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Abstract: Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste
valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the bioman-
ufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These
microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach
is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target func-
tion. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle
complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowl-
edge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial
consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but chal-
lenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges,
and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-
up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial
consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient con-
version. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize
consortia function are also highlighted.

One-Sentence Summary: This review highlights the microbial consortia-driven waste valorization for biomanufacturing through
top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and
stability of such consortia.
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Introduction

A staggering 85% of the world’s energy consumption is derived
from nonrenewable fossil fuels (Cleveland & Morris, 2014; World
Energy Use, 2022). This reliance has led to greenhouse gas (GHG)
emissions and severely impacted natural ecosystem and biodi-
versity, necessitating sustainable alternatives to petrochemical-
derived products. Biomanufacturing harnesses the power of mi-
croorganisms or enzymes to produce biofuels and bioproducts
thus reducing our dependence on fossil fuels. Biomass-based
products could replace up to 16% of crude oil consumption in the
U.S., generating an additional $812 billion profit (Bioproducts to
Enable Biofuels Workshop Summary Report, 2015). Biomass pro-
vided 5% of the total energy consumption in the U.S. in 2022, re-
ducing the reliance on traditional energy sources (Biomass Ex-
plained, 2023). To achieve the ultimate goal of achieving a net-
zero emission by 2050 and a carbon-neutral economy, biobased
products will be further incentivized the U.S.

It is estimated that 2.01 billion tons of municipal solid waste is
generated annually with more than 33% of total waste managed
in an environmentally unsafe manner (Kaza et al., 2018). Accord-
ing to the U.S. Environmental Protection Agency, 66.2 million tons
of food waste was generated from food retail and an additional
40.1 million tons from food processing and manufacturing, caus-
ing significant economic loss and environmental issues in 2019
(2019 Wasted Food Report, 2023). Traditional waste management
methods, such as composting, landfill disposal, and incineration
have limitations such as low process efficiency and negative envi-
ronmental impacts, including space requirements, generation of
odor, contaminated leachate, and toxic pollutants, and ash emis-
sions (Phua et al., 2019; Andraskar et al., 2021; Parvin & Tareq,
2021). Inexpensive and readily available wet waste (Tayou et al.,
2022), lignocellulosic waste (Li et al., 2020; Shahab et al., 2020a;
Wongfaed et al., 2023), and C1 waste (CO,, CO) (Diender et al,,
2016; Jiang et al., 2021), are promising renewable feedstocks for
the production of value-added products to enable biomanufac-
turing. Implementing innovative technologies for converting such
untapped waste to useful products can address negative impacts
due to waste accumulation and management problems, substi-
tute fossil fuel-based products, and strengthen the bioeconomy.

Microbial communities greatly impact various aspects of life
ranging from biogeochemical cycles, medicine, bioremediation,
and public health, to biomanufacturing and resource recovery. Mi-
crobial consortia are suited to convert complex waste biomass
due to their high enzyme diversity and the concerted and syn-
trophic activity of microorganisms belonging to different func-
tional groups. Biotechnologies employing microbial consortia for
sustainable waste valorization have emerged as promising alter-
natives to the petrochemical refinery processes to produce valu-
able biofuels, bioplastics, biochemicals, enzymes, and single-cell
proteins (Venkateswar Reddy & Venkata Mohan, 2012; Zhou et al,,
2017; Chi et al., 2018; Reddy et al., 2018; Valentino et al., 2018;
Li et al.,, 2020; Pagliano et al., 2020; Tayou et al., 2022). Several
of these biotechnologies have moved beyond lab and pilot scales
and seen commercialization and expansion in recent years, con-
tributing to the bioeconomy. For instance, anaerobic digestion
(AD) has been widely adopted as a biological waste treatment and
resource recovery technology to produce biogas which is further
converted into electricity and heat. According to the World Biogas
Association, an estimated 132 000 small, medium, and large-scale
ADs are operational globally (World Biogas Association Global Re-
port, 2019). The advancement in AD has been possible by under-
standing the role of microbial consortia and engineering it for
efficient degradation of a wider range of feedstocks, tolerance to

inhibitory compounds, and resilience to environmental perturba-
tions (Werner et al., 2011; Blair et al., 2021).

Microbial consortia-based biotechnologies harness the
metabolic capacity of microorganisms and their synergistic
interactions by employing either top-down or bottom-up ap-
proaches for microbiome engineering. The top-down approach
involves providing selective pressure by manipulating environ-
mental or operating conditions to steer the structure and activity
of the natural microbial consortia toward a desired function. On
the contrary, the bottom-up approach starts by understanding
individual microbial characteristics to rationally assemble native
or engineered microorganisms into a new synthetic consor-
tium. However, such microbial consortia-based processes still
suffer from undesirable side reactions, low process efficiency,
and inability to control and maintain stability for a long term,
which is partly due to exposure to external perturbations and
unpredictable intercellular interactions.

Previous reviews on microbial consortia have focused on either
the top-down or bottom-up microbiome engineering approaches
for environmental, public health, medical, or biotechnology
applications (Duncker et al., 2021; Hu et al., 2022; Sauer & Marx,
2023; Zhou et al., 2024). However, there is a lack of comprehensive
reviews that provide critical perspectives on both top-down
and bottom-up approaches, and their integration to enable
biomanufacturing from waste streams. This perspective paper
first explores the promising potential of microbial consortia,
highlighting their industrial and environmental applications
utilizing diverse waste streams. Next, the paper elucidates recent
advancements and knowledge gaps in top-down and bottom-up
approaches with a focus on the design and assembly of synthetic
microbial consortia, ecological engineering for process optimiza-
tion, and metabolic engineering of microbial consortia. Finally,
we also discuss the combination of the top-down and bottom-up
approaches to maximize the potential of microbial consortia in
different scenarios as well as metabolic modeling to predict and
guide the microbial consortia design.

