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Chapter 12 

Adverse Outcome Pathways Mechanistically Describing 
Hepatotoxicity 

Ellen Callewaert, Jochem Louisse, Nynke Kramer, Julen Sanz-Serrano, 
and Mathieu Vinken 

Abstract 

Adverse outcome pathways (AOPs) describe toxicological processes from a dynamic perspective by linking a 
molecular initiating event to a specific adverse outcome via a series of key events and key event relationships. 
In the field of computational toxicology, AOPs can potentially facilitate the design and development of in 
silico prediction models for hazard identification. Various AOPs have been introduced for several types of 
hepatotoxicity, such as steatosis, cholestasis, fibrosis, and liver cancer. This chapter provides an overview of 
AOPs on hepatotoxicity, including their development, assessment, and applications in toxicology. 

Key words AOP, Liver toxicity, Steatosis, Cholestasis, Fibrosis, Cancer 

1 Introduction 

To this day, it remains challenging to accurately assess the potential 
hazards of xenobiotics with limited toxicological data. Hazard and 
risk assessment traditionally relies upon apical toxicological out-
come testing using laboratory animals. However, these animal-
centered approaches have been challenged due to ethical, financial, 
and scientific concerns, including poor human predictivity and lack 
of mechanistic understanding [1, 2]. This has led to the emergence 
of alternative approaches, which provide the basis for next-
generation risk assessment. This refers to an exposure-led and 
hypothesis-driven risk assessment approach that strives to replace 
and/or reduce animal testing by integrating in vitro, in chemico, 
and in silico methods [3–5]. In the field of next-generation risk 
assessment, the application of adverse outcome pathways (AOPs) is 
a promising method for hazard identification. AOPs provide a solid
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mechanistic understanding of toxicological processes and, there-
fore, have the potential to enable more accurate predictions on 
chemical-induced toxicity [6–8]. The primary target for chemical-
induced toxicity is the liver [9]. Currently, over 400 AOPs have 
been established for a plethora of human and ecotoxicological 
endpoints, including hepatotoxicity such as cholestasis, steatosis, 
fibrosis, and liver cancer [10]. This chapter will focus on the devel-
opment, assessment, and applications of AOPs in the context of 
liver toxicity.
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2 Structure 

Linear AOPs visualize toxicological effects in a mechanistic way, 
starting from a molecular initiating event (MIE) resulting in an 
adverse outcome (AO) via a series of key events (KEs) linked by key 
event relationships (KERs) (see Fig. 1) [11, 12]. KEs are measurable 
and essential biological changes that capture relevant perturbations 
leading to a specific AO. The MIE and AO are two types of 
specialized KEs. The former is the primary anchor of an AOP and 
refers to the interaction of a chemical with a biological system at 
molecular level, such as covalent binding to proteins and nucleic 
acids or ligand–receptor interactions. The latter indicates the actual 
apical toxicological endpoint. The AO can be located at different 
levels of biological organization, ranging from the cellular to the 
population level, and can relate to either a chronic or systemic 
toxicological outcome or acute or local adverse effect 
[13, 14]. The connection between upstream and downstream 
KEs is described through KERs. They either represent direct links 
between KEs based on known mechanistic causality or indirect links 
where gaps persist in current mechanistic understanding 
[15]. Moreover, these KERs can be affected by extrinsic or intrinsic 
variables, designated modulating factors, such as genetic poly-
morphisms, disease states, and nutritional or environmental factors 
[16, 17]. They mediate the responses of KEs by changes in sensi-
tivity, duration, and magnitude of the response, without directly

MIE KE1 KE2 KE3 KE4 KEn AO 

KER1 KER2 KER3 KER4 KER5 KERn 

In silico/ 
in chemico In vitro/ in vivo Epidemiology 

Molecular Organelle Cellular OrganTissue Organism Population 

Fig. 1 Generic AOP structure starting with an MIE that is linked to KE by KER to an AO in the most simplistic and 
unidirectional manner. The AOP is substantiated by different types of information and covers different levels of 
biological organization. (Adapted from Arnesdotter et al. [15]). Abbreviations: adverse outcome (AO), adverse 
outcome pathway (AOP), key event (KE), key event relationship (KER), molecular initiating event (MIE)



changing the causal response-relationship between KEs [18]. An 
individual linear AOP is thus anchored at one end by an MIE and at 
the other end by an AO, causally linked via KEs and KERs. How-
ever, in most real-life scenarios, toxicological responses are consid-
erably more complex. Hence, interest is growing in developing 
AOP networks that better reflect the actual complexity of toxicity 
[19]. AOP networks are constructed by merging multiple AOPs 
sharing one or more KEs [18]. The topology of AOP networks can 
be classified in converging, diverging, or mixed patterns. In a 
converging topology network, the AOPs are directed toward a 
common KE or AO, while in a diverging topology network, the 
AOPs branch off from a common MIE or KE (see Fig. 2). In most 
cases, however, the AOP networks are mixed networks with both 
converging and diverging topologies [12]. Another way of visualiz-
ing an AOP network is by incorporating application-specific layers 
relevant for interpretation and application, such as layers related to 
quantitative data, taxonomic applicability, and modulating factors 
[18, 19]. Moreover, AOP networks have progressed to visualize 
features, such as the degree of prevalence and evidence for 
interconnected pathways [20]. The additional information 
included in layered AOP networks is intended to enhance their 
utility.
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Fig. 2 Divergent topology (left) and convergent topology (right) for AOP networks in the most simplistic 
manner. (Adapted from Knapen et al. [18]). Abbreviations: adverse outcome (AO), adverse outcome pathway 
(AOP), key event (KE), molecular initiating event (MIE) 

