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A B S T R A C T

Thin water lenses floating on top of the main groundwater body are important for many natural and agricultural 
systems, owing to their different properties in terms of chemical composition or density compared to the sur
rounding groundwater. In settings with upward seeping groundwater, lenses may form that have thicknesses 
ranging from tens of centimeters to a few meters, making them prone to changing conditions in the short 
(seasonal) or long term (climate change). Knowing their thickness, shape, movement and mixing zone width may 
help in managing these lenses.

In a series of two papers, we present a mathematical description of the flow of water and transport of solute in 
a 2D cross-section between two parallel outflow faces and compare a simplified model to a complete model as 
described by the numerical code SUTRA. In this first paper of the series, we consider situations with a homo
geneous density distribution. In the simplified model we employ the sharp interface approximation to obtain an 
expression for the stream function, the interface between the two types of water and the corresponding maximum 
lens thickness in steady state in the domain considered. This steady state description is used for travel time 
analyses and forms the basis for the transient analyses. For a typical example of oscillatory (e.g. seasonal) 
fluctuations in boundary conditions, we obtain expressions of the movement of the interface midway between 
two outflow faces by separating the problem into two timescales using the interface motion equation. This 
analysis provides insight into the importance of parameters on the vulnerability of water lenses under changing 
conditions, and may easily be extended to situations with abrupt or gradual changes in boundary conditions 
reflecting changes in land use or climate, respectively. Finally, we derive an analytical approximation of the 
mixing zone midway between the drains for steady state solutions, stepping away from the sharp interface 
approach. For a variety of examples, we validate the obtained expressions of the simplified mathematical model 
against the numerical model code SUTRA, which solves the fluid and solute mass balances explicitly.

1. General introduction

The presence of shallow (fresh) water lenses is of importance in many 
natural and manmade groundwater-dependent (eco)systems. Shallow 
water lenses can be found in locations as fen meadows, floating fens, 
shallow coastal or river dunes and creek ridges (e.g. Cirkel et al., 2014; 
Schot et al., 2004; Stofberg et al., 2016; Wassen and Joosten, 1996), but 
also in agricultural areas in coastal zones with saline groundwater (e.g. 
Carol et al., 2018; de Louw et al., 2011; de Louw et al., 2013, Marconi 
et al., 2011; Velstra et al., 2011). Often these systems are influenced by 
human activity, either as side effect of e.g. enhanced drainage (e.g. 

Delsman et al., 2017; Stofberg et al., 2017) or irrigation (Vandenbohede 
et al., 2014) or deliberately to increase fresh water availability (Pauw 
et al., 2015).

The shallow water lenses considered here, form when upward 
seepage of groundwater and downward infiltration of recharge water 
occur simultaneously for at least part of the year. The lenses are situated 
between outflow faces, parallel drains or ditches in the context of this 
paper, through which excess water is discharged, and have a typical 
thickness of tens of centimeters to a few meters, as opposed to fully- 
developed thick freshwater bodies in e.g. coastal dunes where the in
fluence of upward seepage is negligible (Badon-Ghijben, 1888; 
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Herzberg, 1901).
Two aspects of the soil aqueous solution may be of importance with 

respect to water lenses: its chemical composition, and the spatial dis
tribution of its density. The chemical composition of the soil solution is 
an important factor in relation to plant growth, thus affecting the suit
ability of the soil for agriculture and horticulture (Pauw, 2015), and 
determining, together with other growth factors, the type of natural 
vegetation that might establish itself (Herbert et al., 2015; Schot et al., 
2004,). For agriculture, the most relevant factor in situations with saline 
groundwater may be the availability of sufficient fresh water in a rela
tively thick water lens, whereas for natural situations with fresh 
groundwater, a limited lens thickness may be preferred, providing gra
dients in water quality within plant root zones sustaining a high biodi
versity (Bedford and Godwin, 2003). The chemical composition depends 
on the source of the water (Cirkel et al., 2014), in the context of this 
paper infiltrating precipitation or irrigation water and upwelling 
groundwater at the specific location. The spatial distribution of the 
density is an important factor in the dynamics of the soil aqueous so
lution (e.g. Werner et al., 2013), which plays an important role in salt 
affected coastal lowlands.

The thickness and volume of the rainwater lens can be measured or 
modelled for the purpose of, e.g., restoration of natural habitats, opti
mization of fresh water use in agriculture, or scenario analyses of 
climate change and sea level rise (Pauw, 2015; Stofberg et al., 2017). To 
do so, the interface between the two types of water should be deter
mined. This interface may be approximated as a sharp interface by 
excluding any mixing processes, as is seen regularly in the literature 
(Werner et al., 2013). Although the sharp interface approximation al
lows relatively simple analytical methods, measurements (e.g., De Louw 
et al., 2011, De Louw et al., 2013) and numerical models (e.g., Eeman 
et al., 2011) show that the transition between the two water types is not 
sharp, but gradual as a result of molecular diffusion and dispersion 
(Eeman et al., 2011). We refer to this gradual transition as the mixing 
zone. De Louw et al. (2013) defined the center of the mixing zone as the 
point where the salinity is half that of the salinity of upward seeping 
water. They measured that for a drained agricultural field, this point 
moves through the soil very gradually, with variations on a seasonal 
timescale. This as opposed to the total water lens thickness, that has a 
more variable distribution due to day to day variations in (shallow) 
groundwater levels.

Most of the current work regarding shallow water lenses, its mixing 
zone and transient behaviour relies on the use of computationally 
intensive and knowledge demanding numerical models, such as the 
models SUTRA (Eeman et al., 2011; Voss and Provost, 2002), MOD
FLOW (Cozzolino et al., 2017), SEAWAT (De Louw et al., 2013) or 
MOCDENS3D (De Louw et al., 2011). This clearly adds in the under
standing of processes for specific conditions. However, analytical for
mulations do provide a more fundamental understanding of the 
processes involved in the formation and development of these shallow 
water lenses. They also allow for fast calculations of lens characteristics 
for a broad range of parameter values, simplifying analyses as performed 
in Eeman et al. (2012) and Pauw et al. (2015) with numerical model 
results.

To date, only a limited number of analytical solutions is available 
where both the main groundwater body and the lens water are moving 
(Werner et al., 2013), with most solutions considering a steady state 
with a sharp interface approximation and without mixing and density 
effects. For equally spaced parallel drains, a steady state solution of the 
interface position under the assumption of a sharp interface without 
density effects is found in Poot and Schot (2000), albeit without any 
derivation. Maas (2007) provides a solution for a steady and transient 
situation, considering a sharp interface, movement of both types of 
water and also density effects, but he considers an oceanic island rather 
than the terrestrial, smaller scale situation of interest in this contribu
tion. Despite this important difference in boundary conditions, several 
authors (Delsman et al., 2017; Eeman et al., 2011; Stofberg et al., 2017) 

concerned with (modelling) rainwater lenses between parallel drains or 
ditches, use the analytical result of Maas (2007) as if it applies to their 
situation. This clearly demonstrates the need for an analytical descrip
tion fitting to this situation.

Very few analytical solutions are available on mixing zone charac
teristics based on two dimensional flow problems (Werner et al., 2013). 
An attempt was made (Eeman et al., 2012; Stofberg et al., 2017) to 
characterize mixing zone development for oscillating conditions in two 
dimensions based on analyses of Cirkel et al. (2015) for a one dimen
sional situation, but to our knowledge an estimate of the mixing zone 
thickness in steady state based on a two dimensional analysis is not 
available. The mixing zone is, however, highly relevant for the purpose 
of determining the exposure of roots at different depths to e.g. 
mineral-rich or brackish groundwater, as the mixing zone may extend 
well beyond the sharp interface.

In a pair of two papers, we therefore present a set of (semi-)analytical 
solutions to obtain the position of the interface between infiltrating 
recharge water and upward seeping groundwater, both without density 
effects in this Part I, and with density effects in the accompanying Part II 
(van de Craats et al., 2024). In both Parts I and II, analytical and nu
merical solutions with SUTRA (Voss and Provost, 2002) will be used side 
by side.