Microbial Consortia Enabled
Biotechnologies for Diverse Waste Streams

Microbial consortia demonstrate remarkable diversity and
metabolic capabilities to degrade a wide range of complex and
heterogeneous biomass. Consequently, there have been several
efforts to develop anaerobic and aerobic bioprocesses to harness
microbial consortia to transform waste streams into a multitude
of valuable products, such as polyhydroxyalkanoates (PHAS)
(Venkateswar Reddy & Venkata Mohan, 2012; Valentino et al.,
2018; Li et al., 2020; Pagliano et al., 2020), biohydrogen (Kotay
& Das, 2010), biomethane (Yuan et al., 2012; Ghosh et al., 2020;
Sahil et al.,, 2023; Wongfaed et al., 2023), alcohols (Lin, 2022),
short-chain carboxylic acids (SCCAs) (Shahab et al., 2020a), and
medium-chain carboxylic acids (MCCAs) (Gildemyn et al., 2017;
Chi et al., 2018; Reddy et al., 2018; De Groof et al., 2019; Wang
etal., 2023a), among others (Table 1). Such biotechnologies offer a
sustainable alternative to conventional waste management and
petrochemical based processes. For instance, as a potential source
of biodegradable plastics, PHAs can be produced from glycerol,
a common waste stream generated during biodiesel production
(Alves et al., 2023). Furthermore, biohydrogen via microbial
fermentation of waste biomass presents a sustainable and eco-
friendly energy alternative with minimal environmental impact
(Dzulkarnain et al.,, 2022). Conventional hydrogen production
methods from biomass such as gasification and pyrolysis, require
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Table 1. Different value-added products generated from diverse waste biomass using both top-down and bottom-up approaches on the

laboratory scale.

Product

Waste source

Dominant microbial
population or strains

Approach

Yield

Reference

Biogas (mainly
methane)

Lignocellulosic biomass

Bacteroidetes, Proteobacteria,
Firmicutes, Spirochaetes, and

Top-down and

0.14 to 0.39 L biogas/g VS

(Wongfaed et al.,

Actinobacteria

Agricultural residue Bacillus sp., Delftia sp.,

Pseudomonas sp., Lysinibacillus

fusiform, Arthrobacter

nicotianae, Paenibaccilus

ehimensis, Aspergillus sp. and

Trichoderma sp.
Paper waste
Municipal solid waste

Aspergillus

Carboxylic acid Lignocellulosic biomass T. reesei, L. pentosus
C. tyrobutyricum

Sludge waste N/A*

Food waste

Clostridium straminisolvens CSK1
Arcobacter, Methanoculleus, and

Clostridia, Sphingobacteriales,
Desulfobacteraceae, and Bacillus

bottom-up 2023)
Top-down 0.19L/g TS (Sahil et al., 2023)
Top-down 0.19-0.29 L CH4/g VS (Yuan et al., 2012)
Top-down 0.59L biogas/g VS (Ghosh et al.,

2020)
Bottom-up 0.35 g butyric acid/L (Shahab et al,,

2020a)
Top-down 0.68 g COD/L.d (Tayou et al.,

2022)
Top-down and 8.10 g caproic acid/L (Reddy et al,,

bottom-up 2018)

Agricultural waste Clostridium thermocellum ATCC Bottom-up 2.37 gbutyric acid/L and  (Chi et al., 2018)
27405 and Clostridium 2.08 glactic acid/L
thermobutyricum ATCC 49 875
1,3-propanediol Glycerol Clostridiaceae and Top-down 60.61-82.66 g/L (Zhou et al., 2017)
Peptostreptococcaceae
PHA Lignocellulosic biomass Bacteroidetes and Proteobacteria Top-down 2.64 g COD/L (Lietal., 2020)
Food waste Pseudomonas, Aeromonas, and Top-down 2.12 g/L (Venkateswar
Acinetobacter Reddy &
Venkata
Mohan, 2012)
Dairy wastewater Cupriavidus necator DSM 13513, Bottom-up 0.52 g/L (Pagliano et al.,
531 and 428 2020)
Municipal solid waste Proteobacteria and Cy- Top-down 0.18-0.49 g/Lh (Valentino et al.,
tophaga/Flexibacter/Bacteroidetes 2018)
Hydrogen Sewage sludge Enterobacter cloacae, Citrobacter Bottom-up >0.35L/g COD (Kotay & Das,
freundii, and Bacillus coagulans 2010)

N/A* refers to data not available.

high temperature and pressure and generate GHGs. Therefore,
alternative biological methods that use microbial consortia such
as dark fermentation (Dzulkarnain et al., 2022) have evolved,
offering lower energy requirements, higher selectivity, and en-
vironmental benefits. Microbial consortia also offer a promising
approach to valorize C1 gaseous waste streams (e.g., flue gas,
biogas) containing CHy, CO,, and CO, into valuable products such
as alcohol, fatty acids, and other chemicals (Diender et al., 2016;
Jiang et al., 2021). Although C1 bioconversion is already used
on an industrial scale (e.g., LanzaTech®), further advancements
should focus on developing robust microbial consortia with ideal
hosts that can efficiently utilize C1 compounds to achieve higher
yields.

Waste streams, such as domestic wastewater, digested sludge,
food waste, brewery waste, dairy waste, etc. are mostly biodegrad-
able and can be repurposed into valuable resources by microbial
consortia systems. Conversely, substrates such as lignocellu-
losic biomass are difficult to degrade due to their inherent
recalcitrance and structural heterogeneity, posing a significant
obstacle to their widespread utilization (Gilmore et al., 2019;

Shrestha et al., 2024). Currently, enzymes derived from fungi
are the primary catalysts for lignocellulose hydrolysis (Shrestha
et al., 2024). However, enzyme production yields low quantities,
resulting in high production costs. This significantly impacts the
overall process economics, with enzyme cost making up 20-40%
of the total operational expenses (Naresh Kumar et al.,, 2019). As
opposed to a single strain with limited enzymatic machinery, em-
ploying microbial consortia comprising microbes with a diverse
array of cellulases, hemicellulases, and ligninases can enable the
simultaneous and efficient breakdown of cellulose, hemicellu-
lose, and lignin, respectively (Lopes et al., 2018; Shrestha et al,,
2024). Using the consolidated bioprocessing concept, Shahab
et al. (2018) integrated enzymatic hydrolysis with microbial fer-
mentation using a synthetic fungal-bacterial consortium, where
Trichoderma reesei produced cellulolytic enzymes to break down
microcrystalline cellulose and beech wood, while the lactic acid
bacteria fermented sugars to lactic acid, leading to increase in
lactic acid production by 62.4% compared with single engineered
microbes. In summary, microbial consortia enabled bioprocesses
have made significant progress towards providing attractive
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Fig. 1. The top-down design approach for bioconversion of diverse waste streams into value-added products. The inoculum can be derived from
different natural and engineered microbial ecosystems such as wastewater treatment plants, rumen, compost, and soil. The mixed microbial
consortia can be steered toward a targeted function by carefully manipulating environmental and operational parameters and the resulting microbial
community can be characterized by various high-throughput molecular biology tools. Created with Biorender.com.

alternatives to petrochemical-based products, paving the way for
resource recovery from waste biomass and a circular economy.

