
communications earth & environment Article

https://doi.org/10.1038/s43247-024-01650-x

The local cooling potential of land
restoration in Africa
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Land restoration is becoming increasingly popular as a climate change mitigation and adaptation
measure. It is suggested that resulting vegetation changes can impact the local surface temperature
through biophysical processes such as albedo warming and evaporative cooling. Yet, the potential
effect of land restoration on the local surface temperature in Africa remains uncertain. In this study, we
use Terra MODIS time series of vegetation, albedo, and land surface temperature to determine
vegetation-temperature relationships at a continental scale. We show that vegetation-albedo and
vegetation-temperature relationships do not only vary spatially across Africa but also temporally over
different time scales, with strong cooling effects in semi-arid environments. Furthermore, we predict
that land restoration can decrease local land surface temperature by around 0.2 Kelvin on average.
This study gives amore detailed insight into where future land restoration provides additional positive
climate impacts, and where land restoration may instead warm the local environment.

Land restoration practices, such as active reforestation, natural regeneration
and water harvesting, have been proposed as a solution to a wide range of
environmental problems across the world1. They have the potential to
decrease and reverse land degradation, conserve biodiversity, and increase
the livelihood of the local population through ecosystem services and
income provision2. On top of that, planting trees is currently seen as one of
themore realisticways to sequester carbon, thereby compensating partly for
the residual emissions that are hardest to decarbonize3–6. Consequently, land
restoration efforts are becoming increasingly popular7, including ambitious
initiatives to plant millions of trees across the globe (e.g., the Bonn Chal-
lenge, the AFR100 project, and the Trillion Trees initiative). The African
continent, even though having one of the lowest per-capita contributions to
greenhouse gas emissions8, is already experiencing an increase in
temperature9 and heatwave frequency10 that is higher than the global
average. This has resulted in biodiversity loss, droughts, reduced food
production and economic growth, and loss of lives11.

Land restoration may, in addition to global mitigation strategies,
reduce the climate change impact in Africa12. Although it can encompass a
wide range of measures and is implemented with different goals, land
restoration often entails an increase in the greening of the surface13 and can,
therefore, directly affect the local climate through changes in the biophysical
propertiesof theEarth’s surface (e.g. albedo, evapotranspiration, and surface
roughness). This way, land restoration projects have the potential to change
the local and regional temperature14,15 and create a more comfortable living
environment for the local population16. Yet even though the scientificdebate

on how vegetation affects the regional climate started over 200 years ago17,
and the biogeophysical processes may sometimes be stronger than the
biogeochemical ones18, the biogeophysical processes and their related
feedback have received much less attention.

When studying these vegetation–temperature relationships, it is,
however, important to make a distinction between air temperature, which
describes the ambient temperature of the air, usuallymeasured at 2m above
a standard grass cover by weather stations; and land surface temperature,
which is the radiative skin temperature of the Earth’s surface as often
measured by satellites. Although air temperature is an important variable
because it can be directly felt by humans16, mixing effects of surface fluxes in
the boundary layer, in combination with limited data availability, make a
continental analysis of vegetation–temperature interactions in Africa chal-
lenging. Land surface temperature, on the other hand, is available on a
continuous grid throughout Africa by remote sensing data (e.g. MODIS
land surface temperature19). In addition, although having a larger variation
than the air temperature, the surface temperature is closely coupled to the
Earth’s energy balance and biophysical effects of vegetation changes, which
makes it an ideal variable to study vegetation–temperature interactions.

Vegetation can directly affect the local surface temperature through
multiple biophysical processes that amplify or counteract each other. For
example, since highly vegetated areas are usually less reflective than bare
land, the surface albedo in the visible range of the spectrum decreases with
increasing vegetation cover. This results in a lower surface reflectance and a
higher amount of net available energy, which therefore contributes towards
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the warming of the surface and an increase in surface temperature20,21. This
effect is often referred to as albedo warming. At the same time, an increased
vegetation cover will result in a higher latent heat flux through evapo-
transpiration, contributing to the cooling of the Earth’s surface by a decrease
in sensible heat flux22,23. This process is often called evaporative cooling.
Unlike albedowarming, whichwarms the earth as a system, the cooling due
to evapotranspiration is local, and the heat is released upon condensation
elsewhere. In addition, an increased surface roughness reduces aerodynamic
resistance and therefore, increases turbulent energy flux dissipation, which
also contributes to surface cooling24,25.

Next to albedo warming and evaporative cooling, vegetation can also
have more indirect effects on the surface temperature. The increased eva-
potranspiration, in combinationwithhigher surface roughness, can increase
atmospheric water vapour, causing an increased cloud cover and planetary
albedo. This reduces incoming shortwave radiation and surface
temperature26,27. At the same time, clouds can increase longwave radiation

entrapment and, therefore, the surface temperature. Whether increases in
vegetation cover and, thus, land restoration, result in a net surface warming
or cooling depends on the relative importance of these direct and indirect
processes15,22, which appear to depend strongly on latitude28,29, background
climate30, scale26 and atmospheric conditions31. This makes it difficult to
transfer results found in specific case studies to other areas. In addition,
modelling studies also suggest non-local effects of vegetation cover on the
surface temperature due to changes in large-scale circulation and atmo-
spheric feedbacks that are difficult to capture with observational data32,33.

As a result, it is largely unknown if land restoration, by increasing
vegetation, can be used to reduce local surface temperatures in Africa
through biophysical processes, and how large this temperature reduction is.
To reduce this knowledge gap, previous studies have investigated the rela-
tionships between vegetation cover change and temperature on continental
or global scales using modelling as well as remote sensing data28. However,
many of these studies specifically focus on forests using idealized