3 Development and Assessment 

3.1 Background The conceptual basis for AOP frameworks has its origin in the late 
1980s [8]. However, the first publication describing the AOP 
framework dates back from 2010, introduced by Ankley et al. 
[11] in the field of ecotoxicology and later in the area of human 
toxicology [11]. The AOP framework is a tool to collect and 
visualize mechanistic knowledge on toxicological effects of chemi-
cals relevant to risk assessment [14]. It builds on the mode-of-
action (MoA) concept, and although conceptually similar, the 
scope of an AOP is broader as it considers effects up to population 
level. Furthermore, MoAs tend to be chemical-specific and



consider kinetic aspects, whereas AOPs are chemical-agnostic and 
purely focus on the dynamic aspects [12, 17]. Hence, AOPs can be 
associated with any chemical, present at the site of action and able 
to activate the associated MIE [15]. This potential of AOPs for a 
range of applications has led to a rapid increase in AOP develop-
ment. The substantial growth of AOPs called for harmonized 
guidelines and strategies regarding their development and assess-
ment. Accordingly, the Organisation for Economic Co-operation 
and Development (OECD) published a Guidance Document on 
Developing and Assessing Adverse Outcome Pathways [14]. Addi-
tional recommendations are available in subsequent guideline 
updates, the OECD’s users handbook, and in general scientific 
literature [12, 13, 17–19]. Furthermore, the OECD launched an 
international AOP development program that entails three main 
phases, namely, assembly, review, and endorsement. The first phase 
is the assembly of the data in the AOP Wiki, an internationally 
accessible and searchable knowledgebase archiving AOP informa-
tion (https://aopwiki.org/) [10]. When the AOP is submitted in 
the OECD AOP development work plan within the AOP Wiki, the 
Extended Advisory Group for Molecular Screening and Toxicoge-
nomics (EAGMST) provides authors with coaching and feedback 
for the subsequent phases. The second phase involves the review of 
the AOP, which includes a compliance check and a scientific review. 
The third phase is the endorsement phase. This is an OECD-
specific phase in which the AOP requires approval from the 
EAGMST, followed by the Working Group of the National Coor-
dinators of the Test Guidelines Programme, the Working Party on 
Hazard Assessment, and the Chemicals and Biotechnology Com-
mittee. If the responsible OECD committees express confidence in 
the scientific review process, the AOP is labelled as “endorsed” and 
is published in the OECD dedicated Series on AOPs [21]. The 
purpose of publication is to provide a stable version over time (i.e., 
reviewed and revised version), as even endorsed AOPs can continue 
to evolve after their publication. On this note, endorsement of an 
AOP does not indicate that the AOP is ready or useful for direct 
regulatory applications. 
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3.2 Development A number of different strategies can be adopted for AOP develop-
ment. The seminal paper by Villeneuve et al. [12] describes strate-
gies for AOP development, including case study, analogy, 
top-down, middle-out, bottom-up, and data-mining strategies 
[12]. Case study strategies use a well-studied pathway of a single 
chemical and generalize this pathway to other chemicals when 
enough supporting evidence is assembled. Analogy strategies use 
an AOP that is developed in a single organism and extrapolate this 
to other species. Top-down, middle-out, and bottom-up strategies 
start from an AO, a KE, or an MIE, respectively, and subsequently 
connect these to adjacent events. Data-mining strategies apply

https://aopwiki.org/


high-throughput/high-content data (e.g., omics) and other types 
of database mining approaches to identify KEs and KERs. 
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The work of Knapen et al. [18] describes two strategies for 
AOP network development, namely, the network-guided and net-
work derivation strategy [18]. The former involves the develop-
ment of at least two individual AOPs containing one or more 
intentionally shared KEs, while the latter involves manual or pro-
grammatical extraction of relevant AOPs. Basically, any type of 
information can be fed into an AOP (network), including in vitro 
data (i.e., cell culture), in chemico data (i.e., abiotic chemical 
reactivity method), in vivo data (i.e., animal experimentation), in 
silico data (i.e., computational), and omics-based data [15]. Omics-
based data, in particular transcriptomic data, is a major data source 
for detecting KEs [22]. All these types of data are assembled for 
AOP (network) development, often through a manually performed 
in-depth survey of relevant scientific literature. However, manual 
expert-driven data collection approaches are complex, time-
consuming, and prone to data gaps. In this regard, new strategies 
have been proposed, such as deep text mining approaches and 
machine learning approaches [23]. Text mining, also known as 
text analytics or natural language processing, refers to the process 
of extracting knowledge from a large number of textual data 
[24]. Artificial intelligence-assisted data collection approaches can 
greatly facilitate the data extraction by automatically and systemati-
cally exploring available toxicological data [25, 26]. There is no 
universal strategy for AOP (network) development, and one or 
more strategies can be applied based on the availability of relevant 
data. Nevertheless, regardless of the adopted development strategy, 
five fundamental principles should be considered [12, 14]. Firstly, 
AOPs are not chemical specific. Secondly, AOPs are modular and 
composed of reusable components, notably KEs and KERs. 
Thirdly, an individual AOP, composed of a single sequence of KEs 
and KERs, is a pragmatic unit of AOP development and evaluation. 
Fourthly, AOP networks are composed of multiple AOPs that share 
common KEs and KERs and are likely to be the functional unit of 
prediction for most real-world scenarios, and fifthly, AOPs are 
living documents that evolve over time as new knowledge is 
generated [12]. 