Top-down Design Approach to Engineer
Naturally Occurring Microbial Consortia

The top-down approach is a classical approach that starts with
selecting a suitable natural microbial community and providing
selective pressure, for example, manipulating environmental con-
ditions (pH, temperature), to shape the structure and function of
the community toward the desired outcome (Fig. 1). The starting
mixed microbial community used to seed a bioprocess is usually
derived from a similar environment, thus requiring some basic
understanding of the microbial ecology of the microbial com-
munity to guide the top-down design. For example, an adapted
inoculum from an operational chain elongation bioreactor is suit-
able for starting a new MCCA-producing bioreactor as it shortens
the start-up acclimation period. It uses ecological engineering
approaches to reduce community complexity without prior
knowledge about individual microbial populations, their inter-
actions, or their functions (Lawson et al., 2019). By carefully
manipulating the environmental conditions such as nutrients,
organic loading rate, pH, oxygen levels, or temperature, the
growth and activity of specific microbial populations within the
community are encouraged, ultimately enriching the consortium
with the most effective members (Lee et al,, 2013; Cao et al,
2022). Microbial communities can be sourced from different
natural and engineered microbial ecosystems including soil, wet-
lands, compost, herbivores gut, activated sludge, and anaerobic
digesters. For instance, the rumen is an example of a natural
microbial ecosystem that harbors diverse microbial populations
(bacteria, methanogenic archaea, fungi, and protists), which can
naturally break down recalcitrant lignocellulosic biomass (Hess
et al,, 2011; Gilmore et al., 2019; Liang et al., 2020). Several efforts

have been made to harness rumen-derived mixed microbial
communities or mimic such microbial ecosystems in engineered
anaerobic systems, leveraging the physiochemical, and biological
characteristics of rumen to achieve significant degradation of
lignocellulose (Fonoll et al., 2021, 2024).

Enrichment is one of the most commonly used top-down
approaches, involving repeated dilution cycles under controlled
conditions to selectively promote the growth of microbial popula-
tions with desired functionalities over others for improved system
output. This is often followed by the study of the mechanistic
contributions of different microbial populations and optimization
to enhance process efficiency (Lawson et al., 2019). For example,
shifting an AD community from methane production—the most
energetically favorable pathway under anaerobic conditions—
to MCCA production via chain elongation requires inhibiting
methanogenic archaea. Successful approaches to achieving this
include maintaining low pH (Agler et al., 2014), adding chemical
methanogenic inhibitors (Shrestha et al., 2023), decreasing the
solids retention time to wash out slow-growing methanogens
(Grootscholten et al., 2013), or heat-shock pretreatment of the
inoculum (Cai et al., 2023). Other studies have also highlighted
how altering operational conditions such as pH can affect diverse
fermentative products including SCCAs product profile and
concentration (Wang et al., 2014), lactate production during food
waste fermentation (Rhee & Pack, 1980; Tang et al., 2017), and
alcohol (De Souza Moraes et al., 2019).

Top-down microbiome engineering can decrease the system
complexity as manipulating the environmental parameters can
selectively retain the microbial populations that perform target
processes, without requiring in-depth knowledge of individual
microbial populations and all their cellular interactions (Chang
et al,, 2021). The diverse microbial populations in a mixed culture
are integral for valorizing complex and heterogeneous biomass
waste due to their broad metabolic activities. Furthermore, the
functional redundancy in mixed microbial communities provides
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resilience against external disturbances making it more stable
compared to a monoculture system. However, the top-down ap-
proach still suffers from some limitations. First, there is less con-
trol over the initial microbial composition, and the presence or
absence of certain microbial functions can significantly influence
the outcome leading to unpredictable output (Arora et al., 2020).
Therefore, the system cannot be optimized on a molecular scale.
Second, the unknown microbial interactions and wide metabolic
diversity can lead to undesirable competitive reactions thus
lowering the product yield (Kucek et al., 2016; Shrestha et al,,
2023). Lastly, microbial compositional analysis has been pos-
sible with advanced high-throughput sequencing technologies,
however, unraveling the complexity and linking the taxonomic
identity with function is still a challenge. Third, the mixed mi-
crobial consortia studies rely on the relative abundance met-
ric during microbial characterization whereby less abundant
but functionally significant microbial populations may be over-
looked. A previous study on murine gut microbiome and their
diet determined the absolute abundance of individual microbial
taxa in the microbiome by combining the precision of digital
PCR with high throughput 16S rRNA gene sequencing (Barlow
et al., 2020). A similar approach can possibly be implemented
in other complex microbial consortia studies. Lastly, mixed cul-
ture studies use correlation results between the dominant micro-
bial population and the target function to identify the functional
microbial populations (Carr et al.,, 2019). To address such lim-
itations, some mixed culture studies have combined DNA-,
RNA-, and protein-stable isotope probing with amplicon sequenc-
ing or shotgun sequencing to identify functional populations,
in-situ interactions, and exchanges within complex populations
involved in defined metabolic processes (Aoyagi et al., 2020;
McDaniel et al., 2023; Poulsen et al, 2023). Bioorthogonal
noncanonical amino acid tagging coupled with fluorescence-
activated cell sorting is another recent approach to identifying
functionally active populations in a complex consortium (Madill
etal,, 2021).

Bottom-up Design Approach to Develop
Synthetic Microbial Consortia

Complementary to the top-down approach, the bottom-up mi-
crobiome engineering approach refers to assembling naturally
occurring or engineered microorganisms with desired functions
(Gopfrich et al., 2018; Massot et al,, 2022) into well-defined
synthetic microbial consortia. We use the term synthetic mi-
crobial consortia here to refer to consortia made up by as-
sembling strains that may or may not coexist naturally. The
genetic, metabolic, and physiological traits of the individual mi-
croorganisms [e.g., mutant strains (Mee et al., 2014) or environ-
mental isolates (Friedman et al., 2017)] used to assemble such
synthetic consortia are typically characterized. Beyond this, it
also necessitates a comprehensive understanding of the possible
interactions between potential consortia partners (Weisenberger
& Deans, 2018; Hirschi et al., 2022). Synthetic biology and sys-
tem biology have significantly enhanced traditional biological
methodologies by enabling the mimicking and engineering of
specific cellular traits. We discuss below approaches and tools
to improve the bottom-up approach, mostly focusing on de-
signing and assembling the microbial consortia, microbial con-
sortia optimization via ecological engineering, and metabolic
engineering.