Fig. 1 | Sensitivity of white-sky albedo and land surface temperature to vegeta-
tion. Spatial distribution of the correlation between spatially corrected NDVI and
spatially corrected shortwave broadband white-sky albedo (WSA) on either a the
standard 16-day times series, b the seasonal component only or c the trend com-
ponent. The line graph in a shows the mean 16-day correlation coefficient per
degrees latitude for the shortwave (SW), visible (VIS) and near-infrared (NIR)WSA.
Due to the limited data availability, the graph is masked between 17°N and 30°N.
d–f Similar for the land surface temperature (LST), but the line graph in d shows the
mean correlation coefficient per degree latitude for the 16-day, seasonality, and trend

component. gMedian spatially corrected NDVI, shortwave WSA and LST over the
study period at 3183 randomly selected points. The line shows the linear fit of the
points. h Distribution of year of breakpoint for 16-day NDVI, WSA and LST in the
study area. Only pixels where both variables show a breakpoint are included, con-
taining 22% and 7% of the pixels for the WSA and LST, respectively. In the figures,
areas with amedianNDVI lower than 0.15 or a non-significant correlation (p > 0.05)
are not included. The boxes I, II, and III in f represent three exemplary regions in
Africa with distinctive albedo-temperature–vegetation relations. The stars in
c represent the locations of the EC-measurements in Fig. 3.
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afforestation scenarios or potential tree covermaps5,34–36, while large parts of
dryland Africa consist of savannas and grasslands. In these regions, land
restoration-inducedvegetationchangesdonot, and shouldnot37, necessarily
result in a change in forest coverbut rather increase the vegetation greenness
by converting, for example, bare land to grasslands13. As these dryland areas
may experience lower evaporative cooling due to their aridity, there is a need
to include changes in dryland vegetation cover in these analyses. On top of
that, little research has been done to predict the amount of local surface
cooling that can be achieved through potential future land restoration
practices of non-forested areas.

In this study, we aim to determine the direct local biophysical surface
cooling effects of land restoration acrossAfrica.Although land restoration is
a broad concept and not all projects aim to increase vegetation cover, we
follow the definition of the UNCCD38, which includes both natural area
conservation and sustainable land management of agricultural areas. For
this reason, we expect restored areas generally to be associated with more
natural ecosystems and a greener surface, including increases in grasslands
or shrublands. In addition, we expect restoration-induced surface tem-
perature changesmainly to be causedby changes in vegetation cover. To this
end, we study the effect of increased vegetation greenness on the local
surface temperature across the African continent. We apply a spatial-
context method13,39,40 to a time series of normalized difference vegetation
index (NDVI) and land surface temperature (LST) obtained from the
moderate-resolution imaging spectroradiometer (MODIS) on board the
Terra platform, resulting in spatially corrected time series of these variables.
In thismethod, we compare the time series at a given point with the average
values of its surroundings. By doing so, we limit the effect of the natural

climate variability, and we can thus demonstrate whether a pixel that is
greener than its surroundings is also cooler. We also study the relationship
between NDVI and white-sky albedo (WSA), as the albedo is an emergent
property of the underlying vegetation, and it is also a driver of surface
temperature. Combined with eddy-covariance data from six measurement
sites, this allows us to explore relationships amongst the variables (NDVI-
LST andNDVI-WSA) at both continental and case study scales for different
aridity zones and land cover types. In addition, we use a data-driven
approach to predict the direct local biophysical surface cooling or warming
that could be achieved following greening due to large-scale land restoration
in Africa. We recognize that not all small-scale greening is induced by land
restoration13, but we believe that by studying these vegetation–temperature
relationships, we provide high-resolution information across multiple
aridity zones onwhere land restoration projects can expect local biophysical
surface cooling, and where they instead result in warming. This can guide
policymakers in the design of future land restoration projects across Africa.

Results
Vegetation, albedo and surface temperature relationships
across time scales
In order to reconcile previous studies, we analyse the
vegetation–temperature relationships at three different time scales (see the
“Methods” section).Ona16-day time scale (i.e., the original time scale of the
input data), 31% of the study area shows a significantly negative correlation
between the spatially corrected normalized difference vegetation index
(NDVI) and spatially corrected shortwave white-sky albedo (WSA). Even
though there is small-scale variability in correlations, we see clear large-scale

Fig. 2 | Land cover and aridity controls on vegetation–climate relationships.
a Correlation coefficient of spatially corrected NDVI and shortwave White Sky
Albedo (WSA) and b spatially corrected NDVI and land surface temperature (LST)
over aridity index (scatter) and land cover classes (bars) based on 3183 random
points inside the study area, with a median NDVI higher than 0.15. The points and
vertical lines indicate, respectively, the median and interquartile range of the

correlation coefficient per land cover class overall data. The horizontal position is
determined by themedian aridity index value of the respective land cover class. Only
land cover classes that occur in the study area are included in this graph. In the scatter
plot, non-significant correlations are marked with a smaller point (p > 0.05). In the
land cover classes, non-significant correlations are not included. The stars represent
the locations of the EC-measurements in Fig. 3.
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patterns, with negative NDVI–WSA correlationsmainly in southern Africa
and the Sahel area (Fig. 1a). This suggests that these areas experience a
decrease in WSA (darker surface) compared to surrounding areas if the
NDVI increases (more vegetation) compared to surrounding areas. Positive
correlations between theNDVI and shortwaveWSA cover 29%of the study
area. As vegetation is usually considered less reflective (lower albedo) than
bare land, positive NDVI–WSA correlations may appear counterintuitive.
However, denser vegetation will also reflect more near-infrared light,
thereby contributing to a positive relationship in that part of the spectrum.
To elaborate on this effect, we applied a similar analysis separately to the
visible broadband (0.3–0.7 μm) and near-infrared broadband (0.7–5.0 μm)
WSA, which are both provided by theMODIS albedo products. This shows
that the positive correlations in the shortwave broadband (0.3–5.0 μm) are
mainly caused by the NIR broadband, as the visible broadband WSA is
negatively correlated withNDVI across the study area, as could be expected
(Fig. 1a, Supplementary Fig. 2).

Because previous studies have found contrasting biophysical
vegetation–surface temperature relationships across time scales24, we
separate the 16-day time series into seasonal and long-term effects of
vegetation cover changes using time series decomposition. This is especially
relevant when determining the biophysical effects of land restoration, as
these projects can affect the long-term greenness trends. Interestingly,
contrasting spatial patterns inWSA–NDVI correlation appear for different
time scales (Fig. 1b, c). Areas in subtropical Africa (delineated as box II in

Fig. 1f) show, for example, a positive correlation on a seasonal scale, but a
negative correlation across years (i.e., the trend component).Over thewhole
study period, themedian spatially corrected NDVI andWSA values show a
weak negative correlation with a correlation coefficient of –0.27 (Fig. 1g).

