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Ámbar Pérez-García a,b,*, Tim H.M. van Emmerik b, Aser Mata c, Paolo F. Tasseron b,d,  
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A B S T R A C T

Marine plastic pollution poses significant ecological, economic, and social challenges, necessitating innovative 
detection, management, and mitigation solutions. Spectral imaging and optical remote sensing have proven 
valuable tools in detecting and characterizing macroplastics in aquatic environments. Despite numerous studies 
focusing on bands of interest in the shortwave infrared spectrum, the high cost of sensors in this range makes it 
difficult to mass-produce them for long-term and large-scale applications. Therefore, we present the assessment 
and transfer of various machine learning models across four datasets to identify the key bands for detecting and 
classifying the most prevalent plastics in the marine environment within the visible and near-infrared (VNIR) 
range. Our study uses four different databases ranging from virgin plastics under laboratory conditions to 
weather plastics under field conditions. We used Sequential Feature Selection (SFS) and Random Forest (RF) 
models for the optimal band selection. The significance of homogeneous backgrounds for accurate detection is 
highlighted by a 97 % accuracy, and successful band transfers between datasets (87 %–91 %) suggest the 
feasibility of a sensor applicable across various scenarios. However, the model transfer requires further training 
for each specific dataset to achieve optimal accuracy. The results underscore the potential for broader application 
with continued refinement and expanded training datasets. Our findings provide valuable information for 
developing compelling and affordable detection sensors to address plastic pollution in coastal areas. This work 
paves the way towards enhancing the accuracy of marine litter detection and reduction globally, contributing to 
a sustainable future for our oceans.

1. Introduction

Marine litter, particularly plastic pollution, has become a pervasive 
problem affecting terrestrial and aquatic ecosystems globally, leading to 
significant ecological, economic, and health impacts. Single-use plastics 
and inadequate waste management practices have led to vast contami-
nation of rivers and oceans Morales-Caselles et al. (2021), posing sig-
nificant challenges to the environment Meijer et al. (2021). Plastic 
debris accumulation in marine environments threatens wildlife and 
habitats and challenges maritime industries and coastal communities 
Jambeck et al. (2015). Identifying polymer types is relevant because 
each plastic type has distinct impacts, sources, and transport behaviours, 
making its identification crucial for a comprehensive understanding 
Andrady (2011); Rochman et al. (2013). Monitoring plastic pollution is 
crucial for establishing a baseline understanding to track changes, 

identify hotspots, and assess the efficacy of implemented measures van 
Emmerik et al. (2023); Tasseron et al. (2024).

In situ monitoring of floating marine plastic debris, such as net sur-
veys and visual observation, can be expensive, time-consuming, and 
requires expert supervision Armitage et al. (2022). Recent advances in 
remote sensing (RS) using multi- and hyperspectral imagery are prom-
ising for detecting macroplastics (≥0.5 cm) pollution from space Leb-
reton et al. (2018); Topouzelis et al. (2021); Schreyers et al. (2022). RS 
provides significant advantages over traditional methods by enabling 
efficient and continuous data acquisition and overcoming geographical 
and resource limitations Biermann et al. (2020). Additionally, uncrewed 
aerial vehicles (UAVs) have the potential for long-term plastic moni-
toring, offering advantages such as improved spatial resolution, quick 
response time, and lower operational costs Andriolo et al. (2023).

Numerous object detection and classification machine learning tools 
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have been developed to monitor plastics in aquatic environments van 
Lieshout et al. (2020); Cortesi (2021); Rußwurm et al. (2023). Efforts 
have also been made to enhance detection from space using fusion 
Kremezi et al. (2022) and unmixing techniques Papageorgiou et al. 
(2022), and a benchmark dataset with Sentinel-2 images has been 
created to compare the performance of various artificial intelligence 
algorithms Kikaki et al. (2022). Nevertheless, there is a need for 
affordable and standardized plastic detection methods and equipment to 
address the challenges of monitoring plastic pollution on a global scale 
Martínez-Vicente et al. (2019); Cózar et al. (2024).