Lyuetal. | 5

Strategies for Rationally Designing and
Assembling Synthetic Microbial Consortia

Designing and assembling synthetic microbial consortia for waste
valorization involves strategically combining microbial strains to
carry out complex tasks than individual strains can achieve alone.
Various bottom-up approaches have been employed, including
enrichment or community reduction (Lee et al., 2013), combina-
torial evaluation (Kapoore et al., 2022), and computational model-
based design (Haruta & Yamamoto, 2018; Ibrahim et al., 2021).
Community reduction involves selectively enriching desirable mi-
crobial species while reducing the undesired ones, thereby en-
hancing the specificity and efficiency of the microbial consortia.
It allows for the determination of species that should be retained
based on their contributions (Eng & Borenstein, 2019). In combi-
natorial evaluation, well-characterized microbial species are se-
lected and paired in different combinations to optimize biomass
bioconversion (Fig. 2A). This method, although labor-intensive, en-
ables the exploration of a wide range of species combinations, in-
cluding engineered and native ones, to achieve a desirable out-
come (Ravikrishnan et al., 2020). While pairwise combination and
testing provide valuable insights into intercellular interactions, it
can be a time-consuming process. To overcome this bottleneck,
novel high-throughput culturing and phenotypic screening tech-
nologies have been developed (Kehe et al., 2019; Burmeister &
Grinberger, 2020; Jiang et al., 2022). The kChip device was de-
veloped to enable the simultaneous assembly and testing of 10°
pairwise strains, significantly increasing the efficiency of interac-
tion analysis (Kehe et al., 2019). Lastly, in the model-guided design,
genomic and metabolic data is used to simulate the interactions
between microbes for designing a consortium thus reducing the
reliance on the laborious trial-and-error wet lab-based methods
(discussed in detail in Section “Applying Metabolic Modeling to
Enhance the Bioproduction Capabilities of Microbial Consortia”).

In the bottom-up strategy, the initial composition of a con-
sortium is carefully designed. It is a modular process that al-
lows for controlled manipulation of the initial composition by
adding or removing specific species and examining how it af-
fects the rest of the consortium (Sanchez-Gorostiaga et al., 2019).
The abiotic (pH, temperature, nutrient) and biotic (inoculation ra-
tio or the timing of inoculation) factors are optimized to assem-
ble such consortium. The structure, stability, and interaction out-
comes of these synthetic communities under different conditions
can further be studied in detail by using various systems biol-
ogy approaches (e.g., proteomics and metabolomics). For instance,
metaproteomics is a powerful high-throughput approach to get-
ting insights into community composition by quantifying the pro-
tein contribution of each member (Chen et al., 2023; Wang et al,,
2023b). Additionally, exometabolomics can be applied to individ-
ual members and the entire consortium to profile their metabolic
niches (e.g., metabolite production and depletion) (De Raad et al,,
2022). This information can be used to predict potential interac-
tions like resource competition or cross-feeding in the consortia
(Wang et al., 2022).

Synthetic microbial consortia have been so far used for syngas
waste and lignocellulosic biomass conversion (Shahab et al,
2020a; Diender et al., 2021; Cai et al., 2022). By leveraging the con-
cept of metabolic division of labor (DOL), researchers can design
a consortium to achieve specific waste valorization goals. In DOL,
each member performs a specific task in a complex conversion
process, reducing the metabolic burden by dividing the labor
across the consortium members (Fig. 2B and C) (Roell et al., 2019).

$20z Jlequieldas 9| uo Jasn AieiqiT - yoseasay pue Ausieaiun uabuiuabepy Aq §SyE L/ 2/Sz08eny/quil/ee0l 0 L/1op/ajoie/quill/woo dno-olwspese//:sdny wolj papeojumoq



6 | Journal of Industrial Microbiology and Biotechnology, 2024, Vol. 51

ﬁ

S
-t~

\

0, gradient
—

Hemicellulose

Lignin :
Biofilm Suspended
growth  growth

==
g

Cellulose

Lignocellulosic biomass

Strain A Outcome or Product X
N culture of strains Aand B
-y
Strain B\
[ Outcome or Product Y
!
/ N
A Co-culture of strains B and C
Q’ain c /
Cc \

(. —>A—> —’IJ

1
=D @) -

Strain A Strain B Strain C

@ A [

@*® Microaerobic .~ Aeml)ic/

Expanded metabolic
— capabilities
compared to native strains

\ == Anaerobic

/P
Low-value
substrate
:

Engineered strain A

Engineered strain B

\ -
h Product

Engineered strain C
Metabolically-engineered

Low-value Intermediate A Intermediate B Product
substrate

microbial consortium

o v

Fig. 2. Bottom-up approaches showing: (A) Assembly of well-characterized strains into different co-cultures depending on the target outcome;

(B) leveraging biofilm-based systems to spatially organize strains occupying different niches to accomplish consolidated bioprocessing of
lignocellulosic biomass; (C) promoting division of labor by dividing a complex metabolic pathway into multiple modules, in which the strains A, B, and
C are assembled into a consortium; and (D) metabolic engineering to improve strain performance and hence the metabolic potential of the resulting

consortium. Created with Biorender.com.

Competition between the consortium members can also be
avoided by promoting metabolite cross-feeding via DOL and
making them interdependent, a strategy helpful for maintaining
stability. For example, simultaneous lignin depolymerization and
upgrading is challenging to achieve in a monoculture system
compared to microbial consortia, due to its complex structure
and toxic lignin-derived compounds (Shrestha et al., 2024). A
co-culture system consisting of Sphingobium and Rhodococcus
opacus was able to effectively break down lignin via DOL, with
each strain handling separate steps during conversion of lignin-
derived dimers and aromatic monomers to cis, cis-muconate, and
gallate (Cal et al., 2022). Another study successfully designed
a three-member consortium of T reesei, Lactiplantibacillus pen-
tosus, and Clostridium tyrobutyricum for efficient conversion of
lignocellulose-derived components through DOL. The hydrolytic
enzymes from aerobic fungus deconstructed the cellulose into
constituent sugars which were subsequently converted by the
facultative anaerobic bacterium to lactic acid and finally fer-
mented to valuable SCCAs by the anaerobic lactate-fermenting
bacterium (Shahab et al., 2020a). Tsoi et al. (2018) developed
a mathematical model to assess 24 metabolic pathways and
analyzed the metabolic burden on host populations and the
transport of enzymes, revealing the criteria for defining condi-
tions favoring DOL. These examples highlight the capability of
bottom-up design in achieving desired outcomes through DOL.

To improve the ability to predict community functions, it is
critical to study interactions and how these interactions shape
the dynamics and functions of the whole community. However,
more commonly, the collective activity of a consortium may not
be equal to the sum of individual members’ activities. This is
because members in a consortium engage in various interac-
tions, such as mutualism, competition, commensalism, amensal-
ism, predation, neutralism, and facilitation (Johnston et al., 2020;
Duncker et al,, 2021; Wang et al., 2022) that may give rise to emer-
gent community-level functions that deviate from the summation
of individual behaviors. For example, Sanchez-Gorostiaga et al.
(2019) showed that a simple function (starch hydrolysis rate) of
synthetic consortia composed of starch-degrading bacteria was
not additive due to higher-order interactions when there were
more species added to the consortia. Another study by Bell et al.
(2005) that constructed several consortia with random combi-
nations from 72 bacterial species showed that both community
composition and synergistic interactions among the consortium
members can significantly influence the function of the ecosys-
tem.

