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A B S T R A C T

This paper aims to provide a solid basis for the quantification and modeling of price volatility in the Dutch
intraday electricity market. It analyzes price volatility through realized volatility, which is adapted from
foundations in quadratic variation theory. Realized volatility is then estimated using differing multivariate
linear regression and random forest regression models. We build these models around features pulled from
quadratic variation theory, market fundamentals, liquidity, and information asymmetry. Furthermore, we
assess the impact of features within the models using permutation feature importance and recursive feature
elimination. The models leverage a multi-year dataset from EPEX SPOT containing completed trades of hourly
products as well as other complementary data sources. The results of the paper include recommendations
for future price volatility research within intraday electricity markets, mainly: (i) strive to utilize order book
data to have a clearer idea of how prices settle and true bid–ask spreads, and (ii) increase model robustness
by combining modeling efforts to assess DA, ID and balancing market impacts on price. This paper aims to
benefit multiple stakeholders namely, academic researchers, industry participants, and European regulators,
by providing a structured view on price volatility quantification and estimation for internationalized intraday
electricity markets.
1. Introduction

Electricity trading takes place in multi-settlement markets, allow-
ing to trade energy products with different temporal granularities. In
the spot markets, intra-day (ID) electricity markets are gaining more
importance as they allow for energy trading until shortly before the
delivery period (Scharff and Amelin, 2016a; Le et al., 2019; Birkeland
and AlSkaif, 2024). This can be profitable for market participants and
beneficial for energy system operators to reduce imbalances from day-
ahead planning, due to forecasting errors, since higher accuracy on
(renewable) energy forecasts can be achieved closer to the physical
delivery time. For instance, from 2010 to 2016, the volume of energy
traded on the continuous German intraday (ID) market rose by about
400% (Martin and Otterson, 2018). Notably, one of the most pivotal
recent developments in the ID market was the successful implemen-
tation of the Single IntraDay Coupling (SIDC) project. This ambitious
initiative aimed to connect and harmonize intraday electricity trading
across 23 countries (All NEMOs Committee, 2023). Starting in 2018,
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the SIDC connected all relevant geographic areas in 2023. Within this
integrated framework, trading activity, i.e., XBID, skyrocketed from 3.5
million trades in mid-2018 to a substantial 20.2 million trades in early
2023 (All NEMOs Committee, 2023).

The rise in ID trading activity within electricity markets is primarily
driven by the growing presence of variable Renewable Energy Sources
(vRES) (e.g., wind and solar energy installations). This increase in
vRES production can be partially attributed to the decreasing costs
of essential technological components, including solar panels, as well
as to subsidized investment capital (Uyterlinde et al., 2007). Further-
more, government mandates (e.g., the European Directive 2009/28/EC
which stated that, by 2020, 20% of the EU final energy consump-
tion should be produced through vRES) increased vRES production
across the EU (Council of the European Union European Parliament,
2009). Unlike fossil fuel-based generation, vRES energy generation is
inherently intermittent, non-dispatchable and unpredictable due to its
dependence on natural factors, such as solar irradiance and wind speed.
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vRES shares have grown significantly across major EU states since
the turn of the century, with Germany’s vRES share growing from
8.79% to 19.45% between 2010 and 2021 (Our World in Data, 2023).
The unpredictability of vRES generation exposes electricity market
participants to risks of supply/demand shocks and significant short-
term price movement (Tanaka et al., 2022). Within the context of price
volatility, price movement and variation are crucial components. Price
movement refers to changes in the price of a market product over time
(e.g., the H9–H10 ID hourly product), whereas price variation denotes
the movement of prices on an ID market within a given day.

Price movement and variation in electricity markets have been
explored through various modeling approaches in the literature. Pape
et al. (2016) analyze price variation in the German day-ahead (DA)
and ID markets by considering market fundamentals of marginal cost,
demand for fossil-based operators and market supply states, employ-
ing a multiple linear regression approach (Pape et al., 2016). Other
research focuses on forecasting prices, with volatility as a feature
within a larger model. For example, Andrade et al. (2017) utilize
probabilistic methods to forecast auction closing prices in the Spanish
MIBEL market (Andrade et al., 2017), while Maciejowska et al. (2019)
examine DA to ID price spreads per delivery hour using estimated vRES
production and published price forecasts to capture agency estimated
price movement (Maciejowska et al., 2019). Our study builds upon
previous research by Chan et al. (2008), Ullrich et al. (2012), Haugom
et al. (2011), and Frommel et al. (2014), focusing exclusively on the
ID market and extracting volatility signals from realized measures such
as realized variance (Chan et al., 2008; Haugom and Ullrich, 2012;
Haugom, 2011; Frömmel et al., 2014). Qu et al. (2018) expand on the
decomposition of realized volatility and inclusion of jump components
in Australian energy markets by developing HAR-GARCH models that
outperform benchmark models proposed by Chan et al. Qu et al. (2018).
Similarly, our study addresses model combinations based on the bench-
mark HAR models and incorporates a broader collection of market
features. Furthermore, our approach builds on the work of Karakatsani
and Bunn (2010), who decomposed volatility into observable features
in the UK spot ID market using GARCH methods, highlighting the
importance of incorporating time-varying price responses for increased
model accuracy (Karakatsani and Bunn, 2010).

Understanding ID price volatility is essential to comprehending
the historical, present and future ID market status for participants
and stakeholders alike. This underscores the need for quantification
and modeling of price volatility. Researchers have proven quadratic
variation theory to be a useful approach for analyzing the daily realized
volatility (𝑅𝑉 ) of prices under such circumstances (Barndorff-Nielsen
and Shepard, 2004, 2006). Key applications to electricity markets are in
work both within and outside the European market (Chan et al., 2008;
Haugom and Ullrich, 2012; Ciarreta et al., 2017). However, none of this
research on price volatility – whether using quadratic variation or other
methods – considers the Dutch ID electricity market, focusing instead
on the UK, German, and Iberian markets. There are other approaches
that adopt more traditional market returns for analyzing price volatility
such as Lee and Mykland (2007), which is also based on the mathemat-
ical basis found in the work of Barndorff-Nielsen and Shepard (2004,
2006). The procedure denoted by Lee and Mykland (2008) is accessible
and the transaction level data available for this study would make
their procedure applicable on these data quality requirements (Lee and
Mykland, 2007). However, the Lee and Mykland (2008) construction
assumes that each product has no more than one price volatility jump
per day since their analyses are focused on individual security pricing
of a sample S&P 500 companies (Lee and Mykland, 2007). The Dutch ID
market is actually made up of 24 distinct hourly products, where each
could have more than 1 price volatility jump per day since they are
all traded along differing timelines and address differing actor needs.
Therefore, this paper uses the price jump decomposition techniques
presented in Chan et al. (2008), Haugom and Ullrich (2012), Ciarreta

et al. (2017) to measure the Dutch ID price volatility instead of methods w
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centered around standard securities, such as those presented in Lee and
Mykland (2007).

This paper explores the ID price movements in the Dutch bidding
zone of EPEX SPOT in recent years and develops a regression model
to better explain 𝑅𝑉 of continuous ID hourly delivery products in
this zone. We achieve this by breaking down price volatility into
separate components and showing the importance of time variation.
To explain 𝑅𝑉 , we develop four distinct regression models, leveraging
existing price forecasting and price premia literature. These four dis-
parate models are supplemented with separate benchmarking models
to add robustness to the results. The paper provides insights on price
movements in the Dutch continuous ID electricity market. These in-
sights have societal relevance for industry participants and regulators.
Industry participants’ understanding of volatility and price trends di-
rectly impact their day-to-day operations. For regulators, understanding
volatility in their market of interest increases insights into extreme
market behaviors and market design impacts. Additionally, research
and deeper understanding of the Dutch electricity market has connec-
tions to the Title Transfer Facility (TTF) market, which is the largest
European gas market and based in the Netherlands. Hence, this analysis
can contribute to the development of economic and financial theories
related to energy markets, price dynamics, and market behavior across
these disparate markets.

