Are Existing Circular Economy Indicators Adequate to Capture the Role Biobased Products Can Play in the Circular Economy?

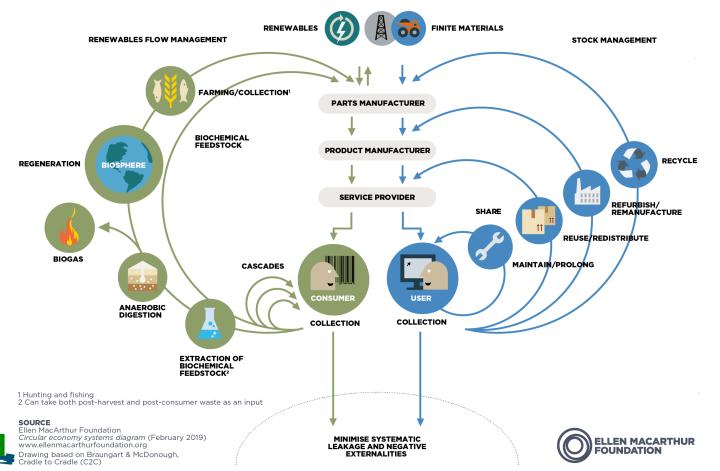
Iris VURAL GURSEL

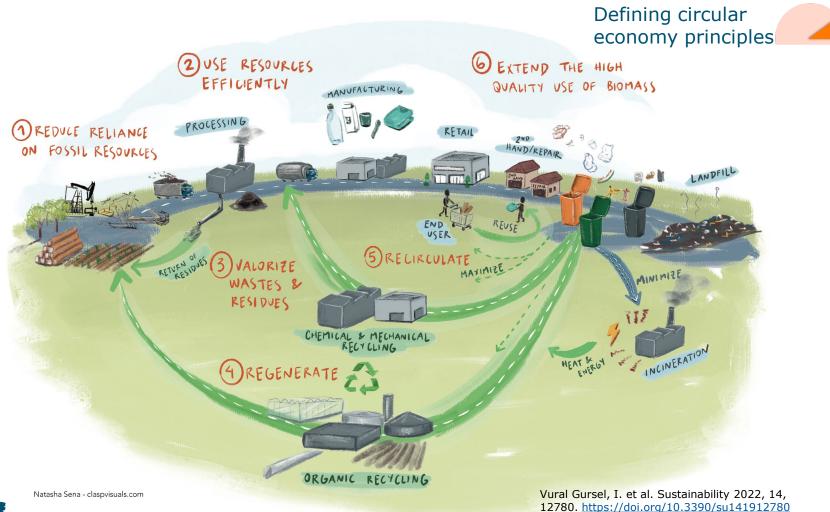
6 June 2023 – EUBCE BP.1.1

Outline

Defining circular economy principles

Identification of gaps


Status of CE indicator development for biobased products



Circularity assessment framework

Defining circular economy principles

Defining requirements for CF metrics

For assessing intrinsic circularity, we need indicators on:

For assessing the impact of the transition, we need indicators on:

Share of renewable resources

- Resource use efficiency (include use of residues)
- Degree of regeneration
- Degree of recirculation
- Utility (long & high quality)

Risk of accumulation of hazardous substances

Effect on environmental protection

Effect on economic viability

Identification of **CE** metrics

Criteria:

- Micro/product level
- Scientific + grey literature

- Quantitative metrics
- Linked to CE strategies

List of 25 Reviewed CE indicators	Abbreviation	Reference
Circular Economy Toolkit	CET	(Evans and Bocken, 2013)
Recycling indicator set	-	(Nelen et al., 2014)
Reuse Potential Indicator	RPI	(Park and Chertow, 2014)
Circular Economy Index	CEI	(Di Maio and Rem, 2015)
Material Circularity Indicator	MCI	(EMF, 2015)
Longevity Indicator	LI	(Franklin-Johnson et al., 2016)
Circularity calculator	-	(IDEAL&COExplore, 2016)
Eco-efficient Value Ratio	EVR	(Scheepens et al., 2016)
Recycling Indices	RI	(van Schaik and Reuter, 2016)
Global Resource Indicator	GRI	(Adibi et al., 2017)
Sustainable Circular Index	SCI	(Azevedo et al., 2017)
Circular Economy Indicator Prototype	CEIP	(Cayzer et al., 2017)
Circularity Index	CI	(Cullen, 2017)
Value-based Resource Efficiency	VRE	(Di Maio et al., 2017)
Circular Economy Performance Indicator	CPI	(Huysman et al., 2017)
Product-Level Circularity Metric	PLCM	(Linder et al., 2017)
Recycling Desirability Index	RDI	(Mohamed Sultan et al., 2017)
Circ(T)	-	(Pauliuk et al., 2017)
Combination Matrix	СМ	(Figge et al., 2018)
Circularity Measurement Toolkit	CMT	(Garza-Reyes et al., 2019)
Circular economy benefit indicators	RBR, RCBR	(Huysveld et al., 2019)
Circularity of material quality	QC	(Steinmann et al., 2019)
Product Recovery Multi-Criteria Decision Tool	PR-MCDT	(Alamerew et al., 2020)
Product Circularity Indicator	PCI	(Bracquené et al., 2020)
In-use occupation indicator	-	(Moraga et al., 2020)