Overall, the modularity of synthetic microbial consortia de-
signed via the bottom-up strategy can be leveraged to enhance
substrate utilization and diversify the product spectrum. Unlike
the complex and multitude of interactions in mixed microbial
consortia, the interspecies interactions in the synthetic microbial
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consortia are much simplified avoiding undesirable side reactions.
A better understanding of community interactions will further
help link the composition to the overall activity of the community
and stabilize a synthetic microbial consortium for the long term.
Besides using model organisms, employing non-traditional yet
naturally occurring microorganisms will help broaden the capa-
bility of synthetic consortia. The computational approach, such as
artificial intelligence and machine learning, can help predict the
optimal consortia composition and metabolic pathways based on
known genomics, facilitating the design and assembly of micro-
bial consortia and identifying the promising potential that could
be difficult to predict manually.

Engineering the Ecology of Synthetic Microbial
Consortia to Optimize Bioprocesses

Using synthetic microbial consortia in processes using unsteril-
ized waste streams as feedstocks might be challenging. Competi-
tion with indigenous microbial communities present in the waste
can impact the microbial community established in the exist-
ing bioprocess (Shrestha et al., 2022). This highlights the need
to engineer the ecological stability of synthetic microbial consor-
tia to build resilient, optimizable processes for long-term, stable,
continuous waste biomass valorization. Here, ecological engineer-
ing of (synthetic) microbial consortia refers to interventions that
alter the ecological interactions within the consortia to deliver
improved process outcomes, for example, productivity, stability,
etc. Consequently, the importance of introducing ecological engi-
neering principles lies in balancing the relationship between envi-
ronmental variation and the community’s functional response to
improve the performance of synthetic microbial consortia (Song
etal,, 2015).

Bio-augmentation—in which one or more defined organisms
with functions of interest are added to a microbiome to improve
or alter its functionality—can be seen as a bridge between top-
down and bottom-up microbial consortium design (described in
detail in Section “A Combined Top-down and Bottom-up Strategy
for Engineering High-Performance Microbial Consortia”) (Lawson
etal,, 2019; Liu et al., 2024). This approach has been proposed and
applied for several decades, and, while successful in some cases,
a common issue across contexts is the loss of the added organism
over time (Mikesell & Boyd, 1988; Albright et al., 2022; Shan et al,,
2023). Adding synthetic consortia with functional features of in-
terest could potentially improve their retention, but rational rules
for their design can be challenging to identify (Carr et al., 2023;
Louie et al,, 2023). Two lignocellulolytic microbial consortia, CL
and YL, that were enriched from the rumen content of Tibetan yak
and Holstein cow, respectively, were augmented with Lactobacillus
plantarum (LP) to enhance the fermentation of alfalfa silage. The
addition of these consortia to alfalfa silages improved lactic acid
production, with the combined YLP (YL augmented with LP) show-
ing the highest lactic acid content of 76.72 g/kg DM and conversion
of water-soluble carbohydrates into lactic acid reaching 184.03%
(Lietal., 2022). Although this approach has promise as an ecolog-
ical engineering strategy, it often requires laborious identification
of suitable organisms or consortia that remain in the system in
the long term.

Taking inspiration from both natural and engineered environ-
ments, cell immobilization in self-formed biofilms or synthetic
biofilm-like matrices may be a powerful alternative approach to
engineer both ecology and stability in bottom-up synthetic micro-
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bial consortia (Fig. 2B). Biofilms are aggregates of microbes em-
bedded in an extracellular biopolymeric matrix (Flemming et al.,
2016). These structures provide a range of benefits, including pro-
tection from stressors in the bulk phase and spatial niche forma-
tion as a result of diffusion limitations (Flemming et al., 2016).
These properties make biofilms interesting tools for biotechno-
logical applications. For instance, granular biofilms are widely ap-
plied in complex microbial community-catalyzed environmental
biotechnology, including in AD of wastes, nutrient removal from
wastewater, and waste bioproduction technologies (Beun et al,,
1999; Carvajal-Arroyo et al., 2019; Imajo et al., 2004; Mills et al.,
2024). Critically, the ease of retaining these millimeter-scale, fast-
settling, spherical biofilms allows for achieving higher biomass
densities, and consequently improves process rates up to an order-
of-magnitude compared to planktonic systems (Carvajal-Arroyo
et al.,, 2019; Mills et al., 2024). Developing synthetic granular
biofilm consortia could therefore potentially improve both pro-
cess rates and ecological stability, key properties for real-world
applications. To date, however, no such process exists. Recently
developed pure culture granular biofilm approaches could provide
a template to begin building functional synthetic granular biofilm
consortia (Adav & Lee, 2008; An et al., 2021). Such work could
be complemented with developments in understanding member-
dependent aggregation processes in synthetic microbial consor-
tia (Doloman et al., 2024). Alternatively, if none of the consortium
members are (controllable) biofilm-formers, hydrogel-based syn-
thetic biofilm matrices can provide a robust alternative. Hydrogels
are water-retaining polymer structures with similar properties as
natural (granular) biofilms, but offering a higher degree of con-
trol over physicochemical properties and consortium composition
(Seviour et al., 2009; Johnston et al., 2020; Candry et al., 2022).
Moreover, they are sufficiently robust for long-term application
in bioprocesses (Li et al., 2023). Pairing these synthetic biofilms
with biomass-valorizing synthetic microbial consortia could yield
a new generation of bioprocess technologies.

Spatial niche formation is another opportunity to control func-
tionality & ecological stability in synthetic microbial consortia
biofilm-based bioprocesses (Shahab et al., 2020b). Spatial niches
allow the pairing of organisms that could not coexist in well-
mixed bioreactor systems. For instance, a synthetic consortium
membrane biofilm reactor combined (i) an aerobic, lignocellulose-
degrading fungus growing on an air-exchange membrane with (ii)
anaerobic, fermentative bacteria in the anoxic bulk liquid phase
of the bioreactor (Shahab et al., 2018, 2020a). Light, temperature,
or other chemical gradients have also been proposed to engi-
neer functional synthetic consortia (Shahab et al., 2020b). Alter-
natively, hydrogel-based synthetic biofilms can also sustain chem-
ical gradients to combine chemically incompatible members. For
instance, an aerobic N-cycling strain was paired with an anaer-
obic N-cycling complex community in hydrogel-based synthetic
biofilms to remove nitrogen from real wastewater, with the aer-
obe consuming O, and creating an anoxic niche for the anaer-
obe (Gottshall et al., 2021; Li et al., 2023). Similar principles could
be used to create novel biomass-valorizing synthetic consortia.
How the multimodal interactions (i.e., cross-feeding and spatial
niche formation) in such a consortium affect ecological stability
remains to be tested experimentally. Overall, there are clear op-
portunities to leverage cell immobilization strategies to stabilize
and optimize synthetic microbial consortia in the context of bio-
production from complex biomass.
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Applying Metabolic Engineering Approaches to
Manipulate and Expand the Functional Potential
of Synthetic Microbial Consortia