In this Part I, we determine for a system of parallel, equally spaced 
drain tubes the location of the interface, not only for steady state, but 
also for certain transient cases for which the interface between the two 
types of water is time dependent. Although we mainly use a sharp 
interface approach, in this Part I we also provide an analytical estimate 
of the mixing zone midway between the drains in steady conditions.

In Part II, we will deal with some aspects of the dynamical effects of 
density gradients. Classical examples of the latter include the combi
nation of saline and fresh water in coastal dunes, where density differ
ences are important in the formation of rainwater lenses on top of the 
intruding seawater (Badon-Ghijben, 1888; Herzberg, 1901). However, 
here we focus on the shallow water lenses in areas with upward seepage.

We dedicate these papers to the late Sjoerd van der Zee (1955-2022), 
to honour him for his excellent contributions in the realms of soil, 
surface-water, and groundwater pollution, and ecohydrology. Sjoerd 
studied soil physics and physical chemistry at Wageningen University 
with Gerard Bolt. Following that, he started his research career at the 
LGM (= Delft Soil Mechanics Laboratory) (1981-1984; for results see 
van Duijn and van der Zee, 1986). That introduced him to the oppor
tunities of mathematical analysis, which inspired him in all his later 
work. His entire further career he was with Wageningen University. His 
1988 PhD thesis on ’Transport of reactive contaminants in heteroge
neous soil systems’ (van der Zee, 1988), provided a rational basis for 
dealing with contamination of soils, surface water, and groundwater 
with phosphate, cadmium, and copper. Such applications dominated his 
research in the following 20 years. In a fundamental yet practical 
manner, he dealt with the important role of field variability.

In 2005, Sjoerd became Professor of Ecohydrology, with emphasis on 
physical, but also including chemical and biological aspects. Applica
tions included transport of pharmaceutical products, plant protection 
substances, and pathogens. In recent years, the focal subject was salinity 
in semi-arid and coastal-humid environments, with novel attention for 
the interplay of periodicity and long-term trends. The subject of the 
present papers still had his full interest in the final months of his life, 
when he actively participated in our regular Teams Meetings.

1.1. Introduction to Part 1: Homogeneous total density

In this Part I we focus on situations with a homogeneous total den
sity: a constant fluid density throughout the domain. We aim to provide 
a thorough description of the flow problem at hand, and therefore we 
first describe the most general problem setting of a 2D flow problem 
between two parallel drains (section 2), with simultaneously occurring 
upward seepage and downward recharge, and a discharging drain. This 
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setting includes also the unsaturated zone and presence and mixing of 
solutes as is used in the numerical modelling for Parts I and II (SUTRA; 
Voss and Provost, 2002) and represents the current practice to model 
such systems numerically. We then have to constrain this general setting 
to allow for an analytical solution to the flow problem at hand (section 
3). For this, we first consider only flow of water without any mixing, i.e. 
a sharp interface between the two flow regimes. Also, we consider only 
saturated flow, no head build-up between parallel drains, which, 
consequently, means no seepage face at surface level, and we employ the 
Boussinesq approximation. Next, we derive the stream function and 
interface position as function of distance to the drain in a steady state 
and consider a practical application regarding travel time and – depth 
analyses (section 4).

In section 5, we extend the analysis to transient conditions to find an 
analytical solution to the interface movement midway between the 
drains following oscillating boundary conditions representing seasonal 
fluctuations in recharge and seepage. The solution is based on a two- 
scale expansion which was found to correspond very well to numerical 
results of the general flow problem. Again, we show a practical appli
cation, in which we consider the fluctuation in concentration in the 
drainage water. Finally, in section 6 we also consider the mixing zone 
midway between two drains, and find an analytical approximation of the 
solute concentration as function of depth, matching reasonably well 
with numerical model results. Understanding these gradients and the 
factors influencing them is relevant for ecohydrological predictions. 
Overall, the analytical results give an excellent understanding of the 
general behaviour of shallow water lenses from a sound theoretical 
background, and provide ways to quickly assess potential effects of 
changes to the drivers of the shallow lenses. Sections 4, 5 and 6 all 
provide relevant insights into practical, real-world situations, both for 
agricultural and natural systems.

2. Problem setting

In this section the physical-mathematical model for describing flow 
of water and transport of solutes in saturated and unsaturated soil is 
introduced. In both Part I and Part II, the numerical finite element model 
SUTRA version 2.2 (Voss and Provost, 2002) is used to solve those 
equations.

The fluid mass balance is given in its basic form as 

∂
∂t
(ηSρ) + div(ρ q→) = 0, (1) 

where η [-] is porosity, S [-] is water filled pore space (S = 1 for saturated 
conditions, 0 < S < 1 for unsaturated conditions), ρ [ML-3] is fluid 

density including dissolved solute. Further, q→=
(

qx, qy

)
[LT-1] is the 

fluid discharge, given by Darcy’s law 

q→= −
κ̿ κr

μ

(

∇p+ ρg e→y

)

, (2) 

where p [ML-1T-2] is fluid pressure, g [LT-2] the gravitational accelera
tion, ey

→ the directional vector (0, 1), μ [ML-1T-1] the fluid viscosity 

(assumed to be constant), κ̿ [L2] the permeability tensor, which for a 

homogeneous, isotropic soil may be replaced by κ̿ = κI
̿
, I

̿ 
[-] being the 

identity matrix, and κr [-] is the relative permeability (κr = 1 for satu
rated conditions, 0 < κr < 1 for unsaturated conditions). In SUTRA, the 
Mualem-van Genuchten expressions are used for the relations S = S(p) 
and κr = κr(S) (Voss and Provost, 2002).

The mass balance for the solute reads 

∂
∂t
(ηSρw) + div

(
ρw q→− ηSρD

̿
∇w
)
, (3) 

where w [MM-1] is the mass fraction of solute given as mass solute per 
mass of total fluid. The fluid density is given as a linear function of the 
mass fraction of solute 

ρ = ρ0(1+ βw), (4) 

where β [-] is the salt expansion coefficient given by β =
∂ρ
∂w

1
ρ0 

and where 

ρ0 [ML-3] is the density of pure water. The coefficient D
̿ 

in (3) models the 
effect of molecular diffusion and dispersion. It is given as 

D
̿
= DmolI

̿
+ D

̿
disp, (5) 

where Dmol [L2T-1] is the molecular diffusion coefficient and D
̿
disp [L2T-1] 

is the dispersion tensor. This tensor is given in two dimensions by 

D
̿
=

[
Dxx Dxy
Dyx Dyy

]

=
1

ηS| q→|

⎡

⎣

(
αL |qx|

2
+ αT

⃒
⃒
⃒qy

⃒
⃒
⃒
2)

(αL − αT)
(
|qx|

⃒
⃒
⃒qy

⃒
⃒
⃒

)

(αL − αT)
(
|qx|

⃒
⃒
⃒qy

⃒
⃒
⃒

) (
αT |qx|

2
+ αL

⃒
⃒
⃒qy

⃒
⃒
⃒
2)

⎤

⎦, (6) 

where | q→| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q2

x + q2
y

√
[LT-1] is the magnitude of the fluid discharge and 

|qx| and |qy| are the absolute values of the discharge components. 
Further, αL and αT [L] are the longitudinal and transversal dispersion 
lengths, respectively.

We consider a situation where a series of equally spaced drains 
(separated by a distance of 2L [L], and positioned at depth D [L] below 
soil surface) are present in a homogeneous, isotropic soil. Let the domain 
D ⊂R2 be described in x and y, where x denotes the horizontal direction 
perpendicular to the drain and y denotes the vertical direction, positive 
when pointing upwards (A). We assume no flow occurs in the third 
dimension (i.e. parallel to the drains). Choosing the coordinates such 
that a drain is located at {x = L, y = 0}, vertical water divides exist at x =
0 and x = L due to symmetry of this flow problem.

The domain in the numerical model SUTRA is given by (see also 
Fig. 1A) 

D num = {(x, y) : 0< x< L, − H< y<D}, (7) 

where H [L] is the numerical model depth, chosen sufficiently far down 
from the interface and mixing zone to avoid a direct influence on their 
positions. In D num, the unsaturated domain is considered in order to 
represent a real-world situation as closely as possible. This means that 
non-vertical flow through the capillary fringe, head buildup midway 
between the drains and a potential delay in flow due to the unsaturated 
zone are all accounted for.