The remainder of this paper is organized as follows: Section 2.1
presents the methods utilized to construct 𝑅𝑉 and targeted regression
models, Section 3 describes the data sources which feed the regression
models as well as the ID price time series, Section 4 illustrates the
regression constructions and reports the results of the price volatility
regression estimates, and Section 5 summarizes the price volatility
study and discusses the implications of its results. Section 6 concludes
the article and provides recommendations for future price analysis on
the Dutch ID market.

2. Methods

2.1. Volatility measures

This study uses different methods to estimate price volatility. 𝑅𝑉 is
measure for the unobserved volatility of a high-frequency time series.
esearchers traditionally estimate 𝑅𝑉 based on quadratic variation

heory, which also enables total price variation to be decomposed
onparametrically into its continuous and jump components for equally
paced observations (Ciarreta et al., 2017). Next, this paper also seeks
o understand whether 𝑅𝑉 can be explained using more common mar-
et metrics, such as trade volume or daily gas price. 𝑅𝑉 is constructed
or each day using the following equation construction. Assume that
rices are set T times for each day d. The 𝑅𝑉 for day d can then be
stimated as:

𝑉𝑑 =
𝑇
∑

𝑡=1
𝑟2𝑡 , (1)

here 𝑟𝑡 = 𝑃𝑡−𝑃𝑡−1 refers to the difference between sequential sampled
D prices of adjacent delivery hours (e.g., at time t and t-1). Each 𝑃𝑡
epresents one completed trade price for a unique year, month, day,
nd delivery hour combination from our dataset of the Dutch EPEX
POT trades from 2020–2023. A specific 𝑃𝑡 is sampled from the many
rices sharing the same temporal combination using the pandas library
n Python.

This process ensures that, for each unique time slot, a single com-
leted trade price is chosen, making the selection unbiased and rep-
esentative of each delivery hour within the dataset. Since this paper
ocuses on hourly ID products, T equals 24 for each day d, and the
alculated 𝑅𝑉 captures the daily ID price volatility by aggregating
rice differences between individual hourly ID products across all hours

ithin a given day.
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2.1.1. Realized volatility and price jump detection
While 𝑅𝑉 captures the unobserved volatility, integrated volatility

captures the continuous, predictable component of 𝑅𝑉 and can be
estimated using a concept called bipower variation (𝐵𝑉 ) utilized within
the work of Barndorff-Nielsen and Shepard (2006), where 𝐵𝑉 is given
as:

𝐵𝑉𝑑 = 1.57 𝑇
(𝑇 − 1)

𝑇
∑

𝑡=2
|𝑟𝑡 ∥ 𝑟𝑡−1|. (2)

In order to detect a statistically significant day, d, in terms of price
movement, which will be called a jump day, Huang and Tauchen
(2005) suggest the following statistic (𝑍𝑑) which can be evaluated at
differing levels of significance, 𝛼.

𝑍𝑑 =
√

𝑇
(𝑅𝑉𝑑 − 𝐵𝑉𝑑 )∕𝑅𝑉𝑑

√

0.61max
[

1, 𝑇𝑄𝑑∕𝐵𝑉 2
𝑑
]

. (3)

The denominator variable 𝑇𝑄𝑑
1 is described as:

𝑄𝑑 = 1.74 𝑇 2

(𝑇 − 2)

𝑇
∑

𝑡=3
(|𝑟𝑡||𝑟𝑡−1||𝑟𝑡−2|)4∕3. (4)

Prior research proves the statistic 𝑍𝑑 converges to a normal distri-
bution as 𝑇 → ∞ (Barndorff-Nielsen and Shepard, 2004; Ciarreta et al.,
2017). Therefore, if the statistic 𝑍𝑑 exceeds the critical value 𝜙(1−𝛼),
where 𝛼 is the chosen significance level, day 𝑑 is classified as a price
jump day. The jump component of volatility (𝐽𝑉 ) at day d is obtained
through:

𝐽𝑉𝑑 = 𝐼𝑍>𝜙(1−𝛼) (𝑅𝑉𝑑 − 𝐵𝑉𝑑 ), (5)

where 𝐼𝑍>𝜙(1−𝛼) is 1 when day d is a jump day and 0 otherwise.
Once total 𝑅𝑉 and 𝐽𝑉 are estimated, the continuous component

of the total variation, 𝐶𝑉 , is given by the difference between the two
quantities, as:

𝐶𝑉𝑑 = 𝑅𝑉𝑑 − 𝐽𝑉𝑑 . (6)

𝐶𝑉𝑑 is critical in understanding volatility days since it measures the
price variation without taking the jump component.

2.1.2. Liquidity
According to Lybek and Sarr (2002) liquidity in any market is

generally perceived as desirable because it increases allocation and
information efficiency. Over the last six years, there has been a sub-
stantial increase in liquidity within the Dutch continuous ID market, as
evidenced by the significant growth in both the number of completed
trades and the quantity of traded volume measured in MWh. Data
for the Dutch continuous ID market from the EPEX SPOT European
power exchange shows that the trade count increased from around
57,000 trades in 2016 to around 2,400,000 in 2022, while the traded
volume increased from around 1500 to 6500 GWh over the same
time span (EPEX Spot, 2023). Earlier studies stress the importance of
increasing liquidity to efficiently integrate wind energy into the larger
DA and ID markets (Weber, 2010). We adopt commonly used indicators
of liquidity (e.g., the bid–ask spread, price high-to-low difference, price
variance, trade volume in terms of unique trade count, and trade
volume in terms of energy traded). We arrived at this specific list
by following the work from Hagemann and Weber (2013). How each
of these indicators is constructed from the price time series will be
outlined in the following sub-sections.

1 For a more extensive discussion on the rationale behind using 𝑇𝑄𝑑 and
jump detection in quadratic variation theory, the reader might refer to Huang
and Tauchen (2005).
 t
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Bid–ask spread. The bid–ask spread (BAS) is typically measured via
the effective or quoted spread between orders on opposite sides of the
order book. This calculation of the BAS would require order book data,
which was not available for this research. Alternatively, the BAS can
be calculated using the ID market transaction data. Hagemann et al.
(2013) laid out an approach to approximate classical BAS using this
type of market transaction data (Hagemann and Weber, 2013). First,
we sort all trades in the yearly transaction list in a chronological row
according to their execution timestamp. We then label the EPEX SPOT
data with ‘‘buy’’ or ‘‘sell’’ indicators, which can be compared if they
pertain to the same product, volume and delivery hour. For every pair
of chronologically subsequent ‘‘buy’’ and ‘‘sell’’ trades, we calculate the
difference between both trade prices and generate one BAS data point.
Finally, we utilize all calculated BAS data points for a single product at
a specific delivery hour to calculate the average BAS for that delivery
hour. We then average these hourly BAS averages across all 24 delivery
products yielding a daily BAS average for a day d. Note, however, that
according to Hagemann and Weber (2013), this procedure tends to
underestimate the magnitude of the actual BAS at a delivery hour. In
addition, it may not correctly reflect the transactions corresponding to
the order book ‘‘buy’’ and ‘‘sell’’ spread at the time of execution.