Microorganisms in the native state may not be optimized to pro-
duce the target product at high titer, rate, and yield from the de-
sired waste feedstock. Several synthetic biology techniques in-
cluding genome editing, adaptive laboratory evolution (ALE), and
engineered mutualism among others can be utilized to modify
microbes and microbial consortia to improve their metabolism
for optimal substrate valorization (Fig. 2D) (Lindemann et al,,
2016). Furthermore, utilizing some complex wastes might re-
quire designing novel biosynthetic pathways. Existing informa-
tion on enzymes, reactions, and the desired host organism can
be used to design new pathways (Boob et al., 2024). Databases
like BLAST (sequence alignment) can aid in identifying poten-
tial enzymes for desired reactions (Altschul et al., 1990). How-
ever, this knowledge-based approach relies on existing pathways,
which limits the potential pathways that can be created. Retro-
biosynthesis solves this issue by designing pathways backward
from the available substrate and target molecule (Boob et al.,
2024). This approach has been utilized to achieve de novo pro-
duction of dencichine, a plant-derived chemical with pharmaco-
logical applications, from glycerol using Escherichia coli (Li et al.,
2022). Recently, machine learning algorithms like RXN (Probst
et al.,, 2022) and XGBoost (Schwander et al., 2016) are revolution-
izing the identification and design of novel metabolic pathways
and enzymatic reactions. These algorithms predict novel path-
ways and optimize existing ones (e.g.,, CETCH cycle) by analyz-
ing sequence data without the reliance on known reactions (Singh
etal., 2023). This paves the way for engineering microbes to utilize
waste feedstocks through entirely new pathways (Aggarwal et al.,
2023).

Engineering a single strain with complex biosynthetic path-
ways can put a metabolic burden and cause poor growth and low
product yield. By artificially engineering a consortium, it is pos-
sible to spatially segregate a metabolic pathway into modules,
reducing the metabolic burden on one species as well as taking
advantage of their high robustness and resilience against envi-
ronmental fluctuations (Zhou et al., 2015). For example, Li et al.
(2019) developed a three-strain co-culture of E. coli to produce
rosmarinic acid, via a diverging-converging pathway that is dif-
ficult to balance in one species, dividing the pathway into mod-
ules optimized for each strain. This approach yielded 172 mg/L of
rosmarinic acid, a 38-fold increase over monoculture. Metabolite
cross-feeding can be used to improve consortium stability, where
one member consumes an intermediate toxic to the other consor-
tium member. For example, Cha et al. (2021) applied this approach
to a co-culture consisting of wild-type and engineered strains for
C1 (carbon monoxide) conversion that is limited in monoculture
due to CO toxicity and the accumulation of inhibitory byprod-
ucts. The engineered E. coli utilized acetate, a byproduct of CO
metabolism toxic to Eubacterium limosum, consequently leading to
upcycling of CO to itaconic acid. Similarly, in a consortium de-
signed for the degradation of model lignocellulosic components,
the breakdown of vanillic acid by Pseudomonas putida produced
formaldehyde at concentrations that inhibited the growth of other
species (Lee et al., 2021). An engineered Methylorubrum extorquens
was introduced into the consortia to consume the formalde-
hyde, decreasing the formaldehyde levels to below the mini-
mum inhibitory concentration. While much effort has been fo-
cused on the conversion of model compounds, similar metabolic
engineering approaches could be expanded to diverse waste
biomass.

As detailed in Table 2, metabolic engineering strategies like ALE
is used to cultivate microorganism or microbial consortia under
controlled laboratory conditions for extended periods with spe-
cific selective pressures or environmental stresses. This allows
the microbes to adapt and evolve new traits beneficial for sur-
vival and growth in that particular environment (Aggarwal et al.,
2023). An algal-bacteria consortium was adapted to grow on land-
fill leachate, which otherwise is inhibitory to the algal growth,
leading to more than doubling growth of the dominant Chlorella
vulgaris (Okurowska et al., 2021). Metagenomic analyses revealed
that the adapted microbiome had an increased total organic car-
bon degradation vs., the non-adapted consortia. Similarly, ALE
can be applied to adapt a consortium to toxic lignin degradation
products such as aromatics and phenolics that can otherwise re-
sult in low growth and product titers during lignin bioconversion.
Therefore, ALE may be a valuable tool to improve growth in the
presence of an inhibitory compound, community interactions be-
tween species in a consortium, increasing the efficiency of a con-
struction crew of different microbes, breaking down and build-
ing up different molecules to convert waste to a desired product
(Kawai et al., 2022).

Signaling molecules involved in quorum sensing can act as
switches to manipulate gene transcription and control popula-
tion size (Brophy & Voigt, 2014; Diao et al., 2021). In a consortium,
signaling molecules can be exchanged between members where
one species reacts to the action of another. Chen et al. (2015) en-
gineered two E. coli strains to produce and respond to intercel-
lular signaling molecules, which coupled positive and negative
feedback loops to control their population densities. An activator
strain produced a signaling molecule that increased the transcrip-
tion of key genes in both strains, while a repressor strain produced
a different molecule that would slow gene expression. Combin-
ing quorum sensing with a population control circuit resulted
in approximately 30 times more control compared to monocul-
ture, with the consortia producing around 0.15 g/L of tyrosine
(VanArsdale et al., 2022). Complex “biocomputing circuits” to con-
trol communication via signaling molecules between different
species in a consortium are achievable, opening doors to control
gene expression and increase robustness against fluctuating envi-
ronmental conditions or varying composition of waste feedstocks
(Du et al.,, 2020). Additionally, in situ engineering offers exciting
possibilities for biomanufacturing eliminating the need for lab-
oratory domestication. However, there is a lack of genetic tools
available for genetic modification within a consortium. Genome
editing techniques are emerging to selectively edit closely related
strains in a complex consortium (Rubin et al., 2021) which pro-
vides a possibility to engineer other complex microbial communi-
ties for waste valorization. Lastly, as most metabolic engineering
studies use simple model compounds, further investigation utiliz-
ingreal waste is needed to fully leverage the potential of metabolic
engineering.

