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Abstract Mesopelagic fishes are a vital component of the
biological carbon pump and are, to date, largely unexploited.
In recent years, there has been an increased interest in
harvesting the mesopelagic zone to produce fish feed for
aquaculture. However, great uncertainties exist in how the
mesopelagic zone interacts with the climate and food webs,
presenting a dilemma for policy. Here, we investigate the
consequences of potential policies relating to mesopelagic
harvest quotas with a dynamic social-ecological modeling
approach, combining system dynamics and global sensitivity
analyses informed by participatory modeling. Our analyses
reveal that, in simulations of mesopelagic fishing scenarios,
uncertainties about mesopelagic fish population dynamics
have the most pronounced influence on potential outcomes.
The analysis also shows that prioritizing the development of
the fishing industry over environmental protection would
lead to a significantly higher social cost of climate change to
society. Given the large uncertainties and the potential large
impacts on oceanic carbon sequestration, a precautionary
approach to developing mesopelagic fisheries is warranted.

Keywords Blue carbon - Carbon sequestration -
Deep uncertainty - Mesopelagic fishery -
Social-ecological modeling

INTRODUCTION

As global demands for food and goods rise (Pace and
Gephart 2017; Hickel et al. 2022), affluent regions are
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leaving a noticeable environmental footprint (Chancel
2022). In parallel, biodiversity is declining (Bjelle et al.
2021; Portner et al. 2023), further complicated by the
accelerating impacts of climate change (Navarro-Racines
et al. 2020), affecting wildlife and ecosystems (Portner
et al. 2023).

These challenges are intertwined: climate change exac-
erbates biodiversity loss (Portner et al. 2023), while
ecosystems absorb atmospheric carbon (Boyd et al. 2019;
Portner et al. 2023). As the global population grows, there
is an increased demand for animal protein (Naylor et al.
2021). Responding to this demand, aquaculture production
has risen, driven by the need to address depleting wild fish
stocks (FAO 2022). However, this growth in aquaculture
raises a dilemma: aquaculture fish require protein, often
sourced from wild-caught forage fish (Froehlich et al.
2018).

Balancing the ecosystem impacts of forage fish har-
vesting against the food provided by aquaculture requires
careful consideration. This decision-making process is
complex, involving high stakes and significant uncertain-
ties (Marchau et al. 2019). To address these complexities,
transdisciplinary approaches with active stakeholder
involvement are crucial (Bernstein 2015).

There is limited possibility for expanding marine cap-
ture fisheries to address the growing demand for seafood
(Free et al. 2022). In recent decades aquaculture production
has grown steeply, with a lot of growth in blue foods
related to aquaculture growth (Naylor et al. 2021). While
some aquaculture is supported by land-based production
(e.g., soy), and trophic levels of piscivorous aquaculture
fish (e.g., salmon) have decreased in recent years (Cottrell
et al. 2021), aquaculture production of piscivorous species
still relies on fishmeal supplied by wild capture of forage
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fishes. Furthermore, climate change is decreasing viable
options for expanding blue food production (Free et al.
2022).

A large and (almost) unexploited marine ecosystem is the
mesopelagic zone, a zone in the open ocean 200-1000 m
deep. It is too dark for photosynthesis but receives sufficient
light for visibility (Robinson et al. 2010) and is also called the
ocean twilight zone. The mesopelagic ecosystem provides a
diversity of regulating (i.e., carbon and nutrient cycling), and
supporting (i.e., prey species for important commercial and
protected species) ecosystem services (St. John et al. 2016;
Iglesias et al. 2023). Harvesting the mesopelagic zone pro-
mises large seafood production volumes for aquaculture
input (Alvheim et al. 2020). The viability of this fishery,
however, remains uncertain. Biomass estimates have been
high, but also highly variable (Hidalgo and Browman 2019),
ranging from 1.8 to 16 Gt (25-75% quartile ranges; Proud
et al. 2019). An assess

Mesopelagic fish exploitation may be economically
viable from the fishing operation perspective (Prellezo
2019; Paoletti et al. 2021). However, this is still uncertain
and contingent on technicalities such as processing abilities
and catchability. Mesopelagic fish have a low catchability
due to their widespread and patchy distribution (Olivar
et al. 2012; Proud et al. 2017), their effective trawl
avoidance (Kaartvedt et al. 2012), and variability in spatial
patterns of occurrence (Olivar and Beckley 2022). The
fishery will likely have high operating costs due to the large
amounts of fuel needed, in addition to investment in new
processing methods (Paoletti et al. 2021). Due to their
high-fat content, mesopelagic fish deteriorate quickly upon
harvesting, requiring the likely development of specialized
onboard processing equipment (Paoletti et al. 2021).
However, current and upcoming effort limitations on cur-
rent fisheries, growing fish and aquaculture markets, and
technological innovation may make mesopelagic fishing
more profitable in the future (Prellezo 2019).

Large-scale fishing in the mesopelagic zone could pro-
voke a trade-off between seafood production and other
vital ecological functions of mesopelagic fish (St. John
et al. 2016). Several mesopelagic fish and zooplankton
species migrate vertically (Passow and Carlson 2012;
Davison et al. 2013), feeding at the surface at night and
hiding from predators at depth during the day. During
vertical migration, fish transport carbon from the surface to
the deep sea, where carbon is stored for longer periods of
time, 100 years, and longer if excreted at depths > 1000 m
(Passow and Carlson 2012). With their large biomass and
this collective behavior, mesopelagic species contribute to
carbon sequestration in the ocean (Martin et al. 2021; Saba
et al. 2021) at a scale that may be globally significant
(estimated 41% of total active carbon export), but it is
highly uncertain (0.9-3.6 Pg yr—'; Boyd et al. 2019). The
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cost to society associated with reductions in carbon
sequestration is likely to be high but uncertain (Barange
et al. 2017; Jin et al. 2020).