Current hyperspectral sensors are expensive and require consider-
able computational resources. Most macroplastic studies focus on the 
near-infrared (NIR) to shortwave infrared (SWIR) range, particularly 
around 1150 nm, where distinct absorption peaks facilitate plastics 
identification Garaba and Dierssen (2020). However, as detectors in the 
SWIR over 1000 nm are more expensive than in the visible and near- 
infrared (VNIR), between 400 and 1000 nm, implementing a multi-
spectral sensor in the VNIR for plastic detection worldwide would lead 
to a significant reduction in costs Pérez-García et al. (2023). Several 
studies suggest that a high level of spectral detail is unnecessary for 
detecting and classifying other pollutants with gradually changing 
spectral signatures Legleiter et al. (2019, 2022); Pérez-García et al. 
(2024b). This indicates that sensors with broader bands could still 
provide reliable plastic classification. Therefore, we envision an 
affordable multispectral sensor with selected spectral bands for plastic 
detection.

We present an assessment of various machine learning models across 
different datasets to identify the key spectral bands for classifying the 
most prevalent marine plastics. By evaluating the transferability of these 
key bands across the datasets, we show that a sensor using these bands 
could identify plastics in various scenarios and conditions. Therefore, 
our study explores the feasibility of developing a VNIR multispectral 
sensor for detecting and identifying coastal macroplastics. This tech-
nology aims to enhance plastic recovery efforts in both field and 
spaceborne remote sensing, supporting the transition towards improved 
ocean health.

2. Materials and methods

In this paper, we applied a refined band selection methodology to 
different plastic datasets to select the optimal number of bands and to 
identify the bands of interest for the detection and classification of 
plastics. We used spectral information from three datasets covering 
various scenarios, from laboratory experiments without a background 
signal to sand and pebble beaches. Based on classification and feature 
selection methods, we identified bands of interest for plastic detection 
and evaluated the transferability across the datasets. Finally, we test its 
applicability by transferring the bands of interest to a fourth new dataset 
collected for the study.

2.1. Datasets

We focused on plastic polymers that are most common in coastal and 
marine environments Schwarz et al. (2019); Morales-Caselles et al. 
(2021); Barry et al. (2023), and which are present across all the datasets 
used in this study. These include high-density polyethylene (HDPE) for 
bottles, low-density polyethylene (LDPE) for bags, polypropylene (PP) 
for containers, and polystyrene (PS), which is represented in both its 
foamed (expanded polystyrene, EPS) and non-foamed forms. The four 
datasets contain items from the four plastic classes (HDPE, LDPE, PP, 
and PS) under different conditions.

We used hyperspectral imagery of virgin rectangular sheets from the 
HyperDrone (HD) project, where the sheets were placed on two different 
Scottish beaches: the sandy, seaweed-covered Tyninghame Beach 
(56.01◦ N, − 2.59◦ W) in 2020 and the pebble-stone shore near Oban 
Airport (56.46◦ N, − 5.40◦ W) in 2021. The measures were made with 

The Headwall Co-aligned VNIR and SWIR imager (NERC Field Spec-
troscopy Facility) Headwall Photonics (2020), which collects about 600 
bands ranging from 450 to 2500 nm. The third dataset (WUR) is mainly 
composed of virgin plastic everyday items from domestic sources Tas-
seron et al. (2021a). The images were taken in the laboratory using 
Specim Fx10 and Fx17 cameras (Konica Minolta Company, Oulu, 
Finland) Specim Spectral Imaging (2019). Together, they range from 
400 to 1700 nm, with about 300 bands. Fig. 1 presents an overview of 
the three datasets used to train the model. These datasets are available 
for further details; see Plymouth Marine Laboratory; Mata, A. (2023a)
(HD20), Plymouth Marine Laboratory; Mata, A. (2023b) (HD21) and 
Tasseron et al. (2021b) (WUR).

We collected a new dataset comprising everyday plastics, with 
plastic bags, jars, bottles, and cups similar to those in the WUR dataset. 
This dataset serves as the testing ground for evaluating the model’s 
applicability. The image was captured on a plain background with the 
Specim Fx10 and Fx17 cameras, following the WUR dataset procedure 
Tasseron et al. (2021a). Further information and the mean spectral 
signatures of this dataset are provided in Section 3.3.