A Combined Top-down and Bottom-up
Strategy for Engineering High-Performance
Microbial Consortia

Microbial consortia can be constructed via a top-down or a
bottom-up approach as discussed above or by a combination of
both approaches. The top-down approach is particularly valu-
able when a naturally occurring microbial community with the
desired functionality is readily available. This approach is rela-
tively straightforward as it utilizes naturally occurring microbial
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Table 2. Microbial consortia engineering using metabolic engineering strategies to improve bioprocesses
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Metabolic engineering

Microbial consortia Substrate strategies/Improvement/mutation Outcome Reference
Algal-bacterial consortium ~ Landfill Leachate Blocking of lactate, ethanol, and The adapted consortium showed a ~ (Okurowska
(Chlorella Vulgaris acetate synthesis pathways and 2.9-fold increase in the growth et al,, 2021)

-Pseudomonas)

Pseudomonas putida
KT2440, Bacillus
coagulans NLO1

Pseudomonas putida
KTAABZF (p2-a-J) and
Escherichia coli A4D
(ACP-SCLAC)

Engineered strains of
Escherichia coli and
Bacillus subtilis

Clostridium cellulovorans
and Clostridium
betjerinckii.

E. coli DH1 AadhE, E. coli
MG1655, E. coli
MG1655 AfadE

Corn stover hydrolysate

Lignocellulosic
hydrolysate

Watermelon rinds and
okara (soybean waste)

Alkali-extracted,
deshelled corn cobs
(AECC)

Switch grass

introducing Lactococcus lactis
pyruvate carboxylase to drive
succinate generation via
adaptive laboratory evolution.

Deletion of glucose dehydrogenase
(gcd) and glucose transporter
(gtsABCD) genes in P. putida to
block sugar metabolism.

Overexpression of acs and phaJ
genes; knockout phaZ, yqeF, paa),
and tctA genes and expression of
SCLAC gene using T3 and Tac
promoters.

Expression of alsS, kivD, iluC, iluD,
and yqhD genes in E. coli and
leuDH, kivD, and yghD genes in B.
subtilis; optimization of E. coli to
B. subtilis ratio.

In C. cellulovorans, ack and Idh were
knocked out, buk was
overexpressed, and hyd was
down-regulated using CRISPRi.
In C. beijerinckii, ctfAB was
engineered for organic acids
reassimilation, and xyIR and xylT
for pentose utilization.

Heterologous expression of
cellulase, xylanase,
beta-glucosidase, and
xylobiosidase for biomass
hydrolysis; integration of
synthetic pathways for gasoline,
diesel, and jet fuel substitutes.

rate of C. vulgaris compared with
the original algal-bacterial
consortium before the
adaptation, nitrate production
reduced by 97.6%, and 93.66% of
total organic carbon was
degraded.

Pseudomonas putida metabolized
and removed various inhibitors
(e.g. 100% conversion of furan
aldehydes, ~90% removal of
most monoaromatic
compounds). Bacillus coagulans
fermented the detoxified
hydrolysate, yielding 35.8 g/L
lactic acid.

The engineered consortium
achieved a maximum titer of
3.98 g/L mcl-PHA using glucose
and octanoic acid, and 1.02 g/L
mcl-PHA using lignocellulosic
hydrolysate.

Highest overall biofuel production
of 1.1 g/L with 80% being
isobutanol using a 4:1 ratio of E.
coli to B. subtilis when
carbohydrate levels were high.

The engineered consortia
decomposed 83.2 g/L of AECC
and produced 22.1 g/L of
solvents, including acetone,
butanol, and ethanol,
approximating the titer achieved
from starchy feedstock.

Achieved 0.5 mg/L extracellular
enzyme activity for xylanase and
cellulase, 8% total sugar
hydrolysis from IL-treated
switchgrass, and biofuel yields at
80% of theoretical yield from
estimated sugar release.

(Zou et al., 2021)

(Qin et al., 2022)

(Kim et al., 2020)

(Wen et al., 2017)

(Bokinsky et al.,
2011)

communities, but it offers less control over the final composi-
tion. This may limit applications requiring defined microbial pop-
ulations or understanding individual member contributions (Cao
et al,, 2022). The bottom-up approach starts by carefully char-
acterizing and selecting individual microbes with desired traits
and well-studied metabolic pathways. These chosen microbes are
then combined and tested for their ability to function together.
However, a large proportion of microbes remain unculturable with
current methods which restricts strain selection for bottom-up
approaches (Bodor et al., 2020). Another challenge in the bottom-
up approach is the unpredictable interactions that occur within
the consortium which makes it necessary to consider factors like
interspecies communication, metabolite exchange, and potential

competition for resources when designing a consortium, some of
which were discussed in Section “Bottom-up Design Approach to
Develop Synthetic Microbial Consortia”.

While both the top-down and bottom-up approaches have
limitations, integrating them offers a promising way to overcome
some of these constraints. By synergistically harmessing the
strengths of both methodologies, novel solutions for biomass
valorization can be achieved. One such approach, exemplified
by the work of Diaz-Garcia et al. (2021), utilized a sequential
combination of dilution-to-stimulation (i.e., enrichment) and
dilution-to-extinction techniques to enrich a minimal and ef-
ficient lignocellulolytic consortium from soil microbiome. This
approach progressively enriched key lignocellulose degraders
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while eliminating less efficient members, ultimately resulting
in a two-species consortium (Pseudomonas sp. and Paenibacillus
sp.) capable of efficient lignocellulose breakdown. Top-down (do-
mestication of activated sludge) and bottom-up (self-assembly
with Psychrobacter aquimaris) approaches were integrated to
create an ammonium-assimilating microbiome for wastewater
treatment (Zhang et al., 2021). While domestication failed due
to salinity-induced competition and disaggregation, the self-
assembly approach yielded success. By co-culturing P. aquimaris
with environmental microbial population, they enriched for effi-
clent ammonium-assimilating bacteria, achieving 88.4% nitrogen
removal. Combining top-down and bottom-up approaches in mi-
crobial consortia design presents an important strategy that can
expedite development compared with using these methods indi-
vidually (Lin, 2022). This integrated approach allows researchers
to utilize existing, functional communities identified through
top-down enrichment as a starting point, reducing the time
required to identify potential functional strains. Moreover, it pro-
vides more precise control over the final consortium composition
compared to relying solely on top-down methods (Khandelwal
et al.,, 2013). By introducing specifically selected microbes, re-
searchers can adjust functionalities and potentially uncover
novel metabolic pathways within the consortia. However, the
combinatorial strategy also poses challenges. Understanding the
intricate interactions between the natural microbial community
and synthetically assembled microbes is complex and can affect
the overall stability and function of the consortium (Jiang et al.,
2023). Further research is necessary to optimize selective pressure
during enrichment to maintain the desired community structure,
function, and long-term stability while adding new members.
Advanced techniques such as metagenomics and metabolomics
combined with computational modeling can provide deeper in-
sights into these complex interactions. Future research directions
could explore the integration of machine learning algorithms
to predict and optimize consortia design based on desired
functionalities.