In SUTRA, half a drain is modeled explicitly within the element mesh 
by excluding half a circle with a radius of 3 cm centered at {x = L, y = 0}, 
as in van de Craats et al. (2021). Mesh refinements are made in the 
proximity of the drain, to allow for multiple nodes on the drain circle.

Top and bottom boundary fluxes are given by uniform recharge (N 
[LT-1]) and seepage (K [LT-1]) fluxes, respectively, which are defined 
positive into the domain. Both recharge and seepage are required to 
have a net positive contribution for a water lens to form. In addition, the 
fact that they are defined as uniform fluxes does not allow the presence 
of a seepage face at the soil surface. Hence, groundwater levels must 
remain below the soil surface everywhere at all times.

Recharge and seepage are given a solute mass fraction of 0 and wK 
[-], respectively, as given by 
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w = wN = 0, q→⋅ e→y = − N along 0 < x < L, y = D

w = wK, q→⋅ e→y = +K along 0 < x < L, y = − H

∂w
∂x

= q→⋅ e→x = 0 along x = 0, L and y < D

. (8) 

Along the drain boundary with a radius of 3 cm, fixed pressure nodes 
are prescribed in SUTRA based on the nodes’ vertical position, with a 
pressure ranging from 0 at the top node to 587.4 kg m-1 s-2 at the bottom 
node, according to a hydrostatic equilibrium within the drain, assuming 
a fresh water density of 998 kg m-3 within the drain and a fully saturated 
drain with no excess pressure. Water and solute move out of the domain 
via fixed pressure nodes, following the local pressure gradients and so
lute mass fractions.

3. Simplified mathematical model setting

In this section we introduce a number of simplifying assumptions 
with respect to the physical problem and obtain a reduced setting that 
can be treated by (semi) analytical methods. In spite of the proposed 
simplifications, we show in sections 4-6 that in many cases of practical 
interest, the numerical (SUTRA) results and the constructed analytical 
expression are quite close.

The following additional assumptions are required:

1. The vertical domain changes to (Fig. 1B) 

D = {(x, y) : 0< x< L, − ∞< y<0}, (9) 

such that the drain is situated in the corner point {x = L, y = 0}.

2. The soil is fully saturated; i.e. S = 1 everywhere in D .
3. The Boussinesq approximation holds; i.e. in (1) - (3) we impose ρ =
ρ0 (= constant), except in the gravity term of the Darcy equation (2).

Under these assumptions, the problem reduces to 

div( q→) =
∂qx

∂x
+

∂qy

∂y
= 0, (10) 

q→= −
κ
μ

(

∇p+ ρg e→y

)

, (11) 

∂w
∂t

+ div
(

w q→− D
̿
∇w
)
= 0, (12) 

ρ = ρ0(1+ βw), (13) 

in D and for t > 0. The boundary conditions read: 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w = wN = 0, q→⋅ e→y = − N along 0 < x < L, y = 0

w = wK, q→⋅ e→y = +K along 0 < x < L, y = − ∞

∂w
∂x

= q→⋅ e→x = 0 along x = 0, L and y < 0

. (14) 

For the moment we leave the initial condition for the mass fraction 
unspecified.

The equations (10), (11) and (12) are coupled through the solute 
dependent density. For the flow field, we cross differentiate the com
ponents of Darcy’s law (11), to obtain 

∂
∂y

(μ
κ
qx

)
+

∂2p
∂x∂y

= 0 and
∂

∂x

(μ
κ
qy

)
+

∂2p
∂x∂y

+
∂

∂x
(ρg) = 0, (15) 

which results in 

∂
∂x

(μ
κ
qy

)
−

∂
∂y

(μ
κ
qx

)
+

∂
∂x

(ρg) = 0. (16) 

Eq. (10) is satisfied if we introduce the stream function ψ [L2T-1] 
according to 

q→=
(

qx, qy

)
= curl(ψ) =

(

−
∂ψ
∂y

,
∂ψ
∂x

)

= 0. (17) 

Substituting (17) into (16) yields for the stream function 

∂
∂x

(
μ
κ

∂ψ
∂x

)

+
∂
∂y

(
μ
κ

∂ψ
∂y

)

+
∂

∂x
(ρg) = 0. (18) 

For a homogeneous soil and a fluid with constant viscosity, there 
results (De Josselin de Jong, 1960) 

Fig. 1. (A) Schematic representation of a steady water lens as used in the numerical model, with the drain situated at (x,y)=(L,0) and vertical water divides at x =
0 and x = L, L denoting half of the drain distance. Upward seeping (red), and downward infiltrating (blue) water meet at the interface (dashed line), where mixing 
occurs as indicated by the gradual transition in colour. Above the groundwater table (dotted line) soil water content decreases gradually in the unsaturated zone 
(white shading). The maximum depth at -H is shifted upward for illustrative purposes. (B) Schematic representation used in the sharp interface approximation for the 
analytical model. No mixing occurs, and only the domain below the drain is considered, i.e. the partially saturated zone and head build-up midway between drains 
are disregarded. The bottom extends to minus infinity.
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∇2ψ +
κ
μ

∂
∂x

(ρg) = 0, (19) 

where ∇2 denotes the Laplacian: ∇2 = ∂2 .
∂x2 +

∂2 .
∂y2.

In Part I of this work we disregard the influence of spatial density 
variations on the flow. Hence β = 0 and ρ = ρ0 in (13), implying that 
(10), (11) and (12) are decoupled, and (19) reduces to ∇2ψ = 0. We treat 
three cases that are of practical interest in the remainder of this Part I. 
We define a reference situation which applies to all three cases, with 
parameter values given in Table 1.

4. Steady state flow

4.1. Mathematical model description

Let the recharge N and seepage K be given by positive constants to 
allow for the formation of water lenses between parallel drains. The 
boundary conditions (14) are satisfied if we choose for ψ along the 
boundary of D : 
{

ψ(0, y) = 0 and ψ(L, y) = KL for y < 0
ψ(x,0) = − Nx and ψ(x, − ∞) = Kx for 0 < x < L . (20) 

With these conditions, the strength of the drain is (N + K)L [L2T-1].
Though we do not consider actual solutes yet, we may separate our 

domain into two parts, which we refer to as the recharge part (D N) and 
seepage part (D K), respectively. In Fig. 1B, these are represented by the 
blue and red part, respectively. The recharge part consists of water 
entering through the top of the domain, the seepage part consists of 
water entering through the bottom of the domain. These domains are 
separated by a sharp interface I [L], which, in view of our boundary 

conditions, is given in steady state as the streamline where ψ = 0, i.e. 

ψ(x, y) = 0 ⇔ y = I(x) for 0 < x ≤ L. (21) 

The boundary conditions in terms of ψ (20) imply that ψ ≤ 0 across 
the boundary of D N and ψ ≥ 0 across the boundary of D K. Then, using 
the strong maximum principle (Alt and van Duijn, 1990), we have 

ψ < 0 in D N and ψ > 0 in D K. (22) 

The interface itself intercepts the drain and is assumed to be 
described by a continuous, increasing function of x between (0, L), with I 
(L) = 0. Due to domain symmetry the interface is horizontal midway 
between the drains, implying 

∂I
∂x

(x=0) = 0. (23) 

In search of an explicit expression for the stream function in D , we 
first remove the boundary conditions at x = 0, L and at y = − ∞ by setting 

u(x, y) =
Kx − ψ(x, y)

N + K
. (24) 

Clearly, 

∇2u = 0 in D ,

and u satisfies the boundary conditions, see (20), 
{

u(0, y) = u(L, y) = 0 for y < 0
u(x,0) = x and u(x, − ∞) = 0 for 0 < x < L . (25) 

Given (21), the interface position I(x) can be described in terms of u 
as 

u(x, y) = −
Kx

N + K
⇔ y = I(x) for 0 < x < L. (26) 

By separation of variables, we obtain the Fourier series solution for u 
as 

u(x, y) =
∑∞

n=1

(

−
2L
nπ cos(nπ)

)

sin
(nπx

L

)
e

nπy
L . (27) 