To further explore the relationship between vegetation and albedo, we
compare the timing of breakpoints (i.e., significant and sudden changes in
the trend component) andfind that thesemoments oftencoincide, although
sometimes the breakpoint in WSA is one year delayed (Fig. 1h). This sug-
gests that sudden changes in NDVI trends are often followed by sudden
changes in theWSA trend. Yet, in only 22%of the study area, a breakpoint is
detected for both the NDVI and WSA. In 41% of the study area, no
breakpoint is detected for both variables.

Similarly, on a 16-day time scale, NDVI and land surface temperature
(LST) are significantly negatively related for 79% of the study area, sug-
gesting an increase in NDVI (more vegetation) corresponds to a lower LST
(cooler surface) compared to surrounding areas (Fig. 1d). In central Africa
(box III in Fig. 1f), on the other hand, positive correlations occur. Similar
patterns appear for the season and trend components of the time series
(Fig. 1e, f). Only in the Sahel area (box I in Fig. 1f), do the trend components
show a different result, with positive correlations between NDVI and LST,
while the seasonal component shows negative correlations. Over the whole
study period, the correlation between spatially-corrected NDVI and LST is
negative, with a slope of –11.4 K (or−11.4 °C) and a correlation coefficient
of –0.51 (Fig. 1g). In addition, the breakpoint year of the NDVI and LST

Fig. 3 | Aridity controls on vegetation–climate relationships from MODIS and
eddy-covariance (EC) data. Relationships between NDVI and a–c LST, d–fWSA
and d–f latent heat flux (LE) at six ECmeasurement sites (two per plot) across aridity
classes. Plots show median (line), interquartile range (box) and data range with a
maximum of 1.5 times interquartile range (whiskers). g–i Seasonality of the NDVI,
latent heat flux (LE) (green area), sensible heat flux (H) (purple area) and difference
between incoming shortwave radiation and sumof latent and sensible heat (SWin) at
the same sites. The thin coloured lines (fluxes) and black shaded areas (NDVI) show

the two sites separately. The locations of the sites are shown in Supplementary
Fig. 1d. Measurements of NDVI, LST and WSA are obtained from not spatially
corrected MODIS data, the net radiation, sensible heat flux and latent heat flux are
obtained fromECmeasurements. Seasonality of the other variables at the six stations
is included in Supplementary Fig. 14, showing a distinct seasonal variation in
NDVI–WSA, NDVI–LST, NDVI–air temperature and NDVI–LE relations and a
changing negative to positive correlations from arid to humid stations.
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seem to coincide (Fig. 1h), suggesting that sudden trend changes in NDVI
and LST occur simultaneously, although in 7% of the study area shows a
breakpoint for bothNDVI andLSTand 58%does not showabreakpoint for
both the NDVI and LST. Interestingly, in 33% of the study area, there is a
breakpoint detected in the NDVI time series, but not in the LST time series.
This suggests that the LST often changesmore gradually, or other processes
affect the LST from changing with the NDVI.

Effects of aridity and land cover
The biophysical effects of vegetation show clear spatial patterns related to
both aridity and land cover. The negative 16-day correlations between
NDVI and WSA often coincide with lower aridity index values (i.e., more
arid environments), with increasing correlations over higher aridity index
values (Fig. 2a).Thehighest (i.e.,most positive) correlation coefficient values
are found with an aridity index around 0.5, corresponding to semi-arid to
dry subhumid environments. Towards more humid environments, the
correlations between NDVI and WSA are low. A similar, but opposite
pattern appears for the correlation value between NDVI and LST, as the
correlation valuesdecreasewith the aridity index until an aridity index value
of 0.5, and then increase again (Fig. 2b). However, for themost humid areas
in Africa, the correlation between NDVI and LST is not zero, but slightly
positive.

Besides aridity, land cover also affects the correlation values between
NDVI and WSA, even though land cover and aridity are certainly related.
Positive correlation can mostly be found in forested areas and savannas,
while negative relationships are present in grasslands, shrublands, and
barren lands (Fig. 2a). Most land cover classes show negative correlations
between NDVI and LST (Fig. 2b), except for evergreen broadleaf forest.
Although land cover thus seems to influence the direction of the correla-
tions, both positive and negative correlations can often be found within
single land cover classes.

To provide a more mechanistic insight into the vegetation–climate
relationships, we extend our analysis with eddy-covariance (EC) data from
six measurement sites across aridity zones in Africa. At these sites, the
transport of heat, mass and momentum are measured at high frequency,
providing data for incoming shortwave radiation (SWin), latent heat flux
(LE) and sensible heatflux (H).Althoughmeasuringonly at a single location
and long-time series are often not available, these EC-measurement sites
providemore detailed information on the effect of vegetation on the energy
balance at a seasonal scale.

These sitemeasurements show that LE is positively correlated toNDVI
in arid regions in Sudan and Senegal, suggesting higher evaporation during
greener periods (Fig. 3d). At the same time, the NDVI and WSA are
negatively correlated (Fig. 3d), resulting in a lower reflection of incoming

Fig. 4 | Observed climate impacts of local land restoration.Median change in the
trend component of a the spatially corrected WSA and b LST in a 2000 m buffer
around the WOCAT sustainable land management projects. The change is calcu-
lated as the last trend value of the study periodminus thefirst trend value of the study
period (i.e. T2023-01-01–T2001-01-01). Relationship between median change in trend

component of c theNDVI andWSAandd theNDVI and LST for all projects (black),
projects smaller than 1 km2 (green; 24%), projects larger or equal to 1 km2 (green;
37%) and projects that do not report a size (grey; 39%). The relationships for dif-
ferent types of sustainable land management projects are shown in Supplemen-
tary Fig. 15.
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solar radiation, and a higher available radiation (represented by the sum of
LE and H compared to SWin) during periods of high NDVI (Fig. 3g).
However, during these periods, the LE increases to such an extent, that we
see a decrease in H during periods of the year with higher NDVI. This is
consistent with the decreasing surface temperature during periods of high
vegetation greennessmeasured withMODIS (Fig. 3a). In semi-arid regions,
as represented by the sites in Zambia and SouthAfrica, similar relationships
to those in arid regions are observed (Fig. 3b, e, h), also suggesting a surface
cooling effect of vegetation greening. However, NDVI–WSA relationships
seem to be particularly weaker compared to arid regions. In addition, some
other regions in northern Africa show positive NDVI–WSA correlations
(Fig. 1b). Yet, the negative NDVI–H and NDVI–LST relationships suggest
that also in these semi-arid regions, the increase in latent heat dominates the
temperature signal of vegetation. In humid regions in Ghana and Congo-
Brazzaville, on the other hand, an increasing NDVI does not have a large
effect on LST (Fig. 3c) orH (Fig. 3i), even though the available radiation has
a defined seasonality. In addition, the NDVI–WSA relationships seem to
have a limited effect on the energy balance, represented by a constant sumof
LE and H compared to SWin throughout the year. The limited data avail-
ability of theMODIS data due to high cloud cover makes it, however, more
difficult to interpret the energy balance.