	CE Requirements									
Indicator	1. Share of	2. Resource	3. Degree of	4. Degree of	5. Utility	6. Hazardous	7. Effect on	8. Effect on	9. Effect	
	renewable	use efficiency	regeneration	recirculation		substances	environment	economy	on	
	resources								society	
Circular Economy Toolkit		X	p	x	X	p	p	р		
Recycling indicator set		р		x	p		x	x		
Reuse Potential Indicator				x				p		
Circular Economy Index				x	p			x		
Material Circularity Indicator		x		x	X					
Longevity Indicator				x	x					
Circularity calculator		x		x				x		
Eco-efficient Value Ratio							x	x		
Recycling Indices				x						
Global Resource Indicator		x								
Sustainable Circular Index		p		x	x		x	x	x	
Circular Economy Indicator Prototype		x		x	x					
Circularity Index				x			p			
Value-based Resource Efficiency		x						x		
Circular Economy Performance Indicator				x	X		x			
Product-Level Circularity Metric		p		x				x		
Recycling Desirability Index		p		x			p			
Circ(T)		x		x	X					
Combination Matrix				x	x					
Circularity Measurement Toolkit	p	X		x	X		p	р	p	
Circular economy benefit indicators				x	p		x			
Circularity of material quality				x	x		p			
Product Recovery Multi-Criteria Decision Tool							x	x	x	
Product Circularity Indicator		x		x	X					
In-use occupation indicator		x		x	x					

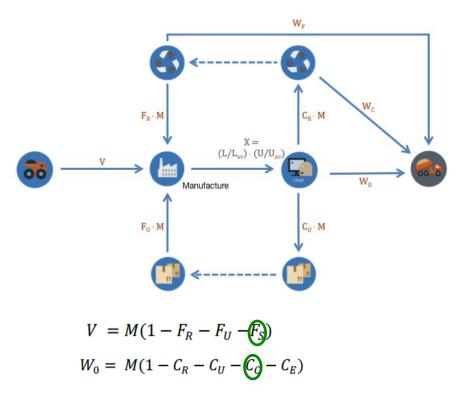
- ✓ Reviewed metrics cover well the prominent CE strategy of Recirculating materials (requirement #4). This concerns how much recycled input is used and/or to what extent a product gets recycled at the end of its life.
- ✓ Resource use efficiency (requirement #2) is also well covered and concerns reducing material losses and wastes, improving utilization of resources and accordingly reducing input of primary/virgin resources.
- X Yet, most of the indicators fail to integrate scarcity and criticality of the resources used. The ones that do use market prices as proxy.
- X All the CE metrics focus exclusively on the technical cycle. They fail in providing measure of the share of renewable resources (requirement #1) and degree of regeneration (requirement #3) and cascading use of biomass (within requirement #5).

- Regarding utility (requirement #5) aspects of product lifetime and usage intensity are covered; this allows analyzing the contribution of circular practices to longevity or intensity or to both.
- X Yet, quality is another aspect of utility (requirement #5) that deserves further attention. This is captured in very few where quality of the recycled material and potential quality losses preventing closed loop recycling are considered.
- X The risk of accumulation of hazardous substances in closing the loops is not taken into consideration in the developed indicators (requirement #6).
- \checkmark It is seen that several metrics considered the environmental or economic consequences, or a combination of both.
- X Yet, social dimension is much less covered due to difficulty in quantitative assessment.

Status of CE indicator development for biobased products

Resource use efficiency

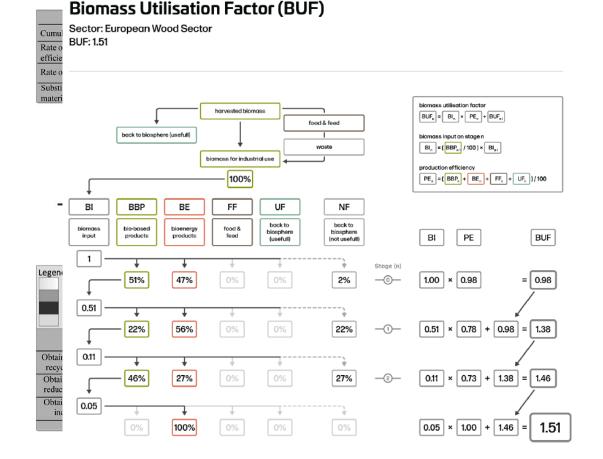
Biomass Utilization Efficiency (BUE) Iffland et al. (2015) – molar mass ratio