With Mathematica (Wolfram Research, 2019), this expression can be 
resolved as 

u(x, y) =
2L
π arctan

⎛

⎜
⎜
⎜
⎝

sin
(

πx
L

)
e

(
πy
L

)

1 + cos
(

πx
L

)
e

(
πy
L

)

⎞

⎟
⎟
⎟
⎠
. (28) 

Using (24), the corresponding expression for the stream function in 
D reads 

ψ(x, y) = Kx − (N+K)
2L
π arctan

⎛

⎜
⎜
⎜
⎝

sin
(

πx
L

)
e

(
πy
L

)

1 + cos
(

πx
L

)
e

(
πy
L

)

⎞

⎟
⎟
⎟
⎠
. (29) 

The horizontal and vertical water discharge components follow from 
(29) and (17) as 

qx(x, y) = −
∂ψ(x, y)

∂y
= (N+K)

sin
(

πx
L

)

cos
(

πx
L

)
+ cosh

(
πy
L

), (30) 

and 

qy(x, y) = +
∂ψ(x, y)

∂y
= −

⎛

⎜
⎝N+(N+K)

sinh
(

πy
L

)

cos
(

πx
L

)
+ cosh

(
πy
L

)

⎞

⎟
⎠. (31) 

Note that the horizontal discharge is zero for x = 0 and x = L, 

Table 1 
Parameter values used for the reference simulations in sections 4-6. For 
parameter values indicated with a *, and parameters that are not mentioned in 
this table, we refer to Voss and Provost (2002) for a description and, if appli
cable, their standard value.

Description Parameter SUTRA Analytical Unit

Dimensions Half drain 
distance

L 5 5 m

Drain depth D 1.2 - m
Domain depth H 8.8 - m

Soil matrix 
properties

Porosity η 0.45 0.45 m3 

m-3

Residual water 
cont.*

Sres 0.149 - m3 

m-3

a-par MvG* α 2.0 - m-1

n-par MvG* n 1.41 - -
Permeability κ 8.772•10- 

14
8.772•10- 

14
m2

Fluid 
properties

Base density ρ0 998.0 998.0 kg 
m-3

Salt expansion 
coef.

β 0 0 -

Viscosity μ 0.001 0.001 kg 
m-1 

s-1

Diffusion / 
Dispersion

Long. disp. 
length

αL 0.1 0.1 m

Trans. disp. 
length

αT 0.01 - m

Molecular diff. Dm 1e-9 1e-9 m2 s- 

1

Boundary 
conditions

Recharge N 0.0005 0.0005 m d-1

Seepage K 0.0005 0.0005 m d-1

Solute mass 
fraction in N

wN 0 0 kg 
kg-1

Solute mass 
fraction in K

wK 0.03507 0.03507 kg 
kg-1
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satisfying the properties of a vertical water divide.
We are particularly interested in the interface between the two types 

of water. It is found by solving, see also (26), u(x, y= I(x)) − K
N+K x = 0 for 

0 < x < L. Applying the Fourier expansion to both terms, we have 

u(x, y= I(x)) =
∑∞

n=1

(

−
2L
nπ cos(nπ)

)

sin
(nπx

L

)
⎛

⎝e

(
nπI(x)

L

)

−
K

N + K

⎞

⎠ = 0,

(32) 

for 0 < x < L. Again, we use Mathematica (Wolfram Research, 2019) to 
resolve this expression. The result is 

I(x) =
L
π ln

⎛

⎜
⎜
⎝

sin
(

K
N+K

πx
2L

)

sin
(

2N+K
N+K

πx
2L

)

⎞

⎟
⎟
⎠ for 0 < x ≤ L, (33) 

which is equivalent to the result in Poot and Schot (2000). A straight
forward calculation shows that 

∂I
∂x

(x= L) = tan
(

N
N + K

π
2

)

. (34) 

Note that (33) and (34) show that the flux ratio K/N drives the 
interface position. The maximum interface depth is reached midway 
between the drains at x = 0. From (33) we find 

h := I(0) =
L
π ln
(

K
2N + K

)

. (35) 

At x = 0, the vertical discharge is given by 

qy(0, y) = −

⎛

⎜
⎝N+(N+K)

sinh
(

πy
L

)

1 + cosh
(

πy
L

)

⎞

⎟
⎠

= − N + K

⎛

⎜
⎜
⎝

N
N + K

+
e

(
πy
L

)

− 1

e

(
πy
L

)

+ 1

⎞

⎟
⎟
⎠. (36) 

Hence, with (35), 

qy(0, y) = 0 at y = h
qy(0, y) > ( < ) 0 if y < ( > )h . (37) 

In order to compare analytical interfaces, determined with the sharp 
interface approach, with numerical model results of the fluid and solute 
mass balance, a definition of the interface is required for the numerical 
model. For this we use the (central) moments of the vertical solute mass 
fraction gradient, similar as in e.g. Eeman et al. (2011), where the first 
moment gives the vertical position of the interface with respect to the 
drain, and the second central moment provides a measure of the mixing 
zone width. To account for the curvature in the groundwater table, 
which in SUTRA is situated at p(x, y) = 0, lens thickness is obtained by 
subtracting the first moment from the groundwater table position.

An interesting application of the steady state problem is related to 
average residence times and travel time distributions, which are rele
vant for e.g. the available time for a constituent to break down in the 
groundwater, before exfiltrating into the drain. The average residence 
time of water in the lens (Tres [T]) is given as 

Tres =
ηAl

NL
=

η
πN

∫L

0

⎛

⎜
⎜
⎝ − ln

⎛

⎜
⎜
⎝

sin
(

K
N+K

πx
2L

)

sin
(

2N+K
N+K

πx
2L

)

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠dx, (38) 

where Al [L2] is the area of the water lens in the half strip. It is obtained 
by integrating (33) from x = 0 to x = L. This integral can, in principle, be 
evaluated. However, as the resulting expression is lengthy and not 

straightforward to interpret, we do not show its evaluated form in (38). 
Not only the average residence time, but also the travel time from any 
position at the top of the groundwater table towards the drain may be of 
importance. The flow path of a water droplet entering the domain at rent 
= (x, y) = (xent,0), with 0 < xent < L, and leaving the domain through the 
drain at rdrn = (x, y) = (L, 0) is given as the streamline with value ψrent =

− Nxent. For any point (x, y) along this streamline the water flow velocity 
may be obtained from (30) and (31) and the porosity. The travel time Ttr 
[T] of a water particle is then obtained as 

Ttr =

∫

ψxent

η
|q(r)|

ds =
∫rdrn

rent

η
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
q2

x(r(t)) + q2
y(r(t))

√ |ŕ (t)|dt, (39) 

where r(t) = (x(t), y(t)) is the parameterization of the streamline and the 
integration bounds rent and rdrn form the points of entrance and exit of 
the domain. This expression is evaluated numerically.

We can also obtain the maximum depth that a droplet, entering the 
domain at rent, reaches while traveling through the domain. For each 
depth y in h < y < 0 there exists one streamline originating from (x, 0) 
with a horizontal tangent at that specific depth. For any such point, this 
means that a flux of − ψ(x, y) reaches to depths below y, whereas the 
remaining recharge (N + ψ(x, y)) never reaches this depth. Denoting the 
coordinates of the deepest point of each streamline by (xd,yd), we may 
find the horizontal position by considering qy(xd,yd) = 0. With (31), we 
find for any vertical position in h < yd < 0 the corresponding horizontal 
position xd as 

xd =
L
π arccos

(

−
K + N

N
sin
(πyd

L

)
− cosh

(πyd

L

))

. (40) 

The stream function value corresponding to the coordinates (xd,yd) 
can now be obtained from (29), which can directly be used to find the 
point of origin of the water droplet at (xd,yd), as ψrent = − Nxent.

