.87 0.004 

HIGF3 77.32 0.025 HIEL3 75.30 0.421 
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3.3 Protein content 
After the DUMAS test, the nitrogen content of the samples was determined. After this, the nitrogen 

values were multiplied with a conversion factor of 6.25 to obtain the protein content of the chicken 

samples (Hall & Schönfeldt, 2013) (Table 2). Samples MIDHR2 and HIHR2 were repeated as both 

samples were clear outliers compared to the other samples and there was a large difference between 

the duplicates. A possible reason for this was a manual weighing error which led to a higher observed 

protein content. After one repetition, both samples had an expected value. Besides the repeats, all 

samples were prepared on the same day to prevent variation as much as possible. At last, all duplicates 

were averaged to compare the different samples and were used to calculate the w/p ratio. 

Table 2: Average Protein content and standard deviation of the dry weight of samples obtained from the butchers Van 
Santen (SA), Hermsen (HR), Gert Driessen (GF) and Elings (EL). The three treatment groups are: Control (CO), 3-5% moisture 
addition (MID) and 9-11% (HI). 

Sample Protein (%) Std.dev. Sample Protein (%) Std.dev. 

COSA1 89.08 0.206 COHR1 91.08 0.542 

COSA2 90.00 0.319 COHR2 89.40 0.216 

COSA3 88.16 0.023 COHR3 87.87 0.186 

MIDSA1 88.55 0.375 MIDHR1 86.21 0.461 

MIDSA2 85.55 0.032 MIDHR2 85.40 0.260 

MIDSA3 86.89 0.226 MIDHR3 87.36 0.033 

HISA1 86.30 0.290 HIHR1 85.52 0.263 

HISA2 86.61 0.344 HIHR2 81.91 0.148 

HISA3 84.65 0.699 HIHR3 86.25 0.434 

Sample Protein (%) Std.dev. Sample Protein (%) Std.dev. 

COGF1 86.95 0.090 COEL1 88.70 0.094 

COGF2 85.99 0.124 COEL2 89.29 0.149 

COGF3 84.23 0.051 COEL3 89.08 0.094 

MIDGF1 82.95 0.086 MIDEL1 86.89 0.098 

MIDGF2 82.48 0.190 MIDEL2 85.86 0.264 

MIDGF3 83.38 0.190 MIDEL3 86.77 0.410 

HIGF1 79.79 0.478 HIEL1 84.84 0.547 

HIGF2 83.82 0.579 HIEL2 86.57 0.467 

HIGF3 83.64 0.117 HIEL3 83.89 0.166 
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3.4 Water/protein ratio 
After averaging all moisture and protein values, the w/p ratio was calculated. In Figure 2, all samples 

with the corresponding w/p ratio were visualised. The yellow-marked samples are samples exceeding 

the legal w/p value of 3.4. As expected, all HI samples exceeded the legal w/p ratio, as well as most of 

the MID samples. However, some MID samples did not exceed the value of 3.4. This was expected as 

the water addition of these samples barely exceeded the legal amount. Remarkably, the CO samples 

of “Gert Driessen” had an average w/p ratio between 3.5 and 3.6, exceeding the legal w/p ratio. One 

of the reasons for this value is that the butcher used an immersion chilling method to cool the chicken, 

or that there is a case of water addition of the chicken breasts. At last, important to note, is that the 

legal w/p ratio was determined 30 years ago. The natural w/p difference between chickens could have 

changed much compared to the chickens then, which would be the cause of a non-legal w/p ratio in 

the untreated samples without committing fraud (Elahi & Topping, 2012; Weesepoel et al., 2019). 

However, it was still remarkable to find that only all three control samples of one butcher exceeded 

the w/p ratio. To be sure, inspection and possible resampling could be a next step to find out more 

information about the non-legal w/p ratio.  