The history of fisheries tells a cautionary tale about the
importance of governance in maintaining ecosystem ser-
vices. Generally, fish populations and marine ecosystems
are in better condition in fisheries with more sophisticated
management regimes (Melnychuk et al. 2017). At present,
there is little management of the mesopelagic zone
(Schadeberg et al. 2023), with a few exceptions, such as a
precautionary moratorium on the US West coast (Dowd
et al. 2022) and a precautionary catch-based limit in Ice-
land (Marine Research Institute 2015). New fisheries, like
straddling and highly migratory fish stocks governed by the
UN Fish Stocks Agreement (UNFSA 1995), will require
cautious conservation measures per Article 6(6), overseen
by regional fisheries management organizations (RFMOs).
Despite the minimal investigation into RFMO implemen-
tation (Caddell 2018), their effectiveness varies (Cullis-
Suzuki and Pauly 2010). Lobby groups influence ecosys-
tem-based fisheries management, potentially impacting
mesopelagic fisheries (Orach et al., 2017; Oostdijk et al.
2022). The impact of decision-making uncertainties,
including lobby group influence on RFMO decisions
regarding mesopelagic fisheries, remains unquantified.

Sustainability decision-making is often described as a
“wicked problem,” in which facts are deeply uncertain,
stakes are high, values are in dispute, and decisions are
urgent (Funtowicz and Ravetz 1990). Sustainability deci-
sions invariably involve values, leading to calls for trans-
disciplinary approaches to decide on desirable outcomes
and outcomes to avoid (Brown et al. 2010). Consequently,
analytical approaches have been established that combine
system dynamic modeling, advanced sensitivity analysis,
and participatory approaches to weigh the impact of dif-
ferent decisions on the outcomes at stake (Kwakkel et al.
2016). These approaches can, for instance, be used to
discover “worst-case scenarios” for outcomes that are of
interest, which is useful for decision-makers who may want
to govern using the precautionary approach. The precau-
tionary approach applies tactics that try to avoid those
worst outcomes, for instance, by implementing a low har-
vest limit based on the lower bound estimates of stock size,
as is implemented by the International Council for Explo-
ration of the Seas (ICES) (Lassen et al. 2014) to avoid
stock collapse and adverse ecosystem impacts. In this
article, we apply a system dynamics model combined with
advanced sensitivity analyses to investigate governance
scenarios for harvesting mesopelagic fish, and we weigh
the profit of harvest against the societal cost of increased
exposure to damage from climate change. We also identify
the key uncertainties in the outcomes in catches, biomass
of the population and carbon sequestration and the social
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cost of the loss of carbon sequestration ecosystem services.
We follow the approach presented by Moallemi et al. (2020)
to explore outcomes informed by stakeholder participation
and model parameter uncertainties. The combination of
these approaches has been used in fields such as water
resource management, climate adaptation, public health,
national defense and security, and energy policy (Marchau
etal.2019). To our knowledge, this is the first application of
such approaches (i.e., the combined use of SD with deep
uncertainty analyses) to an ocean sustainability challenge.

MATERIALS AND METHODS

The methods are centered around (1) the construction of a
system dynamics model (Forrester 1961), and (2) using
Decision-Making Under Deep Uncertainty (DMDU)
methods (i.e., elaborate sensitivity analysis on possible
model outcomes) to arrive at possible robust decisions
under deep uncertainty. Stakeholder participation is used to
inform the system dynamics model and decisions/outcomes
to focus on in the DMDU method. See Fig. S1 for an
overview of the methods we used.

The system dynamics model

System dynamics uses coupled equations and is well suited
to study complex social-ecological systems (Martin and
Schliiter 2015). System dynamics has been used before in
modeling fisheries to explore participatory scenarios for
small-scale fisheries, or to study patterns of overexploita-
tion in existing industrial fisheries (Rockmann et al. 2012;
Perissi et al. 2017; Pouso et al. 2019).

We constructed a stylized global model, which is not
spatial and is based on coupled difference equations. This
model contains a simplified set of equations representing
real-world dynamics (Lade et al. 2019; Eppinga et al. 2023).

The model consists of four main modules and is a
reworked version of the model used by Van Deelen (2021).
The first module models mesopelagic fish dynamics (see
main causal dynamics for the modules in Fig. 1), the sec-
ond module models the oceanic carbon cycle component,
which models key attributes of the ocean biological pump
and the role of mesopelagic fish therein. The third module
models fisheries economics and food provision compo-
nents, including the economic decisions to fish, and their
relationship to profitability and efficiency. The fourth
module is the governance component, which models the
way quota setting is impacted by different economic actors.

We used participatory methods to inform the structure
and scenarios in the system dynamic model, which are
detailed in Appendix S1. Briefly, we relied on a previous
interview campaign with experts (n = 20) (Oostdijk et al.
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2022) and a workshop largely focused on extreme out-
comes, in which we combined a (pre-workshop) survey and
participatory modeling (Kraan et al. 2022). The pre-
workshop survey showed that participants were interested
in several main themes or (extreme) outcomes (e.g., the
impact of fishing on the status of mesopelagic fish popu-
lations, especially given the lack of detailed knowledge
about these populations, the amount of achievable harvest
from the standpoint of food security and the key role of the
mesopelagic species in the ecosystem and carbon cycle,
Appendix S1). We integrated several of these concerns into
the structure of the SD model, to achieve a model that was
able to address these outcomes of interest. Moreover,
during participatory modeling sessions during the actual
workshop we addressed causal connections that could lead
to outcomes of interest. These resulted in quite complicated
system maps with many causal links (Fig. S2-S4), which
the author team collaboratively summarized into key dri-
vers, that were validated by literature review.