High-to-low difference. We define the high-to-low price difference vari-
able as the difference between the highest and the lowest trade price for
a delivery hour. The average high-to-low difference for each delivery
hour t during day d can be calculated as:

𝜏𝑑 =
∑𝑇

𝑡=1 max𝑖=1,…,𝑁𝑡
(𝑃𝑖,𝑡,𝑑 ) − min𝑖=1,…,𝑁𝑡

(𝑃𝑖,𝑡,𝑑 )
𝑇

, (7)

where 𝑁𝑡 is the number of trades registered for the ID product for
delivery hour t, 𝑃𝑖,𝑡,𝑑 is the price of trade 𝑖 for delivery hour t in day
d, and T is the number of times prices are set per day (i.e.,𝑇 = 24
in this work). The maximum and minimum are taken over the same
hour 𝑡 in day 𝑑, so that the maximum transaction price for a specific
D product is compared to the minimum transaction price for the same
D product. Thus, this indicator (𝜏𝑑) reflects the maximum price spread
or a delivery product and captures some of the volatility present in 𝑅𝑉
nce the high-to-low difference is averaged over all delivery products
n a day.

rice variance. Furthermore, we calculate price variance as the average
rice variance of all trades for one delivery hour. This delivery hour
ariance is then averaged over all delivery hours, t, to obtain the
verage price variance for day d. The average price variance for a day
variable can be described as:

2
𝑑 =

∑𝑇
𝑡=1

(

1
𝑁𝑡

∑𝑁𝑡
𝑖=1(𝑃𝑖,𝑡,𝑑 − �̄�𝑡,𝑑 )

)2

𝑇
, (8)

where 𝑁𝑡 is the number of trades registered for the delivery hour
product, 𝑃𝑖,𝑡,𝑑 is the price of trade 𝑖 for delivery hour t in day d,

nd �̄�𝑡 is the mean price for the product deliverable at hour 𝑡. All of
his calculation occurs across the transaction within a single day 𝑑.
hus, this indicator (𝜎2𝑑) reflects the average price variance across all
rades within each given ID product at time 𝑡 and then made into a
aily quantity by averaging over 𝑇 . This is distinct, yet similar, to the
ey volatility measure 𝑅𝑉 since 𝑅𝑉 captures the volatility between
equential ID products before aggregating to a daily value, while 𝜎2𝑑
aptures the variance within each ID product in reference to the daily
ean (�̄�𝑡) before aggregating to a daily value.

rade volumes. Finally, trading activity is measured via two variables:
rade volume in terms of energy and trade volume in terms of unique
rades. The energy trade volume is calculated as the total sum in MWh,
hile the number of unique trades is measured as the total number of

rades during the delivery hours on day d.
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Fig. 1. Illustration of potential inside information using a 30-minute trading closure market design.
2.1.3. Market fundamentals
Since fossil generation is still a large component of energy gen-

eration in the Netherlands and in Europe, it is reasonable to assume
that the prices of fossil fuels will have some impact on ID electricity
market prices and their volatility. The prices of gas, coal and CO2-
emissions are controlled for as they affect the marginal costs at which
a gas or coal-fired power plant can produce electricity in the Nether-
lands (Mulder and Scholtens, 2013). Thus, gas and coal prices control
for the raw materials needed for production and for whether fossil-fuel
generation operates based on marginal cost economics. Meanwhile, the
CO2-emission price controls for the penalty of emitting CO2 during
production. Overall, it is reasonable to assume that higher fossil prices
translate into higher electricity prices. In addition, it makes sense
to assume that national level forecasting errors between DA and ID
windows for load and vRES generation will impact ID price formation.
These errors may contribute to volatility within the ID market, as
market participants adapt to either upward or downward gaps in the
load-generation balance (Valitov and Maier, 2020). All these factors are
to be combined with the net physical transport of electricity taking
place between the grids of major trading partners, the Netherlands
and Belgium, which serves as a proxy measure for the number of
XBID orders that require significant transmission capacity (Scharff and
Amelin, 2016b).

2.1.4. Private vs. public capacity outage
Power plants often need to undergo scheduled maintenance which

will leave gaps in the supply of electricity to the market. These supply
dips could impact prices and must be communicated to the market in
advance (ACER, 2023). However, unplanned shutdowns also occur at
power plants. While these outages must be reported, there have been
instances where the outage and reporting were not simultaneous and
the unexpected outage of a significant generation source impacted mar-
ket behavior before the relevant message was published. Additionally,
outages and late messages can occur close to trading window closures.
These timing dynamics are illustrated in Fig. 1 for a market design
whereby trade closes 30 min prior to delivery and the publication of an
unplanned outage does not reach stakeholders until 10 min after gate
closure. In this figure, the ‘‘Outage Begins’’ tag at 15:20, indicates the
beginning of the unplanned outage, followed by ‘‘H17 Close’’, which
indicates the closure of trade for the H17 delivery window. This left
parties aware of the unplanned outage with 10 min to act on insider
information regarding the H17 delivery window. This insider informa-
tion was not publicized until 15:40, indicated by the ‘‘Published’’ tag.
From this point on, there is no longer any insider information regarding
the unplanned outage that might impact the trading of energy slated for
delivery in the H18 window and beyond.

2.2. Regression methods

We implement regression methods in this study to estimate the daily
realized ID price volatility 𝑅𝑉 (see Section 2.1). We adopt two common
and effective regression models: multivariate linear regression (MLR)
and random forest (RF) regression. MLR is suitable for simpler, linear
relationships, while RF regression is more versatile, capable of handling
nonlinear relationships and robust to outliers and high-dimensional
data. The relationship between most of the variables in the previously
discussed sections and 𝑅𝑉 is unknown; both methods can be used to
take advantage of their respective strengths and give more insight into
modeling price volatility.
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2.2.1. Multivariate linear regression
MLR is a simple yet effective regression model that is widely

adopted to analyze ID electricity market prices (Chan et al., 2008;
Ciarreta et al., 2017; Pape et al., 2016). Based on training data, the MLR
model uses a loss function to determine the coefficients that explain a
linear relation between the predictor variables and the target variable.
The MLR model estimates the target variable 𝑅𝑉 as:

𝐑𝐕𝑀𝐿𝑅 = 𝛽0 + 𝛽1𝐱1 + 𝛽2𝐱2 +⋯ +⋯ + 𝛽𝑘𝐱𝑘, (9)

where the 𝛽s are the regression coefficients and 𝑘 is the number of
predictor variables.

2.2.2. Random forests regression
RF regression is a tree-based regression model that has proven its

value for time-series forecasting and regression applications (Grinsztajn
et al., 2022; Jain et al., 2022; Visser et al., 2022). It will also be used
here to estimate 𝑅𝑉 and compare its performance with MLR. RF is an
ensemble based model that consists of a number of trees, each made
up of 𝑛 layers and 2𝑛 decision nodes, with 𝑛 = 0 at the first layer. The
decision trees are created independently and are built by considering
bootstrap samples of the training dataset. Next, for each tree a random
subset of the predictor variables is considered to construct the decision
nodes by optimizing on a loss function, e.g., least squares (Breiman,
2001). The output of an RF model is equal to the conditional mean of
all constructed trees.

2.3. Feature importance and selection

Several external factors can influence ID market prices and their
volatility. In this study, we establish feature importance and selection
methods using permutation feature importance (PFI), backward feature
selection, and recursive feature elimination (RFE). The PFI is performed
separately for the MLR and RF models, for the purpose of ID market
price volatility analysis (scikit-learn developers, 2023c). The selection
is based on the (lowest) obtained 𝑅2 and mean squared error (MSE)
scores, when a single feature value is randomly shuffled. This procedure
breaks the relationship between a feature and the target variable, thus
the drop in the model score is indicative of how much the model
depends on that feature. PFI is used for this scenario because the
technique is model-agnostic and can be applied to both the MLR and RF
regressor. Furthermore, it provides a global view of feature importance
since the same features are present across both models.

Backward feature selection involves an iterative procedure wherein
the model is initially trained with each individual feature present.
The feature, or predictor variable, that contributes least to the best-
performing model is removed from the initial selected feature list.
This value is established in this study using change in 𝑅2. All 𝑅2

values are calculated on the training set. Subsequently, the model is
trained with the remaining features. The second feature that reduces
the model’s performance is then removed from the selected features
list. This process is reiterated until all feature sets have been tested
into the model and an optimal set of features is found. The specific
backward selection method used for feature set creation is RFE utilizing
the sklearn:RecursiveFeatureElimination package (scikit-
learn developers, 2023b). It recursively fits a model and removes the
least important features at each iteration based on the training set
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using 𝑅2. RFE starts with a given number of features and repeatedly
eliminates the least important one until the desired number of features
remains. This technique can be done iteratively over the feature space
to optimal features within a specific subset of the total features as well
as finding the optimal amount of features as described above. This
technique is distinct from PFI since it is model-specific.