3.3 Assessment A major element in the Guidance Document on Developing and 
Assessing Adverse Outcome Pathways is the incorporation of a 
weight-of-evidence assessment [14]. The AOPs are hereby thor-
oughly assessed with a clear and transparent evaluation of reliability, 
robustness, and relevance. Assessment of AOPs relies on the 
so-called tailored Bradford-Hill criteria. Originally, the Bradford-
Hill criteria were developed for causality evaluations in epidemio-
logical studies [27]. Later on, the criteria were also applied for 
weight-of-evidence evaluations of MoAs with the aim of increasing



consistency and harmonization of evaluations [ ]. In this respect,
the Bradford-Hill criteria were considered to be a practical tool for
weight-of-evidence assessment of AOPs; however, the criteria
needed to be tailored for the AOP context (i.e., non-chemical-
related elements) [ ]. The tailored Bradford-Hill criteria relate
to biological plausibility, essentiality, and empirical support
[ ]. Biological plausibility refers to the understanding of the
fundamental biological processes and the consistency of the causal
relationships. Essentiality considers the impact of modified/
blocked upstream KEs on downstream KEs or on the
AO. Empirical support is based on toxicological data derived by
one or more prototypical stressors, such as dose–response, tempo-
rality, and incidence [ ]. Each of these criteria consists of a num-
ber of defining questions, which are subjected to weight-of-
evidence analysis and judged as high/strong, moderate, or low/-
weak confidence for each of the KEs, KERs, and the overall AOP
(see Table ) [ ]. Optionally, quantitative weight-of-evidence is
added, which builds on the qualitative assessment by scoring the
tailored Bradford-Hill considerations. Empirical support can be
quantified by dose–incidence and/or temporal concordance
[ ]. Furthermore, the relevant biological domain of applicability
(i.e., taxa, sex, life stage) should be reported when assessing AOPs
[ ]. While assessing AOPs, it is important to remember the fun-
damental principle stating that AOPs are living documents [ ]. As
such, development and assessment is a continuous and dynamic
process, whereby AOPs gradually evolve by providing evidence for
the KEs and KERs. Generally, three stages of maturity can be
distinguished, namely, the putative, formal, and quantitative stage
[ ]. The putative stage refers to the assembly of general toxico-
logical knowledge. In the formal stage, the AOP is refined with
18
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Table 1 
Tailored Bradford-Hill criteria 

Criteria Driving questions 

Biological plausibility 
of KERs 

Is the mechanistic relationship between the upstream and downstream KE 
consistent with established biological knowledge? 

Essentiality of KEs What is the impact on downstream KEs and/or the AO if an upstream KE is 
modified or prevented? 

Empirical support for 
KERs 

Does the upstream KE occur at lower doses and earlier time points than the 
downstream KE, and at the same dose of prototypical stressor, is the incidence 
of the upstream KE more than that for the downstream KE? 

Are there inconsistencies in empirical support across taxa, species, and 
prototypical stressor that don’t align with expected pattern for hypothesized 
AOP? 

Adapted from Ref. Becker et al. [29] 

Abbreviations: AO adverse outcome, AOP adverse outcome pathway, KE key event, KER key event relationship



additional evidence from literature. In the quantitative stage, the 
AOP is substantiated by more quantitative empirical evidence, 
usually at the level of KEs and KERs, along with a qualitative 
evaluation of the overall weight-of-evidence of the AOP [15].
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3.4 Quantification The use of quantitative AOPs (qAOPs) holds great potential for 
regulatory safety assessment [31]. A framework to guide develop-
ment and assessment of qAOPs is currently lacking. Nevertheless, a 
paper by Spinu et al. [32] distinguishes three stages of qAOPs, 
namely, the semi-quantitative, probabilistic, and mechanistic 
qAOPs [32]. The semi-quantitative stage is an extension of a 
qualitative formal AOP with additional empirical data, whereby 
quantitative weighting and numerical assessments of KERs and 
KEs are included in the AOP description. Probabilistic qAOPs 
incorporate statistical or probabilistic approaches to build predic-
tive relationships between KERs and KEs, whereas mechanistic 
qAOPs further include computational models in which mathemat-
ical functions predict the probability of a subsequent event given 
specified initial conditions, such as mathematical modelling by 
machine learning [32]. Overall, qAOPs quantify the magnitude of 
KEs along the pathway. The threshold required to progress from 
one KE to the next is integrated, but also exposure metrics such as 
dose–response interactions are often considered. The process of 
building qAOP models shares similarities with the construction of 
other computational models for decision support, and existing 
expertise can be leveraged. Generally, qAOP development can 
include a number of different modelling strategies that implement 
quantitative scoring systems according to the tailored Bradford-
Hill considerations [29–32]. The Bayesian network model is a 
frequently adopted modelling strategy for directional and func-
tional KERs, whereby a probabilistic model typically represented 
as a set of interconnected nodes (i.e., KEs) quantifies the links 
between the nodes by conditional probability tables based on the 
mathematical equation of Bayes [31, 33]. Regression modelling is 
often applied for (non-)linear KE relationships, including saturable 
response, while other types of mathematical models such as ordi-
nary differential equation, individual-based modelling, and linear 
probability modelling are commonly applied for the predicting of 
temporal and time-resolved responses [31]. Overall, a qAOP pro-
vides quantitative, dose–response, and time-course predictions 
between the KEs that can support regulatory decision-making. 

4 AOPs on Liver Toxicity 

4.1 Cholestasis Cholestasis is defined as disrupted bile formation, secretion, or 
excretion, resulting in accumulation of bile acids in the hepatic or 
systemic circulation. It can manifest as intrahepatic (i.e., functional



defect in hepatocytes, bile canaliculi, or intrahepatic bile ducts) or 
extrahepatic cholestasis (i.e., blockages in extrahepatic ducts, the 
common hepatic duct, or the common bile duct) [34]. 
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Inhibition of BSEP Activation of specific nuclear receptors Bile accumulation 

Cytokine release Increase inflammation 

Production of ROS 

Cholestasis 

AOP 27: Cholestatic liver injury induced by inhibition of BSEP 

AOP 421: PPARγ activation leading to intrahepatic cholestasis 

Peptide oxidation 

Altered expression of Nrf2 pathway-dependent genes 

Fig. 3 Schematic representation of AOP (network)s that are related to cholestasis as described in the AOP Wiki 
[10]. Abbreviations: bile salt export pump (BSEP), nuclear factor-erythroid 2-related factor 2 (Nrf2), peroxi-
some proliferator-activated receptor gamma (PPARγ), reactive oxygen species (ROS) 