The system dynamics model was implemented in Python.
The outcomes of the model are the range of possible out-
comes for mesopelagic biomass, carbon sequestration (with
and without fishing), harvest levels, fishery profits and the
cost of fishing in terms of the computed social cost of carbon.

Model structure and main equations

Mesopelagic biomass, fishing, costs, and profits: We con-
structed a simplified social-ecological model departing
from a Gordon-Schaefer surplus production model for
mesopelagic fish (Schaefer 1957):

My =M, + M, r(1 — M,/K) — H, (1)

M is the size of the mesopelagic fish population, for
simplicity’s sake this is modeled as a single biomass pool. r
is the relative growth rate of mesopelagic fish, which
depends on the amount of mesopelagic fish with respect to
the carrying capacity K. H is harvest, which is modeled as
follows:

H, =qE, M, (2)

where Harvest H is proportional to effort times catchability
q, effort E and the size of the mesopelagic stock
M (Schaefer 1957).

Fishing effort is proportional to the profitability of the
fishery and is modeled as follows, adapted from (Fryxell
et al. 2017):

E1 = E, + ( alphalp,(H;) — cE\]), 3)

With the constraint being that effort does not increase if
H, >/=1to quota (Q). We assume that the effort of the
previous year impacts the current year’s effort. alpha is a
factor that modulates the change in effort contingent on
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Fig. 1 Causal loop diagram of the core structure of the model, + signs show a positive relationship between model variables, and — signs show
a negative relationship between model variables. Feedback loops are indicated with a circular arrow. All feedback loops are balancing (B). See
model formulas and Table 1 (bio-economic parameters) and 2 (governance parameters) for more explanation regarding the modeled variables.
(green color represents population dynamic parameters, blue represents carbon cycle parameters, red represents economic parameters, while

white represent governance parameters)

revenue and cost, assuming sp is the price obtained for
mesopelagic fish and c is the cost of fishing (Fryxell et al.
2017). Effort has a near zero initial value as the structure of
Eq. 3 does not allow for the fishery to start off from zero.
Profitability (m) is defined as the sale price (p) of
mesopelagic fish minus the cost of fishing (c):

T = p[Ht — CE[ (4)

Sale price (p) of mesopelagic fish is determined
endogenously based on the size of the harvest, equation
adapted from Elsler et al. (2021), Fryxell et al. (2017):

pr = X x gamma x H,(—1 % Beta) (5)

where gamma is the initial price of mesopelagic fish, and
Beta is the parameter that adjusts the price when demand is
increased. X is a modifier for demand, representing the
trend of increasing demand for fishmeal/fish oil with
increasing aquaculture production and no or little shift to
land-based feeds (Froehlich et al. 2018).

Carbon dynamics: We expanded the model to include a
carbon and governance component. Total carbon injected is
based on cumulative carbon injected by weight of meso-
pelagic fish, and the percentage that is injected through
respiration, fecal pellets, and the mortality pathway are
modeled as follows:

1
Ci,l-‘rl = Mt:uﬁ + Ci,t(1 - <>)v Where i = {rafa m}

(6)
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where u is the carbon injected per year per weight of
mesopelagic fish, f,, f; and f,, are fractions of carbon
injected through respiration, fecal and mortality pathways,
respectively. C,, C; and C,, are carbon injected through
respiration, fecal, and mortality pathways, respectively. s,,
sy, and s, represent the duration of sequestration of each of
the pathways.

Total carbon sequestered due to vertically migrating fish
is modeled as follows:

Ciz = Cr‘t + Cf,z + Cm,z (7)

Governance: Quota setting is impacted by the amount of
carbon sequestered by mesopelagic fish and the fishery
profitability. P This effect takes place through two
parameters: one for the impact of fishing industry lobby
and one for the impact of government environmental
concern:

0, =0 0x FL, *x E, (8)

where O 0 is the initial level of quota suggested by a fic-
tive advisory organ, FL is the effect of the fishing industry
lobby on that quota, and E is the effect of the government
level of environmental concern due to loss of carbon
sequestration function.

The lobby effect is impacted by profitability once the
profitability crosses a threshold, based on profitability in
other fisheries (i.e., if the fishery becomes equally or more
profitable than current fisheries for small pelagic species,
this effect will occur):
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Table 1 System dynamic model parametrization (green color represents population dynamic parameters, blue represents carbon cycle param-
eters, and red represents economic parameters). Upper and lower bounds of confidence intervals were generally & 75%, unless literature
indicated differently (e.g., recent studies regarding mesopelagic biomass do not indicate biomass values higher than 4.5 Gt). Several theoretical
parameters (e.g., alpha) have purposefully wide ranges

Module Variable Parameter value Units Reference Range for deep
uncertainty analysis

Population Initial Mesopelagic 3 Gt Slightly higher than Anderson et al. (2019), as 1.5-4.5
dynamics  fish biomass range in Proud et al. (2019) heavy right
(M_0) skewed (uncertainty range: Hidalgo and