Bioresource Utilization Index (Bu_{ind}) Vamza et al. (2021) – dry weight ratio

Material Circularity Indicator, MCI

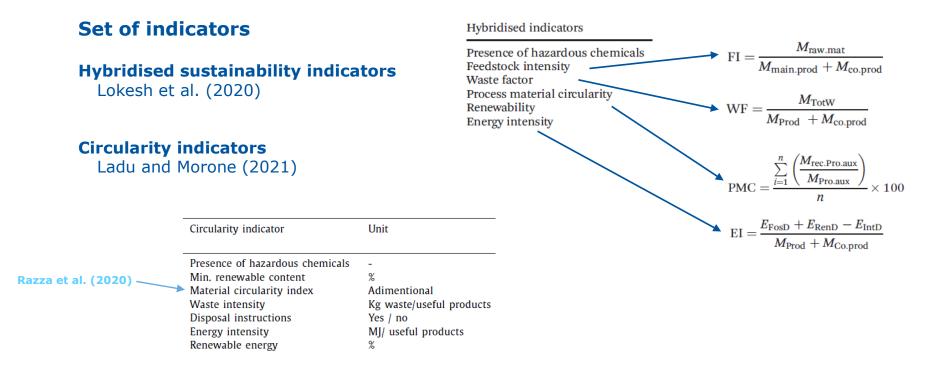
EMF (2019) Razza et al. (2020)

include biobased content as non-virgin input account composting as contributing to recycling


Status of CE indicator development for biobased products

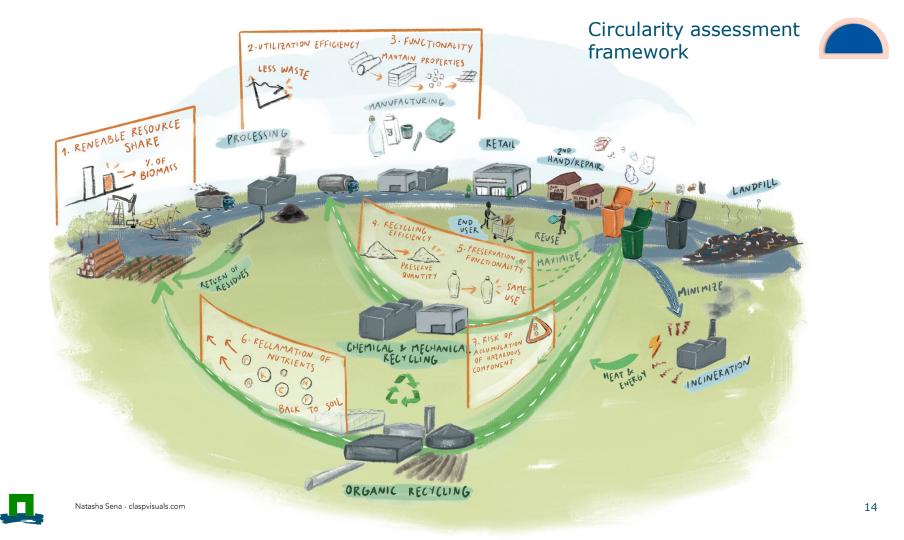
Cascading use

Cascade use indicators Hildebrandt et al. (2017)


Biomass Utilization Factor (BUF) vom Berg et al. (2022)

UNIVERSITY & RESEARCH

Status of CE indicator development for biobased products



- With set of indicators rather than composite aggregated indices.
- Each aspect of circular economy can be expressed independently to facilitate a clearer understanding of their complementarities, and possible trade-offs.
- Using a set of indicators is promoted in the CE monitoring systems on macro scale such as the one proposed by the EC.
- Results in an indicator framework which is defined to entail a collection of indicators that provide measurement for each of the circularity aspects and provides altogether a comprehensive picture of circular economy

Circularity assessment framework

Complement these circularity indicators with existing life cycle sustainability assessment methods to avoid burden shifting

Ability to assess the circularity of biobased products will be crucial to support industry and policy makers in setting suitable circular economy targets

Challenges

- * Cascading mechanisms are currently not accommodated
- * Desired recycling infrastructure is not in place
- * Quality needs to be stimulated rather than quantity alone

Thank you for your attention! Questions?

<u>Contact:</u> iris.vuralgursel@wur.nl

Vural Gursel, I.; Elbersen, B.; Meesters, K.P.H.; van Leeuwen, M. Defining Circular Economy Principles for Biobased Products. Sustainability 2022, 14, 12780. https://doi.org/10.3390/su141912780

Vural Gursel, I.; Elbersen, B.; Meesters, K.P.H. Monitoring circular biobased economy – Systematic review of circularity indicators at the micro level. Resources, Conservation and Recycling 2023, forthcoming.

Acknowledgement:

Wageningen University Knowledge Base programme: Towards a circular and climate positive society (Project KB-34-002-001: A monitoring and impact evaluation system, KB-34-004-001 Assessment of synergies and trade-offs - integrating data, models and scenarios across scales) that is supported by finance from the Dutch Ministry of Agriculture, Nature and Food Quality.