2.2. Band selection methodology

The methodology determines the bands of interest based on a com-
bination of classification and feature selection algorithms (Fig. 2) Pérez- 
García et al. (2024a).

Half of the data is used to train the classification models, of which 60 
% belong to the training dataset, 30 % are for the test dataset, and 10 % 
for validation. We used Random Forest (RF) Ho (1995) and Support 
Vector Machine (SVM) Hearst et al. (1998) as classifiers, both with 
hyperparameter optimization. The feature selection algorithms are 
trained with the remaining half of the data and provided with the 
impurity-based feature importance of the classifiers to determine the 
best bands for classification. The feature selection algorithms used are 

Fig. 1. Datasets overview Plymouth Marine Laboratory; Mata, A. (2023a,b); 
Tasseron et al. (2021b).
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Sequential Feature Selector with forward selection (SFS) and Select 
From Model (SFM), both from the Python Scikit-Learn library Kramer 
(2016). SFS progressively includes or excludes features to optimize a 
classifier’s performance, providing the optimized subset of features. 
SFM evaluates features based on their feature importance for the clas-
sifier Kramer (2016).

The optimal number of bands is determined using the elbow method 
Syakur et al. (2018), identifying the point on the accuracy curve where 
improvement slows, forming an “elbow.” For the optimal number of 
bands, all classification metrics were calculated. Using only the best 
bands, the optimized classification models are re-trained. The validation 
dataset determines the classification metrics to assess performance. The 
overall accuracy (OAC) measures the ratio of correct predictions over 
the total number of samples Hossin and Sulaiman (2015). The F1 score is 
particularly useful with uneven class distribution, giving more impor-
tance to the accuracy of the smaller classes Boughorbel et al. (2017). The 
Kappa statistic (κ) measures inter-rater agreement for categorical items, 
correcting the bias that might occur due to chance agreement, especially 
with imbalanced datasets Cohen (1960).

Finally, we can evaluate the transferability of our results to different 
scenarios. This includes transferring bands of interest or pre-trained 
classification models. Transferring bands of interest involves using the 
identified wavelengths from one scenario to train a classifier in another 
scenario. The model transfer is challenging, as these models are tailored 
to specific scenario characteristics. If the spectral behaviour is suffi-
ciently similar across scenarios, models can be effectively transferred, 
reducing the need for re-training the classifier and the computational 
time Pérez-García et al. (2024b).

Three measures of homogenization are applied to conduct a 
comparative study between the three datasets. First, the VNIR spectral 
range is selected, and the spectral ranges for which there is no data in all 
datasets are discarded. Therefore, the wavelengths of the study range 
from 490 to 850 nm. Second, the study only includes those elements of 
the datasets that match the target plastic types. From HD datasets: virgin 
EPS (PS class), agricultural PP, white HDPE net, and transparent LDPE, 
and from WUR: shampoo bottle and soap flask (HDPE), packaging bag 
(LDPE), bottle cap and food container (PP), and one-use white coffee 
stirrers (PS). The analysis includes backgrounds such as seaweed, rocks, 

and wet and dry sand. Third, to prevent misclassification caused by 
unbalanced classes, pixels from each dataset are randomly selected until 
each class contains 2700 samples, matching the number of pixels in the 
smallest class (PS in HD21).

3. Experiments

We designed three experiments in this study. Experiment 1 includes 
an individual dataset analysis, which offers insights into its complexity. 
Furthermore, optimizing the hyperparameters of the band selection 
model allows for determining the optimal number of bands needed for 
the multispectral sensor. Experiment 2 focuses on transferring the re-
sults and involves applying the findings obtained by training the model 
with one dataset to another. It is possible to transfer both the bands of 
interest and the pre-trained models, providing an understanding of the 
model adaptability. In experiment 3, the results from experiments 1 and 
2 are applied to a real case study with a new dataset to quantify its 
performance.