Brownman 2019; Proud et al. 2019; Irigoien
et al. 2014). Dornan et al. (2022) find that
estimated biomass of lanternfish were 1.8
and 3.8 times greater than previous net-based
biomass estimates, combining acoustic and
survey approaches for the southern ocean.
Which is in line with Andersson et al. (2019)

findings
Carrying capacity 3 Gt Slightly higher than Anderson et al. (2019), as 1.5-4.5
(K) range in Proud et al. (2019) is heavily right
skewed
Growth rate (r) 0.9 1/Yr Thorston et al. (2017), generation doubling 0.225-1.575
time around 1.4—4.4 years (Froese et al.
2017)
Carbon Conversion 0.77 Dmnl Davison et al. (2013) a
bodyweight
mesopelagic fish
to injected carbon
()
% fish carbon 0.35 for fecal, 0.32 Dmnl Davison et al. (2013) a
injected through for respiration,
pathway 0.33 for mortality
Sequestration length 103 Yr for Year Pinti et al. (2023) 25.75-180.25;
carbon injected respiration, 599 Yr 149.75-1048.25;
mesopelagic fish for fecal pellets, 212.75-1489.25
851 for deadfall
Conversion carbon  3.67 Dmnl Based on the atomic mass of carbon as a
to CO, fraction of CO,: 12/44
Economic  Costs fishing with 37,000 €/day STECF data on pelagic seines > 40 m in EU, 18.500€/- €/
specialist capacity multiplied by 1.5 (as per Paoletti et al. 2021),  55,500/day
(c) see Figure C3
Harvesting capacity 200 Tons per unit Norwegian trial fishery in Groeneveld et al. 100-300 tons per
per day (q) effort (2022) day
(1 day at
sea)
Social cost of carbon 162 €/per ton CO, Rennert et al. (2022) (2020 Euros) 38.6-362.28
(scc)
Alpha a 0.5 Dmnl Fryxell et al. (2017) 0.1-1
Gamma 350 Price (€//ton) (Groeneveld et al. 2022; Fryxell et al., 2017 175-525
when uncertainty: Prellezo 2019, Paoletti et al.
harvest = 1 2021)
Price flexibility (f)  0.005345 Dmnl Appendix S2, Fig. S5 0.000134-0.000935
Demand multiplier ~ 1.004 Dmnl Froehlich et al. (2018) 1-1.008
X)

We did not do sensitivity analysis on these values as these rates are based on daily metabolic rates assumptions regarding mesopelagic fish, that
are not explicitly modeled in our analysis (and relate in a non-straightforward way to growth in a surplus production model, as growth rate
(r) represents both recruitment and metabolic growth), we therefore chose the baseline scenario in Davison et al. (2013) for these estimates
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Table 2 Key management/governance parameters and uncertainties

Variable

Parameter value

Range for
deep
uncertainty
analysis

Units Reference

Proposed harvesting quota

(0

Fishing industry lobbying
effect size (FL_effect)

Profit level (pl) at which
lobby takes place

Carbon sequestration
governance effect size

(E_effect)

0.3

Nonlinear phase shift with increased
profitability 1 for profit less than pl, 1.2
profit above pl (if then else statement)

> 20%

Nonlinear phase shift with decreased carbon Dmnl

sequestration 1 for O loss of carbon
sequestration, 0.8 for less than 50% of
yearly mesopelagic carbon sequestration
in year 1 of the simulation. (if then else

statement)

Percentage of loss of carbon 50%
sequestration at which
environmental concern

takes place (el)

1/Yr  ICES advice blue whiting 0.15-0.45

Fmsy 0.32 (ICES 2022) (in theory this could
probably be higher in case of high r, but
advisory organs often take a precautionary
approach with forage fish due to predation
by important predatory fish (ICES 2020)

Dmnl Scenario/assumption

Fished levels or allocated total allowable
catches are frequently higher than advised
(e.g., Woods et al. 2015; Carpenter et al.
2016) due to industry interests. In the EU
TACs were set on average 20% above
advice (Carpenter et al. 2016), with the
highest excess TAC being blue whiting
(52%), which is a shared and migratory
stock (Bjorndal and Ekerhovd 2014). This
scenario of setting higher quota can also be
interpreted as a scenario of IUU fishing,
due to a lack of governance capacity (e.g.,
in the high seas) as addressed by experts in
the stakeholder workshops (Appendix S2)

Annual Economic Report (STECF 19-06),
Fig. S6

Scenario/assumption

Dmnl > 10-

> 30%
0.2-0.8

Social norms can shift rapidly depending,
sometimes accelerated by policy changes
(Lenton 2020)

This scenario takes into consideration that the
decision maker(s) could act out of
precaution. It could, for instance, be
facilitated through the implementation of a
carbon valuation method as addressed by
experts in the stakeholder workshops
(Appendix S2)

Dmnl Scenario/assumption 25-75%

{ FL, = FL_ effect if m,/(cE;) > pl ()

1 otherwise

where FL_effect is the predetermined effect size of fishing
lobby on quota setting, and pl! is the profit level that should
be crossed for the fishery to become commercially inter-
esting enough for fishing lobby to take place.

The environmental concern effect also comes into play
once carbon sequestration loss crosses a certain threshold
compared to carbon sequestration without fishing.

www.kva.se/en

{Et = E_effect if Cy<el * Ciy—s (10)

1 otherwise

where E_effect is the predetermined effect size of envi-
ronmental concern on quota setting, which comes into play
if total yearly carbon sequestration is below a conversion
factor (el) times its level in the initial phase of the simu-
lation, virtually without fishing.

The monetised climate impact (using estimates of the
social cost of carbon) of mesopelagic fishing is defined as
the difference in total sequestered carbon between

@ Springer
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scenarios with and without fishing, multiplying this by the
social cost of carbon. The cost to society of harvesting
mesopelagic fish is measured in lost sequestration potential
compared to a pristine population times a CO, conversion
coefficient and times the social cost of carbon per tonne
CO,.

We ran the model for a simulation of 50 years with a
yearly time step. Table 1 details the model parametrization.
Some additional background on parametrization can be
found in Appendix S2, and Table 2 presents the governance
scenarios.

The biomass of all mesopelagic populations combined is
very high in comparison to current commercially fished
forage fish populations. Thus, we also performed a set of
runs where we restricted the maximum yearly harvest to be
around the size of the current annual global capture of
forage fish (20 million tonnes, (FAO 2022)).