There are currently two AOPs related to intrahepatic cholesta-
sis available in the AOP Wiki (see Fig. 3)  [10]. The first AOP starts 
with the activation of peroxisome proliferator-activated receptor 
gamma (PPARγ). It is assumed that this activation alters the expres-
sion of nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-
dependent genes, ultimately resulting in cholestasis [10]. In the 
AOP Wiki, this AOP deviates from the guidelines as it only incor-
porates one KE, and no MIE/AO is described. The second AOP 
considers the inhibition of the bile salt export pump (BSEP) trans-
porter as the MIE, which leads to bile accumulation, nuclear recep-
tor activation (i.e., farnesoid X receptor (FXR), pregnane X 
receptor (PXR), and constitutive androstane receptor (CAR)), oxi-
dative stress, inflammation, and ultimately cholestatic injury 
[35]. Recently, this AOP has undergone revision and optimization 
through artificial intelligence-assisted data collection followed by 
quantitative confidence assessment according to the tailored 
Bradford-Hill criteria [36]. The optimized AOP network considers 
three types of MIEs, namely, hepatocellular changes, bile canalicu-
lar changes, and drug transporter changes [36]. Hepatocellular 
changes refer to cytoskeleton alterations and tight junction disrup-
tion, whereas bile canalicular changes refer to dilatation and con-
striction of bile canaliculi potentially due to rho kinase/myosin 
light chain kinase pathway interference [37, 38]. Transporter 
changes indicate alterations in activity and/or expression level of 
proteins mediating the transport of bile acids and drugs in hepato-
cytes [39]. The latter is reported as one of the most important 
MIEs [36]. In this regard, the role of BSEP, an important canalicu-
lar efflux transporter protein that regulates enterohepatic circula-
tion of the bile acids, has been extensively studied. Impairment of 
BSEP function is closely linked to reduced secretion and 
subsequent accumulation of bile acids, resulting in severe forms of 
cholestasis [39–41]. Furthermore, transporters like sodium



taurocholate co-transporting polypeptide, multidrug resistance-
associated proteins (MRP2, MRP3, and MRP4), multidrug resis-
tance protein 3, and organic anion transporting peptides are fre-
quently associated with cholestasis [36, 42]. In fact, drug-induced 
cholestasis due to inhibition of BSEP is often accompanied with 
parallel inhibition of other hepatobiliary transporters. Either type 
of MIE can equally initiate intracellular bile accumulation, which in 
turn activates two types of responses, namely, the deteriorative 
response and the adaptive response [43]. The deteriorative 
response is typified by the opening of the mitochondrial membrane 
permeability pore, which subsequently results in the formation of 
reactive oxygen species (ROS), oxidative stress, endoplasmic retic-
ulum stress, inflammation, cell death by both apoptosis and necro-
sis, and cholestatic injury [36, 44]. The adaptive response aims to 
counteract this deteriorative response and thus disturbed bile acid 
homeostasis [36, 43]. In this scenario, bile acids act as a signalling 
molecule and regulate specific nuclear receptors, such as FXR, PXR, 
CAR, and small heterodimer partner, through a number of tran-
scriptionally regulated mechanisms [45, 46]. Simultaneously, bile 
acid synthesis and metabolism are altered. Overall, these changes 
result in decreased hepatocellular uptake and increased export of 
bile acids [36]. 
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4.2 Liver Steatosis Hepatic steatosis is characterized by excessive lipid accumulation 
within hepatocytes. A distinction can be made between macrovesi-
cular and microvesicular steatosis depending on the size of the 
triglyceride droplets. The former is typified by single large lipid 
droplets or smaller well-defined fat droplets located in the cyto-
plasm of the hepatocytes and displacing the nucleus, while the latter 
is typified by smaller uniform lipid droplets dispersed throughout 
the hepatocytes [47]. 

Currently, the AOP Wiki contains ten AOPs related to hepatic 
steatosis (see Fig. 4)  [10]. The first AOP regards the activation of 
PPARγ and liver X receptor (LXR) as the MIE. This can modulate 
expression of genes responsible for lipid homeostasis, such as car-
bohydrate response element binding protein, sterol response ele-
ment binding protein 1c, free fatty acid uptake transporter 
FAT/CD36, fatty acid synthase, and stearoyl-CoA desaturase 
1. These changes trigger a chain of KEs, including de novo synthe-
sis of fatty acids, influx of fatty acids from the peripheral tissues to 
the liver, accumulation of triglycerides, cytoplasm displacement, 
nucleus distortion, mitochondrial toxicity, and eventually the 
onset of steatosis. The second AOP involves the decreased activa-
tion of PPARα/β/γ, leading to decreased mitochondrial fatty acid 
beta-oxidation, fatty acid accumulation, and steatosis [48]. Other 
AOPs describe the activation of the aryl hydrocarbon receptor 
(AhR), glucocorticoid receptor (GR), PXR, and FXR and the sup-
pression of constitutive androstane receptor (CAR) as MIEs. The
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modulation of these receptors triggers downstream connections 
that via upregulation of fatty acid transport induce steatosis [49– 
51]. Furthermore, suppression of hepatocyte nuclear factor 4 alpha 
(HNF4α) and Nrf2 expression are recognized as the MIEs leading 
to hepatic steatosis. Both proteins play important roles in the 
prevention of liver injury [52, 53]. Another AOP indicates systemic 
inflammation as initial trigger to activate serine/threonine protein 
kinase 2, which ultimately leads to hepatic steatosis [10]. The exact 
mechanisms by which some MIEs contribute to hepatic steatosis 
involve multiple pathways related to lipid metabolism and often 
remain to be further elucidated. There are many other AOPs 
related to hepatic steatosis that are not included in the AOP Wiki. 
Recently, Escher et al. [54] published an AOP network for micro-
vesicular hepatic steatosis, which includes nine AOPs from the AOP 
Wiki and MoAs on valproic acid (i.e., prototypical inducer of 
hepatic steatosis) [54]. This AOP network closely resembles the 
previously proposed networks by Mellor et al. [55] and van Breda 
et al. [56], but with recent updates integrated [55, 56]. The net-
work considers different MIEs, namely, modulation of nuclear 
receptors (i.e., PPARα, PPARδ, PPARγ, FXR, CAR, PXR, AhR, 
GR, and LXR), suppression of transcription factors (i.e., HNF4α 
and Nrf2), and activation of serine/threonine kinase 2 [54]. These 
MIEs trigger a downstream cascade of KEs, including enhanced 
transcription of genes encoding mediators of cholesterol and lipid 
metabolism. Subsequently, de novo synthesis and influx of fatty 
acids increase, and triglycerides accumulate within the hepatocytes. 
At the organelle level, hepatocellular lipid accumulation can cause 
cytoplasm displacement, nucleus distortion, endoplasmic reticulum 
stress, and mitochondrial disruption. Furthermore, these effects 
contribute to an altered influx/efflux and metabolism of fatty 
acids, leading to a net increase in cellular fatty acids and the devel-
opment of the typical fatty liver cell phenotype, known as 
steatosis [54].
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Steatosis is a progressive disease that may evolve to more severe 
forms of liver diseases, such as steatohepatitis, cirrhosis, hepatocel-
lular carcinoma, and ultimately liver failure [57]. Metabolic 
dysfunction-associated steatohepatitis (MASH), formerly referred 
to as non-alcoholic steatohepatitis, is presented as steatosis (i.e., 
lipid accumulation) combined with hepatitis (i.e., inflammation) 
[58]. The only AOP focused on MASH considers the inhibition of 
fatty acid beta-oxidation as MIE [10]. This results in an overall 
increase of cytosolic fatty acids, which undergo lipid peroxidation