3. Data and simulation setup

3.1. Price time series

This paper focuses on the Dutch continuous ID market price between
2020 and 2023. Specifically we focus on hourly ID products over this
time frame. We obtained the DA market clearing prices and continuous
ID trades data for the Dutch market from the EPEX SPOT European
power exchange (EPEX Spot, 2023). Fig. 2 shows why the 2020–2023
period has become the focus for a deep analysis of the price movements.
We can observe from Fig. 2(a) that the average daily prices (i.e., the
average price over all hours and transactions for a given day) are un-
evenly distributed within a single day and across days. Prices exhibited
minor volatility, but had very little upward or downward trending until
2020. Fig. 2(b) displays the monthly median 𝑅𝑉 from 2016 to 2024,
with significant spikes in volatility observed starting in late 2021. Year
2020 saw both ID (in blue) and DA (in red) (on Fig. 2(a)) prices fall
as industrial demand and overall economic output dropped during the
COVID-19 pandemic. After a period of lockdowns in the Netherlands
and globally, prices began to surge upward as the Dutch economy
sought to rebound from the period of economic contraction (CBS,
2023). This trend remained steady in the first half of 2021 across the
ID and DA markets until the full reopening of European economies and
the scramble to regain lost production began to increase 𝑅𝑉 in late
2021. 𝑅𝑉 reached its highest level in the timeframe once the European
gas shortage caused by the Russia–Ukraine war sent prices into full
volatility in mid 2022. Year 2022 also experienced record breaking high
summer temperatures which contributed to pushing prices to upward
extremes. An example of the impact the extreme weather had in 2022
was on water levels in Germany and France which dropped extremely
low, inhibiting nuclear reactor cooling in France and coal shipping in
Germany (Shiryaevskaya et al., 2022; Kollewe, 2022).

Quantifying price volatility is essential for all market participants
to assess risk, make informed decisions, and develop strategies to
support energy generation and investment in economically feasible
ways. Accurate measurements and representations of volatility provides
valuable insights into the behavior of ID electricity market prices and
the broader market. Due to daily variability in vRES generation and
energy consumption, prices for different ID delivery products (DPs),
which correspond numerically to the hour of delivery, can exhibit
different behavior within a day and across seasons. This can be visu-
ally represented through candlestick charts, whereby each candlestick
shows the opening, closing, minimum and maximum prices for a given
day. The opening price is the price of the first trade on a given day, and
the closing price is the price of the last trade on the same day. If the
opening price is lower than the closing price on a given day, the body
of the candle is red-colored; in the opposite case, it is green. The lowest
end of the wick shows the minimum price in the ID market on a specific
day, while the highest shows the maximum price. The motivation for
this study is the 2020–2022 period where price and volatility have
increased dramatically. Significant variability is observed in the trade
prices for specific DPs (14, 5), as indicated in Figs. 3. The first sub-
figure shows the candlestick chart for DP = 14 – i.e., during peak
demand hours – for the trade period from 1 July 2022 to 30 September
2022. The maximum price for DP = 14 was reached on 25 August 2022,
when the price reached over 600 e/MWh. On most days between 1
July 2022 and 30 September 2022, the ID prices remained around 250
e/MWh for DP = 14. However, this period also saw many days with

price spikes beyond 400 e/MWh, as well as some with negative prices,

3834 
Fig. 2. ID average daily prices and their realized volatility over years.

reaching a period low of less than −200 e/MWh. In this same period,
DP = 5 – i.e., the off-peak demand hours – saw a maximum price of
800 e/MWh, reached on two sequential days (25 and 26 of August
2022). In this period, DP = 5 saw consistently high prices compared to
DP = 14, with highs of over 400 e/MWh on most days. Additionally
compared to DP = 14, DP = 5 saw only one day with a negative price;
16 July 2022.

This level of volatility also occurred in the winter months of 2022
prior to the beginning of the Russia–Ukraine war (on 24 February
2022), as shown in Figs. 4. The first figure shows the candlestick chart
for DP = 14, during the trading period from 1 January 2022 to 31
March 2022. The maximum price for DP = 14 reached 400 e/MWh
on 16 March 2022. On most days, however, the ID prices for DP = 14
remained around 250 e/MWh. However, this period also saw many
days with price spikes beyond 300 e/MWh, as well as some with
negative prices, reaching a period low of −300 e/MWh on 20 March
2022. In this same period, DP = 5 – representing the off-peak demand
hours – saw a maximum price of over 400 e/MWh on three sequential
days (8, 9, and 10 March 2022). This period saw consistently high
prices for DP = 5, averaging around 250 e/MWh, (i.e., similar to those
for DP = 14).

We provide summary statistics of the hourly ID market price time
series across differing time aggregations in Table 1. Table 1 shows that
mean prices are higher in autumn and summer in the Dutch ID market.
Also, day-of-the-week seasonality is observed, in that reduced economic
activity during weekends – due to fewer hours worked nationally –
results in lower prices. According to the Jarque–Bera test, the price
distribution of probability is not normal. Multiple literature record the
same type of statistical patterns in electricity prices (Qu et al., 2018;

Haugom, 2011; Chanatásig-Niza et al., 2022; Frömmel et al., 2014).
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Fig. 3. Candlestick charts of ID market prices for Q3 2022.

Fig. 4. Candlestick charts of ID market prices for Q1 2022.
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Table 1
Summary statistics for daily aggregated ID prices (e/MWh) per quarter and day of week (2020–2022).
Time Mean Std. Dev. Minimum Maximum Skewness Kurtosis Jarque–Bera

Q1 117.84 104.92 −400.00 850.12 1.26 1.55 6.84 ⋅ 105

Q2 126.24 100.36 −349.99 1,993.91 0.60 0.09 1.51 ⋅ 105

Q3 225.98 189.63 −662.00 1,994.00 0.79 −0.27 3.16 ⋅ 105

Q4 178.26 125.98 −997.90 1,994.00 0.86 0.48 4.26 ⋅ 105

Monday 178.22 149.23 −430.61 950.00 1.16 1.14 4.40 ⋅ 105

Tuesday 182.23 149.40 −400.00 1,145.64 1.16 1.05 4.31 ⋅ 105

Wednesday 183.62 151.94 −997.90 1,088.59 1.13 0.99 3.94 ⋅ 105

Thursday 180.77 151.47 −349.39 1,199.99 1.13 0.96 4.07 ⋅ 105

Friday 173.71 146.98 −346.57 1,994.00 1.24 1.74 5.94 ⋅ 105

Saturday 140.45 127.15 −400.00 994.99 1.34 2.56 7.54 ⋅ 105

Sunday 128.47 120.27 −662.90 983.88 1.23 2.04 5.55 ⋅ 105
T
I

Table 2
Missing hours of aggregated ID price data per year of focus.
Year Empty Hours % Missing

2020 0 0.00
2021 1 0.01
2022 2 0.02
2023 8 0.14

Finally, we observe seasonal behavior of the various delivery products
as shown in Figs 4 and 3 and the distinctly different patterns shown
for DP = 5 and DP = 14. Following a standard procedure that was
also used for spot prices seasonality in the Pennsylvania–New Jersey–
Maryland (PJM) market in Haugom and Ullrich (2012), and reaffirmed
with energy market experts at Autoriteit Consument en Markt (ACM,
i.e., the Dutch market regulator), the medians of the ID price differences
over a day d are subtracted from the price differences for each month
of the year, day of the week, and hour of the day. This new metric
is deployed to account for seasonality when performing the estimation
of 𝑅𝑉 using the differing regression models. The resulting adjusted ID
price differences are calculated as:

