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A B S T R A C T

The use of a robot cleaner for manure removal improves housing conditions for dairy cows in the face of
labor shortages. However, current robot cleaners follow programmed fixed routes without considering the
dynamic behaviors of cows. This cleaning approach is less efficient and leads to more cow-robot encounters or
collisions, thus affecting animal welfare. To address these issues, this paper (1) developed heatmap models for
cow locations and defecation behaviors; (2) proposed a dynamic path planning approach for the manure robot
cleaner using Grid-based Reinforcement Learning; (3) incorporated cow location information and defecation
behavior into the path planning process; (4) compared the performance of the proposed approach with two
different cleaning methods: the current fixed programmed cleaning in practice and the ideal path produced
by simulated annealing for traveling salesman problem. The simulations mimic the situation in a barn at
Dairy Campus of Wageningen Livestock Research located in Leeuwarden (the Netherlands). Obviously, the
best performance was achieved when the route was executed without cows present, resulting in no cow-
robot collision. However, with cows present, the proposed dynamic path planning strategy achieved a 67.6%
reduction in cow-robot encounters while maintaining 85.4% of the cleaning performance compared to the
current programmed fixed routes. Compared to the ideal path produced by simulated annealing for traveling
salesman problem, the proposed dynamic path planning approach achieved 5% better cleaning performance,
at the cost of 25% more cow-robot encounters due to its longer working path. We conclude the proposed
grid-based Reinforcement Learning solution for manure robots in barns cleaned most efficient with the least
interference with cow traffic.
1. Introduction

The dairy industry plays a pivotal role in global food production,
emphasizing the need for efficient and sustainable dairy barn facil-
ities (Britt et al., 2018). One critical aspect influencing the overall
functionality of these facilities is the design and management of floor
systems. Recently, researchers and practitioners alike have recognized
the significant impact that floor systems can have on cow comfort,
health, and overall productivity within dairy barns (Van der Tol et al.,
2005; Solano et al., 2015).

Many aspects of floor systems in dairy barn facilities are known to
affect the well-being of dairy cattle; flooring materials, design consid-
erations, and maintenance practices. In the past few years, consumer
demands for ethically produced and high-quality dairy products rise,
hence the emphasis on providing optimal living conditions for dairy
cows becomes increasingly important (Cardoso et al., 2016; Barker
et al., 2010).

∗ Corresponding author.
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Besides that, cleanliness of the dairy barn floor affects the number
of claw infections, its slipperiness is another great concern (Van der Tol
et al., 2005; Bruijnis, 2006), combinations of both cause the majority
of health and animal welfare related problems (Somers et al., 2003).
To maintain proper hygiene, housing and management practices play
an increasingly important role (Gieseke et al., 2018).

With the selection of flooring systems, an efficient manure removal
system is required to maintain optimal hygiene for dairy cattle. The
standard slatted concrete floors, characterized by openings that enable
manure to fall through. Grooved concrete floors are designed with
channels or grooves that facilitate liquid drainage and reduction of
ammonia emission. Both allow for effective removal of manure and
provide a similar advantage by minimizing direct contact between cows
and manure, thereby reducing the risk of bacterial contamination. On
the other hand, solid concrete floors, while simpler in design, require
a well-planned manure management strategy to prevent accumulation
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and maintain a clean environment. The choice between these flooring
types depends on various factors, including climate, herd size, and
management preferences. With respect to manure removal efficiency,
manure scrappers have been the main choice for years, but more
recently the robot cleaner gains more popularity. In any system, less
contact between manure and cows’ hooves is key, which is beneficial to
floor friction, claw health and welfare in general (Somers et al., 2003;
Van der Tol et al., 2005).

Basically, there are two types of robots for manure removal. Clean-
ers are used to push manure between the slots of a slatted floor,
while collectors can pick up manure and dump the manure at spec-
ified locations, such as the Discovery (Lely Industries NV, Maassluis,
The Netherlands), which are the subject robots used in this research.
Current routines in practice are that at specified times, the manure
robots will start a cleaning route. At installation, the frequency per
fixed route is set. In addition it allows for several different routes and
corresponding frequencies, depending on the requirements at specific
locations (Leinweber et al., 2019). Hence, several routes can be planned
throughout the barn in a way that every part of the barn is cleaned in
a tailor-made time schedule. These fixed and scheduled routes might
on one side result in non-optimal cleanings, and on the other side
cause cow-robot encounters with possible impaired welfare, as the
dynamic environments, i.e. cow behaviors were not considered into
the path planning (Corke, 2017). Rushen et al. (2004) found that
cows are more likely to have physical injuries when being confronted
with obstacles on a slippery floor. Doerfler et al. (2016) stated that
experiencing prolonged stress by dairy cows can be associated with
a decline in immune competence, health status, milk production and
hence impaired welfare.

