
Due to their critical impact on other species in local 
ecosystems, keystone species play a special role in the 
conservation of global biodiversity (Mills et al., 1993; 
Bond, 1994; Power et al., 1996; Valencia-Aguilar et al., 
2013; de Miranda, 2017). For example, their decline 
or extinction can have cascading effects and lead to 
extinctions of other coexisting species (Paine, 1966; 
Power et al., 1996; Mittelbach et al., 1995; Borrval et 
al., 2000; Valencia-Aguilar et al., 2013; de Miranda, 
2017). In light of the global decline in biodiversity, it 
is therefore imperative to identify keystone species 
and understand their interactions with and functions 
for other species, and to predict and possibly take 
remedial actions to prevent larger extinction cascades 
(Wake and Vredenburg, 2008; Pereira et al., 2010). 
This is especially true for island ecosystems which 
are particularly vulnerable to species extinction (e.g., 
Simberloff, 2000).

Iguanids are large, long-lived reptiles native to 
the Americas, and a few South Pacific islands, with 
keystone roles having been described for several. Their 
consumption of plant seeds benefits both endo- and 
episaurochorous dispersal (Iverson, 1985; de A. Moura 
et al., 2015; Lasso and Barrientos, 2015; Burgos-
Rodríguez et al., 2016; Traveset et al., 2016), seed 
germination (Lasso and Barrientos, 2015; Vásquez-
Contreras and Ariano-Sanchéz, 2016), and shielding of 
seeds (Salinas and Reynoso, 2023). Excavated burrows 
used for daily retreat are used by a range of invertebrate 
taxa, presumably as thermal refugia (Iverson, 1979). 

Annual (communal) nesting leads to subsequent large 
numbers of hatchling iguanas that are a nutrient-rich 
food source for a wide range of predators (Christian 
and Tracy, 1981; Knapp et al., 2010; Ortiz-Catedral et 
al., 2021). Furthermore, during nesting, the excavation 
of deeper, nutrient-rich soil leads to the enrichment 
of the otherwise less nutrient-rich topsoil (Eldridge 
and Myers, 1998; Platt et al., 2016). In addition, the 
consumption of leaves, fruits, and flowers alters plant 
phenology through defoliation, and can trigger plant 
growth and flowering (Auffenberg, 1982; Carlo and 
García-Quijano, 2008). Lastly, Tapia and Gibbs (2022) 
highlighted the ecosystem engineering role of Galapagos 
Land Iguanas, Conolophus subcristatus (Gray, 1831), 
which have a large-scale impact on vegetation structure. 
Although 80% of IUCN-assessed iguanids fall within 
a threatened conservation status (IUCN, 2023), the 
abovementioned interactions demonstrate iguanids as 
impactful keystone species, contributing to a wide range 
of diverse and heterogeneous ecosystems. Nevertheless, 
it is likely that other keystone roles for iguanas have been 
overlooked and under-appreciated. We here report on 
opportunistic observations made on nesting sites of the 
critically endangered Lesser Antillean Iguana, Iguana 
delicatissima Laurenti, 1768 (van den Burg et al. 2018), 
as obtained during our studies on its reproduction on the 
Caribbean Lesser Antillean island of Sint Eustatius (21 
km2). These observations suggest that I. delicatissima 
has a potential role as ecosystem engineer in the island’s 
terrestrial environment.