𝑟∗𝑡 = 𝑟𝑡 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑚,𝑑,𝑡), (10)

here 𝑟𝑚,𝑑,𝑡 is the median of the month-over-month (m), day-of-the-
eek (d), and hour-over-hour price differences (t). We replace the ID
rice differences with the adjusted difference, 𝑟∗, in all 𝑅𝑉 calculations
escribed in Section 2 Methods. Using a seasonality robust version of
𝑉𝑑 and using the jump statistic described in Section 2.1.1 with 𝛼 =
.001, results in Table 3 counting the number of jump days per year and
uarter. By pre-processing the data set composition we found the data
et to contain missing values. We report these missing values in Table 2.
owever, the overall missing values represent less than 0.1% of the

otal number of hours in the assessment period. These data gaps mean
hat there have been delivery hours when no electricity was traded
n the Dutch ID market. The data is missing for one assumed reason;
iquidity efficiencies. A liquidity inefficiency is when there is no trade
or each delivery hour in the continuous Dutch ID market across all
ears. However, market liquidity, inferred via trade volume, has been
ncreasing over time. This explains the decreasing percentage of missing
ggregated hourly prices per year, excluding year 2019. However, to
tudy the explanatory power of the different models regarding ID prices
nd their volatility, it is essential to transform the ID trade prices into
complete price time series. We estimate and fill-in the time series for

nalysis via the padding method, as proposed by Shinde et al. (2021).
his padding method entails filling the missing data points with either
he most recent or the next data point in the timeline.

As established by Barndorff-Nielsen and Shepard (2006) and reaf-
irmed by Ciarreta et al. (2017) for the case of EPEX ID prices with
umps present, the decomposition approach of 𝑅𝑉 is upward biased
n contexts with finite samples 𝐵𝑉𝑑 . As such, the 𝐽𝑉𝑑 component of
𝑉 is underestimated. However, in the context of near-zero returns
3836 
able 3
dentified jump days per year and quarter (2020–2023).
Time Total Q1 Q2 Q3 Q4 % of Days

2020 108 27 35 27 19 29.5
2021 79 29 19 20 11 21.6
2022 23 5 7 3 8 6.3
2023 (Jan–Aug) 4 1 2 1 N/A 1.7

on variability 𝐵𝑉𝑑 is affected, thus reducing its value, to the detection
of more jumps. We affirm the presence of this phenomenon for the
Dutch ID market and illustrate its impact in Table 3. The table shows
that more jumps were detected in 2020 and 2021 when prices were
more closely bunched but jumps decreased significantly in 2022 and
2023 when variability became more extreme. Finally, we divide the
price time series into training and test sets. The constructed time series
between 2020 and 2022 is the training set, while the partial 2023 time
series is reserved as the test set to evaluate the MLR models.

3.2. ENTSO-E platform

The work in Hagemann and Weber (2013) discusses in depth the de-
terminants for German ID price formation. Among these determinants
are load and vRES forecast errors as well as net cross-border physical
flows between major electricity trading partners. Similarly, Kiesel and
Paraschiv (2017) uses vRES forecasts in their econometric analysis
to explain 15-minute German ID electricity pricing. Furthermore, Hu
et al. (2021) and Karanfil and Li (2017) also include cross-border ID
exports to understand price deviation within the Swedish power market
and were able to show their significant impacts on price premia in
markets with large exposure to wind generation. The ideas behind
these explanatory variables is that a trade on the ID market is in-
fluenced by actual demand/supply differing from the DA forecasted
demand/supply. Thus, market participants use the ID market to balance
these differing values. To assess their importance in explaining price
volatility, we assemble data from ENTSO-E, by taking the difference
between the expected and actual load as well as expected and actual
vRES generation. We calculate cross-border net physical exports as
the difference between electricity sent to Belgium and received from
Belgium over the ID period, while load and vRES forecast errors are
calculated as the aggregation of quarter-hourly differences between the
day-ahead forecasts of load or vRES generation and the actual load
or vRES generation for that same quarter-hour. It is important to note
that the numbers below are aggregated at a daily level. This explains
how a seemingly large −3.5GWh forecast error is reported since it is
only about 1% of the total electricity GWh load for a single day in the
Netherlands.
Table 4 shows the summary statistics for these variables.
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Table 4
Summary statistics for daily aggregated ENTSO-E variables (MWh) (2020–2022).
Variable Mean Std. Dev. Minimum Maximum Skewness Kurtosis Jarque–Bera

Net Export 8,884.26 22,882.17 −53,640.00 69,078.00 −0.06 −0.56 14.77
Load Forecast −3,457.07 24,739.83 −92,161.00 60,303.50 −0.76 0.76 131.54
vRES Forecast 27.61 133.15 −14,508.50 24,290.25 7.28 172.73 1.37 ⋅ 106
Table 5
Summary statistics for daily aggregated fossil variables (e/MWh) (2020–2022).
Variable Mean Std. Dev. Minimum Maximum Skewness Kurtosis Jarque–Bera

Gas Price 32.22 60.60 2.70 318.88 1.31 1.48 415.64
Coal Price 152.99 113.11 38.63 473.33 0.77 −0.81 137.78
CO2 Price 52.95 24.58 15.20 97.59 0.09 −1.49 102.59
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Table 6
Summary statistics for included UMM (MW) (2020–2023).

Reporting time Count Mean Std. Dev. Minimum Maximum

Peak 3,344 322.20 256.38 100.00 1,304.00
Off-peak 3,765 332.83 254.04 100.00 1,304.00

All 7,109 327.83 255.18 100.00 1,304.00

3.3. Fossil pricing

We obtained all fossil data used in this study from the London
Energy Brokers Association (LEBA). For the gas prices, we utilize the
Amsterdam based TTF DA gas price for week and weekend days. For
coal prices, we use the one-month delivery coal prices on the Rotterdam
coal index. For carbon prices, we use the EUA spot data. For coal and
carbon, trade only takes place on weekdays. Therefore, we set the price
for the weekend days as equal to the price on the preceding Friday.
Table 5 shows the summary statistics for the fossil-based variables.

3.4. Urgent market messages

The EEX transparency platform is an inside information platform
approved by The EU Agency for the Cooperation of Energy Regulators
(ACER) which is commonly used by participants in the Dutch market.
From the EEX platform, we received a dataset containing all planned
and unplanned outages of power plants within the Dutch bidding zone
published on the EEX platform during the years of interest. These
messages are called Urgent Market Messages (UMM). However, from
the entire dataset, we exclude messages about outages of less than 100
MW and less than one hour in duration as a simplifying assumption
and for completeness, since outages of 100 MW or more must always
be reported due to their impact, for lower volumes this depends on
market conditions (ACER, 2019). Whether the MWs reported in an
UMM are classified as planned or unplanned outages depends on the
time lag between the start of the outage and its reporting, following the
procedure established by Valitov and Maier (2020). If an UMM is issued
before or simultaneously with the outage, we classify it as a planned
outage. Conversely, we classify an UMM as an unplanned outage if the
publication timestamp is from after the beginning of the outage.

Table 6 shows the summary statistics for the remaining UMMs from
2020 to 2023. The mean capacity loss caused by an outage is about
327.18 MW. The majority of UMM messages between 2020 and 2023
were published during off-peak hours (i.e., 1–8 and 21–24).