Fig. 4 (continued) phosphatase (SHP), RAC-beta serine/threonine-protein kinase (AKT2), sterol regulatory 
element-binding protein 1c (SREBP-1c), stearoyl-CoA desaturase 1 (SCD-1), (very-)low-density lipoprotein 
(receptor) ((V)LDL(R)), 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2)



induced by ROS and thereby form free radicals [59–61]. Subse-
quently, these free radicals trigger a cascade of protein and mem-
brane damage, resulting in oncotic necrosis. The cell damage causes 
leakage of cytoplasmic content, which stimulates the inflammatory 
response associated with steatohepatitis [62]. If injury continues, 
MASH may further lead to cirrhosis, hepatocellular carcinoma, and 
liver failure [63].
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4.3 Liver Fibrosis Liver fibrosis denotes the reversible wound-healing response to 
acute or chronic cellular damage and reflects a balance between 
liver regeneration and scar formation [64]. The development of 
liver fibrosis is primarily attributed to the activation of hepatic 
stellate cells (HSCs) and occurs in two major phases, namely, 
initiation and perpetuation, followed by a resolution phase if the 
injury regresses [65]. The initiation phase involves early triggers, 
including ROS and apoptotic bodies originating from dying hepa-
tocytes, which make quiescent HSCs responsive to growth factors. 
The perpetuation phase covers changes in cell behavior of the 
previously primed HSCs, like proliferation, contractility, fibrogen-
esis, chemotaxis, extracellular matrix degradation, and retinoid loss. 
Subsequently, the HSCs adopt a myofibroblast-like phenotype 
[66]. The resolution phase refers to pathways that counteract the 
activation of HSCs through apoptosis, senescence, or quiescence 
[67]. The liver has a remarkable regenerative capacity; however, due 
to chronic injury, fibrosis may progress in cirrhosis, which, unlike 
fibrosis, is considered an irreversible event [65]. 

The AOP Wiki contains four AOPs related to liver fibrosis (see 
Fig. 5)  [10]. The first AOP includes protein alkylation as the MIE. 
Subsequent KEs at the cellular and tissue level have been defined, 
including hepatocyte injury and cell death, Kupffer cell activation, 
expression of transforming growth factor beta 1, HSC activation, 
oxidative stress, chronic inflammation, collagen accumulation, and 
changes in hepatic extracellular matrix composition [10, 68]. The 
second AOP describes endocytic lysosomal uptake as the MIE. The 
KEs leading to liver fibrosis include lysosomal disruption, mito-
chondrial dysfunction, cell death, inflammation, leukocyte recruit-
ment, activation of HSCs, and changes in hepatic extracellular 
matrix composition [10]. The third AOP proposes angiotensin-
converting enzyme 2 inhibition as MIE. This triggers a cascade of 
KEs, including an increase of angiotensin II type 1 receptor, ROS, 
and extracellular matrix deposition [10]. In the fourth AOP, the 
activation of the AhR is considered as the MIE. Subsequently, this 
activation leads to liver steatosis. However, there are some gaps in 
the AOP as it does not mention the downstream KEs responsible 
for the onset of this KE. In this regard, the previously described 
AOP “AhR activation leading to hepatic steatosis” could poten-
tially help elucidate the underlying mechanisms. Steatosis triggers a 
downstream cascade of KEs, including cell injury, HSC activation,