Decision-making under deep uncertainty (DMDU)
methods

DMDU methods can be used to explore structural uncer-
tainties, such as biomass estimates or fish prices in the case
of a mesopelagic fishery, and parameter uncertainties
(Moallemi et al. 2020), and their consequences for deci-
sion-making. The impacts of such uncertainties and their
implications for outcomes of decisions can, for instance,
provide evidence warranting a precautionary approach to
policy (Bisson et al. 2023). The DMDU analyses were
performed in the Exploratory Modeling and Analysis
(EMA) workbench 2.2 (Kwakkel 2017).

Experiments and uncertainty analysis

As an exploratory uncertainty analysis, we ran the model
100 000 times over the parameter space for the uncertain
parameters using Latin Hypercube Sampling (Tables 1, 2).
We used extra-trees feature scoring (Jaxa-Rozen and
Kwakkel 2018) to select the main uncertainties that drive
the model outcomes for the variables biomass, seafood
supply, fishery profitability, and carbon sequestration by
the migrant pump and the value of the carbon measured in
the social cost of carbon.

Worst-case scenario discovery

The participatory methods helped us determine which
outcomes we should avoid or strive for, and which are
considered “worst outcomes” (Appendix S1). The worst-
case scenario discovery function in the EMA workbench
runs over all uncertainties (Table 1) and levers (Table 2)
and filters scenarios that have overall low scores for desired
outcomes (Halim et al. 2016). A worst-case scenario has, in
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our case, low catches, low biomass and/or low carbon
sequestration.

RESULTS

Exploratory analysis full system dynamic model,
fishing and fisheries management

We found a wide range of possible outcomes for meso-
pelagic biomass and social cost of carbon, which is pre-
dominantly impacted by the uncertain amount of biomass
in the mesopelagic zone (Fig.2) and the uncertainties
around the profitability of fishing. Overall, model runs
suggest a median mesopelagic biomass of 2.5 Gt wet
weight (Interquartile range = 1.4) (Fig.2), which is
somewhat lower than the median of 3 Gt (Interquartile
range = 1.5) without harvest. Carbon sequestered is pro-
portional to the mesopelagic biomass and is projected to be
a median of 86Gt carbon (Interquartile range = 47 Gt),
cumulative over the 50 years of the simulation (Fig. 2). We
found a median of 0.22 Gt per year harvest, which is an
extremely large amount of production, considering that it is
more than three times the global total seafood production
from wild capture, which was 0.09 Gt in 2020 (FAO 2022).
Thus, the stakeholder perspective that this fishery could be
meaningful for seafood supply is validated (Fig. 2,
Appendix S1). The fishery was also profitable, with a
yearly industry profit reaching a median of €39 206 million
(Interquartile range = 85 404) by the end of the simula-
tions. However, in 20% of runs, the profitability of the
fishery was zero or below zero by the end of the simulation.
When we restricted the maximum yearly harvest to be
around the size of the current global capture of forage fish
(20 million tonnes), runs showed a median harvest of 20
million tonnes annually (and a mean of 16.7 million ton-
nes), at a cost to society of € 7 961 million a year
(Interquartile range = 10 900 million) as measured by the
social cost of carbon by the end of the simulation.
Uncertainties in mesopelagic population characteristics
driving these outcomes, and carrying capacity K is espe-
cially important for the modeled carbon sequestration (and
social cost of carbon) of mesopelagic fish (Fig. 3). The
uncertainty in the estimates of the social cost of carbon
itself mainly impacts the evaluated social cost of carbon as
do growth rate, quota, and catchability parameters. The
faster mesopelagic fish grow, the smaller the impact of
fishing on carbon sequestration and monetised climate
damage. Catch, and profits are largely impacted by catch-
ability of mesopelagic fish, its carrying capacity, the initial
level of set quota, and environmental concern of the
decision maker (Fig. 3). Initial demand is also an important
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Fig. 2 Density plots of 100 000 runs of the model with all uncertainties and its outcome for mesopelagic harvest, biomass and the valuation of
carbon sequestration by mesopelagic fish. Level represents the density of observations. Workshop participant quotes on possible outcomes of
fishing the mesopelagic associated with each of the modeled outcomes are depicted on the right side of the figure. Heavy tails were removed from
the catch (15% of observations) and social cost of carbon (6% of observations) plots as those made it difficult to observe the distribution of most
observations. Note also that plots start at year 5 of the simulation for all variables except social cost of carbon which start at year 10, due to the
many zeros and low values at the start of the social cost of carbon, the density plot showed little of the actual distribution in later years
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Fig. 3 Feature scoring plot of 100 000 runs of the model with all social-ecological uncertainties and modeled outcomes for biomass, total
sequestration, social cost of carbon, total catch, and total profits. Distributions show which uncertainties are driving most of the model behavior
with regards to the modeled outcome, yellow meaning that the variable was driving much of the model behavior in many of the model runs.
Model parameters are; K = carrying capacity, r = growth rate mesopelagic fish, q = catchability, Q_0 = advised quota, alpha = modifies effort
with respect to the previous year’s effort, beta = price flexibility, cost = fishing industry fishing cost per day, gamma = initial price of
mesopelagic fish, X = demand multiplier, scc = the social cost of carbon, pl = profit level (%) at which fishing lobby effect starts to take effect,
el = level of loss of carbon sequestration (%) at which environmental concern starts to take effect, FL_effect = fishing lobby effect, and
E_effect = environmental protection effect. Outcome variables are; effort (in days), biomass (in Gt), catch (in Gt), sequestration (in Gt carbon),
social cost (in Euros), profit (in Euros), modeled price of mesopelagic fish (gamma, in Euros). Remineralisation rates are excluded from the
feature scoring plot as they have an extremely small impact due to the relatively short timescale of the model

variable mainly for the outcome of profitability of the
fishery (Gamma, Fig. 3).