Since the 1950s, scientists have developed and implemented differ-
ent path planning algorithms to arrive the target quickly, safely and
accurately for various robotic applications (Liu et al., 2023), such as
the vacuum cleaner robot (Yakoubi and Laskri, 2016), autonomous
vehicles (Geisslinger et al., 2023), as well as the warehouse transport
robot (Ishihara et al., 2022). According to their functions, path planning
algorithms could be generally divided into three categories: classical al-
gorithms (e.g. Dijkstra algorithm), bionic algorithms (e.g. Genetic Algo-
rithm) and artificial intelligence algorithms (e.g. Neural Network) (Liu
et al., 2023). Yakoubi and Laskri (2016) proposed a path planning
algorithm for vacuum cleaner robot for coverage region using Genetic
Algorithm. The work from (Yakoubi and Laskri, 2016) can make the
robot pass through every part of the environment by avoiding ob-
stacles using different sensors, which did not consider priorities of
these areas. Geisslinger et al. (2023) proposed an ethical trajectory
planning algorithm with a framework that aims at a fair distribu-
tion of risk among road users. Long-short-term-memory-based neural
network model has been used to train the trajectories of the com-
mon road scenarios. Four-step planning method was used for ethical
decision-making. However, generalized the proposed approach to dif-
ferent countries, cultures or even individuals has not been achieved
yet. Ishihara et al. (2022) applied a path planning algorithm for multi-
ple robots in warehouses using Model Predictive Control. Deadlock can
be avoided only for static obstacles when each robot travels on different
aisle. Dynamic obstacles have not been considered yet.

Compared to path planning for robots in other domains, devel-
opment and research on path planning for manure-robot cleaners is
limited at the time of writing this article. Currently, most of the robot
cleaners drive at predefined and programmed routes, which seems
an optimal cleaning strategy, but is not energy efficient and does
not consider cow behavior (De Baerdemaeker, 2013). According to
the special characteristics of dairy barns with uneven distribution of
dirtiness, dynamic obstacles from the moving cows, many varieties
of the environment (each barn has different layout), this research is
seeking for a dynamic path planning approach which can address these

challenges and be applicable to different scenarios. a
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Reinforcement Learning (RL) is a machine learning method that
can learn an optimal decision through interacting with its dynamic
environment and can keep improving its decision making policy by
rewarding desired behavior or punishing undesired behavior of an
agent (Bertsekas, 2019). The motivation of using RL in this research
is its ability to learn an optimal path from the data at hand and its
adaptability to various use cases and different scenarios due to its trial-
and-error planning strategy. There are actually many different types of
RL methods applicable for path planning (Singh et al., 2023). Lei et al.
(2018) proposed a dynamic path planning of unknown environment
for mobile robot using double Q-network deep RL mainly for avoiding
static obstacles, without prioritizing different areas. Cui et al. (2021)
used actor–critic RL for navigation of autonomous mobile robot in
dynamic pedestrian environments based on laser sequence. Areas in the
environment are considered evenly. As in the dairy barn, cow behaviors
in terms of defecation and location are easily modeled into heatmaps
with different priorities for each grid, the path planning problem of
manure-robot cleaner can be easily formulated into a single-shot grid-
based path finding problem. Therefore, this research is motivated to
utilize grid-based Reinforcement Learning (Panov et al., 2017; Notsu
et al., 2020; Moon et al., 2022) as its main approach.

The contributions of this research include:

• Models of Cow Locations and Defecation Behaviors. Based
on observational data collected on cow locations and defecation
behaviors, heatmaps were created for three-hour time slots dur-
ing the day. These models provide detailed insights into cow
movements and manure distribution patterns.

• A Dynamic Path Planning Strategy for a Robot Cleaner. The
path planning strategy is achieved using grid-based RL, which can
address variable and dynamic planning environment using only
data inputs.

• Incorporation of Cow Location Information and Defecation
Behaviors. The heatmaps of cow location information and defe-
cation behaviors have been used as inputs for path planning
algorithm, to generate a cleaning route for each time slot, which
is efficient and minimally disruptive to the cows.

• Simulation these proposed approaches. The proposed approa-
ches were tested in a simulated environment with various scenar-
ios and compared with both the current programmed fixed clean-
ing routes and the ideal routes generated by simulated annealing
for traveling salesman problem (TSP) (Zhan et al., 2016).

The simulation were crucial to assess the algorithms’ effectiveness
efore implementing them on physical robots in real life situations.
o ensure the reliability of our simulation results, the experimental
etup and data collection was ensured to closely mirror real-world
onditions from an experimental barn at the Dairy Campus of Wagenin-
en Livestock and Research located in Leeuwarden, the Netherlands.
he simulation performance were compared with the current clean-

ng approach in practice and the simulated annealing method for
raveling salesman problem. Based on the simulation results, this re-
earch provides valuable insights and recommendations to the livestock
obot industry, since current manure cleaning robots lack flexible path
lanning capabilities that can be tailored to specific needs.