Surface cooling effects of land restoration projects
To determine what the effect of implementing land restoration projects has
been on the surface temperature, we compare the WSA and LST at project

locations of 434 sustainable landmanagement (SLM)projects inAfrica. The
median change in the trend component of WSA and LST over the study
period (i.e., T2023-01-01–T2001-01-01) shows mixed results across the project
locations,withbothdecreases and increases inWSAandLSTwithout a clear
spatial pattern (Fig. 4a, b). Yet, comparing the results to changes in NDVI,
general negative NDVI–WSA and NDVI–LST relationships can be found
for the SLM projects (Fig. 4c, d), although it should be mentioned that
projects larger than the resolution of the data (1 km2) show stronger
NDVI–LST relationships. This suggests that both WSA and LST decrease
with increasing NDVI and the spatial pattern in Fig. 4a, b results from
variations in changing NDVI, or the effectiveness of regreening, at the
project sites. AcrossAfrica, greening at SLMprojects thus generally seems to
have a cooling effect on the land surface temperature, with the limited
impact of albedo warming represented by the negative NDVI–WSA rela-
tionships. No particularly different relationships were found for different
aridity zones. It should be noted that the concept of sustainable land
management could be considered broader than the definition of land
restorationprovidedbyUNCCD38. Therefore,we includeda similar analysis
for separate SLM types in Supplementary Fig. 15, where the strongest
NDVI–WSA correlations are found for revegetation and the strongest
NDVI–LST correlations are found for agroforestry.

Local surface cooling potential of large-scale land restoration
By extrapolating on the relations found in this study,we canpredict the local
cooling effect of large-scale land restoration in Africa using a data-driven

Fig. 5 | Potential local land surface temperature
changes due to land restoration. a The potential
NDVI obtainable by land restoration, predicted
using maximum random forest regression and b the
NDVI increase compared to the original median
NDVI. c The potential local LST change obtainable
by land restoration is predicted using random forest
regression. For visualization purposes, the colour
scale ranges from−0.75 to 0.75 K, containing 91%of
the values. d The median and percentiles in ΔLST
grouped by latitude. The overall mean indicates the
mean potential change in surface area across the
study area (excluding non-vegetated areas)
of −0.23 K.
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approach. As a first step, we determined the maximum potential NDVI
constrained by aridity, surface temperature, elevation, slope, aspect, soil
fertility and water table depth throughmaximum random forest regression
(Fig. 5a). The differencebetween this potentialNDVI and the currentNDVI
(ΔNDVIp) represents the NDVI increase obtainable by large scale land
restoration initiatives. We can observe that the largest NDVI increases can
be achieved in semi-arid regions. In themore humid areas in central Africa,
as well as very dry areas, there is little potential for greening (Fig. 5b). It is
important to note, however, that the potential NDVI increase is only con-
strained by climatological and environmental variables. Socio-economic
constraints, which play less of a role in explaining vegetation potential than
climatic variables41, as well as the need for agricultural land or urban areas,
are not considered.

To predict the potential LST change (ΔLST) corresponding to
ΔNDVIp, we used a random forest regressor at each location based on
observedvalues ofΔLSTandΔNDVI, and the aridity index, land cover class,
median NDVI, median LST, median WSA, longitude, latitude, and eleva-
tion sampled at random locations. These observed values of ΔLST and
ΔNDVI are obtained from the trend component rather than the seasonal
changes to match the gradual increase in NDVI from land restoration.
Using this regressionmodel, large parts of Africa show cooling as a result of
large-scale land restoration, with LST changes up to –4 K (Fig. 5c), although
98%of the study area shows a change between –1.5 and 1.5 K. In these areas,
large-scale land restoration projects can result in a potential surface tem-
perature decrease. However, the driest regions in the study area, such as in
the Sahel and southernAfrica, as well as humid areas, such as the rainforests
of Congo, show a slight warming potential (Fig. 5d). The mean LST change
over the whole study area, including regions with little potential for NDVI
increases, is –0.2 K, suggesting an overall local cooling potential of large-

scale land restoration in Africa (Fig. 5d). Yet, as we extrapolate measured
relationships between the NDVI and LST, it should be noted that we can
only predict the direct local effects of large-scale land restoration across
Africa, while non-local or indirect climate effect through changes in
atmospheric circulation is not included in this prediction. If all the suggested
areas are restored at once on a large scale, different patterns may appear.
These results can, however, be used to see where land restoration in Africa
can cause local cooling, and where it instead may result in warming.