4.2. Example results

Steady state flow patterns for three situations are shown in Fig. 2, 
with the middle panel corresponding to the reference situation 
(Table 1), and the other panels deviating in flux ratio only. Recharge 
water infiltrates uniformly at the top of the domain and flows towards 

the drain situated in the top right corner at 
(

x
L,

y
L

)
= (1,0). Seepage water 

infiltrates at the bottom, flows in an upward direction and is then also 
diverted towards the drain. The streamline ψ = 0 separates negative 
stream function values (in blue) from positive stream function values (in 
red). It can readily be seen that this streamline indeed divides the 
domain D in a recharge part (D N) and seepage part (D K), such that it 
acts as the interface as defined in (21). The deepest part of the rainwater 
lens is found midway between the drains. Here, also the lowest flow 
velocities occur, with a stagnation point at the intersect between the 
vertical water divide and the interface. It follows directly from (33) and 
(35) that dividing both x and y by half the drain distance, the dimen
sionless lens thickness is a function of flux ratio only, as demonstrated in 
Fig. 2. The larger the flux ratio, the smaller the (dimensionless) lens 
thickness.

Agreement between the interface obtained with the analytical sharp 
interface approximation and the numerical flow and transport model 
SUTRA with regard to the interface position is very good (Fig. 2), 
especially away from the drain. A difference between the two methods 
can be observed close to the drain, for which we identified three causes. 
(i) For the numerical model results, we opted for the simple approach of 
obtaining the interface position in the vertical direction only, rather 
than obtaining the interface position perpendicular to the flow direction 
(as in Eeman et al., 2011). As the derivative of the interface with respect 
to x is largest close to the drain, the largest errors present themselves in 
this region. (ii) The definition of the numerical interface is not identical 
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Fig. 2. Flow patterns obtained with (29) for flux ratios (K/N) of 2, 1 and 0.5 in (A), (B) and (C), respectively, with (B) showing the reference situation (Table 1). 
Recharge rates are kept constant and seepage is varied between the panes. Black thin lines show stream lines, with the red shaded area indicating positive stream 
function values in the seepage part (D K) and the blue shaded areas indicating negative values in the recharge water part (D N), with the transition between the two 
being the interface. The dashed black line shows the interface obtained from SUTRA. The x- and y-axis are normalized by dividing by L.

Fig. 3. (A) Travel time Ttr of a water droplet from point of origin (xent) to the drain, as function of point of origin, for three flux ratios (indicated by color). Travel 
time and point of origin are both given in non-dimensional form as seen from the axis labels. The dotted horizontal lines indicate average residence times, obtained 
with (38). (B) Average residence times as function of flux ratio, for three recharge rates (indicated by color). Residence times (divided by half a drain distance L) are 
given on log-scale on the y-axis. (C) Maximum travel depth of a water droplet as function of point of origin xent, for four flux ratios (indicated by color). Both axes are 
normalized by half a drain distance. (D) Ratio of lens area in the half strip over maximum lens thickness, divided by half the drain distance, as function of flux ratio. 
The horizontal dashed line shows the asymptote as Al/h = ln(2). The case of Maas (2007) is shown for the purpose of comparison, with its horizontal asymptote given 
by Al/h = π

4.
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to the definition used in the analytical model. Especially in case of 
skewed distributions, using the first moment of the concentration 
gradient to describe the interface position may result in different results. 
In addition, (iii) the groundwater table in the numerical results does not 
intersect the drain, but may be situated somewhat above the drain, such 
that a pocket of water exists above the drain. As lens thickness in the 
analytical model is, per definition, zero at the drain, this results in a 
relatively large difference between the two methods close to the drain.

An example of the travel time of any water droplet entering between 
0 < xent/L < 1 is given in Fig. 3A, for three flux ratios. The travel time 
itself was non-dimensionalized, such that this graph holds for any drain 
system configuration, recharge rate and porosity when properly scaled. 
Clearly, increasing the flux ratio results in decreasing non-dimensional 
travel times, as the water lens becomes thinner (35), which also 
immediately follows from the expression for the average residence times 
(38). This is demonstrated in Fig. 3B as well, showing the average 
residence time divided by half the drain distance, as function of flux 
ratio, for three different recharge rates. For a given flux ratio, an in
crease in recharge rate (and thus also seepage rate) results in a decrease 
in residence time, as water is required to move faster through the same 
lens area. Increasing flux ratios while maintaining the same recharge 
rate results in decreasing residence times due to shallower lenses.

Returning to Fig. 3A, for a flux ratio of 1, approximately 80% of the 
distance between 0 < x < L discharges faster than the average residence 
time, which may have important implications for the breakdown or 
formation of certain constituents (e.g., in the process of denitrification in 
the anaerobic environment) while traveling through the saturated zone 
and thereby affect the composition of drainage water. This percentage 
increases even further for decreasing flux ratios. In the reference case, 
with K/N = 1, N = 0.5 mm d-1, η = 0.45 and L = 5, the average residence 
time of a water droplet is approximately 1100 days. However, as much 
as 50% of the water infiltrating at the surface leaves the domain within 
125 days, and 20% even within 4 days.

In Fig. 3C maximum travel depth of a particle entering the domain 
between 0 < xent/L < 1 is given (40), for four flux ratios, including a 
situation in which only recharge occurs (Groenendijk and van den 
Eertwegh, 2004). The maximum depth reached by a particle originating 
midway between two drains at x = 0 is determined by (35), and reaches 
to minus infinity for the situation with K/N = 0. Again, we see that the 
majority of the water is discharged through a rather shallow layer, 
corresponding with the short travel times (Fig. 3A). Roughly 80% of the 
water is discharged through the layer between h/2 < y < 0, with the 
remainder of the water reaching to larger depths.

Dividing lens area Al by maximum lens thickness, − h, and normal
izing by drain distance gives a measure of convexity of the interface, 
with a more convex interface for larger numbers of this ratio (Fig. 3D). A 
more convex interface can hold a larger volume of water in the lens for a 
given lens thickness. The ratio shows a decreasing trend for increasing 
flux ratios, with a horizontal asymptote given by ln(2). Therefore, with 
an increase in flux ratio, the storage of recharge water decreases not only 
due to a decrease in maximum thickness, but also due to a decrease in 
convexity of the interface. This is also a main explanation for the more 
strongly increasing average residence times for flux ratios decreasing 
below 0.5 (Fig. 3A).

For the purpose of comparison, also the ratio of lens area divided by 
thickness is shown for the situation described by Maas (2007). It shows 
that, for a given maximum interface depth, the volume of water stored in 
the lens in an oceanic island is higher than for our current conditions. 
This may have implications for analyses in other work (Eeman et al., 
2011; Stofberg et al., 2017), which apply the solution of Maas (2007) to 
problems which actually involve the domain as presented in this paper.

5. Transient flow

5.1. Mathematical model description

Even though the stream function (29) responds instantaneously to 
changes in boundary fluxes for an incompressible fluid, this does not 
imply that the interface does so as well. Rather, the interface moves 
along with the local velocity at the interface itself, which does respond 
instantaneously to changes. As such, in case of transient boundary 
fluxes, i.e. N(t), K(t), the interface is no longer necessarily situated at the 
position where the stream function equals zero, and (21) no longer 
holds.

In the transient case, we obtain an equation for the movement of the 
interface by considering the seepage water balance in D K. It reads 

η ∂I
∂t

+
∂

∂x
Qs(x, t) = K(t), (41) 

where Qs is the horizontal seepage water flux 

Qs(x, t) =
∫I(x,t)

− ∞

qx(x, y, t)dy. (42) 

In terms of the stream function, (42) becomes 

Qs(x, t) = ψ(x, − ∞, t) − ψ(x, I(x, t), t) = K(t)x − ψ(x, I(x, t), t). (43) 

Substitution of (43) in (41) yields the interface motion equation 
(Chan Hong et al, 1989) 

η ∂I(x, t)
∂t

=
∂

∂x
{ψ(x, I(x, t), t)} (44) 

subject to the initial condition I(x, 0) = Iinit(x). As the stream function 
reacts instantaneously to changes in the boundary fluxes, the right hand 
side term in (44) follows directly from (29) for situations without den
sity differences. Clearly, the solution to (44) depends on the nature of N 
(t) and K(t), such that no single unique answer exist.