Iguana delicatissima is the largest native extant 
terrestrial animal throughout its historic range, which 
has recently been drastically reduced in area by 86% 
(van den Burg et al., 2018). This decline is mainly 
caused by still-ongoing competitive hybridisation with 
non-native Green Iguanas (Iguana iguana (Linnaeus, 
1758) species complex), ecosystem degradation due 
to free-ranging livestock, and coastal development 
(Knapp et al., 2014; Vuillaume et al., 2015; van den 
Burg et al., 2018; Debrot et al., 2022). Similar to most 
iguana species (e.g., Iguana (Rand, 1968), Cyclura 
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(Iverson, et al. 2004), Ctenosaura (Mora, 1989); for an 
overview see Wiewandt, 1982), I. delicatissima lay eggs 
in underground nests that consist of an entrance, tunnel, 
and chamber. Nests are often dug either in a singular or 
communal (“complex”) nesting site where females can 
create a network of entrances, tunnels, and chambers 
(Wiewandt, 1982; Rand and Dugan, 1983; Knapp et al., 
2016). The nesting behaviour of I. delicatissima remains 
relatively unknown, and published descriptions on nest 
details are very limited (Knapp et al., 2016).

Here we report on observations of multiple other taxa 
utilising I. delicatissima nests during our study of nesting 
in this species on St. Eustatius in December of 2022 and 
2023 (Table 1; Fig. 1). As part of a study to characterise 
nesting areas and communal nesting behaviour in I. 
delicatissima, we studied and mapped the detailed 
structure of iguana nests and nest complexes. We used 
the absence-presence of new hatchling emergence 
holes as a proxy for nest presence, as well as to avoid 

disturbance of active nests. Out of 29 nest sites with 
hatching activity, we randomly selected 14 nests that we 
excavated by hand, at least five days after occurrence 
of new emergence holes. Excavated nests were 
distributed across nine sites; three communal and six 
individual nesting sites. Communal nesting sites were 
only partially excavated to limit further disturbance of 
those sites. Nests were measured and mapped in detail 
along with characteristics of the sites, in terms of slope, 
terrain, nest depth, and chamber, the results of which 
are to be reported elsewhere. During excavations we 
recorded all taxa that were encountered, and collected 
invertebrates for subsequent identification by users of 
the citizen science platform iNaturalist.org.

We here report on “other” taxa encountered within 
emergence holes, tunnels, and egg chambers across the 
nine nest sites. The deepest two nest chambers were 
1.65 m below the surface, and the longest tunnel had a 
horizontal distance of 6 m. Observed animals consisted 

Figure 1. Photos of a partially excavated complex nesting site and encountered taxa on Sint Eustatius: (A) Multiple old tunnels 
(numbered) and one nest chamber (plus sign), with scale bar indicating a depth of 1.20 m; (B) roots of the Bourreria succulenta 
tree that grew among egg shells in an old nest chamber; (C) Pholidoscelis erythrocephalus encountered in a closed tunnel at 72 
cm depth; (D) Gryllodes sigillatus found at 50 cm depth in a closed tunnel; and, (E) juvenile Cyrtopholis sp. tarantula at 110 cm 
depth in a closed tunnel. Photos by Julian Thibaudier and Matthijs van den Burg.



of nine different invertebrate and vertebrate taxa 
comprising lizards, crabs, centipedes, ants, crickets, 
spiders, and a snake (Table 1).

Among vertebrates, Red-faced Ground Lizards, 
Pholidoscelis erythrocephalus (Shaw, 1802), were 
present in tunnels at four of the nine nesting sites (Fig. 
1C). In addition to four individuals, we found five P. 
erythrocephalus eggs within three tunnels, consisting of 
one single egg and two double-egg clutches (Appendix 
1). Besides incubation sites, the presence of adult and 
subadult P. erythrocephalus suggests that the species 
may also use iguana nests as thermal refugia and for 
foraging. Previously reported species interactions 
substantiate foraging as a potential reason for the 
subterranean presence of P. erythrocephalus, explaining 
the surprising depth of 70 cm at which we found one 
individual. Besides reported predation on tarantulas by 
P. erythrocephalus (Perez-Rivera and Molina-Opio, 
2008), which we also encountered in the iguana nests 
(Table 1), Pholidoscelis species are also known to prey 
on iguana eggs; although this has only been witnessed 
above ground (Breuil, 2002; Knapp, 2007; Knapp et 
al., 2016). On one occasion we witnessed an adult Red-
bellied Racer, Alsophis rufiventris (Duméril, Bibron 
& Duméril, 1854), entering an (old) iguana nest. This 
species is known to consume P. erythrocephalus and 
their eggs (Zobel et al., 2018; Adam Mitchell pers. 
comm. 2023). Among the encountered species, A. 
rufiventris is presumably the only casually-visiting 
species instead of an inquiline (Keese, 2011).