Discussion
In this study, we observed variations in vegetation–albedo and
vegetation–surface temperature relationships across both spatial and tem-
poral scales. However, before we discuss these in more detail, several
uncertainties should be kept inmindwhen interpreting these results. Firstly,
the use of image composites for land surface temperature results in a bias for
clear-sky conditions, suggesting that the relationships we found related to
LST are representative only for days without cloud cover. Clouds can have a
considerable impact on the surface energy balance due to changes in
incoming longwave and shortwave radiation32. Therefore, the year-round
relationships between vegetation and surface temperaturemay deviate from
the results found in this study. In addition, the land surface temperature
values used in this study may be different from the air temperature mea-
sured by weather stations and often felt by humans42, especially during dry
seasons42. It is estimated that the effect of vegetation on land surface tem-
perature is stronger than on air temperature, partly caused by the clear-sky
bias of remotely sensed land surface temperature43, which is also observed at
the ECmeasurement locations (Supplementary Fig. 14). Also, themixing of
the boundary layer causes surface temperature effects to be more local than
air temperature effects. We, therefore, expect the air-cooling effect of land

Fig. 6 | Perceptual model of vegetation–climate relationships. Vegetation–albedo
and vegetation–temperature relationships in arid (a, d), semi-arid (b, e) and humid
environments (c, f) in northern Africa on seasonal (a–c) and trend (d–f) time scales.
The locations of arid, semi-arid and humid environments correspond to the boxes in
Fig. 1f, annotated with respectively I, II and III. Positive relationships are indicated
with a plus sign and negative relationships with aminus sign. The overall net albedo/

evapotranspiration warming of potential vegetation increase is indicated with a red
arrow, cooling with a blue arrow. The dotted arrows indicate the observed
vegetation–temperature relationship, where a red arrow again suggests warming due
to a vegetation increase and a blue arrow cooling. For all arrows, large arrows show
the assumed dominant processes.
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restoration projects to be smaller than the surface cooling as observed in this
study, which should be taken into consideration while planning future land
restoration projects. On the other hand, because satellite-derived surface
temperature values are detected at the top of the canopy layer, the additional
shade effects that vegetation can provide are not considered. In addition,
also radiative heat emitted by the surface can be felt by humans. Similarly,
the albedo is not only affected by changes in vegetation but also by soil
background signals. This is especially relevant in arid regions with large
fractions of bare ground. Furthermore, becausewet soils have a lower albedo
than dry soils, soil moisture content has a considerable impact on albedo in
these areas44,45. In addition, the white-sky albedo only represents the bihe-
mispheric reflectance, while the actual albedo value as measured on the
ground (i.e., blue-sky albedo) also contains a directional hemispherical
reflectance component (i.e., black-sky albedo). We are convinced that
changing white-sky albedo to blue- or black-sky albedo would likely only
have a very limited effect on the results. Furthermore, the overall accuracy of
MODIS albedo is generally high and does not appear to depend on illu-
mination and viewing angles46,47, which is important when studying larger
areas. In addition, as the land surface temperature is affected by both albedo
warming and evaporative cooling, as shown by the eddy-covariance data, a
continental scale analysis of evaporation would be informative. However,
remotely sensed evaporation is often computed using empirical relations
between NDVI and evaporation, making it difficult to study changes in
NDVI and evaporation independently. Although also NDVI and WSA
cannot be studied completely independently, because the variables are based
on the same spectral bands, we believe that using these variables is more
appropriate than computed evapotranspiration values. Therefore, com-
bining observed values from remotely sensed data with modelling studies
incorporating air temperature, evapotranspiration, blue-sky albedo and
cloudy days may provide a complete picture of the cooling potential of land
restoration in Africa.

As vegetation–surface temperature relationships vary across Africa, we
discuss three zones with distinctive characteristics in more detail: arid
environments in the Sahel (Fig. 1f, box I), semi-arid and dry subhumid
environments in northern Africa (Fig. 1f, box II) and humid environments
in central Africa (Fig. 1f, box III), creating a perceptual model of
vegetation–climate relationships across Africa. The perceptual model can
also be applied to regions in southern Africa, although the boundaries
between positive and negative relationships are less sharp.

In arid environments such as the Sahel, the results showed negative
vegetation–albedo correlations on a seasonal scale, increasing net radiation
and energy available for heat generation. Yet, the positive
vegetation–evaporation relationships cause an increasing latent heat flux
that compensates for this increase in available energy. This leads to a
decrease in sensible heat flux and evaporative cooling during periods in the
year with high vegetation cover (Fig. 6a). Although the EC measurements
are too short to accurately analyse changes in long-term changes in the
energy balance, we can extend the same reasoning to the trend scale
(Fig. 6d), where we observe positive vegetation–surface temperature rela-
tionships. Warming due to a decrease in albedo thus seems to outweigh the
decrease in sensible heat flux due to evaporation. This suggests that enough
water is available for evaporative cooling during the wetter periods in the
year when vegetation cover is high, but there is insufficient water to sustain
this evaporative cooling effect during an overall increase in vegetation cover,
resulting in a dominant albedo warming on the trend scale. Similar results
were found by Chen et al.25 and Feldman et al.24, who showed that the long-
term relationship between leaf area index and land surface temperature is
dominated by the albedo in this area, causing a warming effect of vegetation
increases.

In semi-arid and dry subhumid environments in northern Africa,
vegetation variations are positively correlated to the albedo on seasonal time
scales, indicating more reflectance with higher vegetation covers (Fig. 6b).
Although this may seem counterintuitive as vegetated surfaces are usually
considered darker due to the absorption of visible (VIS) radiation, a dis-
tinctive property of vegetation is thehigh reflectivity of radiation in thenear-

infrared (NIR) range48 (Supplementary Fig. 2). Since both the NIR and VIS
range are included in the white-sky albedo49, a dominant increase in the
reflection in the NIR range over a decrease in the reflection in the VIS range
can explain the positive vegetation-albedo correlation. Previous research
estimated the vegetation–albedo relationship to be highly variable and
depending on location50, where positive relationships between vegetation
and NIR albedo were found, especially in the growing season51–53. Together
with the fact that albedo can be positively related to leaf area index, but
negatively to forest cover50, this can explain the difference between the
seasonal and trend vegetation-albedo correlations found in this study
(Fig. 6e). In addition, dryland Africa is a hotspot for fires, where some
regions burn almost every year54. The coincidence of the resulting decrease
in albedo55,56 and vegetation cover causedby thefires can explain thepositive
seasonal-scale albedo–vegetation relationships in these areas. In some semi-
arid regions in southernAfrica, on the other hand, vegetation and albedo are
negatively correlated and ECmeasurements behave more as arid regions in
northernAfrica. Yet overall, we see a net cooling effect of vegetation on both
the seasonal and trend scales in these semi-arid and dry subhumid areas,
represented by the negative vegetation–surface temperature relationships,
whichmay be caused by both a higher reflectance of near-infrared radiation
on the seasonal scale, and evaporative cooling on the seasonal and trend
scales.