We may reformulate the interface motion equation into its dimen
sionless equivalent. For this, we define the reference values 

xR = L; ψR = N0L; TR = T, (45) 

where N0 is characteristic recharge rate, for instance an average 
recharge rate, and T is a characteristic time scale, for instance an 
oscillation period in case of sinusoidal boundary fluxes. Let us write any 
scaled parameter as e.g. x̂ = x

xR
. Using this notation, the interface motion 

equation (44) is written as 

η xR

TR

∂ Î
∂ t̂

=
ψR

xR

∂
∂x̂

ψ̂ (x̂, Î, t̂) or
∂ Î
∂ t̂

=
ψRTR

ηx2
R

∂
∂x̂

ψ̂ (x̂, Î, t̂). (46) 

Substituting the reference values (45) in (46) yields the dimension
less interface motion equation 

∂ Î
∂ t̂

= ε ∂
∂x̂

{ψ̂ (x̂, Î, t̂)}, (47) 

where we introduced the dimensionless parameter ε = N0T
ηL . For further 

analyses, we implemented a numerical solution scheme to solve (47)
using the Runge-Kutta method in time and central differences in space.

In order to provide additional insights into this transient problem, we 
consider an example where the boundary fluxes follow a sinusoidal 
pattern. Such sinusoidal boundary conditions may be relevant when 
seasonality in both recharge and seepage fluxes occurs. The example 
problem is given by 

D. van de Craats et al.                                                                                                                                                                                                                         Advances in Water Resources 192 (2024) 104793 

8 



N(t) = N0 + Asin
(

2πt
T

)

K(t) = K0 − Asin
(

2πt
T

) , (48) 

where A [LT-1] is the flux amplitude, N0 and K0 [LT-1] are the average 
(positive) recharge and seepage fluxes, respectively, and T [T] is the 
reference period. Flux amplitude A may exceed both N0 and K0, implying 
that N(t) and K(t) may become negative. This allows for seasonal 
evapotranspiration or downward seepage. Clearly, the parameters A, N0 
and K0 should be chosen such that I(x, t) < 0 for 0 ≤ x < L and for all 
times t > 0. For this choice of boundary conditions, recharge decreases 
while seepage increases and vice versa, which resembles a real-world 
situation with a fixed aquifer head at sufficient distance from the 
groundwater table. In the summer period recharge may be low, such that 
phreatic groundwater levels are lower than heads in an underlying 
aquifer, resulting in increased upward seepage fluxes. Conversely, in 
winter more recharge results in higher phreatic groundwater levels, 
resulting in decreased upward seepage fluxes.

When (48) applies, the problem has two time-scales: the oscillation 
period T in the boundary conditions and the transport time ηL

N0
. The ratio 

of the two, ε = N0T
ηL , is the dimensionless parameter introduced in (47). 

When the oscillation period is much smaller than the transport time, i.e. 
ε ≪ 1, we can follow van Duijn and van der Zee (2018) and apply a 
two-scale expansion to obtain an approximation of the time dependent 
interface behaviour. This approximation can be handled by analytical 
techniques when x = 0, i.e. at the location midway between the drains. 
The resulting expression is useful as benchmark for numerical simula
tions, and, more importantly, it gives insight in the roles of the two time 
scales. With h(t) := I(0, t) and hinit := h(0), we derive in Appendix A the 
approximation 

h(t) = h0(t)

+ ε A
N0

L
2π

⎛

⎜
⎜
⎜
⎜
⎝

cos
(

2π t
T

)
−

1 + e

(

π hinit
L

)

1 + e

(

π
h0(t)

L

)e
π 2N0+K0
2(N0+K0)

(
h0(t)

L − hinit
L − K0 t

ηL

)
⎞

⎟
⎟
⎟
⎟
⎠

+ O
(
ε2),

(49) 

where O
(
ε2) [L] denotes the second and higher order terms with respect 

to ε. The function h0(t) [L] is resolved from the algebraic equation 

⃒
⃒
⃒
⃒
⃒
⃒
e

(

π
h0(t)

L

)

−
K0

2N0 + K0

⃒
⃒
⃒
⃒
⃒
⃒
e

(

− π 2N0+K0
2(N0+K0)

h0(t)
L

)

=

⃒
⃒
⃒
⃒
⃒
⃒
⃒

e

(

π hinit
L

)

−
K0

2N0 + K0

⃒
⃒
⃒
⃒
⃒
⃒
⃒

e

(

− π 2N0+K0
2(N0+K0)

hinit
L

)

e

(

− π
K0(2N0+K0)
2N0(N0+K0)

N0 t
ηL

)

. (50) 

In (49), the first term denotes the slow variation of the interface 
position. From (50) we deduce the following observations for the 
behaviour of h0(t):

• For any hinit < 0, and with h defined in (35),

h0(t) → h as t → ∞, with exponential decay of order 

O

⎛

⎜
⎝e

(

− π K0(2N0+K0)
2N0(N0+K0)

N0t
ηL

)⎞

⎟
⎠;

• If hinit > h, then h0(t) decreases towards h;
• If hinit < h, then h0(t) increases towards h;

• If hinit = h, then h0(t) = h for all t > 0.

The second term in (49) involving the cosine is O (ε) and oscillates 
with period T. Since ε = N0T

ηL ≪1, this is the fastly oscillating term. The 
third term in (49) is O (ε) as well and denotes the slowly decaying 
correction to the first term h0(t).

If hinit = h0, then (49) reduces to 

h(t) = h0 + ε A
N0

L
2π

⎛

⎜
⎝cos

[
2π t

T

]
− e

(

− π
K0(2N0+K0)
2N0(N0+K0)

N0 t
ηL

)⎞

⎟
⎠+ O

(
ε2). (51) 

As an example, we present solutions for time-dependent boundary 
conditions in the form of (48). We follow the development of the 
interface depth over time, based on (i) the analytical approximation 
(49), (ii) the numerical solution to the interface motion equation (47)
and (iii) the first moment of the vertical concentration change midway 
between the drains as calculated with SUTRA. To obtain lens thickness 
from SUTRA simulation results, we used the average groundwater level 
over one period to avoid fast groundwater level fluctuations obscuring 
the slower movement of the interface: the groundwater level is highest 
in times of highest recharge rates and responds quite fast. If we would 
obtain lens thickness including these fast groundwater level movements, 
this would obscure the slower interface movement, in accordance with 
de Louw et al. (2013).

We describe three cases, which only deviate in their initial conditions 
(IC), and one additional case with a different ratio ε of the characteristic 
time T over the steady travel time ηL

N0
. For the parameters not specifically 

mentioned in this section, we use reference parameters given in Table 1.
The initial conditions are given by the steady state solution for K/N 

ratios of 2, 1 and 0.5, respectively, of which their steady state solutions 
were already shown in Fig. 2. The transient boundary conditions are 
given by (48), with N0 = K0 = A = 0.5 mm d-1, and an oscillation period 
T of 364 days. Given (35) and (49), the interface position moves from an 
initial state (given as h/L) of -0.22, -0.35 and -0.51, respectively, to an 
equilibrium at -0.35 for all three situations. The reference parameters 
give ε = 0.081. The fourth situation also starts at -0.22, but has a four 
times larger value of ε (ε = 0.324) due to a decrease in porosity. As in our 
derivation of the analytical approximation we assumed ε ≪ 1, this 
parameterization may be already quite extreme.

5.2. Example results

Calculated movement of the interface position midway between the 
drains by the analytical approximation (49), as given by the solid si
nusoidal lines in Fig. 4, are hardly distinguishable from the numerical 
approximation of the interface motion equation (47) (dotted lines) at 
that position. The second and higher order terms in (49) therefore 
appear of minor importance and need not be evaluated for the given 
parameterization, even for the simulation with a higher value of ε. Re
sults of our analytical approach also compare well to SUTRA (black 
dashed lines). There is a slight phase shift in the results of SUTRA as 
compared to our analytical approach. This may be caused by (i) a delay 
in response to changes in recharge due to the unsaturated zone, (ii) 
groundwater level fluctuations which are not accounted for in the 
analytical approximation, and (iii) oscillations in skewness of the mixing 
zone.