. Material and methods

Observational data was obtained from the Dairy Campus of Wa-
eningen Livestock and Research located in Leeuwarden, The Nether-
ands. The Dairy campus functions as a commercial dairy farm as well
s a research center for applied projects. The farm has the capacity
or about 550 milking cows in 7 barns. Milking was done using a
6-unit rotary parlour, in which cows were milked two times a day
etween 05:00–08:00 and between 15:30–18:00. During these times,
ll cows were gathered into a waiting area before getting milked. On

verage, the cows at the dairy campus produce 9198 kg of milk per
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Fig. 1. Overview of space with the locations of cubicles, slatted floor, concentrate feeder, water trough and cow brush. The slatted floor is divided in smaller areas indicated by
the blue lines. All sizes are in mm.
year (2022) with 4.54% fat and 3.58% protein. Dairy cows exhibit
social behaviors that influence their defecation patterns, which varies
across different breeds (Rocha et al., 2020). The defecation behavior
may not be random, as certain areas in the barn, known as ‘hotspots’ are
used more frequently (Oudshoorn et al., 2008). Therefore, a detailed
description of the cows is deemed necessary and provided below.

2.1. Animals breed and description

Over a period of 7 days, between 1 February 2023 until 8 February
2023, we gathered experimental data in one specific section housing
16 Holstein-Friesian cows. The cows in this section on average had
188 lactation days and were 5 years old. The section provided an area
of 11.0 m times 9.4 m, 16 cubicles and slatted floor walking paths
of sufficient width (Fig. 1). The slatted floor does not have uneven
terrain. The cows did not have access to pasture and were fed with
grass and maize, with access to one concentrate feeder during the day.
Water was provided ad libitum via a water trough. The cows could
also use a cow brush located opposite to the water trough (Fig. 1).
3 
According to the Dutch legislation on animal experiments (Wet op de
Dierproeven; WoD), this observational study was not considered as an
animal experiment. Therefore, no approval from the legal authorities
was required.

2.2. Experimental setup and data collection

A video camera (Axis, P1375-E) was mounted above the water
trough, from which all walking areas of interest (being the slatted
floor) could be seen. The camera recorded continuously and directly
stored the material in an online database in sections of one hour.
During the darker moments, normal management procedures, lights
were automatically on that ensured good recordings without interfering
with the normal cow behavior. To determine the number of defecations
per grid area, video recordings were made of the barn section from
05:00 to 19:00. The recordings were watched with a playback speed
four times faster than the original recording.

Sewio Leonardo Personal tags (SEWIO, Brno, Czech Republic) were
used to determine cow traffic and the spatial density of cows in time
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Fig. 2. Map of the section of consideration. The green area is the entrance of the barn
section. The red area is the concentrate feeder, the yellow areas are the cubicles and
the grey area is the slatted floor. Note: the water trough is not visible in this figure.

by means of location measurements. The tags were mounted on the
neck collars of the cows and were positioned at the dorsal side of
the neck. The SEWIO UWB system consisted of anchors, tags and the
software RTLS Studio and used a UWB technology based on the time
difference of arrival. Sewio tags allow to measure cow location up to
0.1 meter and continuous measurements are possible (D’Urso et al.,
2023). The cow locations were averaged per minute and stored in a
database together with the corresponding identification number of the
cow, and date–time stamp of the respective measurements.

2.3. Methods

A simple grid was made in Microsoft Excel and put as an overlay on
the barn section (Fig. 2) to be used for the heatmaps of cow locations
and defecations. The initial grid size was set to be 0.1 m wide and 0.1 m
in length, which matches the scale of measurable cow location from
Sewio tags.

In this research the Discovery 90S (Lely Industries NV, Maassluis,
The Netherlands), was the targeted robot, whose dimensions are 88 cm
wide and 127 cm long. To improve planning and computational effi-
ciency, the grid sizes were reorganized. In that way the majority of
grid locations had the dimensions of 0.8 m × 0.8 m related to the
cleaning width of the manure robot. The grid sizes only deviated at the
concentrate feeder and barn entrance, measuring 1.1 m × 0.8 m, and
at the edges of the slatted floor, where they had variable lengths and
wides (Fig. 1). This barn lay-out is realistic and can be used to simulate
a route for the manure robot.