Tropical forests and humid areas in central Africa, on the other hand,
showed low, yet positive vegetation–surface temperature relationships on
both the seasonal and trend scale, suggesting that an increase in forest cover
would cause warming of the Earth’s surface (Fig. 6c and f). This contradicts
expectations, as tropical forests have a high evapotranspiration potential
throughout the year and vegetation and latent heat flux are positively cor-
related. Combined with generally low vegetation–albedo correlation, a
cooling effect would be expected21, as predicted by many modelling and
observational studies57–59. Yet, several studies using satellite-basedvegetation
and temperature data show a similar weak or slightly positive
vegetation–albedo relationship in the tropical forests of central Africa24,25,43.
In addition, satellite data estimations that deforestation in the Congo basin
(i.e., a change from forests to grasslands) may potentially result in an
increase in latent heat flux and a decrease in sensible heat flux. This would
thencauseadecrease in surface temperature andpositive vegetation–surface
temperature relationships36,60. Literature addressing this difference between
different observational datasets and model results in tropical areas like
Central Africa suggests the high cloud cover and the saturation of NDVI
under high vegetation cover as potential causes24. Indeed, visual inspection
of the NDVI time series reveals a large amount of noise (Supplementary
Fig. 16), although using the enhanced vegetation index (EVI) or leaf area
index (LAI), which are less sensitive to this saturation effect61, does not result
in substantial different spatial patterns (Supplementary Figs. 17 and 18). In
addition, it should be noted that these humid regions are often energy-
limited, rather than water-limited. This effect is distinctly visible in the EC
measurements, as an increase in incoming shortwave radiation directly
leads to increased evapotranspiration while the sensible heat remains con-
stant. This could explain the weak correlations between vegetation and
surface temperature in this study. However, considering the clear-sky bias
and the overall low correlations found in these areas, we argue that the
warming effect of reforestation in humid areas should be handledwith care,
and more observational data is needed to provide a complete explanation.

If we look in more detail at sustainable land management projects, no
clear patterns in white-sky albedo and land surface temperature changes
could be observed. This indicates that sustainable land management, in
general, does not directly cause a cooling effect in Africa. Thismay partly be
caused by the uncertainty related to the location and size of the WOCAT
projects used in this study, as 27% of the projects are reported to be <1 km2

and 38%didnot report a size, and the absence of greening at some locations.
In addition, it should be noted that the use of our spatial context method
results in the detection of small-scale deviations in vegetation, albedo and
temperature. In addition to land management, other small-scale processes,
such as changes in the extent of surface water, irrigation and especially the
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distribution of water, can cause variations in vegetation–surface tempera-
ture relationships13. Yet, comparing the changes in surface temperaturewith
changes inNDVI, a clear negative relationship suggests that warming at the
project locations is often due to a decrease in vegetation over time rather
than the absence of a cooling effect of greening. Some projects that showed
considerable greening resulted in a cooling of almost 2 K, suggesting that if
the SLM projects result in greening, a cooling effect can often be expected.

Extrapolating the relationships found in this study to a large-scale
restoration scenario, large parts of Africa, especially semi-arid environ-
ments, may experience local cooling under future land restoration,
assuming enough water is available to sustain the increased evapo-
transpiration. Across Africa, we estimate that the potential land restoration
can decrease the local surface temperature on average by 0.2 K, which is
considerable in comparison to the projected mid-century temperature
change between 0.5 and 2.5 K9. From a temperature perspective, a wide-
spread increase in vegetation cover may, therefore, be beneficial in these
areas. In addition, comparing the results of this study with the locations of
existing land restoration projects, we expect a cooling effect of vegetation
increases in large parts of projects such as the participating countries of the
GreatGreenWall of Africa62. However, some of these projects implemented
in the driest regions, including parts of the Great Green Wall project, may
experience biophysical warming due to a lack of moisture available for the
increased evaporation. The contradicting vegetation–surface temperature
relationships across time scales highlight the need to include both inter-
annual as well as seasonal analyses before implementing land restoration
projects. Furthermore, it should be kept in mind that we only determined
the effect on land surface temperature in this study, while large-scale land
restorationmay havemany other benefits as well as potential disadvantages
related to biodiversity, social–economic aspects, and land use change63. In
addition, land restoration does not only alter the energy balance through
biophysical processes but can also affect the water cycle through changes in
evapotranspiration, soil moisture and even precipitation35. On top of that,
unexpected climate effects may appear outside the restored area, even if the
restored area itself is cooling32,57. These effects are not included in this study.
We, therefore, argue that amore completepictureof thesedifferentpotential
climate effects of land restoration is needed before large-scale land
restoration is implemented. In this research, we do, however, provide some
first guidance on where future land restoration could result in cooling, and
where it instead shows warming.

Methods
Input data and pre-processing
In this study, we used fivemain datasets. The calculations weremostly done
in Google Earth Engine64. To detect changes in vegetation cover, we used
normalized difference vegetation index (NDVI) data from the terra mod-
erate resolution imaging spectroradiometer (MODIS) Vegetation Indices
Collection 6 dataset (MOD13Q1.061)65 (Supplementary Fig. 1a). This
dataset contains 16-day maximum value composites of NDVI at a 250m
resolution. The images were atmospherically corrected and masked for
water, clouds, aerosols, and cloud shadows, using the provided quality
indicators. For this analysis, images between 2001/01/01 and 2023/01/01 on
the African content were used. Although the NDVI dataset has a 250m
resolution, we performed the analysis on a 1 km spatial resolution tomatch
the land surface temperature data (using nearest-neighbour resampling to
ensure fast computation). In addition, we masked areas with a median
NDVI lower than 0.15, because of their low or absent vegetation cover. The
masked areas aremostly located in the SaharaDesert and account for 36%of
the African continent. It should be noted that this threshold is calculated on
a 1 km spatial resolution, including small regions of high vegetation cover in
the desert areas.