3.1. Experiment 1: individual dataset analysis

Selecting the optimal number of bands poses one of the most chal-
lenging aspects of dataset analysis. Fig. 3 presents the OAC as a function 
of the number of bands used to train the model. The dataset achieving 
the highest level of accuracy is HD20 (97 %), whereas HD21 exhibits the 
lowest accuracy (93 %). The analysis indicates that SFS presents better 
accuracy than SFM, and its combination with RF further enhances per-
formance. According to the elbow method Syakur et al. (2018), three 
bands are ideal. However, four bands are selected for the analysis, which 
is cost-effective and ensures better accuracy in transferring the research 
results Pérez-García et al. (2023).

The metrics performance is high across all datasets and for the 
different combinations of the model (0.690–0.959; see Table 1), vali-
dating the model adaptability. This substantiates that combining the SFS 
feature selection model with the RF classifier is the most effective. 
Therefore, the rest of the analysis concentrates on the results obtained 
using four bands and the SFS-RF method.

Fig. 3 also shows the confusion matrices for the three datasets, 
illustrating the performance of the optimized SFS-RF model with the 
four best bands for each dataset. Across all datasets, the classes with the 
poorest performance are HDPE and LDPE, between 9 % and 35 % of 
mutual misclassification. These results are consistent as both are poly-
ethylene materials of different densities and are semi-transparent. The 
WUR dataset also identifies a 13 % of misclassification between HDPE 
and PP. Similar results are found in the HD datasets when including the 
background classes of the two datasets: seaweed, dry sand, wet sand, 
and rocks. Fig. 4 shows that all the backgrounds exceed 90 % accuracy, 
except for the rocks that achieve 89 % accuracy.

Combining SFS and RF models yields superior results for selecting 
key bands. The dataset with the highest performance with 4 bands is 
HD20, reaching 95.9 % OAC, 95.9 % F1-score, and 94.6 % κ. HD21 

Fig. 2. Band selection methodology diagram Pérez-García et al. (2024a).

Fig. 3. Overall accuracy of the model combination and confusion matrices for four bands per dataset.
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exhibits the lowest performance, with 90.0 % OAC, 90.0 % F1-score, and 
86.7 % κ. Moreover, distinguishing between the two densities of trans-
parent polyethylene, HDPE and LDPE, and the rock background poses 
the most significant challenge in the individual dataset analysis. Section 
3.2 discusses the transferability of results and trained models from one 
dataset to another.

3.2. Experiment 2: transfer learning

When applying a model across different scenarios, its transferability 
becomes crucial. The greater the model transferability, the broader its 
range of applications and the lower the computational costs by mini-
mizing retraining efforts.

The initial step requires assessing the transferability of bands, i.e. 
whether the information resulting from training the model with one 
dataset can be extended to another without significant accuracy loss. We 
grouped the wavelengths into 25 nm widths to visualise the results. 
Fig. 5 shows the number of bands of interest in each designated spectral 
range. The greatest concentration of bands of interest where the three 
datasets coincide is in the NIR, between 750 and 800 nm, and in the red, 
around 650 nm. The two HD datasets also agree that the blue wave-
lengths between 475 and 500 nm provide relevant information. Finally, 
for HD21 yellow is of interest, concretely at 584 nm, and another band 

appears in the NIR for WUR at 850 nm. Therefore, we can cover 9 out of 
the 12 bands of interest in the datasets using a multispectral camera with 
three bands in the spectral regions of coincidence—475-500 nm, 
650–675 nm and 750–775 nm—, demonstrating band transferability.

In general, using the same dataset for both training and validation 
produces optimal results, as shown in Table 2 (by rows). The two HD 
datasets have the same plastics in different backgrounds (sand and 
pebbles). Training with 2021 and validating with 2020 gives better re-
sults than training and validating with 2021. The OAC suggests superior 
transfer occurs when training the model with the most heterogeneous 
dataset, WUR. This finding was unanticipated because both HD datasets 
use identical plastics.

The next step requires transferring the complete model and 
providing only the values of the validation dataset into the already 
trained classifier. When training with HD20 and transferring to HD21, 
the model achieves 80.8 % of OAC, while transferring from HD21 to 
HD20 results in 70.5 %. However, when transferring between HD and 
WUR datasets, the OAC varies between 25 % and 30 %, potentially 
attributable to the normalization of WUR spectra contrasted with the 
absence of normalization in HD spectra. Therefore, this phase is more 
complex to implement successfully and is more dependent on the 
dataset.