increase in extracellular matrix deposition, leukocyte activation, and 
ultimately liver fibrosis [10, 15]. Furthermore, AhR activation also 
causes an upregulation of CYP1A1 and an increase in ROS, but 
unlike the AOP guidelines, these KEs are not linked via KERs to 
other KEs or AO in the AOP Wiki. 
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Fig. 5 Schematic representation of AOP (network)s that are related to liver fibrosis as described in the AOP 
Wiki [10]. Abbreviations: angiotensin-converting enzyme 2 (ACE2), angiotensin II (AngII), angiotensin II 
receptor type 1 (AT1R), aryl hydrocarbon receptor (AhR), cytochrome P450 (CYP), extracellular matrix 
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4.4 Liver Cancer Liver cancer is characterized by the presence of malignant cells 
localized in the liver. The shift from normal to malignant cells is 
designated tumorigenesis [69]. In the latter process, cells acquire 
functional capabilities, known as the hallmarks of cancer, which 
promote tumor development by allowing survival, proliferation, 
and dissemination of the cells. There are eight hallmarks of cancer, 
namely, sustaining proliferative signalling, evading growth suppres-
sors, resisting cell death, enabling replicative immortality, induc-
ing/accessing vasculature, activating invasion and metastasis, 
reprogramming cellular metabolism, and avoiding immune 
destruction. Furthermore, two enabling characteristics, including 
genome instability and tumor-promoting inflammation, are 
involved in cancer development [70]. Liver cancer can be classified 
as primary liver cancer (i.e., originates in the liver) or secondary 
liver cancer (i.e., spread from another location in the body). Pri-
mary liver cancer can manifest in a number of different ways, such as 
hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and 
other rare tumors, notably fibrolamellar carcinoma and 
hepatoblastoma [71].
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The AOP Wiki contains nine AOPs related to liver cancer (see 
Fig. 6)  [10]. The first AOP begins with the inhibition of inducible 
nitric oxide synthase. This enzyme catalyzes the conversion of 
L-arginine to citrulline, resulting in the production of endogenous 
nitric oxide, an important chronic inflammation mediator



[ ]. This leads to sustained hepatotoxicity, which in turn induces
sustained cell proliferation, ultimately resulting in liver tumor for-
mation. In the second AOP, the activation of PPARα serves as MIE.
This triggers an array of downstream KEs, including cell prolifera-
tion, clonal expansion of preneoplastic foci, and development of
liver adenomas and carcinomas in rodents [ ]. The third AOP
describes the development of liver tumors in rodents as a conse-
quence of sustained AhR activation through changes in cellular
growth homeostasis likely associated with cell proliferation and
inhibition of apoptosis within altered hepatic foci. This results in
the formation of hepatocellular and bile duct tumors. A fourth
AOP addresses the metabolic activation of mycotoxin aflatoxin
B1. The covalent binding of the reactive metabolite of mycotoxin
aflatoxin B1 to the DNA and the consequent formation of
pro-mutagenic covalent DNA adducts are considered the MIE.
The involved downstream KEs encompass the inadequate DNA
repair and the mutation of critical genes, which in turn leads to
the formation of hepatocellular carcinoma [ ]. There are some
incongruences related to this AOP, as an AOP is normally consid-
ered chemical agnostic. The fifth AOP considers the activation of
CAR as the MIE, whereby transcriptional alterations induce cell
proliferation and preneoplastic foci and ultimately lead to hepato-
cellular adenomas and carcinomas in rodents [ ]. A sixth AOP
describes the alteration of glucose metabolism, through inhibition
of pyruvate dehydrogenase kinase. Inhibition of pyruvate dehydro-
genase kinase leads to increased pyruvate dehydrogenase activity,
oxidative metabolism, peptide oxidation and cytotoxicity, and ulti-
mately the development of hepatocellular adenomas and carcino-
mas in mouse and rat. The seventh AOP addresses the activation of
androgen receptor as MIE, followed by increased cell proliferation,
preneoplastic foci, and development of hepatocellular adenomas
and carcinomas in rodents [ ]. Chronic cytotoxicity in hepato-
cytes is also characterized as an MIE in an eighth AOP. Sustained
hepatocytotoxicity, caused by a wide range of toxicological effects,
such as oxidative metabolic activation, oxidative stress, or increase
of ROS, causes cell death through apoptosis and necrosis. To
counteract this cell death, regenerative cell proliferation occurs.
However, sustained cell proliferation poses a significant risk for
cancer development due to increased chances of errors in the
DNA replication process, potentially leading to the formation of
preneoplastic foci and liver cancer. The ninth AOP regards CYP2E1
activation from substrate biotransformation as MIE. Metabolites
and ROS are formed, leading to oxidative stress and hepatotoxicity.
Consequently, counteractive liver regeneration initiates cell prolif-
eration, which can potentially lead to tumor formation under pro-
longed conditions [ ]. In conclusion, several of these AOPs are
based on sustained hepatotoxicity, which can eventually promote
hepatocarcinogenesis via a number of KEs. These KEs are
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frequently associated with alteration of the homeostatic balance in 
favor of cell growth, including reduction of apoptotic activity, 
increase in cell proliferation, hyperplasia in various liver cell types, 
and clonal expansion of preneoplastic foci cells. 
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5 Applications 

Risk assessment is a process that typically consists of four steps, 
namely, hazard identification, hazard characterization, exposure 
assessment, and risk characterization [78]. AOPs can be applied in 
each of these steps, mainly in hazard assessment steps, and can 
support the development of integrated approaches to testing and 
assessment (IATA) [79]. An IATA can be developed for different 
fit-for-purpose applications [80]. The specific application is usually 
determined by the available data and the degree of maturity of the 
AOP but is constrained by the taxonomic, sex, and life-stage appli-
cability domain [81]. In general, qualitative AOPs are valuable 
tools for hazard identification purposes, whereas qAOPs with suffi-
cient quantitative information on dose–response and/or response– 
response relationships are useful for hazard characterization 
[31, 32]. Currently, most applications of AOPs are indicated for 
regulatory purposes within the area of risk assessment. 