Trade-offs between seafood supply and carbon
sequestration

The model results show a synergy between maximum catch
levels and the maximum amount of carbon sequestration,
mainly because both are higher when biomass is higher
(Fig. 4A). However, there is a clear trade-off between
carbon sequestration and catch, as is seen from high esti-
mates for climate damage of the fishery, because of lost
carbon sequestration ecosystem services with a decrease in
the mesopelagic fish populations (Fig. 4B). The biggest
loss of carbon sequestration and the highest cost in the
social cost of carbon occurs in model runs with unsus-
tainable exploitation, which also results in lower cumula-
tive catches over the full timeline (Fig. 4A). The cost of the
fishery to society, as measured by the social cost of carbon,
is in the order of 7 trillion dollars (median, Interquartile
range = 7.9, but with outliers, as seen in Fig. 4B).

@ Springer

Governance analyses: Industry lobby
versus environmental concern

We found that the modeled final year median biomass of
mesopelagic fish with high levels of industry lobby and low
level of environmental concern of the decision maker is 2.3
Gt (Interquartile range = 1.3). In comparison, the modeled
median final year biomass of mesopelagic fish with low
levels of industry lobby and high level of environmental
concern of the decision maker is 2.6 Gt (Interquartile
range = 1.4). The differences between the governance
“scenarios” in terms of biomass and sequestration are
small, mainly because of the large number of uncertainties
impacting those outcomes, many of which are in the eco-
logical system.

Outcomes in levels of catch, and social cost of carbon
from fishing are much more sensitive to the governance
parameters (Fig. 5). Modeled median catch with high levels
of industry lobby and low level of environmental concern
was a median of 0.34 Gt in the final year. In comparison,
catch in scenarios with low levels of industry lobby and
high level of environmental concern had a median of 0.2 Gt

www.kva.se/en



Ambio 2024, 53:1632-1648 1641

160 175000 160

160 - A

150000

Ay
N
S

-

I

S

140 4

-
]
S

Maximum Sequestration (Gt C)

125000

,_.
Y]
o

Maximum Sequestration (Gt C)

1204

100

,_.
1=
5

100000

80

®
3

75000

o
3

50000

40

Maximum Sequestration (Gt C)

»
S

25000

Maximum Cost of Harvesting (Social Cost of Carbon, billion €)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 ¥is 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00

Maximum Catch (Gt) Maximum Catch (Gt)

Fig. 4 A Scatter of maximum carbon sequestration & seafood supply (color is valuation in social cost of carbon) (run is only including the
economic and governance uncertainties), demonstrating the trade-off between carbon sequestration by mesopelagic fish and their contribution to
seafood supply. B Scatter of maximum climate damage measured by the social cost of carbon of the fishery & seafood supply (color is in
maximum sequestration)

environmental protection = high environmental protection = moderate environmental protection = low

>

. (==
>
o
>
Q
Qo
© moderate %— K> O/\>
>
@
>
©
£ .
high <>> <\&
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
catch (Gt) catch (Gt) catch (Gt)
B environmental protection = high environmental protection = moderate environmental protection = low
[
>
Q
>
Q
QO
© moderate
>
@
>
©
£ .
high %
0 50000 100000 150000 0 50000 100000 150000 0 50000 100000 150000
social cost (billion €) social cost (billion €) social cost (billion €)

Fig. 5 Violin plots of A final year catches, and B cumulative social cost of carbon of fishing in outcomes with high industry lobby versus high
environmental concern of the decision maker, high environmental protection prevents high amounts of fishing that is very costly for society in
terms of its cost in the social cost of carbon. Violin plots are density curves, i.e., where there are the most observations the outline and fill is the
broadest. The long tails with few observations indicate a distribution with outliers. On the inside of the density curves, box plots are depicted
showing medians as white dots and interquartile ranges with grey bars

www.kva.se/en @ Springer



1642

Ambio 2024, 53:1632-1648

(Fig. 5A). Modeled median valuation of the cost of loss
carbon sequestering ecosystem service (based on the social
cost of carbon) with high levels of industry lobby and low
level of environmental concern of the decision maker is
somewhat lower in the runs with high environmental pro-
tection (10 trillion Euros vs. 5.4 trillion Euros, Fig. 5B).
The extreme outcomes are also more pronounced in the
runs with a big impact of industry lobby and low level of
environmental protection, with a maximum of 166 trillion
Euros in terms of the social cost of carbon from fishing
versus a maximum of 99 trillion Euros in a run with high
environmental protection and rather low impact of industry
lobby.

Worst-case scenario discovery

We found several ‘worst-case scenarios’, with rather low
catches, and biomass being on the lower end of the
uncertainty range (1.5 Gt) (Line plot in Fig. 6 depicts
combined outcomes from each individual model run that
resulted in a worst outcome). There is a small set of
solutions where the catch is somewhat higher (~ 0.03 Gt),
but biomass and sequestration are notably lower (min
biomass = 0.15 Gt, min sequestration = 4.3 Gt). There
tends to be a synergy between sequestration and biomass
while, unsurprisingly, there is a trade-off between biomass
and catch (Fig. 6).