 

 

 

Figure 2: The water/protein ratio calculated with the obtained experimental data for all samples from the butchers Van Santen 
(SA), Hermsen (HR), Gert Driessen (GF) and Elings (EL), including a line = 3.4 to check if the samples exceed the legally allowed w/p 
limit. The three treatment groups can be observed: Control (CO) (top left), 3-5% moisture addition (MID) (top right) and 9-11% (HI) 
(bottom left). If the values exceeded the line, they were considered to have a not legal ratio of water to protein.  
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3.5 Confusion matrix 
Confusion matrices were developed to observe the correct identification and comparison of the 

samples between the different butchers with the same treatment and between the different 

treatments. Both these comparisons were applied to the FX10 and FX17 data. In Tables 3 and 4 the 

confusion matrices were given for both the complete spectral data and the selected spectral data 

between 900 and 1000 nm and 935 and 1250 nm for FX10 and FX17, respectively. Due to the memory 

space of MATLAB, the comparison between treatments was split up into three different matrices: HI-

CO, HI-MID, and MID-CO. The data can be read as how much of the data was perceived as its own 

group and how much of the data is confused with the data of another group. The total of these values 

always equals to one. For example, in Table 4, the table of Fx10 CO-MID showed that data 0.79 (79%) 

of CO was perceived correctly and that 0.21 (21%) of the data was confused with the MID sample 

group. 

For this study, the number of principal components was set at ten, as this resulted in the lowest 

confusion with the least amount of components and the least mean squares were used as a classifier. 

It was expected that the samples from different butchers with the same treatment would not be 

identified correctly as the samples would have similar spectra. This meant that these groups were 

more likely to be confused with each other due to the fact that the chicken breasts had the same 

treatment and that the samples of different butchers were expected to have a similar chemical 

composition. The analysis confirmed most of these expectations, as there was no clear identification 

of the different sample groups. However, in Table 3 was observed that the identification tended to 

identify most groups with the ‘GF’ samples instead of their own group. Next to this, the ‘GF’ samples 

had the highest identification ratio compared to all groups, while the ‘SA’ group had the lowest 

identification ratio of the groups. The explanation of random values was explained by the similar 

spectra of the groups which are shown in section 3.6. 

The identification between different treatments was expected to accurate as the reflectance of water 

should be different between the treatments, especially when the wavelengths for water were used. 

In Table 3, it can be observed that for both the FX17 and FX10 results, the samples were identified 

correctly for at least 78% when comparing the CO samples with the treated MID and HI samples. This 

was expected as the treated samples contained significantly more water than the control samples 

(CO). Nevertheless, the MID and HI samples were seemingly more difficult to identify from each other 

with correct identification between 61% and 72% accuracy, respectively. This was explained by the 

water addition in the samples of HI and MID being expressed in percentage ranges, where the highest 

percentage values of the MID samples could have been close to the low percentage addition of the HI 

samples. To conclude, this confusion matrix analysis contributed by confirming observed differences 

in the samples, resulting in the possibility of further analysis. 
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Table 4: The confusion matrices analysing the different treatments for both the FX10 (left) and FX17 (right) spectral images 
of the samples obtained from the butchers Van Santen (SA), Hermsen (HR), Gert Driessen (GF) and Elings (EL). There were 
three treatment groups: Control (CO), 3-5% moisture addition (MID) and 9-11% (HI). 

     Fx10            Fx17     

Sample COSA COHR COGF COEL Total   Sample COSA COHR COGF COEL Total 

COSA 0.002 0.354 0.625 0.018 1   COSA 0.011 0.366 0.443 0 1 

COHR 0.002 0.567 0.395 0.036 1   COHR 0.02 0.47 0.344 0 1 

COGF 0.001 0.175 0.804 0.017 1   COGF 0.001 0.117 0.752 0 1 

COEL 0.001 0.117 0.846 0.037 1   COEL 0.02 0.023 0.39 1 1 
                          

Sample MIDSA MIDHR MIDGF MIDEL Total   Sample MIDSA MIDHR MIDGF MIDEL Total 

MIDSA 0.048 0.407 0.312 0.234 1   MIDSA 0.15 0.273 0.347 0 1 

MIDHR 0.032 0.317 0.415 0.201 1   MIDHR 0.0057 0.377 0.422 0 1 

MIDGF 0.015 0.289 0.53 0.166 1   MIDGF 0.041 0.322 0.467 0 1 

MIDEL 0.04 0.27 0.374 0.316 1   MIDEL 0.065 0.166 0.355 0 1 

                          