2.3.1. Modeling cow behaviors using heatmaps
In the Microsoft Excel grid the cow locations at group level were

added to this grid overlay for every hour, which resulted in 13 heatmaps
of cow densities per day. Cow locations, from 05:00 to 18:00 only, were
put into heatmaps through assigning the number of cows per area for a
4 
time period of 3 h (density per 3-h) to the corresponding grid location.
Only the final hour of the day (17:00 to 18:00) was not summed to a
3-h period. This resulted in 4 cow location densities heatmaps of 3 h
and 1 heatmap of one hour per day. Subsequently these were averaged
over the week of the experimental period to get a good impression
of daily cow behavior. In addition to that, it reduced variability and
required less real-time data collection and computational power. The
weekly average day behavior was determined according to Eq. (1):

𝐶𝑗 (𝑡) = 1∕𝑑 ×
𝑑
∑

𝑖=1
𝐶𝑗
𝑖 (𝑡) (1)

where 𝐶𝑗 (𝑡) is number of cows at the 𝑗th grid at period 𝑡, 𝑑 is number of
days (𝑑 = 7). The remaining time per day (19:00 to 05:00) was not used
for the analysis nor in the cow location heatmap due to less activity of
the cow group.

The number of defecations per area were manually counted from
the video recordings made. The number of defecations were assigned
to the corresponding grid. In case the animal was walking, only the start
location of defecation was noted. The defecation behavior changed over
the day (Robichaud et al., 2011) and was observed in 13 periods of 1-h.
The dirtiness per grid location was obtained by Eq. (2):

𝐷𝑆𝑗 (𝑡) = 1∕𝑑 ×
𝑑
∑

𝑖=1
𝐷𝑆𝑗

𝑖 (𝑡) (2)

where 𝐷𝑆𝑗 (𝑡) is the number of defecations for the 𝑗th grid at period 𝑡,
𝑡 = 13, while 𝑑 is the number of days (𝑑 = 7).

2.3.2. Resize of heatmaps
In practice, the cleaning schedule in a dairy barn was every 3 h

on average. Therefore, we resized and summed all droppings per 3-h
(except the last one-hour heatmap), maintaining the same temporal-
spatial resolution as the cow spatial density map. Due to the uneven
amount of heatmaps before addition, the last heatmap formed an
exception and no additional hours could be added. In total, 5 heatmaps
were produced using Eq. (3):

𝐷𝑗 (𝑡) = 1∕3 ×
𝑡∗3
∑

𝑖=1+3(𝑡−1)
𝐷𝑆𝑗 (𝑖) (3)

where 𝐷𝑗 (𝑡) is the average number of defecations for the 𝑗th grid at
period 𝑡, here 𝑡 = 4, when 𝑡 = 5, we used 𝐷𝑗 (5) = 𝐷𝑆𝑗 (13) to compute
the defecation number after resizing. After resizing and averaging, the
values per grid for a heatmap were divided by the total number of
defecations for that timeslot. This resulted in a heatmap showing the
distribution of manure over the total floor area (Fig. 3). The higher
probabilities are indicated with red colors. Data on cow locations were
used to assign the number of cows to a specific grid. Here, grid sizes
were equal to the resized grids. The values per grid were divided by
the total number of cow location measurements during the timeslot,
resulting in a heatmap showing the distribution of cows over the total
area. Finally, this process yielded a heatmap similar to the heatmap
shown earlier in this section.

Afterwards, the heatmaps on manure distribution and cow locations
were used to yield the optimal path planning given the distribution of
cows and manure through a developed Python script.

2.3.3. Cleaning procedure
The grid with locations was transformed to distance matrix in which

the fixed distances between the center of grids was entered. This way
a route for cleaning calculated in computer simulations contained real
distances and would be as efficient as in the real world.

The idea is to first build a list of grid-locations in need of cleaning,
then check the cow density to build a ‘‘cleaning list’’ of grid locations
that will be used for programming a route. High cow density grids will
be avoided, creating a ‘‘priority list’’. A global path is planned in which
the robot cleaner goes from one grid to the next on the priority grid
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Fig. 3. Heatmap showing the proportional distribution of manure for the timeslot of 05:00–08:00 in %. The sum of all cells add up to 100% of all droppings for this timeslot.

Fig. 4. Flowchart of the cleaning procedure. Rectangles indicate processes, diamonds indicate decisions and round shapes indicate inputs/outputs.
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location in the shortest possible route. When priority grids are not next
to one another, as a safety measure, the robot cleaner uses local path
planning and checks in its adjacent grids what is the best grid possible
to follow its route to the next priority grid to clean (≈ lowest cow
density). Finally, the remaining grids are passed on the next iteration
of route planning. The flowchart in Fig. 4 gives more details in how the
system operates using both global and local path planning (Xing et al.,
2022).