We studied the land surface albedo from the Terra and Aqua MODIS
Albedo dataset (MCD43A3.006)66, using white-sky (bi-hemispherical)
albedo (WSA) (Supplementary Fig. 1c). The data is available on a daily time
scale representing the 16 days around the central daily value. To match the
NDVI data, we sampled theWSAdata at the centre day of theNDVI 16-day

periods generating 16-day WSA data. The main analysis was performed
using the shortwave broadband range albedo (0.3–5.0 µm), containing both
visible and near-infrared radiation, but a comparison to the visible broad-
band albedo (0.3–0.7 µm) and near-infrared broadband albedo
(0.7–5.0 µm) is included in Supplementary Fig. 2. Note that the near-
infrared spectral range of 0.7–5.0 µm is larger than the commonly used
range and technically also contains shortwave-infrared. Although theWSA
has a 500mspatial resolution, calculationswere done at a 1000mresolution
to match the LST data (using nearest-neighbour resampling). Again, areas
with a median NDVI lower than 0.15 were masked.

Changes in surface temperature were detected using land surface
temperature (LST) data from the terra MODIS land surface temperature
and emissivity dataset (MOD11A1.061)19 (Supplementary Fig. 1b), con-
taining average LSTdata on a daily time step and a 1 kmspatial resolution at
an overpass time of 10:30 a.m. We used daytime land surface temperature
values because we expected the effects of vegetation changes to be higher
during the daytime. Although Aqua MODIS data (MYD11A1.061) has an
overpass time of 1:30 p.m., which is closer to the expected highest daily
temperature, we used Terra MODIS in this study due to the longer data
availability. However, we explored the results of the different overpass times
of the sensors in Supplementary Fig. 3. In addition, we included a sensitivity
analysis of the results in the used LST algorithm (i.e., MOD11A1.061 vs.
MOD21A1.061) in Supplementary Fig. 4. Both datasets showed similar
spatial patterns on the continental scale. To match the temporal resolution
of the NDVI data, the LST was downscaled to a 16-day temporal resolution
by taking themedian LST value over the 16-day period of theNDVI data, to
represent the whole 16-day period. Supplementary Figs. 5 and 6 investigate
different LST downscaling methods, showing variation in correlation
strength but similar spatial patterns. Again, the areas with a median NDVI
lower than 0.15 were masked.

Land cover data was retrieved from the MODIS Land Cover Type
Collection 6 dataset (MCD12Q1), created using a supervised classification
of the Terra MODIS and Aqua reflectance data67 (Supplementary Fig. 1f).
For this study, we used data from 2001 at a 500m spatial resolution,
representing the original land use at the start of the study period.

The aridity index (AI)68 can be defined as the 30-year average fraction
of precipitation and potential evapotranspiration. We used Aridity Index
data from Zomer et al.69, calculated over the 1970–2000 period on a 30-
arcsecond resolution (Supplementary Fig. 1e). We then defined hyper-arid,
arid, semi-arid, dry subhumid and humid areas as having aridity index
values of AI < 0.05, 0.05 ≤AI ≤ 0.2, 0.2 ≤AI ≤ 0.5, 0.5 ≤AI ≤ 0.65 and
AI > 0.65, respectively70.

Spatial-context approach
Changes inWSA and LST are not only caused by changes inNDVI but also
by large-scale background trends such as natural climate variability and
global climate change. We corrected these background trends using a
spatial-context approach13,39,40. In this approach, we assumed that natural
climate variability acts on a larger scale than land restoration processes.
Therefore, we could remove the background trend from a time series by
subtracting the time series average over a neighbourhood around a pixel
from the original time series.We called the resulting time series the spatially
corrected time series (Supplementary Fig. 7). The neighbourhood is square-
shapedwith a radius of 25 km, corresponding to an area of 50by 50 km.The
centre of the neighbourhood with a radius of 1 km was not included in the
neighbourhood average. We applied this method to each pixel in the study
area, resulting in spatially correctedNDVI,WSAandLST time series.Using
this approach, we could thus determine towhat extent areas that are greener
than surrounding areas are also cooler or warmer than surrounding areas.
The size was based on Ruijsch et al.13 and is a compromise between a larger
area, but also remainingwithin similar aridity areas. A sensitivity analysis of
the used neighbourhood size is included in Supplementary Fig. 8, showing
lower correlations for smaller neighbourhood areas. A comparison of the
corrected and uncorrected time series, which include large-scale natural
variability, is included in Supplementary Figs. 9 and 10.
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BFAST algorithm and breakpoints
Sometimes, land restoration can cause a detectable change in the ongoing
trend of NDVI, WSA and LST time series. In addition, spatially corrected
time series contain changes due to both seasonality and trend components,
due to which simple linear regression does not provide sufficient informa-
tion. To this end, we applied the breaks for additive seasonal and trends
(BFAST) algorithm71–73 in Google Earth Engine74 (Supplementary Fig. 7).
This algorithm separates a time series into a seasonality, trend and
remainder component and can detect significant changes in the trend and
seasonal component (i.e., breakpoints).We applied the BFAST algorithm to
the spatially corrected NDVI, WSA and LST time series. We used the
BFAST algorithm on each pixel in the study area with a seasonal harmonic
model order of 3, the maximum number of breakpoints to 1 andminimum
spacing between two breakpoints to 0.15, which is the fraction of the total
time series length (i.e., 3 years). These settings were chosen to match the
vegetation changes after land restoration (by including breakpoints) while
limiting computation time (by limiting the number of breakpoints and
seasonal harmonic model order)13.

Correlations between NDVI, Albedo and LST
To provide insight into the relationships betweenNDVI,WSA and LST, we
calculated the Pearson correlations coefficient between spatially-corrected
NDVI and spatially corrected WSA, as well as between spatially-corrected
NDVI and spatially corrected LST (results for the Spearman’s rank corre-
lation are included in Supplementary Fig. 11 to study nonlinear relations).
We defined statistically significant values as having a p-value lower than
0.05. First,we compared for eachpixel the 16-day average spatially corrected
NDVI,WSA and LST, resulting in two correlation values over time for each
pixel in the study area. This way, we can visualize spatial patterns in cor-
relations. To distinguish how different time scales contribute to this cor-
relation, we also calculated the correlation values for the seasonal and trend
components of these 16-day time series. Next, we calculated the 20-year
average spatially corrected NDVI,WSA and LST, after which we calculated
the correlations over the whole study area. In addition, we compared the
timing of breakpoints in the trend component as calculated by the BFAST
algorithm. This allowed us to determine whether changes in NDVI directly
result in changes in WSA and LST, or if there is a delay. Finally, we com-
pared the found correlationswith aridity indexand land cover values to gain
more insight into what causes spatial variations.