Sample HISA HIHR HIGF HIEL Total   Sample HISA HIHR HIGF HIEL Total 

HISA 0.264 0.118 0.53 0.088 1   HISA 0.001 0.112 0.778 0 1 

HIHR 0.186 0.355 0.38 0.079 1   HIHR 0.001 0.465 0.444 0 1 

HIGF 0.161 0.14 0.607 0.092 1   HIGF 0.001 0.179 0.673 0 1 

HIEL 0.126 0.187 0.617 0.071 1   HIEL 0.003 0.169 0.627 0 1 
 

   Fx10          Fx17   

Group CO MID Total   Group CO MID Total 

CO 0.79 0.21 1   CO 0.783 0.217 1 

MID 0.237 0.763 1   MID 0.098 0.902 1 

Group CO HI Total   Group CO HI Total 

CO 0.785 0.215 1   CO 0.827 0.173 1 

HI 0.18 0.82 1   HI 0.075 0.925 1 

Group MID HI Total   Group MID HI Total 

MID 0.614 0.386 1   MID 0.59 0.41 1 

HI 0.273 0.727 1   HI 0.327 0.673 1 
 

Table 5: The confusion matrices analysing the treatment groups Control (CO), 3-5% Moisture addition (MID) and 9-11% moisture 
addition (HI) for both FX10 (left) and FX17 (right) spectral images. 
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3.6 Image acquisition 
Figure 3 shows a typical spectral image of both the FX10 (A) and FX17 (B) cameras where the region 

of interest (ROI) was already annotated. The typical spectra obtained from these images are shown in 

Figure 4. As can be observed, the FX10 spectra showed very few obvious peaks and throughs. It was 

important to observe these throughs as every through in these spectra corresponded to a chemical 

component like for example water or protein. Not having clear throughs and peaks might be due to 

possible overlapping noise in this wavelength range of 400-940 nm. The only clear trough observed 

was at wavelengths between the range of 940-1000 nm. The spectra of FX17 showed clear peaks and 

troughs at the wavelength range between 935-1250 nm and limited reflectance was observed in the 

wavelength range between 1300-1700 nm as the signal around these wavelengths was not as strong. 

The overlapping troughs of 940-1000 nm FX10 and 935-1250 nm of FX17 spectra matched with one of 

the absorption wavelengths of water. 

 

Figure 3: Image acquisition and annotation of images from the (A) FX10 camera and the (B) FX17 camera. The colours 
blue, green, red and yellow correspond to the butchers Van Santen (SA), Hermsen (HR), Gert Driessen (GF) and Elings (EL) 
respectively. 
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 A 

 B 

 

Figure 4: Average spectrum of the chicken samples obtained from the (A) FX10 camera and the (B) FX17 camera. The light 
blue, lilac, light green and purple spectra correspond to the butchers Gert Driessen (GF), Van Santen (SA), Elings (EL) and 
Hermsen (HR) respectively. 
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3.7 Wavelengths selection 
The prediction model was expected to become more accurate when only a selection of wavelengths 

was used compared to the full spectra. For selecting the wavelength range, the absorption spectrum 

of water was used as a reference, as in Figure 5. In the Figure, absorbance peaks can be observed at 

around 5000 cm-1 (2000 nm), 7000 cm-1 (1429 nm) and between 9500 and 11000 cm-1 (909 and 1050 

nm) For this research, the small peak between 9500 and 11000 cm-1 (909-1050 nm) was used as this 

was the only peak within the imaged spectrum (Afrin et al., 2013). Afrin et al., 2013 stated that this 

peak corresponded to “2v1 + v3”, which meant a two times symmetrical stretch and one asymmetrical 

stretch of O-H (Afrin et al., 2013; Buijs & Choppin, 1963; Carleer et al., 1999). Meat studies of ElMasry 

et al. 2011 and Yang et al. 2018 first determined the optimal wavelength selection by the use of PCA 

and plotting the wavelengths against the eigenvectors, and using established regression coefficients 

from PLSR respectively. With this, both studies obtained wavelengths corresponding to the 

wavebands of water found from literature (ElMasry, et al., 2011; Yang et al., 2018). As was observed 

in Figure 4(A) and (B), expected throughs were located at the mentioned wavelength range. This range 

of wavelengths was therefore selected to create the PLSR prediction model. As mentioned, for a 

specific wavelength selection, a Pearson correlation analysis was conducted for this study. For both 