In detail, when a grid location contains more than 1 percent of the
total number of manure droppings, while this area is occupied with less
than 1 percent of the total dairy herd standing on the floor, then the
area needs cleaning. Hence, the grid location is added to the ‘‘cleaning-
list’’ and was used for path planning of the robot cleaner. In case a
grid location was not cleaned in the initial route, due to ‘‘too high cow
density’’, the number of manure droppings the corresponding grid will
be added to the next cleaning in line according to Eq. (4):

𝑇𝐷𝑗 (𝑡) = 𝐷𝑗 (𝑡) +𝐷𝑗 (𝑡 − 1) (4)

here 𝑇𝐷𝑗 (𝑡) is the total number of defecations for the 𝑗th grid at
imeslot 𝑡, 𝐷𝑗 (𝑡) is the number of defecations for the 𝑗th grid at timeslot
and 𝐷𝑗 (𝑡 − 1) is the number of defecations for the 𝑗th grid at the
revious timeslot 𝑡 − 1. Afterwards, the distance between subsequent
riority location grids was calculated using Eq. (4).

For all grids, through Eq. (4), the shortest distance between one grid
o another grid was determined, which was used in the path planning
o find order of grids to clean defining the most efficient route, hence
he shortest distance to travel. The calculation of the shortest distance

and the matrix formulation were achieved by Eq. (5):

𝑥→𝑦 = 𝑚𝑖𝑛(𝐷𝑥→𝑦, 𝐷𝑥→𝑧 +𝐷𝑧→𝑦) (5)

here 𝐷𝑥→𝑦 is the distance from point 𝑥 to point 𝑦, 𝐷𝑥→𝑧 is the distance
rom point 𝑥 to point 𝑧 and 𝐷𝑧→𝑦 is the distance from point 𝑧 to point
.

.3.4. Path planning using grid-based RL
Single-shot grid-based path finding is an important problem with

he application in robotics. Typically in the Artificial Intelligent com-
unity, heuristic search methods are used to solve it. In this research,

he grid-based path finding tasks were coped with using the well-known
L statement.

Reinforcement Learning is a subset of machine learning that evalu-
tes actions based on rewards or punishments. Q-learning, a specific
L algorithm, aims to determine an optimal action-selection policy

or any finite Markov decision process (MDP). It achieves this by
aximizing the total reward over time through repeated interactions
ith the environment, even when the model of that environment is not
nown (Maoudj and Hentout, 2020). In Q-learning, Q(𝑆𝑡, 𝐴𝑡) represents
he value of taking action 𝐴𝑡 in state 𝑆𝑡 at time 𝑡. This Q value is
pdated using information from the environment and a reward 𝑟 as
ollows (Sutton and Barto, 2018):

(𝑆𝑡, 𝐴𝑡) = 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾 max
𝑎

𝑄(𝑆𝑡+1, 𝑎) −𝑄(𝑆𝑡, 𝐴𝑡)] (6)

here 𝛼 is the learning rate and 𝛾 is the discount factor.
In the path planning problem of a manure-robot cleaner in a diary

arn, The set of states consists of all the grids on the barn floor. The
et of actions (the optimal cleaning order) is determined by the number
nd location of the grids that need to be cleaned, as defined by Eqs. (2)
nd (4). The RL agent in this case is the manure-robot cleaner, and the
nvironment is the heatmap for a specific time period, which changes
hroughout the day. Information about which grids needed cleaning
nd their mutual distances was included. With knowledge of the grids
o be cleaned and the distances between them, path planning could be
imulated.

To find the most optimal path, the order of the grids to be cleaned
as determined by using a Q-value function. The value function com-

ared each grid (the state variable in this RL problem) during the route, m

6 
nd then chose the grid which was closest to the current grid (state).
his finally yielded the most optimal order of grids to clean, given
heir mutual distances. Therefore, the output after using RL was a list,
ontaining the same grids as the cleaning-list, but now sorted to yield
o the most efficient path when executed. The Q-value function used
s defined in Eq. (7), based on the basic format of the value function
6) introduced by Sutton and Barto (2018), where the learning rate 𝛼

and discount factor 𝛾 are respectively chosen to be 0.1 and 0.4 through
trial-and-error.

𝑄𝑡(𝑆,𝐴) = 𝛼 × (𝑖𝑟 + 𝛾 × 𝑑𝑟 −𝑄𝑡−1(𝑆,𝐴)) (7)

here 𝑄𝑡(𝑆,𝐴) is the value for a state and action at time step 𝑡 and
(𝑡−1)(𝑆,𝐴) is the previous value given the state and action. The 𝑖𝑟 is the

mmediate reward which can be expressed as 1∕(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑡𝑒
𝑛𝑑 𝑎𝑐𝑡𝑖𝑜𝑛). The 𝑑𝑟 is the delayed reward which can be expressed as
∕(ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑟𝑒𝑤𝑎𝑟𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑡𝑎𝑡𝑒). The equation also includes the
earning rate 𝛼 and discount factor 𝛾.