Finally, we assign the MWs within the UMM to two distinct explana-
ory variables, described in Section 2.1.4 Private vs. public capacity
utage: Private information and Public information. We classify private
nformation as the sum of capacity loss in UMMs from the beginning of
he outage until its publication on the relevant platform. Consequently,
he variable Public Information aggregates total capacity loss in UMMs
rom the publication timestamp until the expected end of the outage.
able 7 shows the summary statistics for the Private and Public variables

sing the method described in this section. t
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4. Results

4.1. Regression models constructions

Once 𝑅𝑉 is separated into jump and continuous components using
he procedure described prior in Section 2.1.1 Realized volatility and
rice jump detection, the HAR-CV-JV model, introduced by Chan et al.
2008) and shown to be the best performing in explaining 𝑅𝑉𝑑 by Cia-

rreta et al. (2017). We also consider a log transformation of 𝑅𝑉𝑑 and
its decomposition as:

𝑙𝑜𝑔𝑅𝑉 ℎ
𝑑 = constant + 𝛽1𝑙𝑜𝑔𝐶𝑉𝑑−1 + 𝛽2𝑙𝑜𝑔𝐶𝑉𝑤,𝑑−1 + 𝛽3𝑙𝑜𝑔𝐶𝑉𝑚,𝑑−1

+ 𝛽4𝑙𝑜𝑔𝐽𝑉𝑑−1 + 𝛽5𝑙𝑜𝑔𝐽𝑉𝑤,𝑑−1 + 𝛽6𝑙𝑜𝑔𝐽𝑉𝑚,𝑑−1, (11)

here 𝑙𝑜𝑔𝐶𝑉𝑑−1 and 𝑙𝑜𝑔𝐽𝑉𝑑−1 are the 𝐶𝑉 and 𝐽𝑉 for the previous
ay, respectively. 𝐶𝑉𝑤,𝑑−1 and 𝐽𝑉𝑤,𝑑−1 are the average 𝐶𝑉 and 𝐽𝑉 ,
espectively, over the previous week and 𝐶𝑉𝑚,𝑑−1 and 𝐽𝑉𝑚,𝑑−1 are
he average 𝐶𝑉 and 𝐽𝑉 , respectively, over the previous month. This
odel construction was the best performing in the work by Ciarreta

t al. (2017) when used to forecast 𝑅𝑉 at a quarter-hourly DP level.
hen there is a no jump day such that 𝐽𝑉 = 0, which would result

n log(0), then a 0 value is assigned. We estimate the HAR-CV-JV
odel using ordinary least squares (OLS), where heteroskedasticity and

utocorrelation-corrected (HAR) consistent standard errors are utilized
n coefficient estimation. We apply the log transformation for 𝑅𝑉𝑑
ecause the concavity of this nonlinear form means that high values in
he time series decrease more than low values, making the time series
moother and the jumps less pronounced.

Presenting a distinctly different view on describing price volatility
s the market fundamental model utilizing the ENTSO-E data and fossil
uel data described prior in Section 2.1.3 Market fundamentals. We
egress the identified variables against the 𝑙𝑜𝑔𝑅𝑉𝑑 as shown in Eq. (12).

𝑜𝑔𝑅𝑉 𝑓
𝑑 = constant + 𝛽1NetExports𝑑 + 𝛽2LoadForecastErr𝑑+

3vRESForecastErr𝑑 + 𝛽4GasPrice𝑑 + 𝛽5CoalPrice𝑑 + 𝛽6CO2Price𝑑 (12)

We then extend this model to include the Private and Public variables
onstructed in Section 3.4 Urgent market messages. This extension of
he market fundamentals model results in Eq. (13).

𝑜𝑔𝑅𝑉 𝑢
𝑑 = constant + 𝛽1NetExports𝑑 + 𝛽2LoadForecastErr𝑑+
𝛽3vRESForecastErr𝑑 + 𝛽4GasPrice𝑑 + 𝛽5CoalPrice𝑑+

𝛽6CO2Price𝑑 + 𝛽7Private𝑑 + 𝛽8Public𝑑 (13)

We also consider a final baseline model using the liquidity variables
iscussed in Section 2.1.2 Liquidity. When used to describe 𝑙𝑜𝑔𝑅𝑉𝑑 with
linear function, these variables result in Eq. (14).

𝑜𝑔𝑅𝑉 𝑙
𝑑 = constant + 𝛽1BAS𝑑 + 𝛽2HighLowDiff𝑑+

3PriceVar𝑑 + 𝛽4EnergyVolume𝑑 + 𝛽5TradeCount𝑑 , (14)

here BAS, HighLowDiff and PriceVar are the averages of their respec-

ive hourly variables over day d.
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Table 7
Summary statistics for Private and Public variables (MW) (2020–2022).
Variable Mean Std. Dev. Minimum Maximum Skewness Kurtosis Jarque–Bera

Private 171,577.06 190,936.49 0.00 1,030,424.00 2.63 7.54 3,863.45
Public 51,254.10 36,580.34 0.00 214,030.00 1.37 2.40 607.65
s
i

t
i
v

Table 8
Parameter estimates for HAR-CV-JV model 𝑙𝑜𝑔𝑅𝑉 ℎ

𝑑 .

Parameter Coefficient Std. Error 𝑃 -value

Intercept 0.748 0.297 0.012
𝑙𝑜𝑔𝐶𝑉𝑑−1 0.419 0.034 0.000
𝑙𝑜𝑔𝐶𝑉𝑤,𝑑−1 0.269 0.045 0.000
𝑙𝑜𝑔𝐶𝑉𝑚,𝑑−1 0.219 0.035 0.000
𝑙𝑜𝑔𝐽𝑉𝑑−1 0.086 0.013 0.000
𝑙𝑜𝑔𝐽𝑉𝑤,𝑑−1 −0.018 0.010 0.090
𝑙𝑜𝑔𝐽𝑉𝑚,𝑑−1 −0.002 0.013 0.887

Adj.𝑅2 58.7%

Table 9
Parameter estimates for Market Fundamentals model on 𝑙𝑜𝑔𝑅𝑉 𝑓

𝑑 .

Parameter Coefficient Std. Error P-value

Intercept 7.487 0.099 0.000
NetExports𝑑 1.058 ⋅ 10−5 1.640 ⋅ 10−6 0.000
LoadForecastErr𝑑 1.488 ⋅ 10−6 1.740 ⋅ 10−6 0.393
vRESForecastErr𝑑 −6.531 ⋅ 10−6 1.240 ⋅ 10−6 0.599
GasPrice𝑑 0.013 0.001 0.000
CoalPrice𝑑 0.002 0.001 0.002
CO2Price𝑑 0.007 0.003 0.017

Adj.𝑅2 53.8%

As in the case of the HAR-CV-JV model, we estimate these addi-
ional base models using OLS, where HAR consistent standard errors
re utilized in coefficient estimation.

In order to increase result robustness, we compare the proposed
odels above against a composite regression model made up of all

he described variables. This model will undergo RFE and feature
mportance variable reduction techniques whose results are reported in
ection 4.3 Feature importance and benchmark models. Furthermore,
e construct a hyper-parameter tuned RF regression model using the
hole variable space to provide an unsupervised benchmarking for the

argeted regression models as well as another view on feature impor-
ance. We introduce the RF regressor in Section 2.2.2 Random forests
egression. Each of the decision trees is trained on a random subset
f the 𝑅𝑉 time series and tuned number of features, such randomness
elps to reduce overfitting. The RF regression is generated using the
klearn:RandomForestRegessor package (scikit-learn develop-

ers, 2023a). We discuss the selection of variables for the RF model
in further detail in Section 4.3 Feature importance and benchmark
models.

4.2. Regression outputs

Table 8 reports the parameter estimates of the HAR-CV-JV model
per Eq. (11).

The continuous component of volatility, 𝐶𝑉 appears to have a
significant positive impact on 𝑅𝑉 . This impact is common across all
three time lag periods showing that price volatility exhibits an impact
that exceeds a single day. This longer time horizon of price volatility is
evidenced by the positive significant impact of 𝐽𝑉 only for the 1-day
lag variable at 5%, but not for the weekly or monthly lag variables.
It is important to note that all of these significant variables impact
𝑙𝑜𝑔𝑅𝑉 ℎ

𝑑 positively which is in line with the upward pricing trend over
the 2020–2022 period, as shown in Fig. 2.

Table 9 reports the parameter estimates of the market fundamentals

model as in Eq. (12).
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Table 10
Parameter estimates for Market Fundamentals with UMM model on 𝑙𝑜𝑔𝑅𝑉 𝑢

𝑑 .