The second and third term in (49) are specific to the boundary 
conditions (48). The effect of the third term in (49) is clearly demon
strated for the situation with the initial condition given by K/N = 1 
(Fig. 4, in green). In the first few oscillation periods, the sinusoidal line 
lies below the solid, non-sinusoidal line for the majority of time. This is a 
consequence of the definition and timing of the initial – and boundary 
conditions. As the boundary conditions are defined such that N(t) > N0 
and K(t) < K0 for 0 < t < T/2, during this time the interface is pushed 
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downward from its initial, steady state position, and in the remainder of 
this period the interface is pushed upward again, only to end up slightly 
above its initial condition. Therefore, most of the time within the first 
period the interface is below its starting position. The analytical results 
match the results of SUTRA of this correction closely.

The effect of the second term in (49) is apparent in all simulations. In 
the analytical approximation, the amplitude of the oscillations itself is 
not influenced by the initial condition, as seen directly from (49). It is 
solely driven by the value of ε and changes in boundary fluxes, of which 
the latter directly influences the stream function in time. In the SUTRA 
model the groundwater table itself may fluctuate, implying that lens 
thickness not only changes due movement of solutes, but also due to 
changes in thickness of the saturated zone. This effect appears to have 
little influence on the amplitude of the oscillation of the interface itself. 
Thus, for the parameterizations chosen, the analytical model also com
pares well to the SUTRA model in this respect.

The first term in (49), as given by the solid non-sinusoidal lines de
scribes the change in average interface position rather well when 
compared to SUTRA. This slow term movement may be of special in
terest, as it not only applies to our specific boundary conditions, but also 
applies to situations with a sudden change in boundary conditions or 
may be used to model the effects of gradual changes in boundary 
conditions.

Finally, Fig. 4 shows that the effect of an increase in the ratio of the 
oscillation period over steady travel time, ε, is three-fold. (i) The 
amplitude of oscillations increases, (ii) the response time to changes in 
N0 and/or K0 decreases and (iii) the time required for the correction 
term to diminish is shortened. Hence, a hydrological system with a 
relatively large value of ε is more sensitive to disturbances in boundary 
fluxes as compared to a system with smaller values of ε. It seems that 
even with a relatively high value of ε(0.324), the analytical approxi
mation still aligns well with the numerical implementation of the 
interface motion equation as well as with SUTRA results. Hence, the 
contribution of the second and higher order terms in (49) remain small.

From the numerical implementation of the interface motion equa
tion, we may not only derive the interface position midway between the 
drains, but also at any other location in 0 < x < L. Obtaining the 
interface position sufficiently close to the drain, we may approximate 

the angle of the interface close to the drain with this numerical imple
mentation. With (34), this angle provides the relative contribution of 
both water sources (recharge and seepage) to discharge from the drain at 
any time t. Knowing the solute concentrations of both sources of water 
and the discharge volume, this relative contribution is easily converted 
to an estimate of concentration of the discharge water as well as solute 
load. SUTRA does, in itself, not distinguish between source of water, but 
with known input concentrations in the seepage and recharge water, we 
may use the model output of discharge volume and solute load to obtain 
an estimate of the relative contribution of both water sources to 
discharge at any time t.

A comparison with estimates of the relative contribution obtained 
from the angle of the interface close to the drain with those obtained 
from SUTRA is shown in Fig. 5, for the same situations as described in 
Fig. 4. The resemblance between both models is remarkable, considering 
that SUTRA also takes mixing of solutes into account. The amplitude of 
the oscillation obtained with SUTRA is slightly larger compared to the 
amplitude obtained from the interface motion equation, but patterns 
and the speed at which the equilibrium value of the oscillation changes 
are very similar. The difference in amplitude may be related to the fact 
that in SUTRA, discharge volume also shows a slight oscillating behav
iour due to changes in the groundwater level, whereas discharge volume 
is constant in the interface motion equation for the given 
parameterization.

Clearly, the largest fluctuations in relative contribution, and thus 
solute concentration in the discharge water, are found for a larger value 
of ε. Comparing the evolution of the concentration over time with that of 
the maximum lens thickness (Fig. 4), it is evident that the oscillations in 
concentration move towards their final equilibrium more rapidly in the 
early stages. This is a consequence of the fact that the interface close to 
the drain adjusts more rapidly to the new equilibrium boundary fluxes 
compared to the interface further away. As time proceeds, the slower 
adjustment of the interface further from the drain becomes the main 
driver of the rate at which the discharge concentration moves towards 
its final equilibrium oscillation. Consequently, this rate becomes more in 
line with the rate of change in maximum lens thickness.

Fig. 4. Development of the interface depth midway between the drains, normalized by half a drain distance, as function of time, as obtained from the analytical 
approximation (49) (solid sinusoidal line), the numerical solution of the interface motion equation (47) (dotted sinusoidal line) and from SUTRA (black dashed lines), 
for differing initial conditions (IC) and/or ratios of the oscillation period over transport time (ε). The slow part of the analytical approximation h0(t)/L (50) is 
depicted by the non-sinusoidal solid lines and can only be determined from the analytical approximation.
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6. Mixing zone

6.1. Mathematical model description

In this section we construct a steady state approximation for the 
concentration in the diffusive-dispersive mixing zone midway between 
the drains; i.e. at x = 0. We use (3) and (6) at x = 0, y < 0 as starting 
point. In (3) we assume the porosity and fluid density to be constant and 
we set qx(0,y) = 0, in accordance with (30). Since the density is constant, 
we consider (3) in terms of the relative concentration Cr =

w
wk

, such that 

0 ≤ Cr ≤ 1. In a very lengthy and technical derivation, detailed in Ap
pendix B, we show that the concentration along the half-line {(x, y): x =
0, y < 0} satisfies approximately, with Cr(y) = Cr(0,y) for brevity, 

d
dy

((αL

⃒
⃒
⃒qy(0, y)

⃒
⃒
⃒

η +Dm

)
dCr

dy

)

−
qy(0, y)

η
dCr

dy
= 0 for − ∞ < y < 0,

(52) 

subject to the boundary conditions Cr(0) = 0 and Cr( − ∞) = 1.
Using the vertical flow velocity at x = 0 (36), (52) can be solved for 

Fig. 5. Development of the contribution of the different types of water to the outflow at the drain, as obtained with the numerical implementation of the interface 
motion equation (47) sufficiently close to the drain and using (34) (solid lines) and with SUTRA (dashed lines), for differing initial conditions (IC) and/or ratios of the 
oscillation period over transport time (ε).

Table 2 
Expressions for constants and functions used in (54) and (56).

Parameter Expression Unit

A1 = L
(αLK(2N + K) − NηDm)

(αL(2N + K) + ηDm)(αLK − ηDm)

-

A2 = 2L
π

(N + K)ηDm

(αL(2N + K) + ηDm)(αLK − ηDm)

-

A3 =

−
1

K(2N + K)

(
K

2N + K

)A1
π
(

ηDm
N + K

K

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K

2N + K

√ )− A2 TL− 1TA2L2A2

a1 = 1 -
a2 =

−
L
π

(2N + K)
(αL(2N + K) + ηDm)

-

a3 = 1 −
L
π

K
(αLK − ηDm)

-

a4(y) = αL(2N + K) + ηDm

αLK − ηDm
e

πy
L

-

B1 =
L

(αLK(2N + K) − NηDm)

(αL(2N + K) + ηDm)(αLK − ηDm)

-

B2 = 2L
π

(N + K)ηDm

(αL(2N + K) + ηDm)(αLK − ηDm)

-

B3 = 1
K(2N + K)

(
K

2N + K

)−
B1
π
(

− ηDm
N + K

K

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K

2N + K

√ )− B2 TL− 1TA2L2A2

b1 = 1 -
b2 = L

π
(2N + K)

(αL(2N + K) − ηDm)

-

b3 = 1+
L
π

K
(αLK + ηDm)

-

b4(y) = αL(2N + K) − ηDm

αLK + ηDm
e

πy
L

-
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Cr (Appendix B) by considering the region below and above the interface 
position at x = 0 individually, following the observations in (37). Below 
the interface we obtain 

Cr(y) = 1 + J(h) Re[B(y)] for − ∞ < y < h, (53) 

with  

where J(h) [LT-1] is the (at this point unknown) diffusive salt flux at the 
interface and F(b1,b2; b3; b4(y)) the hypergeometrical function (e.g. 
Abramowitch and Stegun, 1964). Further, Bi and bi (i = 1, 2, 3) are 
constants and b4(y) is a function of y. They are specified in Table 2. We 
take the real part of B(y) in (53) because some of the powers in B(y) may 
be negative.