FX10 and FX17, the wavelength range of water was used to observe which wavelengths specifically 

correlated the best (Figure 6). The graphs showed clear troughs at the expected wavelengths which 

corresponded to the absorbance spectrum of water as absorbance is perceived as a trough in 

reflectance analysis. For comparison, both the wavelength range and the selected wavelengths were 

used to make a PLSR model to compare the accuracy. 

 

 

Figure 5: Two examples of the absorption spectrum of water. On the X-axis the wavenumber was given (1/wavelength) 
(Afrin et al.,2013). The arrow indicates the absorbance peak used for this study. 
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Figure 6: Pearson correlation graphs acquired from the (left) FX10 and the (right) FX17. The troughs observed in both graphs correspond to the 
absorption peaks of water and the corresponding wavelengths were therefore selected for modelling. 
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3.8 PLSR and Pearson correlation 
After image acquisition and annotation, and determining the moisture and protein contents, a PLSR 

model was developed. A model for the selected wavelength range was developed. 

First, the spectral data containing spectra of more than 300000 points was averaged which gave only 

one value per specific waveband. After that, just as for the confusion matrix, the dataset was split into 

a training and test set with a ratio of 0.7 and 0.3 respectively. As mentioned, the accuracy and 

reproducibility were determined by the factors MSE, the PRESS and R2. Table 6 shows the wavelength 

selection obtained from the water spectra and the Pearson correlation analysis with their 

corresponding factors. The specific wavelengths showed to have the lowest PRESS and MSE for both 

FX10 and FX17, validating that the selected wavelengths make a more accurate model for the moisture 

analysis. The maximum variance corresponding to the least amount of LVs however, did not exceed 

more than 70%. 

To test if the accuracy of the model was accurate enough to find differences between fraudulent and 

non-fraudulent samples, regression models were made (Figure 7). The scattered values of both Figures 

showed that the predicted values differed at most 1% of the actual moisture content. During the 

moisture content and the w/p ratio analysis, it was observed that 1% difference in moisture could 

make a big difference in the w/p ratio. This would mean that with this model, some chicken breasts 

can be tested false positive and false negative. However, the inaccuracy of this model could be due to 

the small sample size. Follow-up research is recommended to increase the sample size of the chicken 

breasts, as well as obtain the chicken from more different sources to increase the variation in samples 

as well. 

 

Wavelengths PRESS MSE R2 

930.36-1024.11 (25) 7.085 3.449 0.704 

949.11-975.89 (11) x 1.584 0.640 

 

Wavelengths PRESS MSE R2 

948.11-1186.79 (35) 8.713 2.796 0.820 

948.11, 955.13, 962.15, 969.17, 976.19,  
983.21, 990.23, 997.25, 1004.27, 1151.69,  
1158.71, 1165.73, 1172.75, 1179.77, 1186.79 
(15) 

5.592 1.191 0.831 

 

 

Table 6: The different wavelength selections with their corresponding factors (PRESS, MSE, R2) for both FX10 and FX17. 

FX10 

FX17 
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Figure 7: PLS regression models applied on the test set of n=9 for both Fx10 data (A) and Fx17 data (B). 

 A 

 B 
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4 Recommendations for future research 
For future research, it is recommended to increase the accuracy of both the model and data by using 

a larger dataset and obtain samples from more varying sources to increase the variation of the data 

as well. Besides having a large dataset, it is recommended to study the possibilities of making a visual 

map for the protein as well in the hope of fully using spectral imaging instead of chemical analysis. 