While band transfer proves effective, model transfer encounters 
certain limitations. Section 3.3 evaluates whether these limitations 
restrict its use to identical plastics or allow for broader application in a 
case study.

3.3. Experiment 3: case study

The final evaluation of the model’s applicability involves providing it 
with entirely novel data, employing the dataset produced with everyday 
plastics. Fig. 6 (a) illustrates the everyday objects that constitute this 
dataset. As several objects lack the polymer identification code or 
recycling number standardized by ASTM (American Society for Testing 
and Materials), only the ones identified were used to validate the model: 
HDPE (no. 5, 8), LDPE (no. 13), PP (no. 11, 14), PS (no. 9, 15), with 
between 5500 and 7000 pixels per plastic type. Fig. 6 also shows the 
signatures of the objects used for the case study, with a distinct pattern 
for each plastic type.

Transferring the WUR SFS-RF model with four bands to the new 
dataset reaches 54.4 % accuracy, higher than that obtained for HD20 
and HD21, 47 % and 41 %, respectively. Using the four bands of interest 
determined with the optimized SFS-RF model for any of the three 
datasets achieves an accuracy above 90 % in the new dataset. The 
confusion matrix in Fig. 6 (b) shows high performance, misclassifying 
only a few HDPE and PP pixels, which are the classes with the most 
similar spectral signatures and semitransparent in the VNIR range. 
Consequently, the transfer of results is considered successful.

4. Discussion

Our analysis provides a positive outlook for band transfer and clas-
sifying macroplastics in aquatic and coastal environments. Integrating 
SFS and RF models facilitates the optimal selection of bands of interest. 
The coincidence of the spectral regions of interest across datasets of 
different characteristics, coupled with the high accuracy (above 85 %) in 
terms of the number of bands employed and the transferability of the 

Table 1 
Metrics for all models with four bands in the VNIR.

SFS SFM

OAC F1 κ OAC F1 κ

HD20 RF 0.959 0.959 0.946 0.781 0.781 0.708
SVM 0.944 0.944 0.926 0.904 0.904 0.872

HD21
RF 0.900 0.900 0.867 0.885 0.885 0.847
SVM 0.850 0.849 0.800 0.846 0.846 0.795

WUR
RF 0.930 0.929 0.906 0.917 0.917 0.889
SVM 0.922 0.922 0.896 0.767 0.758 0.690

Fig. 4. HD dataset with backgrounds’ confusion matrix (SFS-RF 4 bands).

Fig. 5. First four bands of interest for each dataset.

Table 2 
OAC for SFS-RF with four band transfer.

Datasets providing the bands

HD20 HD21 WUR
Dataset validating the model HD20 0.959 0.902 0.911

HD21 0.889 0.900 0.891
WUR 0.869 0.889 0.930
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bands between datasets, enhances the sensor feasibility regarding 
efficiency.

The findings in Section 3.1 suggest that accuracy improves when the 
background is spectrally uniform, such as a sandy beach, where the 
spectral response is consistent across the area. This is particularly rele-
vant due to the semi-transparent nature of some plastics. In contrast, a 
heterogeneous background, such as a pebble beach, introduces vari-
ability in light reflection both between and within individual pebbles, 
which introduces noise that hinders the identification of objects. 
Accordingly, HD21 exhibits the least favourable results in the study with 
86.7 % κ. The HDPE and LDPE are usually semi-transparent, making 
them particularly susceptible to misclassification, reaching 35 % when 
both added in HD21.

The significance of a uniform background is evident in achieving 
better results, as also observed in Section 3.2. Training the model with 
HD20 and validating in HD21 outperforms the outcomes obtained when 
training and validating with the latter dataset. Training the model with 
heterogeneous objects helps to improve the transfer of the bands of in-
terest, reducing the risk of the model overfitting. Despite the expectation 
of better band transfer between HD datasets due to the shared objects, 
the transfer from WUR to HD outperforms it, suggesting that incorpo-
rating heterogeneous objects is a valuable strategy for reducing 
overfitting.