Eddy-covariance measurements
We used eddy-covariance measurements across Africa to provide more
field-measured insights into the underlying relations of the remotely sensed
data. The measurements are obtained from six stations in different aridity
zones from the FLUXNET database in Sudan75, Senegal76, South Africa77,
Zambia78, Congo-Brazzaville78 and Ghana79. Detailed information on each
station is available in Supplementary Table 1. The hourly sensible heat flux
(H), latent heat flux (LE) and incoming shortwave radiation (SWin) are
matched to the MODIS data by taking the average value over each 16-day
period. Only daytime values are used. In addition, because a comparison to
surrounding areas is not possible with the EC measurements, we compare
H, LE and SWin to uncorrected (i.e., not spatially corrected) MODIS data.
Due to limited data availability, we used mean NDVI, LST andWSA of an
area of 10 km around the stations Congo-Brazzaville and Ghana. For the
other stations, we used the data from the specific grid cell corresponding to
the station location.

Sustainable land management projects
Next, we compared the results to existing land restoration projects to
determine how land restoration affects local surface temperatures. To this
end, we used 434 sustainable land management (SLM) projects in Africa
from the World Overview of Conservation Approaches and Technologies
(WOCAT)80, downloaded from the Food and Agricultural Organisation of
the United Nations (FAO) database. This dataset contains point locations
with the locations of sustainable land management projects, ranging from

tree planting to area closure and sustainable agriculture. As with the NDVI,
we removed projects in areas with an NDVI lower than 0.15. Furthermore,
as some projects consist of multiple locations, we split the projects into
individual points, resulting in 628project locations (SupplementaryFig. 1d).
In addition, since the projects only contain point coordinates, we created a
buffer area around each project point with a radius of 2000m. For each of
these buffer areas, we calculated the mean NDVI, WSA and LST to deter-
mine the NDVI–WSA and NDVI–LST relationship at sustainable land
management projects in Africa. In addition, we calculated the actual
changes inLSTandWSAat theproject locations, defined as thedifference in
trend component between the end and the beginning of the study period.

Predicting local biophysical cooling/warming due to land
restoration
As a final step, we predicted the amount of local biophysical cooling or
warming that can be achieved due to large-scale land restoration inAfrica in
two steps: (1) we calculated the potential NDVI that can be achieved due to
land restoration and (2) we predicted the local surface temperature change
of the NDVI increase using the relationships between NDVI and LST
determined with the methods above.

As the maximum NDVI obtainable by land restoration depends on
environmental conditions, we first predicted the NDVI that can potentially
be achieved from land restoration in Africa, where we assumed that the
potential NDVI is limited by the aridity index69, land surface temperature
(MOD11A1.061)19, elevation, slope, aspect (SRTM90_V4)81, soil fertility82

and water table depth83,84. We thus considered only environmental and
climatological constraints to vegetation rather than socio-economic con-
straints.We determined the relationship betweenNDVI and these variables
basedon5000 randomsamples in the study area.Afterfiltering for areas that
are irrigated85 or have amedianNDVI lower than 0.15 (as theNDVImay be
higher than can be expected based on natural conditions, or the points lay
outside the study area), we divided the samples randomly into a training set
(1840 samples) and a validation set (1839 samples).We used the training set
to train a quantile regression forest86 with 50 trees and 3 variables per tree.
This was decided based on performance (visual inspection of the created
map) and computation time. Quantile random forest fits the data to a
percentile, in this case the 100-percentile, rather than themean, representing
the potential NDVI under the given environmental conditions87. We sub-
tracted this median NDVI from the potential NDVI to create a map of
potential NDVI increase (ΔNDVI) due to land restoration. If the predicted
potential NDVI is lower than the currentNDVI, the value was not changed.
An evaluation of the random forest model is included in Supplementary
Fig. 12, suggesting aridity to be the most important variable in predicting
maximum NDVI.

To calculate the potential LST changes (ΔLST) from this ΔNDVI, we
predicted the ΔLST across Africa using observed values of ΔLST and
ΔNDVI and a random forest regression88. To this end, we sampled the
observed maximum change in the NDVI trend component over the study
period of the spatially corrected time series, as well as the related change in
the LST trend component, at 3000 randompoints in each land cover class in
the study area. We used the trend component instead of the 16-day com-
ponent becausewewere interested in long-termchanges inNDVI insteadof
the seasonal variability. Next, we filtered out random points with a median
NDVI lower than 0.15. Using these methods, we created a training set
(37,518 samples) and a validation set (5000 samples). The training set was
used to train a random forest regression with 100 trees and 5 variables per
tree, based on performance (highest correlation between observations and
predicted values of the validation data set) and computation time. As pre-
dicting variables, we used the aridity index, land cover, median NDVI,
median LST, median WSA (shortwave, visible and near-infrared), the
NDVI–LST correlation of the trend component, latitude, longitude and
altitude81 as described in the input data. To then predict the potential LST
change (ΔLST) related to land restoration, we ran the trained random forest
model with the potential NDVI change (ΔNDVI) as input instead of the
observed NDVI change. An evaluation of the random forest model is
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included in Supplementary Fig. 13, showing a r2 value of 0.83 and 0.53 for
the training and validation data, respectively. The most important variables
are the change in NDVI and the NDVI–LST correlation.

Data availability
MODIS NDVI (MOD13Q1.061), LST (MOD11A1.061), WSA
(MCD43A3.006) and Land Cover (MCD12Q1) data are directly available
throughGoogle Earth Engine (https://developers.google.com/earth-engine/
datasets), or can be downloaded from the NASA Earth Observing System
Data and Information System (https://earthdata.nasa.gov/). Eddy covar-
iance measurements are obtained from FLUXNET and available through
(https://fluxnet.org/data/fluxnet2015-dataset/). WOCAT data is available
through (https://www.wocat.net/en/). Data created in this study is available
at https://doi.org/10.6084/m9.figshare.24072723.

Code availability
Google Earth Engine scripts are available at: https://code.earthengine.
google.com/5deb2d58430918d3b6d14a1ed6481891 Other (Python) scripts
and tiff are available at files: https://doi.org/10.6084/m9.figshare.24072723.
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