Having both the accurately predicted value for water and protein would make it possible to calculate 

the w/p ratio without the use of chemical analysis, making spectral imaging a possible new method 

for detecting excessive water in chicken breasts as well as other meats At last, the time between 

analyses should be minimalized. In this study, the chicken breasts were homogenised and analysed 

when they were three weeks old. If further research shows that models can be made accurate enough, 

it is aimed to apply spectral imaging in practise and replace the conventional way of testing chicken 

breasts. 
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5 Conclusion 
This study aimed to find out to what extent spectral imaging could be used to visually map and predict 

excessive water addition, and how accurate a PLSR and classification model were to identify chicken 

samples with different treatments. First, the PLSR models obtained from the spectral and 

experimented moisture data of the chicken showed promising results, as the model was at most 1% 

off the actual measured moisture content. This is a promising result as this small sample size validated 

the possibility to make a map of the moisture content. Next to this, confusion matrices showed clear 

classification and identification of different treated sample groups around the water absorbance 

region. Hereby validating the possibility to observe clear differences between the fraudulent and 

control samples. Due to the small dataset, no definite conclusion could be made. However, these 

results showed the possibility of using spectral imaging data to be able to visually map and classify 

fraudulent injected chicken samples after more extensive research, with the hope that in the future, 

spectral imaging can replace the conventional methods of detection. 
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7 Appendix 
 

7.1 Appendix A Moisture content 

Sample Moisture conc. (%) Mean (%) Sample Moisture conc. (%) Mean (%) 

COSA 1.1 73.04 
73.34 

COHR 1.1 74.93 
75.04 

COSA 1.2 73.64 COHR 1.2 75.14 

COSA 2.1 73.82 
73.93 

COHR 2.1 75.44 
75.24 

COSA 2.2 74.03 COHR 2.2 75.03 

COSA 3.1 74.70 
74.71 

COHR 3.1 75.08 
74.84 

COSA 3.2 74.72 COHR 3.2 74.60 

MIDSA 1.1 75.07 
74.83 

MIDHR 1.1 76.17 
76.19 

MIDSA 1.2 74.60 MIDHR 1.2 76.21 

MIDSA 2.1 74.59 
74.85 

MIDHR 2.1 76.42 
76.30 

MIDSA 2.2 75.11 MIDHR 2.2 76.17 

MIDSA 3.1 75.25 
75.40 

MIDHR 3.1 76.82 
76.38 

MIDSA 3.2 75.54 MIDHR 3.2 75.93 

HISA 1.1 75.95 
75.90 

HIHR 1.1 76.67 
76.55 

HISA 1.2 75.86 HIHR 1.2 76.43 

HISA 2.1 75.14 
75.26 

HIHR 2.1 76.49 
76.19 

HISA 2.2 75.39 HIHR 2.2 75.90 

HISA 3.1 76.80 
76.64 

HIHR 3.1 76.42 
76.58 

HISA 3.2 76.49 HIHR 3.2 76.73 

 

Sample Moisture conc. (%) Mean (%) Sample Moisture conc. (%) Mean (%)  

COGF 1.1 75.73 
75.41 

COEL 1.1 73.71 
73.60 

 

COGF 1.2 75.09 COEL 1.2 73.50  

COGF 2.1 75.25 
75.46 

COEL 2.1 73.42 
73.67 

 

COGF 2.2 75.68 COEL 2.2 73.91  

COGF 3.1 74.58 
74.71 

COEL 3.1 73.76 
73.82 

 

COGF 3.2 74.84 COEL 3.2 73.88  

MIDGF 1.1 75.77 
76.12 

MIDEL 1.1 74.11 
74.06 

 

MIDGF 1.2 76.48 MIDEL 1.2 74.00  

MIDGF 2.1 75.32 
75.23 

MIDEL 2.1 74.75 
74.61 

 

MIDGF 2.2 75.15 MIDEL 2.2 74.48  

MIDGF 3.1 74.95 
75.21 

MIDEL 3.1 74.26 
74.36 

 

MIDGF 3.2 75.48 MIDEL 3.2 74.46  

HIGF 1.1 75.68 
75.47 

HIEL 1.1 75.24 
75.46 

 

HIGF 1.2 75.27 HIEL 1.2  75.68  

HIGF 2.1 77.35 
77.44 

HIEL 2.1 75.87 
75.87 

 