5.1 Development of 

Quantitative 

Structure–Activity 

Relationships 

The MIE of an AOP reflects a specific interaction of a chemical with 
a biological target. It can be used as the basis for generating 
mechanistically based structure–activity relationships (SARs), 
whether or not quantifiable. These SARs can predict if a chemical 
can trigger an AOP but can also be utilized for chemical grouping 
and read-across strategies [80]. In this context, the OECD provides 
free computer software (https://qsartoolbox.org/), also known as 
the quantitative SAR (QSAR) Toolbox. This software can help 
identify potential chemical hazards by assessing structural similarity 
to known substances with available toxicity data and thereby 
enables pragmatic QSAR method-based toxicity predictions 
[14, 82]. QSAR approaches have proven useful in many cases. 
This is illustrated by QSAR approaches for cholestasis that demon-
strated that chemicals with an ester or thioester group attached to a 
carbon atom of a heterocyclic group cause BSEP inhibition 
[83]. Likewise, a carbocyclic system with at least one aromatic 
ring and mononuclear heterocycles contributes to inhibition of 
BSEP [84]. In contrast, hydroxyl groups bound to aliphatic carbon 
atoms result in increased BSEP activity [83]. Another QSAR model 
described several methotrexate analogues with MRP2 inhibition 
potency caused by similar structural features, such as lipophilicity 
and aromaticity [85]. Furthermore, halogen substitution and wid-
ened angle of biphenyl-substituted heterocyclic compounds with 
bulky ortho-substituents increase MRP2 inhibition

https://qsartoolbox.org/


[86, 87]. QSAR studies have been performed on LXR ligands, 
which is considered a type of MIE for liver steatosis. In this respect, 
phenyl rings, chloro-groups, and methyl substituents have been 
identified as determinants of LXR binding and activation 
[88]. Moreover, QSAR models are also available for other nuclear 
receptors associated with steatosis, such as PXR, AhR, and PPARγ 
[89–91]. 
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5.2 Grouping of 

Chemicals into 

Chemical Categories 

The grouping of chemicals is not always solely based on structural 
similarities, but also biological activity at different levels of 
biological organization [80]. Chemicals that activate the same 
AOP based on in vitro and in silico assays or predictions of the 
KEs can be grouped together in a chemical category. As such, AOPs 
provide an opportunity to group chemicals. Most grouping 
approaches start from a toxicological mechanism and then search 
for chemical structures that can trigger it, thereby applying in silico 
tools like QSAR strategies. However, some strategies take the 
opposite approach [92]. In a study, 16 structural alerts for hepato-
toxicity were established based on a dataset of 951 compounds 
[93]. Once a chemical category is established, it can be used for 
data gap filling strategies, such as with read-across approaches 
[92]. Read-across refers to the process of reading information 
from a set of toxicologically well-characterized chemicals (i.e., 
source chemicals) to a chemical for which limited information is 
available (i.e., target chemical), with the aim to predict the hazard 
(s) of the target chemical [93]. 

5.3 Elaboration of 

Prioritization 

Strategies 

Prioritization of chemicals refers to the process in which less com-
plex, cheaper, and faster assays are used to select chemicals to be 
subjected to more elaborate, expensive, and time-consuming test-
ing. Chemicals are screened and ranked according to their potency, 
whereby the most potent chemical receives the highest priority to 
undergo more detailed testing and/or evaluation [7, 92]. AOPs 
have great potential with respect to prioritization strategies, as they 
can increase confidence in the integration of information, such as 
obtained from in vitro assays. An example in this context is the case 
study integrating molecular docking, QSAR, and structure knowl-
edge approaches for ranking potential LXR binders according to 
potency for development of liver steatosis [94]. Recently, 
AOP-derived approaches have also been adopted for the prediction 
and prioritization of potential liver carcinogens. Chemicals were 
tested using short-term assays for an array of MIEs and KEs asso-
ciated with liver cancer. Then, the Toxicological Priority Index was 
then used to rank chemicals based on their ability to activate the 
KEs [95]. Furthermore, mechanistic toxicological information 
from AOPs has been used to screen 62 flame retardants and high-
light priority compounds that critically need more toxicological 
studies regarding liver hepatotoxicity. Hereby, the flame retardants



were first grouped into five prioritization categories. Afterward, 
AOPs were used to identify plausible toxicity mechanisms for 
high-priority compounds [96]. 
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5.4 Development of 

Testing Strategies 

AOPs have emerged as versatile tools to support development of 
new testing strategies [6]. Proposals for the development of new 
ex vivo, but especially in vitro, toxicity screening assays can be 
established by linking assays to toxicological endpoints and KEs 
anchored in AOPs (networks) [13]. MIEs and KEs hereby serve as 
the basis for the characterization of biomarkers. The testing strat-
egy aims to collect information from a combination of assays that 
cover different KEs along the AOP in a tiered approach. The latter 
refers to a systematic and structured strategy, whereby information 
from one tier determines the subsequent test for the next tier in 
order to generate the most relevant information [80]. The purpose 
of a tiered approach is to efficiently allocate resources, reduce 
unnecessary testing, and focus on obtaining the most relevant 
information. The level of confidence in an AOP can be used when 
deciding how many and which of the assays or prediction models 
developed for particular KEs need to be included in the testing 
strategy. Furthermore, it is of utmost importance that quality cri-
teria of the AOP are sufficiently substantiated, such as strong KE 
(R)s and relevant chemicals, to ensure confidence in the application 
of the developed testing strategy [80]. Especially in the field of 
hepatotoxicity, these new testing strategies can greatly improve the 
general detection and prediction of drug-induced hepatotoxicity. 
In this respect, the use of AOP-based approaches has been demon-
strated in the in vitro assessment of steatotic mixture effects of 
hepatotoxic compounds [97–101]. Furthermore, Bayesian AOP 
networks have been used to identify the most informative KEs for 
predicting steatosis and developing a model to predict the occur-
rence of steatosis under different chemical exposure conditions 
[102]. Recently, a tiered testing strategy has been generated based 
on the AOP steatosis network of Escher et al. [54]. This testing 
strategy integrates transcriptome data and AOP-specific human 
in vitro and in silico data to test a read-across hypothesis based on 
the most critical in vivo effects [54]. An in vitro test battery to 
screen for the potential of chemicals to induce liver triglyceride 
accumulation, a hallmark of liver steatosis, has also been proposed. 
These in vitro assays cover different MIEs and KEs of the respective 
AOPs by using reporter gene assays at MIE level (i.e., nuclear 
receptor transactivation), gene expression analysis, and triglyceride 
accumulation assays at KE level [103]. Moreover, AOP-derived 
approaches have also been adopted for the identification of poten-
tial liver carcinogens [96]. The six most common liver cancer-
related MIEs in rodents (i.e., genotoxicity, cytotoxicity, and AhR, 
CAR, PPARα, and estrogen receptor activation) and other com-
mon KEs have been integrated as biomarkers in a novel short-term



exposure assay to predict potential liver carcinogens [104]. As 
regards cholestasis, a recent publication based on the AOP network 
identified a transcriptomic signature of 13 genes involved in drug-
induced cholestasis by applying machine learning algorithms 
[105]. This signature can be implemented for the development of 
future tiered testing strategies. 
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6 Conclusions and Perspectives 