Parameter Coefficient Std. Error P-value

Intercept 7.432 0.092 0.000
NetExports𝑑 7.839 ⋅ 10−6 1.500 ⋅ 10−6 0.000
LoadForecastErr𝑑 1.835 ⋅ 10−6 1.350 ⋅ 10−6 0.174
vRESForecastErr𝑑 −1.600 ⋅ 10−5 2.450 ⋅ 10−5 0.514
GasPrice𝑑 0.013 0.001 0.000
CoalPrice𝑑 0.002 0.001 0.008
CO2Price𝑑 0.011 0.003 0.000
Private𝑑 −1.285 ⋅ 10−6 2.060 ⋅ 10−7 0.000
Public𝑑 3.697 ⋅ 10−6 1.010 ⋅ 10−6 0.000

Adj.𝑅2 55.5%

Net exports have a significant positive impact on price volatility.
Thus, as the Netherlands exports more electricity to Belgium than it
receives, 𝑙𝑜𝑔𝑅𝑉 𝑓

𝑑 increases by 1.058 for every 1 TW. This significance
does not carry over to load forecast errors and vRES forecast errors. This
may be due to the effectiveness of the forecasting by grid operators.
However, as expected, both gas and coal prices score significantly
positive on 𝑙𝑜𝑔𝑅𝑉 𝑓

𝑑 since these are still two of the largest sources
of electricity generation in Europe. This is particularly true for gas
generation which can be turned on and off quickly, so it can adapt
to ID changes in grid balance. The 𝐺𝑎𝑠𝑃 𝑟𝑖𝑐𝑒 value will be a large
factor in determining ID market participation for gas generation actors.
Since electricity producers using gas may not participate in the ID
market if the spread between their operating cost driven heavily by
gas price and the ID price is not favorable due to volatility impacting
their risk assessment or simply ID prices being too low. This is for
instance in opposition to operators of other power generators (i.e., coal
and nuclear) who have less flexibility in switching on/off and thus less
impact on the ID price volatility.

Table 10 reports the parameter estimates of the market fundamen-
tals including the UMM model per Eq. (13).

The addition of the Private and Public variables reveals opposite
ignificant impacts on approximating 𝑙𝑜𝑔𝑅𝑉 𝑢

𝑑 . Interestingly, increases
n private capacity have a negative impact on 𝑙𝑜𝑔𝑅𝑉 𝑢

𝑑 , whereas public
capacity has a positive impact on 𝑙𝑜𝑔𝑅𝑉 𝑢

𝑑 . We attribute the reason for
this inverse impact to the fact that public outages have a more extensive
influence on numerous market participants, consequently leading to
increased price volatility. Private information capacity possibly impacts
a smaller set of market participants who can react with clear knowl-
edge and thus reduce price volatility within a day. Additionally, the
non-zero coefficient for the Private variable could potentially indicate
hat market participants use the lapses in outage reporting as private
nformation. In terms of overall model construction, these UMM-based
ariables are important additions to the model as the model’s Adj.𝑅2

increases over the base market fundamentals model.
Table 11 reports the parameter estimates of the liquidity measure

model per Eq. (14).
While the liquidity model has the highest Adj.𝑅2 of the set of models

discussed in this section, it has only one feature that is significant
at the 5% level (other than the intercept). This model may have the
highest Adj.𝑅2 due to its good fit to 𝑅𝑉 time series since these features,
especially PriceVar and HighLowDiff, are constructed from ID price
differences and so is 𝑅𝑉 . The lone significant feature is HighLowDiff
which shows that an average price gap of e1/MW between the high
and low prices for DPs within a day leads to a 0.03 increase in 𝑙𝑜𝑔𝑅𝑉 𝑙

𝑑 .
The most basic liquidity measures, BAS, EnergyVolume and TradeCount,
are distinctly nonsignificant possibly because BAS is an approximated
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Table 11
Parameter estimates for Liquidity model on 𝑙𝑜𝑔𝑅𝑉 𝑙

𝑑 .

Parameter Coefficient Std. Error P-value

Intercept 7.521 0.100 0.000
BAS𝑑 −0.019 0.019 0.310
HighLowDiff𝑑 0.030 0.002 0.000
PriceVar𝑑 −3.000 ⋅ 10−4 0.000 0.061
EnergyVolume𝑑 −7.485 ⋅ 10−6 6.820 ⋅ 10−6 0.272
TradeCount𝑑 −2.155 ⋅ 10−5 1.690 ⋅ 10−5 0.201

Adj.𝑅2 63.9%

Fig. 5. PFI results for the RF regressor.

measure using non-orderbook data, as described in Section 2.1.2 Liq-
uidity, and this approximation may cause its ineffectiveness within the
multiple linear regression format. Besides, an increased EnergyVolume
and TradeCount does not necessarily lead to increased price volatility
as prices may already reflect anticipated supply and demand changes.

4.3. Feature importance and benchmark models

We first consider the results of feature importance when performing
PFI on the tuned RF regressor. We report the results of PFI on RF
regressor in Fig. 5. These figures show the training set 𝑅2 change for all
features and then the final selection of features which contributed 0.005
or more change in the training set. We use this final set of features in
performance evaluation for the RF regressor on the 2023 test set.

As discussed in Section 4.1 Regression models constructions, we
consider additional HAR OLS models to aid in feature importance
3839 
Fig. 6. Optimal feature count for full HAR OLS Model using iterative RFE process.

Table 12
Optimal feature set for the fulsome mixed HAR OLS model: parameter estimates.

Parameter Coefficient Std. Error P-value

TradeCount𝑑 −5.409 ⋅ 10−5 8.670 ⋅ 10−6 0.000
BAS𝑑 −0.024 0.017 0.158
PriceVar𝑑 −3.000 ⋅ 10−4 0.000 0.005
HighLowDiff𝑑 0.013 0.002 0.000
GasPrice𝑑 −0.007 0.001 0.000
CoalPrice𝑑 0.001 0.001 0.056
CO2Price𝑑 0.007 0.002 0.004
𝑙𝑜𝑔𝐶𝑉𝑑−1 0.271 0.031 0.000
𝑙𝑜𝑔𝐶𝑉𝑤,𝑑−1 0.218 0.041 0.000
𝑙𝑜𝑔𝐶𝑉𝑚,𝑑−1 0.322 0.032 0.000
𝑙𝑜𝑔𝐽𝑉𝑑−1 0.072 0.011 0.000
𝑙𝑜𝑔𝐽𝑉𝑤,𝑑−1 0.011 0.009 0.223
𝑙𝑜𝑔𝐽𝑉𝑚,𝑑−1 0.074 0.012 0.000
Quarter −0.119 0.114 0.295
Month 0.178 0.057 0.002
DayofWeek 0.020 0.015 0.171
WeekofYear −0.020 0.010 0.047

Adj.𝑅2 99.0%

analysis as well to increase result robustness. The first of these models is
a HAR OLS model which considers an optimal selection of all previous
features as well as time dummy variables (i.e., Quarter, Month, Day of
Week, and Week of Year). We identify the optimal selection of features
using RFE inputting an incrementally larger set of the total 23 features
into the RFE algorithm to find both the optimal count and optimal set
of features. The progression of 𝑅2 as features are added is shown in
Fig. 6.

The iterative RFE process finds that a certain subset of 17 features
is the optimal number of features when using 𝑅2 as the scoring metric.
We use this optimal subset of 17 features to fit an HAR OLS model. We
report this subset of features and their regression metrics in Table 12.

The optimal feature model still presents a fair number of features
which are insignificant at the 0.005 level and excludes the intercept
feature which is present in the four baseline models. Furthermore,
the Adj.𝑅2 is very close to 100% which indicates that the model is
overfitting and in need of feature pruning. Note this 𝑅2 value differs
from that shown in Fig. 6 since the latter shows the unadjusted 𝑅2

obtained from the inclusion of a count of features in the RFE process,
while Table 12 reports the Adj.𝑅2 after the optimal count of features
have been utilized in a HAR OLS process. Thus, we implement an PFI
algorithm to establish which of the selected features present significant
importance to the model. Fig. 7 shows the features (post implementa-
tion of RFE and PFI), which exhibit importance above the 0.005 level
during the PFI using MSE instead of training set 𝑅2 as the scoring metric
since overfitting is already present.
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Fig. 7. Features from full HAR OLS model with score above 0.005 after PFI process.