To ensure a continuous and efficient path planning given the lo-
ations of cows and the distribution of manure, intermediate points
etween grids which needed cleaning (intermediate state) were also
onsidered. For each of the four neighboring grids, it was checked
hether mutual distance to the grid which needed cleaning decreased.

n case the distance decreased, the best option was then selected based
n the lowest probability of cow robot encounters and added to the
ath planning list. Finally, this yields a continuous and efficient path
lanning given the locations of cows and the distribution of manure.

.3.5. Simulated annealing for traveling salesman problem
The traveling salesman problem, a member of the class of Non-

eterministic Polynomial-Time Complete problems, seeks to find the
hortest route that visits each city exactly once and returns to the city
t started in Zhan et al. (2016) (Bookstaber, 1997). In the context of
ath planning of manure-robot cleaners on grids that should to be
leaned, this problem can be effectively formulated as a traveling sales-
an problem. Simulated annealing, originally introduced as a search

lgorithm for combinatorial optimization problems (Kirkpatrick et al.,
983), is a widely adopted iterative metaheuristic. Its distinguishing
eature lies in its ability to escape local optima by allowing hill-climbing
oves to potentially find a global optimum (Zhan et al., 2016). In

his study, simulated annealing is employed to evaluate and compare
he performance of a proposed dynamic path planning approach using
rid-based RL, in addition to the current fixed programmed cleaning
ethod.

To apply simulated annealing to the path planning problem, the
tate space consists of the set of grids that need to be cleaned, similar
o applying the RL approach. Any path that includes grids to be
raversed is considered valid. The detailed mathematical prototype can
e refereed from (Bookstaber, 1997). The cleaning routes produced by
imulated annealing for TSP is considered as the ideal benchmark with
hortest route to evaluate performance of the grid-based RL.

.3.6. Scenarios for cleaning
Four scenarios will be used for path planning; Scenario (1) standard

ixed programmed route, Scenario (2) grid-based RL at feeding time,
nd Scenario (3) grid-based RL at milking time, (4) simulated anneal-
ng for traveling salesman problem. The current cleaning approach is
erformed by cleaning all the areas every 3 h. The new strategies in
cenario 2, 3 and 4 is cleaning only the areas which comply with
he thresholds mentioned previously in two ways. Every 3 h these 4
cenarios were used for comparisons. For the Scenario 2, the heatmaps
f cow locations were all set to be equal to one specific heatmap
n which most cows were next to the feeding fence. Based on this,
ath planning was performed and performance was evaluated. For the
cenario 3, all values of the heatmaps of cow locations were set to 0, to
imic situations in which cleaning is performed when cows are being

ilked.
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Fig. 5. Total number of defecations on 2 February 2023 during different times of the day. Cows were milked between 05:00–08:00 and between 15:30–18:00, roughage was
provided at 8:00 and feed was pushed to feedfence at 15:00.
Fig. 6. Overview of cow locations of 2 February 2023.
2.4. Evaluation performance

A comparison was made to evaluate performance among the cur-
rent way of cleaning by manure-cleaning robots, the newly proposed
dynamic path planning strategy, as well as the simulated annealing
for traveling salesman problem. The metrics used are: percentage of
manure droppings cleaned, the estimated probability of cow-robot
encounters, the total length of the programmed route, as well as the
cleaning efficiency, which is computed by dividing the percentage
of manure droppings cleaned by the total length of the programmed
route. The performance measures were selected since they provided a
thorough and quantifiable assessment of path planning performance in
terms of cow health, based on cleaning performance and collisions, as
well as cleaning efficiency, in terms of route length. The percentage of
manure droppings was quantified by the proportion of droppings that
were removed. The estimated probability of cow-robot encounters was
found by summing the cow-robot probabilities per grid for the entire
proposed path. The length of the program was found by summing up
the number of visited grids. Distances between grids were assumed to
be equal.

3. Results and discussion

As one recording of 1 February between 05:00 and 06:00 is missing.
Therefore, for the accuracy of averaging, the decision is made to
include only 6 out of the 7 days from this time period. In total, 90 h of
video recordings were stored and used during later processing.

3.1. Video observations

Fig. 5 presents an overview of defecation numbers on February
2, 2023 during different times of the day. The figure shows that the
7 
number of defecation increases in the time slot before milking, for
example around 15:00. This increase can be attributed to the higher
level of activity and stress within the herd before milking, which is align
with results presented by Aland et al. (2002). Conversely, the number of
defecation activities decreased after milking. Additionally, it was found
that most defecation activities occurred near the main walking route of
cows, often just after standing up and leaving their cubicle. In contrast,
almost no defecation were found in the first two lines (1.6 m) from the
feeding fence. The cows spent a significant amount of time lying or
standing idle in the cubicles.