DISCUSSION

We set out to model trade-offs between seafood supply and
carbon sequestration in the mesopelagic zone under deep

1.50

0.00
c
=
+J
©
e
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9]

catch ¢

>
o
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Fig. 6 Worst-case scenario discovery, run over all uncertainties. The
lines show combinations of (low) outcomes in the worst-case
scenarios of the outcome variables mesopelagic fish biomass, total
sequestration, and catches of mesopelagic fish (catch). Line colors
differentiate individual runs, each line depicted is the outcome for the
three outcomes of interest of a single model run where a worst-case
scenario was the result
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uncertainty and different scenarios for governance. There is
a paucity of data on the role of mesopelagic fish in marine
food webs (Dowd et al. 2022), their population sizes (Proud
et al. 2019), and therefore also the role that these animals
play in the biological pump (Anderson et al. 2019; Saba
et al. 2021; Pinti et al. 2023). While a lot of new knowledge
has been gained about the mesopelagic zone recently
(Hidalgo and Browman 2019; Proud et al. 2019; Pinti et al.
2023; Schadeberg et al. 2023), major uncertainties remain
(Drazen and Sutton 2017; Bisson et al. 2023). Because of
these uncertainties, we used a stylized dynamic modeling
approach, explicitly accounting for these uncertainties. The
model addresses uncertainties such as: How will aquacul-
ture demand develop over the next decades (Froehlich et al.
2018)?; Will mesopelagic fisheries ever become efficient
and profitable (Fjeld et al., 2023) and parameter uncer-
tainties (e.g., what is the population size of mesopelagic
fish (Proud et al. 2019), what is the food conversion effi-
ciency of mesopelagic fish (Anderson et al. 2019)).
Exploring these uncertainties in our dynamic model, we
found large differences in mesopelagic biomass and carbon
sequestration due to large uncertainties in the food web and
biological pump parameters. With increasing fishing, the
projected costs in terms of the social cost of carbon
(without including the greenhouse gas footprint), are gen-
erally high, approximating a median of 6 trillion dollars on
average after 50 years of the simulation. This is roughly
comparable to the entire carbon stock from mangroves in
1996 (Richards et al. 2020) evaluated using our baseline
conversion rate for the social cost of carbon (Table 1). Of
course, the amount of time that it would take to rebuild
mesopelagic fishes (if they are not overexploited), versus
mangrove carbon deposits would be on entirely different
timescales.

Major uncertainties with outsized impact
on the system

The main driving uncertainty we identified for mesopelagic
biomass and carbon sequestration was the carrying capac-
ity of the mesopelagic fish population (Fig. 3). This stresses
the need for further research into this ecosystem to restrain
such uncertainties before starting large-scale exploitation,
which could possibly jeopardize carbon sequestration
potential (Anderson et al. 2019; Pinti et al. 2023). The
market price of mesopelagic fish is one of the major drivers
of catch in the model, in turn affecting both biomass and
carbon sequestration. As such, without strong governance,
global market value and demand for mesopelagic fish is the
crucial force that will have the greatest impact on the
ecosystem impacts of human activity in the mesopelagic
zone, should catchability and technology for harvesting
mesopelagic fish improve (Fig. 3).
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Outcomes for food supply, mesopelagic biomass,
carbon sequestration and social cost of harvesting

There was a total yearly harvest of mesopelagic fish of 0.22
Gt on average across runs. This is a staggeringly large
number: global marine capture fisheries landed 0.09 Gt in
2020 (FAO 2022). However, mesopelagic fish may mostly
be destined for processing into fishmeal and fish oil, which
has large losses along the supply chain (around 70% for
fishmeal, Jackson, 2009). Thus, despite impressive harvest
estimates, the practical implications for actual food pro-
duction would be significantly lower. Another caveat worth
noting is that such a high harvest rate would require
upscaling fishing capacity (European capacity for harvest-
ing mesopelagic fish has been estimated to be around
140,000-500,000 tons per year, Groeneveld et al. 2022),
and large harvest levels in Areas Beyond National Juris-
diction, quite far removed from ports which would increase
the costs of fishing.

Considering supply chain losses and conversion factors,
a catch of around 0.22 Gt annually could result in around
60 million tonnes of fishmeal and 13 million tonnes of fish
oil; if those would all be used to feed salmon, around 60
million tonnes of salmon could be produced which would
be a significant contribution to micronutrients globally
(Hicks et al. 2019). Since feed sources are increasingly
land-based (Cottrell et al. 2021), an even higher amount of
aquaculture fish could be produced, but with an increasing
impact on land.

However, such a steep rise in demand for forage fish is
not realistic considering modeled future demands for for-
age fish for aquaculture (Froehlich et al. 2018). When we
restricted the maximum yearly harvest to be around the size
of the current supply of forage fish (around 20 million
tonnes) results showed a median of 20 million tonnes
annually, which is still a very large contribution to global
forage fish harvest. Thus, if harvests from the mesopelagic
zone could match present-day forage fish catches, this
would significantly contribute to the global sector. The cost
to society, however, as measured by the social cost of
carbon, was a median of € 7.961 billion a year in this set of
runs. To put all these numbers into perspective, a recent
estimate showed that ocean fisheries have released at least
0.73 billion metric tons of CO, in the atmosphere since
1950, (including greenhouse gas emissions from fishing)
which would amount to around 469 billion dollars cost to
society (an average of roughly 7 billion a year), in the form
of social cost of carbon (Mariani et al. 2020). However,
Mariani et al. (2020) did not consider the carbon seques-
tering function of fishes (transport by e.g., fecal pellets) and
weigh blue carbon only by biomass extracted from the
ocean and thus not sequestred, which makes these numbers
difficult to compare.
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There was a decrease in the biomass of mesopelagic fish
in most model runs. This was clearly attributable to fishing.
Fishing biomass stabilized at around 2.5 Gt in model runs
with fishing versus 3 Gt in model runs without fishing. The
parameters driving these outcomes were growth rate and
those associated with fishery profitability (cost and price)
and governance variables, mainly environmental protec-
tion. Compared to fishing, uncertainties around the carry-
ing capacity parameter (representing the actual current
biomass of mesopelagic fish) had a much larger impact on
carbon sequestration in the model runs. This stresses the
importance of resolving major ecological uncertainties
before starting large-scale exploitation (Anderson et al.
2019). Moreover, a nascent mesopelagic fishery would be a
very fuel-intensive fishery (Vastenhoud et al. 2023); with
governments around the world striving to lower depen-
dence on fossil fuels, fishing mesopelagic fish, especially
for reduction fisheries purposes, may not be in line with
global goals of reducing carbon emissions. Other trade-offs
will also need to be analyzed in a complete cost—benefit
analysis, e.g., reduced food availability for predators of
mesopelagic fish (Kourantidou and Jin 2022).