Table 13
Parameter estimates for the post-PFI mixed HAR OLS model.

Parameter Coefficient Std. Error P-value

Intercept 5.137 0.198 0.000
PriceVar𝑑 8.773 ⋅ 10−5 0.000 0.473
HighLowDiff𝑑 0.018 0.001 0.000
𝑙𝑜𝑔𝐶𝑉𝑑−1 0.295 0.026 0.000
𝑙𝑜𝑔𝐽𝑉𝑑−1 0.063 0.012 0.000

Adj.𝑅2 67.7%

Table 14
Performance metrics for estimated models on 2023 test set using MAE, RMSE, and
MAPE.

Model MAE RMSE MAPE

HAR-CV-JV 0.735 0.937 0.076
Market Fundamentals 0.954 1.226 0.094
Market Fundamentals & UMM 0.833 1.074 0.083
Liquidity 0.973 1.200 0.096

RF Regressor 0.722 0.945 0.095
Mixed HAR OLS (17 features) 1.052 1.285 0.110
Mixed HAR OLS (5 features) 0.684 0.879 0.086

We then refit an HAR OLS model using the PFI important variables,
whereby we removed all features not significant at the 0.005 level.
Table 13 shows the results of the final mixed HAR OLS model which
began by considering the full feature space and ended with four main
features (i.e., without considering the time features and the intercept),
which are all closely related to ID price.

4.4. Performance comparison on 2023 test set

We measure the descriptive power of the different models using
various out-of-sample criteria. We considered a wide set of models to
identify differences between the approaches in explaining 𝑅𝑉 , with
the additional benefit of adding robustness to the results. To this end,
observations from 1 January 2020 to 31 December 2022, covering
1095 days, are considered as in-sample data, whereas observations
from 1 January to 31 August 2023, covering 242 days, are considered
out-of-sample test data. We make comparisons between observed and
predicted values on the test set using mean absolute error (MAE),
root mean square error (RMSE), and mean absolute percentage error
(MAPE) as performance criteria. Table 14 lists the results of the MAE,
RMSE, and MAPE criteria for all of the feature estimation models
presented in the prior section.

The results of the performance metrics show that the mixed MLR
after RFE, PFI and 5% 𝑝-value trimming is the best-performing model
3840 
with two of the three metrics. This is an intuitive outcome as it
combines the descriptive power of the HAR-CV-JV model with the
market intelligence of the liquidity measures. It is interesting to note
that none of the market fundamentals features are present in the final
mixed model indicating that price volatility in the 2023 continuous
Dutch ID market is a construct composed of underlying market trends
around trading behavior and macroeconomics factors rather than of
daily market events such as load forecast errors or gas price.

5. Discussion

In this paper we discuss the recent trends in price movement and
volatility within the Dutch EPEX continuous ID market. Price volatility
has become a major component of the market in recent years due to
geopolitical and generation profile changes across Europe. This paper
utilizes 𝑅𝑉 to describe price patterns quantitatively. To answer the
research question of how to best estimate 𝑅𝑉 , we developed a set of
MLR models and compared their performance on a test set composed
of recent trade data. Relying on distinctly different features, each of
these models seeks to model 𝑅𝑉 from a different angle. The modeling
process is made more robust by the additions of a fulsome mixed
HAR OLS model and a RF regression model. These additional models
also offer insight into feature importance when describing 𝑅𝑉 . Feature
importance testing revealed that PriceVar, HighLowDiff and 𝑙𝑜𝑔𝐶𝑉𝑑−1
contribute the most to model efficacy. PriceVar and 𝑙𝑜𝑔𝐶𝑉𝑑−1 are shared
across the final benchmark models, as well as HighLowDiff which shows
the largest impact during PFI in the fulsome model. The modeling study
reveals that effective modeling of 𝑅𝑉 is possible when features are well
targeted. The test results of the final mixed HAR OLS model, which
shows a relatively low MAE and RMSE scores, attests to the results
of the feature importance approaches. Additionally, the HAR-JV-CV
model had the best MAPE score highlighting the importance of these
features in modeling 𝑅𝑉 .

However, the lack of presence from UMM messages and gas price in
the best-performing models is a surprise. These features impact market
demand and supply balance as a whole and as such, would be expected
to be of significance in 𝑅𝑉 modeling. On the other hand, the lack
of importance of ENTSO-E features, such as vRESForecastErr, is not as
surprising since these features are well-understood in the market and
the market design allows for compensating for them within the ID
market. For example, a significant LoadForecastErr in the Netherlands
can be compensated for by selling load to – or buying load from
– a market participant in a country with an opposite load balance.
While this study provided valuable insights into the dynamics of the
energy market in the Netherlands using ID EPEX SPOT data, several
limitations and opportunities for future research should be acknowl-
edged. One significant limitation is the exclusive use of ID EPEX SPOT
data due to data availability constraints. To enhance the robustness
of the analysis and increase generalization to other national markets,
future research could consider incorporating data from other European
Power Exchanges, such as Nord Pool, which also have a significant
influence on the region’s energy pricing dynamics. Furthermore, it is
important to recognize that factors beyond the scope of this study,
such as geopolitical events, changes in energy policy, and extreme
weather conditions, could significantly impact ID price movements.
Future research can explore the integration of these external factors
into a separate analysis to provide a comprehensive understanding of
market dynamics under different impacts. Additionally, an expansion of
the public vs. private information classification to be linked to real-time
regulator decisions following ACER guidance would be illuminating
regarding the potential impacts of smaller than 100 MW outages during
critical market states on price volatility.
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6. Conclusion

We define price volatility quantitatively using a measure called
realized volatility, 𝑅𝑉 . A stakeholder can calculate 𝑅𝑉 at different
points of time granularity. The study shows the importance of de-
composing 𝑅𝑉 into its continuous and jump components as well as
considering more common market measures. The mixed multi-linear
HAR OLS model exhibits the best evaluation results on the 2023 test
set for estimating 𝑅𝑉 , which offers support for the importance of
𝑅𝑉 decomposition in volatility estimation. In this current ID market
environment, it is key to consider the innate volatility in the market
prices caused by the cumulative behavior of all market actors. Fur-
thermore, more simplistic market metrics, such as high-to-low price
difference, are important features for increasing model efficacy. This
combination of complex features and classical features was the best
case when describing price volatility with 𝑅𝑉 under the market sce-
nario presented. However, there are several elements of this research
that can be improved. As mentioned, the BAS variable was estimated
using procedures adapted for non-orderbook data. These procedures
can introduce biases and inaccuracies and should be replaced with true
BAS calculations for more concrete work on the impacts of liquidity
on price volatility. Another significant avenue for further research is to
expand the range of products and markets included in this analysis. For
example, an aftermarket product (i.e., a complementary product to the
ID market which allows participants to trade in the ex-post timeframe
to possibly reduce participants’ balancing costs) was introduced in the
Dutch and Belgian bidding zones on EPEX SPOT in 2022. This mar-
ketplace could be assessed through its own descriptive analysis, or as
an additional component when explaining price volatility within either
the DA or ID markets. Furthermore, expansion of the market research
base into major additional markets like the Dutch DA, German ID and
DA, and the Dutch balancing market price information can significantly
enhance the depth and breadth of modeling for the Dutch ID price
volatility. On a more technical side, future work could test different
seasonality-correlation techniques. Besides, since several explanatory
variables were constructed from the ID prices themselves (as shown in
Table 12), future work could also explore comprehensive time-series
analyses, involving research into multiple lagged variables (e.g., d-
1, d-2, d-3) and convolution/smoothing techniques. These additional
inclusions will provide a greater holistic understanding of price for-
mation and how volatility emerges by considering the broader market
environment, including regional influences and real-time balancing
needs. Simply put, the body of work on the Dutch market is too small
compared to the amount of economic output from the Dutch electricity
markets.
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