Among invertebrates, we encountered native tarantulas 
(Cyrtopholis sp.) in four nests, at a maximum depth of 
1.35 m (Fig. 1E). At three nest sites we observed nests 
of the non-native Longhorn Crazy Ant (Paratrechina 
longicornis) that had used an old hatchling emergence 

hole as their nest entrance. At two different nest sites, 
individuals of the non-native Tropical House Cricket 
(Gryllodes sigillatus) were found at depths ranging from 
30–50 cm (Fig. 1D). For three additional invertebrates, 
an unidentified Araneae sp., a Caribbean Giant 
Centipede (Scolopendra alternans), and a Purple Land 
Crab (Gecarcinus ruricola), only one individual was 
encountered. The ecology of these invertebrate species 
remains largely unknown, so explanations for their 
occurrence deep in iguana nests remain speculative. 
Given the limited number of excavated nests, it is likely 
that more species will be found to inhabit subterranean 
iguana nesting sites.

Apart from the above results suggesting multiple 
animal species make active use of I. delicatissima 
nesting sites, these sites arguably impact local flora 
species as well. As germination can be triggered by a 
sudden alteration in light, moisture, or oxygen (Bewley 
et al., 2006), dormant seeds in the soil seed bank may 
germinate in excavated soil in and around nest entrances 
and emergence holes. Furthermore, nesting iguanas also 
introduce nutrients below ground through the deposition 
of empty eggshells, egg contents, as well as dead embryos 
and hatchlings. During one excavation, roots, likely 
of a nearby Strong Back Tree (Bourreria succulenta), 
were found growing through old decomposing eggs, 
indicating an overlap between nesting chambers and 
the rooting depths of plants (Fig. 1B). As little is known 
about microenvironmental conditions in iguanid nests 
(such as pH and nutrient deposition; but see Troyer, 
1984; Bouchard and Bjorndal, 2000; Marco et al., 2005; 
de Miranda, 2017), we encourage future studies on 
these and other conditions. One interesting question to 
address is whether communal nesting positively affects 
local microenvironmental conditions for increased 
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Table 1. Encountered individuals of inquiline taxa and their depths during Lesser Antillean iguana nest excavations on St. 
Eustatius.

Table 1. Encountered individuals of inquiline taxa and their depth during Lesser Antillean 

Iguana nest excavations on the island of Sint Eustatius. 

Order Taxa n Depth Range (cm) 

Squamata Pholidoscelis erythrocephalus (individual) 4 10–72 

Pholidoscelis erythrocephalus (egg) 5 25–50 

Alsophis rufiventris 1 20 

Araneae Cyrtopholis sp. 4 10–135 

Unidentified Araneae sp. 1 55 

Orthoptera Gryllodes sigillatus 3 30–50 

Hemiptera Paratrechina longicornis (nests) 3 0–30 

Decapoda Gecarcinus ruricola 1 50 

Scolopendromorpha  Scolopendra alternans 1 35 
  

 