Data on cow locations were also examined, and in some cases, likely
due to interference of the triangulation of tags caused by ironwork in
the barn, the cow locations were adjusted to fit the grid of the walking
area. For example, when the location of a cow was found beyond the
feeding fence (𝑦 ≈ 3.5 𝑚), 0.5 m was added to the 𝑦-locations to correct
for the cow’s position at the feeding fence. As the cows did not wander
around much, their activities were generally purposeful, such as going
to the feed fence, water trough, or concentrate dispenser. The density
plot of cow locations (Fig. 6) intuitively shows where most activities
took place. In this figure, a clear pattern can be seen of cows either
standing or lying inside cubicles or standing near the feeding fence or
concentrate feeder.

3.2. Cleaning strategies results

The video recordings were analyzed to track defecation time and lo-
cations over time, and this data was processed into heatmaps based on
the layout of the barn section. Path planning was simulated five times
for specific time periods, and the results were averaged to determine
the percentage of manure cleaned, the probability of cow-robot colli-
sions, and the total route length, using three different path planning
approaches throughout the day.
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Table 1
Comparison of the current path planning strategy with the proposed new path planning strategy.

Timeslot Cleaning
percentage (%)

Collision
probability (%)

Route
length (m)

Cleaning
Efficiency (%)

S.1 S.2 S.4 S.1 S.2 S.4 S.1 S.2 S.4 S.1 S.2 S.4

05:00–08:00 100 86.1 83.2 100 19.2 16.4 142 92.4 70.2 70 93 118
08:00–11:00 100 88.2 85.3 100 34.5 20.8 142 123.8 85.4 70 72 99
11:00–14:00 100 87.4 82.3 100 41.3 30.1 142 150.8 95.4 70 60 86
14:00–17:00 100 82.5 77.5 100 34.0 32.1 142 122.4 82.2 70 67 94
17:00–18:00 100 82.9 79.7 100 33.0 22.1 142 143.6 93.4 70 58 85
Average 100 85.4 81.6 100 32.4 24.3 142 126.4 85.3 70 69.6 96
From 5:00 to 18:00, the average percentage of manure cleaned
or the Scenario 1: current, Scenario 2: new dynamic at feeding time,
cenario 3: new dynamic at milking time, and Scenario 4: simulated
nnealing for traveling salesman problem was 100%, 85.4%, 85.5% and
1.6% respectively. The probability of cow-robot collisions was 100%,
2.4%, 0%, and 24.3% for the four scenarios respectively. In scenario
, when no cows were present in the barn, the probability of cow-robot
ollisions was set to 0 for each time period.

Table 1 provides an overview of the results for all simulations and
ime periods, comparing Scenario 1 (abbreviated to 𝑆.1), Scenario 2

(abbreviated to 𝑆.2) and Scenario 4 (abbreviated to 𝑆.4). As Scenario
3 is a special case of Scenario 2, which will not be included in this
overview comparison. It is evident that the number of collisions de-
creased to approximately one-third with the fixed programming route,
while the cleaning proportions were similar or even improved during
higher cow density periods.

In Scenario 1, the total probability of cow-robot encounters was
higher when more cows were present at the feeding fence. Conversely,
when no cows were present (e.g. cows were in the waiting area or
being milked), more effective and undisturbed cleaning was possible.
Compared to the fixed routes in Scenario 1, the grid-based RL incor-
porating cow behavior in Scenario 2 resulted in a potential 67.6%
decrease in the total probability of cow-robot encounters, leading to
fewer collisions. While Scenario 1 achieved a 100% manure cleaning
rate by covering the entire section, it resulted in longer paths, potential
energy inefficiency, and more cow-robot encounters. Dynamic path
planning in Scenario 2 achieved a manure cleaning percentage ranging
from 82.5% to 88.2%. Utilizing features such as cleaning locations in
subsequent iterations could further increase the cleaning percentage
and establish a minimal threshold in the reward function of the RL path
planning. There was little difference in the total path length needed to
clean the barn between the current and dynamic scenarios on average.
The cleaning percentage of Scenario 2 using Grid-based RL is slightly
better than Scenario 4, the simulated annealing for traveling salesman
problem with 5% improvement in average. Scenario 4 has less collision
probability due to the shortest routes it takes according to its planning
strategy. However, if we compare the collision probabilities for these
three scenarios at each unit of length, which are 70%, 25% and 27%,
Scenario 2 is the solution with the lowest collision probability.