Applying Metabolic Modeling to Enhance
the Bioproduction Capabilities of Microbial
Consortia

Metabolic modeling can be used to get insight into the micro-
bial interactions, predict and optimize the titer, rate, and yield,
and guide rational design and assembly of novel synthetic mi-
crobial consortia. Genome-scale metabolic models, also referred
to as GEMs and M-models, are network-based representations of
metabolism in which nodes are metabolites and edges are reac-
tions that link the metabolites (Passi et al., 2021). M-models are
knowledge bases of the available genetic and biochemical infor-
mation for the target organism that enables linking the genotype
with the phenotype in a high-throughput manner. For example,
M-models of microorganisms with lignocellulose degradation ca-
pacities have been used to explore metabolic bottlenecks (Balagu-
runathan etal,, 2012), to propose metabolic engineering strategies
for biosynthesis from cellulose (Gonzalez & Antoniewicz, 2017),
to hypothesize cross-feeding interactions (Lee et al., 2021), and
to contextualize multi-omics data (Kundu et al., 2019; Kim et al,,
2021), resulting in deeper insights into pathways and interactions
for lignocellulosic biomass valorization.

M-models can be used to study microbial communities in
graph-based and Flux Balance Analysis (FBA) frameworks. Graph-

based methods have been classified as reverse ecology that en-
ables the study of evolutionary traits (Borenstein et al., 2008;
Janga & Babu, 2008; Soyer, 2012). These methods use hundreds
of M-models to unravel topological information encoded in a
large stoichiometric matrix that identifies potential interactions
within a microbial community (Zelezniak et al., 2015; Ravikrish-
nan et al.,, 2018, 2020). On the other hand, FBA uses a stoichio-
metric matrix to define a linear programming problem subject
to mass balance and thermodynamic constraints. To simulate
FBA-based interactions, M-models are combined into community
models (CM-models) by creating a shared metabolite compart-
ment to represent the metabolic exchange capabilities of each
community member, as well as the extracellular space shared by
all members (Khandelwal et al., 2013; Fang et al., 2020; Passi et al.,
2021).

A series of manually curated CM-models showed that some
partnerships enabled different titers in bioproduction capa-
bilities. For example, CM-models guided strain selection by
pairing the phototroph and sucrose-secreting Synechococcus elon-
gatus with heterotrophic production chassis such as Bacillus sub-
tilis, E. coli K-12, E. coli W, or Yarrowia lipolytica. Model simulations
showed that only partnerships containing B. subtilis and E. coli K-
12 could produce butanol, ethanol, formaldehyde, methanol, and
succinate. Microbial interactions were validated using targeted
metabolomics and RNA sequencing (Zuniga et al., 2020). The ac-
curacy of CM-model simulations heavily relies on the quality of
M-models and available experimental metabolite transport capa-
bilities (Zuniga et al., 2021). However, draft reconstructions can
be automatically generated (Karlsen et al., 2018; Machado et al,,
2018; Wang et al., 2018; Heinken et al., 2021; Seaver et al., 2021;
Zimmermann et al., 2021; Karp et al., 2022; Jenior et al., 2023), ac-
celerating the model reconstruction which often reduces the ac-
curacy of the predictions (Bernstein et al., 2021; Scott et al., 2023;
Joseph et al., 2024).

Despite limitations, recent draft reconstruction tools are con-
sistently used to study metabolic interactions in microbial con-
sortia with up to hundreds of members (Levy & Borenstein, 2013;
Henry et al, 2016; Machado et al., 2021; De Bernardini et al,,
2022; Heinken et al., 2023; Zampieri et al., 2023). Remarkable
progress has been made in the development of algorithms to ac-
count for the growth maximization of both consortia and indi-
vidual members. For example, OptCom (Zomorrodi & Maranas,
2012), d-OptCom (Zomorrodi et al., 2014), and NEcom (Cai et al.,
2021) allow us to predict the growth rate of several organisms at
the same time and in some cases their resource allocation (Kim
etal., 2022). Omics- and growth constraint-based approaches such
as MICOM and SteadyCom predict trade-offs of cooperative inter-
actions by constraining relative abundances within the consor-
tia (Diener et al., 2020). This approach reduces the simulation of
meaningless FBA due to the use of automatically generated mod-
els, in which non-growing members can contribute to the produc-
tion of metabolites in the shared extracellular environment.

Overall, genome-scale metabolic modeling holds great poten-
tial to understand complex microbial consortia for biomass val-
orization. For example, in the case of the synthetic consortia con-
sisting of P. putida, a lignocellulose degrader; Cellulomonas fimi, a
cellulose degrader; Y. lipolytica, an oleaginous yeast, and M. ex-
torquens, a methylotroph capable of using formaldehyde (Lee et al,,
2021). Thus, for a successful understanding and modulation of
metabolism, it is critical to expand the metabolic modeling tools
to be specifically responsive to microbial consortia designed for
waste valorization.
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Conclusions

There have been unprecedented efforts to harness microbial con-
sortia to develop several biotechnologies for biomanufacturing.
This review specifically highlights the potential of microbial con-
sortia and discusses the top-down and bottom-up engineering de-
sign approaches including the challenges and future recommen-
dations. The top-down strategy still remains the most commonly
used approach for waste valorization due toits relative ease of im-
plementation. The bottom-up approach holds promise, but suc-
cessful implementation will require developing techniques for
stable consortia assembly, process optimization using ecological
principles, and metabolic engineering to develop stable synthetic
microbial consortia. There has been significant progress in engi-
neering individual strains for biomanufacturing, however, less fo-
cus has been placed on consortium engineering. While models ex-
ist for single microbial metabolism, there is a need for models that
can predict and identify the metabolic features governing interac-
tions and long-term stability within microbial consortia. Besides
focusing on the technical advancements, the economics should
also be considered as more resources are needed for developing
synthetic microbial consortia using the bottom-up approach com-
pared to the traditional top-down approach. For instance, it might
be economically beneficial to invest in developing and improv-
ing synthetic consortia for bioprocesses that produce high-value
specialty chemicals. Future research should also explore integrat-
ing undefined natural microbial consortium (top-down) with de-
fined synthetic consortium (bottom-up) for accomplishing effi-
cient conversion of complex waste biomass. An interdisciplinary
approach of combining bioprocess engineering, multi-omics anal-
ysis, metabolic engineering, system biology, and metabolic mod-
eling is needed for a deeper understanding and optimization of
microbial consortia-driven biomanufacturing for a sustainable
future.
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