nesting success.
Our observations of diverse subterrestrial commensals 

and casual visitors of iguana nests suggest that I. 
delicatissima is an allogenic ecosystem engineer (Jones 
et al., 1994). Interestingly, only a few reptile species 
have so far been considered as ecosystem engineers: 
tortoises (Gibbs et al., 2010; Kinlaw and Grasmueck, 
2012), sea turtles (Madden et al., 2008), crocodilians 
(Somaweera et al., 2020), one iguanid (Tapia and Gibbs, 
2022), and some varanid lizards (Doody et al., 2021; 
see overview of ecosystem engineers in Coggan et al., 
2018). Indeed, large-bodied iguanids (e.g., Iguana, 
Cyclura and some Ctenosaura sp.) have largely been 
overlooked, as suggested by Doody et al. (2021), but 
see Tapia and Gibbs (2022). However, published data 
suggests their probable eco-engineering role; (1) nesting 
sites can be large (e.g., Knapp et al. 2016), (2) nests may 
be up to at least 1.65 m deep (e.g., present study), (3) 
communal nesting areas may be used by tens- to over 
hundreds of nesting females (e.g., Carpenter, 1966; 
Rand, 1968; Bock et al., 1985; Knapp et al., 2016), 
and (4) nest sites may be used annually (e.g., Iverson 
et al., 2004; Perez-Buitrago et al., 2016). The highly 
complex three-dimensional subterranean nest sites 
that iguanid species can create (Fig. 1A, Appendix 2), 
which are then used by other organisms (both inquiline 
commensals and casual visitors), substantiates their 
role as ecosystem engineers. We urge further study of 
commensals of iguanid nests and nesting sites to further 
elucidate their ecological importance and conservation 
priority, especially since 80% of iguanids are considered 
threatened (IUCN, 2023).

Since scientific work on I. delicatissima has allowed 
a more acute understanding of the decline and 
deteriorating population trend of Iguana delicatissima 
(Breuil et al., 1994; Day and Thorpe, 1996; Day et 
al., 2000; Breuil, 2000), all focus has gone towards 
understanding underlying actors and the mitigation 
and removal of threats (e.g., Breuil 2013; Knapp et al., 
2014, 2016; Vuillaume et al., 2015; van Wagensveld 
and van den Burg, 2018; Debrot et al., 2022; van den 
Burg et al., 2022). Our observations provided here 
suggest how the regional decline and local extirpations 
of I. delicatissima might have affected or be affecting 
other sympatric species. These potential effects could 
ideally be assessed by ecological comparisons between 
islands with and without I. delicatissima. For instance, 
P. erythrocephalus occurs on both St. Eustatius and 
St. Kitts, with I. delicatissima only persisting on St. 
Eustatius. A study comparing the reproductive ecology 
of P. erythrocephalus between these two islands could 

shed light on any significance of I. delicatissima nest 
burrows for its reproduction. Furthermore, considering 
that I. delicatissima is not only disappearing but also 
being replaced by non-native iguanas on numerous 
islands (van den Burg et al., 2018, 2023; Knapp et 
al., 2021), the question arises if and/or how these 
replacements affect local species, ecosystems, and 
local functional diversity (Kemp, 2023). While this 
topic has so far received little attention, assessing 
ecological differences such as the reproductive ecology 
of P. erythrocephalus between islands with only 
native iguanas, only non-native iguanas, and complete 
absence of iguanas, would be a topic for future studies. 
For example, it appears that I. delicatissima may nest 
deeper (max. depth of 1.65 m in this study) compared 
to populations of the Iguana iguana species complex 
(max. reported depth of 1.20 m; Haller and Rodrigues, 
2005), which could translate into differential functional 
ecological effects. In conclusion, this report provides 
first evidence of an ecosystem engineering function and 
keystone species role of I. delicatissima, highlighting the 
importance of conservation of this species to maintain 
healthy ecosystem function across the Lesser Antilles.
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Appendix 1. Egg of Pholidoscelis erythrocephalus with live embryo found within excavated iguana nest tunnel at 50 cm depth 
below ground level. Photo by Julian Thibaudier.

Appendix 2. Below-ground image of complex three-dimensional structure of Iguana delicatissima communal nesting site. 
Asterisk indicates nest chamber at 1.20 m depth. Numbers correspond to different tunnels. Photo by Julian Thibaudier.
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