The AOP framework has evolved from a largely conceptual con-
struct into a powerful and versatile tool with regulatory and clinical 
applications in the hepatology field. The first applications are 
emerging; however, there is still a long way to go until 
AOP-based hazard assessment based on in vitro testing will replace 
the current toxicological approaches. Indeed, there are still some 
limitations concerning the utility of AOP networks, such as guid-
ance gaps for AOP development, the variety in biological applica-
bility of AOPs, and the limited quantitative data [106]. In view of 
the fragmented guidance landscape, overarching advice on the 
different guidance documents and associated tools, harmonization 
of AOP development and assessment concepts, and general defini-
tions for some high-level principles concerning the design and 
applications of IATA would be beneficial [107]. Furthermore, 
future efforts should be focused on harmonization and reassess-
ment of available AOPs with regard to continuous updating. In this 
context, the use of artificial intelligence and machine learning 
techniques has opened new avenues in the AOP field. Furthermore, 
the establishment of qAOPs, which are structurally complex and 
parameter-rich computational models, can improve quantitative 
understanding of the KERs [108]. Currently, the vast majority of 
AOPs in the AOP Wiki do not yet reach the quantitative stage. It is 
recommended to further evolve these AOPs to this quantitative 
stage. In the future, AOPs should also more accurately capture 
toxicodynamic processes and include exposure aspects for risk 
assessment. Additional actions are required to bridge the gap 
between kinetic profiles of chemicals and the initiation of MIEs, 
allowing chemical-specific kinetic data to be included in chemical-
agnostic AOPs for hazard identification and risk assessment pur-
poses [106]. The application of a combined aggregate exposure 
pathway and adverse outcome pathway approach can help to inform 
a cumulative risk assessment [109]. In the field of clinical and 
translational hepatology, AOPs also offer great opportunities, 
although this is still in its early stages of development. These 
applications include identification of novel diagnostic and probably 
prognostic biomarkers of liver disease, which can ultimately sup-
port precision medicine [110]. Furthermore, AOPs can assist in 
better understanding the pathophysiology of liver diseases and in



identifying druggable targets [111]. Another application might be 
the development and optimization of clinically relevant animal 
models of liver disease for fundamental and translational research 
purposes as well as for experimentally testing of new liver therapeu-
tics [110]. To further explore these opportunities, it is crucial to 
establish close collaborations between fundamental toxicologists 
and clinical hepatologists, a connection that has posed challenges, 
but can be facilitated through targeted interdisciplinary workshops. 
The first steps have been taken for AOPs; however, the future 
potential holds exciting perspectives in the field of toxicology, 
such as personalized toxicology and prediction of idiosyncratic 
reactions, and also in the clinical area, including disease modelling 
and personalized medicine. 
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76. Font-Dı́az J, Jiménez-Panizo A, Caelles C 
et al (2021) Nuclear receptors: lipid and hor-
mone sensors with essential roles in the con-
trol of cancer development. Semin Cancer 
Biol 73:58–75 

77. Webster F, Lambert IB, and Yauk CL (2021) 
Adverse outcome pathway on Cyp2E1 activa-
tion leading to liver cancer 

78. Four Steps of Risk assessment – EFSA. 
h t tp s ://mul t imed ia . e f s a . europa .eu/  
riskassessment/index.htm 

79. Perkins EJ, Antczak P, Burgoon L et al (2015) 
Adverse outcome pathways for regulatory 
applications: examination of four case studies 
with different degrees of completeness and 
scientific confidence. Toxicol Sci 148:14–25 

80. OECD (2017) Guidance document for the 
use of adverse outcome pathways in develop-
ing integrated approaches to testing and 
assessment (IATA) 

81. Vinken M, Knapen D, Vergauwen L et al 
(2017) Adverse outcome pathways: a concise 
introduction for toxicologists. Arch Toxicol 
91:3697–3707 

82. Schultz TW, Diderich R, Kuseva CD et al 
(2018) The OECD QSAR toolbox starts its 
second decade. In: Nicolotti O 
(ed) Computational toxicology: methods 
and protocols. Springer, New York, pp 55–77 

83. Warner DJ, Chen H, Cantin L-D et al (2012) 
Mitigating the inhibition of human bile salt 
export pump by drugs: opportunities 
provided by physicochemical property modu-
lation, in silico modeling, and structural mod-
ification. Drug Metab Dispos 40:2332–2341 

84. Saito H, Osumi M, Hirano H et al (2009) 
Technical pitfalls and improvements for 
high-speed screening and QSAR analysis to 
predict inhibitors of the human bile salt 
export pump (ABCB11/BSEP). AAPS J 11: 
581 

85. Han YH, Kato Y, Haramura M et al (2001) 
Physicochemical parameters responsible for 
the affinity of methotrexate analogs for rat 
canalicular multispecific organic anion trans-
porter (cMOAT/MRP2). Pharm Res 18: 
579–586 

86. Wissel G, Deng F, Kudryavtsev P et al (2017) 
A structure-activity relationship study of

https://multimedia.efsa.europa.eu/riskassessment/index.htm
https://multimedia.efsa.europa.eu/riskassessment/index.htm


272 Ellen Callewaert et al.

ABCC2 inhibitors. Eur J Pharm Sci 103:60– 
69 

87. Xing L, Hu Y, Lai Y (2009) Advancement of 
structure-activity relationship of multidrug 
resistance-associated protein 2 interactions. 
AAPS J 11:406–413 
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