Governance analyses

As expected, we found that the social cost of carbon related
to harvesting mesopelagic fish is lower in scenarios with
less industry lobby and more environmental protection.
However, a more unexpected finding is that the more
environmentally minded scenarios resulted in a decrease in
extreme outcomes for the social cost of carbon of meso-
pelagic fishing. This was true across scenarios of high
levels of industry lobby, due to the explicit feedback
between the loss of carbon sequestration function and the
policy makers’ concern and intervention via quota (Fig. 5).
These findings strengthen the case for ecosystem-based
fisheries management to consider carbon sequestration an
important ecosystem function of open ocean marine
ecosystems (Elsler et al. 2022; Oostdijk et al. 2022).
Applying carbon taxes, at a minimum, to the greenhouse
emissions of the fishing fleet alone (Machado et al. 2021)
could also be an effective way to minimize impacts from
this potential fishery, given that it would likely have a high
CO2 footprint, just from fuel use alone (Groeneveld et al.
2022; Vastenhoud et al. 2023).

Limitations and future work

The analyses in this paper are subject to several limitations.
First, there are major data limitations, and the quality of the
available data mainly limits a model. For instance, there is
a lack of data on the exact contributions of mesopelagic
fish to the carbon pump, as carnivorous mesopelagic
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organisms are not sampled by conventional empirical
methods to study the carbon pump (Boyd et al. 2019; Pinti
et al. 2023). Furthermore, the amount of biomass of
mesopelagic fish is highly uncertain (Anderson et al. 2019),
so estimates will always differ by a large amount.

The model presented is highly stylized and highlights
how different uncertainties impact estimates of the effects
of harvesting mesopelagic fish. However, a benefit of this
stylized model approach is that elaborate sensitivity anal-
yses can be performed with limited computational resour-
ces. Because the model is highly stylized, complex
interactions such as food web dynamics are not considered.
There are uncertainties in the global food web with regard
to the role of mesopelagic fish (Anderson et al. 2019; Dowd
et al. 2022; Morzaria-Luna et al. 2022), and an interesting
future research question would be how other populations
will respond to harvesting (or otherwise impacting, e.g., by
toxic plumes from deep-sea mining or oil spills) mesope-
lagic fish (Dowd et al. 2022; Morzaria-Luna et al. 2022).
Food web interactions include prey populations such as
vertically migrating zooplankton, which could theoretically
grow larger with reduced predation from mesopelagic fish,
replacing some of the carbon transport ecosystem function
of mesopelagic fishes. Because of these potential interac-
tions, losses of carbon sequestration due to the removal of
mesopelagic fish, as presented in this paper, should be seen
as illustrative, not exact. More elaborate ecosystem models
(e.g., FEISTY, Petrik et al. 2019; van Denderen et al. 2021)
could be used to more specifically investigate the impact
the removal of mesopelagic fish might have on other
populations and carbon cycling processes. Such models
(that are often individual-based) may also integrate
uncertainties regarding bioenergetics and can study their
impact on carbon cycling and sequestration (McMonagle
et al. 2023). These uncertainties were not integrated in our
present study (as these uncertainties relate in complex ways
to parameters in the surplus production model we based our
analysis on), but can have a large impact on projected
quantities of carbon cycled and sequestred, i.e., sensitivity
analysis revealed a sixfold difference in carbon sequestra-
tion within plausible bioenergetics parameters (McMona-
gle et al. 2023).

Again other models may be more suitable to estimate
the viability and potential scale of mesopelagic fishery,
notably models with a regional focus, spatial dynamics,
and highly resolved technological detail of the fishing fleet
can expose new limitations to this nascent fishery. For
instance a recent study found that current pelagic vessels in
Denmark that may be used to exploit mesopelagic fish
indicated fuel tank capacity as a limiting factor due to the
sheer distance of the fishing grounds (Vastenhoud et al.
2023).
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Lastly, stakeholders for the participatory modeling ses-
sions were mainly from companies and institutions in EU
countries, where currently much of the interest in devel-
oping mesopelagic fisheries is concentrated (Kraan et al.
2022). However, since the stylized model is at a global
level, other dynamics or extreme outcome scenarios might
have been unveiled if a more diverse stakeholder group
was consulted.

CONCLUSION

Using a stylized modeling approach we synthesize infor-
mation on the largest ecological, economic, and social
uncertainties regarding the development of potential
mesopelagic fisheries. There is a trade-off between carbon
sequestering services of the mesopelagic zone and seafood
supply. The magnitude of this trade-off is uncertain but is
likely to be proportionate to the quantities of mesopelagic
fish extraction. The quality of the data about the population
size of mesopelagic fish, as well as the precise mechanisms
of the carbon cycle, are major limitations to the ability of
models to inform policy about these trade-offs. Our social-
ecological modeling approach showed a potentially prof-
itable fishery with a high CO, footprint under most
assumptions. Governance scenarios that prioritized pre-
vention of further loss of carbon function as opposed to
industry lobby showed lower costs to society in the form of
the social cost of carbon. A precautionary approach to the
management of mesopelagic fish is needed to preserve their
important role in carbon sequestering.
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