Figs. 7, 8, and 9 illustrate the final path planning results in a
graphical manner for Scenarios 1, 2 and 4 during the time slot of 05:00–
08:00 as an example, providing further interpretations of the analyzed
results. Among these figures, the Cleaning list sub-figures provide the
grids that need to be cleaned at different scenarios. The grids with blue
nodes at the Final route sub-figures are the grids that are to be cleaned,
while grids with orange nodes are the grids that are passed by the
robots. In this work, it is assumed that in all scenarios, the robot cleaner
starts from the same location near its charging station and returns to
the charging point after completing the cleaning. As shown in Figs. 8
and 9, there are more grids passed by scenario 3 than scenario 4, which

is the ideal route with minimal distance for this TSP problem.
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3.3. Path planning and animal behavior

Path planning involves finding an optimal route between start and
final destinations, considering specific routing criteria (Karur et al.,
2021). The current method, pre-programmed routes, usually the robot
has cow-avoidance algorithms on board to take a detour to prevent
major collisions. In this research, global path planning, utilizing pre-
vious map knowledge, was combined with local path planning (Xing
et al., 2022). Local path planning checked adjacent grids’ cow density
to determine the path, aiming to lower the probability of robot-cow
encounters. Future approaches could benefit from involving interme-
diate steps in global path planning based on cow densities. Our pro-
posed combination of global and local path planning, using averaged
cow densities and relatively coarse grid dimensions, demonstrated
effectiveness.

Despite Leinweber et al.’s findings 2019, which showed avoidance
behaviors in cow-robot encounters, our cows, already familiar with a
manure-cleaning robot, did not exhibit avoidant behavior. The Sewio
tags and location data, validated by D’Urso et al. (2023), provided
accurate information. Defecation observations, scored in the initial
grid, were considered valid for path planning, even with grid resizing.

3.4. Limitations and recommendations

As an initial exploration of data-based dynamic path planning meth-
ods, the current approach indeed has limitations that can be addressed
in future research:

• The current experiment was conducted in a single barn during a
week in one season. Given the significant influence of barn layout,
milking and feeding systems on cow behavior, more experiment
are needed to achieve more generalized findings.

• The modeling of defecation behavior could benefit from including
more dairy herds to enhance the generalizability of the approach.

• The current implementation remains primarily in a simulation
environment and requires further validation in practical settings.

• Only single operating robot is considered, which might not be the
case in larger scale commercial barns.

In future research, real-time communication with sensors and au-
tomatic detection of defecation could significantly enhance path plan-
ning. This includes utilizing real-time behavior measurements for dy-
namic path adjustments and investigating how environmental factors
influence behavior and path planning. Addressing the unpredictability
of the manure-robot cleaner’s path could reduce stress among dairy
herds. It is recommended to use consistent protocols for the robot
cleaner how to avoid animal encounters, which helps cows better
understand as it makes predictable movements. Further refinement of
cow behavior models and the consideration of urination patterns, solid
floors, and grazing areas could lead to more effective cleaning and
path planning strategies. Additionally, in large-scale dairy operations
with numerous cows (e.g., averaging around 120 animals in the Nether-
lands), increased monitoring data is essential for accurately modeling
cow behaviors. Looking ahead, implementing multiple cleaning robots
that work cooperatively could offer a more robust and efficient solu-
tion, promoting energy efficiency and improving the overall welfare of

cows in barn environments.
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Fig. 7. Scenario 1: Fixed routes, (a) grids to clean (blue dots), and (b) the programmed route (blue arrows connecting the dots) and both graphs show the start grid (orange fill).
Fig. 8. Scenario 3: cleaning approach using grid-based RL, (a) grids to clean (blue dots), and (b) the programmed route (blue arrows connecting the blue dots). In addition the
grids visited, but not on cleaning list (orange dots) and both graphs show the start grid (orange fill).
Fig. 9. Scenario 4: ideal routes produced by simulated annealing for TSP, (a) grids to clean (blue dots), and (b) the programmed route (blue arrows connecting the blue dots).
In addition the grids visited, but not on cleaning list (orange dots) and both graphs show the start grid (orange fill).
4. Conclusion

In this research, dynamic path planning was executed while con-
sidering cow behaviors based on heatmaps of cow and defecation
locations using grid-based RL. After validation in a simulated envi-
ronment with multiple scenarios defined based on a barn at Dairy
Campus of Wageningen Livestock Research, the proposed path planning
approach could achieve a 67.6% decrease in cow-robot encounters
while maintaining 85.4% of the cleaning performance compared to
the current programmed fixed routes. Compared with the ideal routes
generated by simulated annealing for traveling salesman problem, the
proposed grid-based RL solution could still achieve 5% better cleaning
performance. The collision probability at each unit length of grid-based
RL is the lowest, which is 25%, comparing with 70% and 27% for the
9 
Scenario 1 and 4 respectively. The detailed results at the above sections
demonstrated the effectiveness and efficiency of the proposed cleaning
method. Moreover, due to the characteristics of RL, the proposed path
planning approach can be implemented solely on data without the need
for a process model. This enables more generalization of the proposed
approach to different layouts and scenarios.
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