HIGF 2.2 77.52 HIEL 2.2 75.87  

HIGF 3.1 77.34 
77.32 

HIEL 3.1 75.60 
75.30 

 

HIGF 3.2 77.30 HIEL 3.2 75.00  

 

Table 7: The moisture data of all samples in duplicate and mean obtained via the drying method. Every table shows the 
moisture data of samples originating from the same butcher: SA (top left), HR (top right), GF (bottom left) and EL (bottom 
right). The three treatment groups can be observed: Control (CO), 3-5% moisture addition (MID) and 9-11% (HI).  
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7.2 Appendix B Protein content 

Sample Protein (%) Mean (%) Sample Protein (%) Mean (%) 

COSA 1.1 89.23 
89.08 

COHR 1.1 91.20 
91.58 

COSA 1.2 88.94 COHR 1.2 91.96 

COSA 2.1 89.78 
90.00 

COHR 2.1 89.56 
89.40 

COSA 2.2 90.23 COHR 2.2 89.25 

COSA 3.1 88.18 
88.16 

COHR 3.1 87.74 
87.87 

COSA 3.2 88.15 COHR 3.2 88.00 

MIDSA 1.1 88.28 
88.55 

MIDHR 1.1 86.53 
86.21 

MIDSA 1.2 88.81 MIDHR 1.2 85.88 

MIDSA 2.1 85.57 
85.55 

MIDHR 2.1 85.22 
85.40 

MIDSA 2.2 85.52 MIDHR 2.2 85.58 

MIDSA 3.1 87.05 
86.89 

MIDHR 3.1 87.38 
87.36 

MIDSA 3.2 86.73 MIDHR 3.2 87.34 

HISA 1.1 86.09 
86.30 

HIHR 1.1 85.33 
85.52 

HISA 1.2 86.50 HIHR 1.2 85.70 

HISA 2.1 86.85 
86.61 

HIHR 2.1 81.81 
81.91 

HISA 2.2 86.37 HIHR 2.2 82.02 

HISA 3.1 85.14 
84.65 

HIHR 3.1 86.56 
86.25 

HISA 3.2 84.15 HIHR 3.2 85.94 

      

Sample Protein (%) Mean (%) Sample Protein (%) Mean (%)  

COGF 1.1 87.02 
86.95 

COEL 1.1 88.82 
88.70 

 

COGF 1.2 86.89 COEL 1.2 88.58  

COGF 2.1 86.08 
85.99 

COEL 2.1 89.19 
89.29 

 

COGF 2.2 85.91 COEL 2.2 89.40  

COGF 3.1 84.20 
84.23 

COEL 3.1 89.01 
89.08 

 

COGF 3.2 84.27 COEL 3.2 89.14  

MIDGF 1.1 82.89 
82.95 

MIDEL 1.1 86.96 
86.89 

 

MIDGF 1.2 83.01 MIDEL 1.2 86.82  

MIDGF 2.1 82.30 
82.48 

MIDEL 2.1 86.05 
85.86 

 

MIDGF 2.2 82.66 MIDEL 2.2 85.68  

MIDGF 3.1 83.51 
83.38 

MIDEL 3.1 86.48 
86.77 

 

MIDGF 3.2 83.24 MIDEL 3.2 87.06  

HIGF 1.1 80.13 
79.79 

HIEL 1.1 84.46 
84.84 

 

HIGF 1.2 79.45 HIEL 1.2  85.23  

HIGF 2.1 84.23 
83.82 

HIEL 2.1 86.90 
86.57 

 

HIGF 2.2 83.41 HIEL 2.2 86.24  

HIGF 3.1 83.72 
83.64 

HIEL 3.1 84.01 
83.89 

 

HIGF 3.2 83.56 HIEL 3.2 83.77  

 

 

Table 8: The protein data of the dry weight of all samples in duplicate obtained via DUMAS. Every table shows the protein 
data of samples originating from the same butcher: SA (top left), HR (top right), GF (bottom left) and EL (bottom right). The 
three treatment groups can be observed: Control (CO), 3-5% moisture addition (MID) and 9-11% (HI).  