The successful transfer of bands in the use case in Section 3.3, with an 
accuracy above 90 %, highlights the validity of the model and the 
conducted experiments. Since the bands of interest were determined by 
training the model on a different dataset, it is expected that they may not 
perfectly align with the spectral signatures of the new dataset. However, 

the robustness of the RF classifier allows it to effectively manage the 
classification of the limited number of objects in the study.

The main limitation lies in the model transfer. Although the accuracy 
exceeds 50 %, indicating promising performance, it also highlights that 
achieving high precision when transferring models between different 
datasets remains a challenge. Another limitation is that object colour can 
influence its spectral signature in the visible range, potentially leading to 
false positives or misclassification, particularly with darker-coloured 
plastics and transparent materials Zhu et al. (2020); Tasseron et al. 
(2022). Also, the reflectance of floating plastics is highly sensitive to 
plastic type, transparency, shape, and surface characteristics Martínez- 
Vicente et al. (2019); this effect is less pronounced for plastics on land. 
Our study focuses on light-coloured plastics found on land, where these 
issues are less significant and are not directly addressed. Future research 
could benefit from expanding the number of datasets and conducting 
more band transfers to datasets with varied backgrounds. This approach 
would help avoid overfitting the model to specific data, thereby 
improving the model transferability to other scenarios.

Within the context of previous research, several studies have 
explored the detection of macroplastics using similar RS techniques 
Topouzelis et al. (2021). In contrast to other SWIR-focused work Tas-
seron et al. (2022), our emphasis on the VNIR range explores the pos-
sibility of developing efficient, low-cost sensors. Several studies suggest 
that a high level of spectral detail is unnecessary for detecting and 
classifying other pollutants with gradually changing spectral signatures, 
indicating that sensors with broader bands could still provide reliable 
classification Legleiter et al. (2019, 2022). Our pipeline, which in-
tegrates various classification and feature selection models, enhances 
the methodology’s effectiveness, surpassing other band selection tech-
niques that need between 10 and 20 bands to achieve optimum accuracy 
Olyaei and Ebtehaj (2024).

To summarise, our findings contribute to a better understanding of 
plastics’ spectral behaviour. The experiments’ results advocate the 
feasibility of transferring bands of interest from one dataset to another 
for efficient macroplastic identification, highlighting the importance of 
training with heterogeneous datasets and uniform backgrounds.

5. Conclusion

This letter provides fundamental input for transferring classifiers 
across datasets to identify the key bands for detecting plastic pollution in 
aquatic environments. Integrating SFS and RF models optimizes band 
selection, enhancing sensor feasibility. Uniform backgrounds prove 
crucial for accurate detection, as seen in the individual findings, with 
successful differentiation of all polymers and backgrounds. Successful 
band transfers between datasets, with an accuracy of 90 %, highlight 
model validity. However, analysis of model transfer is limited, requiring 
classifier retraining in each dataset to achieve accuracy above 60 %. 
Consequently, while successful band transfers suggest the potential to 
develop a sensor capable of detecting plastics across various scenarios, 
the insufficient precision in model transfer indicates that the classifier 
must be trained for each scene. The study suggests expanding datasets to 
address limitations and improve model transferability. For optimal 
adaptability to various plastics, it is recommended to use a combination 
of bands from the three main datasets to cover different regions of the 
spectrum, with the sensor bands centred at 495 nm (blue), 665 nm (red), 
777 nm (NIR) and 850 nm (NIR). In the near future, we will explore the 
effect of several multispectral sensor bandwidths on plastic classification 
and transferability to non-virgin plastics. In summary, these findings 
contribute to understanding the spectral behaviour of plastics and the 
effectiveness of band and model transfer, advocating for developing 
more targeted and adaptable remote sensing technologies for efficient 
plastic detection across diverse aquatic environments.

Fig. 6. Spectral analysis of the new dataset: objects, mean spectral signature 
with red lines indicating WUR best bands. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.)

Á. Pérez-García et al.                                                                                                                                                                                                                          Marine Pollution Bulletin 207 (2024) 116914 

5 



CRediT authorship contribution statement
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