For the region above the interface, we obtain 

Cr(y) = 1 + J(h)Re[A(y)+B(h) − A(h)] for h < y < 0, (55) 

with  

The constants Ai and ai (i = 1, 2, 3) and the function a4(y) are given in 
Table 2. The flux at the interface is obtained from the condition Cr(0) =

0: 

J(h) = −
1

Re[A(0) + B(h) − A(h)]
. (57) 

Expressions (53) - (57) are derived in a dimensionless setting in 
Appendix B. It was found that, in the end, the characteristic dimen
sionless numbers that remain are D*, α∗

L and K*, given as 

D∗ =
ηDm

αLN
and α∗

L =
αL

L
and K∗ =

K
N
. (58) 

6.2. Example results

Concentration profiles in the vertical direction midway between the 
drains compare well between the analytical and numerical steady state 
solutions, especially below the interface position (Fig. 6). Above the 
interface, the mixing zone obtained with the numerical model extends 
slightly further towards the groundwater table. Two main reasons for 
this are (i) the fact that in the numerical model, solutes are allowed to 

enter the unsaturated zone, whereas in the analytical model we assume 
the concentration to be zero at y = 0, and (ii) the upward curvature of 
the interface, and thus also the mixing zone, moving away from the 
position midway between drains. The latter implies that especially 

Fig. 6. Relative concentration in the vertical direction midway between the drains. Lines indicate analytical results, dots represent numerical SUTRA simulations. 
Colors indicate results for the reference simulation (dark blue), and simulations in which one or two parameters are altered with respect to the reference, as indicated 
in the legend.

B(y) = B3eB1
y
L( − K + 2(N + K) F(b1, b2; b3; b4(y)))

(
(αLN − ηDm)cosh

(πy
2L

)
+ αL(N + K)sinh

(πy
2L

))B2
. (54) 

A(y) = A3e− A1
y
L(K − 2(N + K)F(a1, a2; a3; a4(y)))

(
(αLN + ηDm)cosh

(πy
2L

)
+ αL(N + K)sinh

(πy
2L

))A2
⋅ (56) 
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above the interface, mixing in the horizontal direction, which was 
deemed small in the analytical approach, and was ignored correspond
ingly, may result in some additional dispersion and spreading of the 
mixing zone.

Fig. 6 shows the effects of changes of values of individual parameters. 
The effects on the mixing zone shape and extent are similar in both the 
numerical and analytical approach. These effects may also be inter
preted in light of the dimensionless groups D∗ =

ηDm
αLN, α∗

L =
αL
L and K∗ = K

N. 
A simultaneous increase in recharge and seepage rate, as well as a 
decrease in porosity, only affect D* and both do so by reducing its value. 
As a consequence the mixing zone width decreases (Fig. 6). An increase 
in drain distance affects only α∗

L, resulting in a (relative) decrease in 
mixing zone thickness as well. The dispersion length influences both D* 
and α∗

L, and does so in an opposite direction. For the parameterization in 
Fig. 6, an increase in dispersion length results in an increase in mixing 
zone width as compared to the reference case, hence, for these param
eters the effect of α∗

L is dominant over D*. An increase in seepage rate, 
and thus only an increase in K*, leads to a decrease of the mixing zone 
width. Finally, an increase in recharge rate, reducing both K* and D*, 
also results in a decrease in mixing zone width, which is less pronounced 
as compared to the decrease with a change in seepage rate. We therefore 
conclude that D* is dominant over K* for the chosen parameters.

These examples demonstrate the importance of individual parame
ters on the behavior of the mixing zone. We may also examine the 
response of the average mixing zone position (first moment) and width 
(as root of the second central moment) upon changes in the dimen
sionless groups D*, α∗

L and K*. The first moment of the mixing zone as 
obtained with the analytical approximation presented here is given in 

Figs. 7A and C, for varying combinations of the dimensionless groups. 
For increasing values of D* and α∗

L, the first moment is situated deeper in 
the soil profile, and this effect is more pronounced for lower flux ratios. 
The reason for this shift is that the mixing zone spreads further into the 
seepage water part compared to the recharge water part; thus, the 
mixing zone becomes negatively skewed. This is a consequence of both 
the flow pattern and the solute boundary conditions, with higher ve
locity gradients in the recharge water part, and a prescribed concen
tration at y = 0. Also note that for D∗ = α∗

L = 0, the first moment 
coincides exactly with the interface position as obtained with the sharp 
interface approximation. For any α∗

L > 0 and D* > 0, the first moment is 
situated lower in the domain.

With respect to the mixing zone width, for which we take the square 
root of the second central moment, we see in Fig. 7B and D the following 
general behaviour. For increasing values of D* and α∗

L the mixing zone 
width becomes larger. The width is smaller for increasing flux ratios, 
which is a consequence of the higher velocity gradients when the lens 
becomes shallower due to the increase in flux ratio. The numerical 
SUTRA results agree with these analytical results, although the obtained 
widths are consistently somewhat higher than obtained with the 
analytical model. This was observed in Fig. 6 as well.

7. Conclusions

In this Part 1 of a series of two papers on flow in shallow water lenses 
subject to upward seepage and downward infiltration of recharge, we 
have obtained analytical expressions for steady state, transient and 
mixing zone problems, for the situation without density differences 
between the two types of water. Using the sharp interface approach, we 

Fig. 7. (A) Dimensionless first moment (M1) of the vertical concentration gradient midway between the drains as function of D*. M1 provides an estimate of the 
interface position. Colors indicate the flux ratio, line type indicates the value of α∗

L, and dots or triangles give the moments of the numerical SUTRA simulations given 
in Fig. 6 for α∗

L = 0.02 and α∗
L = 0.04, respectively. (B) Dimensionless square root of the second central moment (M2

c, right panel), providing a measure of mixing zone 
thickness. Symbology as in (A). (C) As (A), but now M1 is plotted as function of α∗

L, and line type shows two values of D*. Dots and triangles give the moments of the 
numerical SUTRA simulations for D* = 0.39 and D* = 0.78, respectively. (D) As (B), with symbology as in (c).
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have obtained an expression for the stream function in steady state, from 
which we obtain the interface between the two types of water, being 
either recharge or seepage water. This allows us to also calculate travel 
times of water in the shallow water lens, depending on the entrance 
location of water.

For transient conditions, we obtained the interface motion equation., 
which can be solved by simple numerical techniques along the entire 
horizontal width of the domain. For a situation with specific oscillatory 
boundary conditions, we have demonstrated that the interface position 
midway between the drains can be handled accurately by analytical 
techniques. This allows for a simple evaluation of how parameters as 
porosity and drain distance affect the response of the interface upon 
changes in boundary conditions. The interface motion equation may 
also be used to estimate the relative contribution of both water sources 
to drain discharge at any moment in time.

Finally, we developed an analytical approximation of the mixing 
zone in the vertical direction midway between the drains for steady state 
conditions. Based on this analysis we have identified three dimension
less parameter groups which determine the front width, which improves 
our understanding of the interaction between factors determining the 
mixing zone thickness.

For all cases, we have shown that the results of our analytical ex
pressions align very well with numerical model results of the model 
SUTRA, which solves convection, dispersion and diffusion in the two 
dimensions considered. The analytical expressions provided in this 
paper provide much more conceptual understanding of the flow of water 
and solutes in shallow water lenses as compared to numerical models, 
allows for simple exploration of the sensitivity of the shallow lenses to 
changing conditions, and may provide a basis for further studies on this 

subject.
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Appendix A. – Derivation of the transient approximation

In this appendix we derive (49) and (50), which correspond to the dimensionless Eqs. (A.25) and (A.20) below. Again, we drop the ‘hat’ from the 
dimensionless notation. In this setting, boundary conditions (48) become 

remove this equation 

N(t) = 1 + Asin(2πt)

K(t) = K − Asin(2πt)
, (A.1) 

where A denotes the dimensionless amplitude and where K := K0/N0 is the ratio of upward seepage and recharge.
We implement these boundary conditions in the steady state formulation of the stream function (29) to obtain 

ψ(x, y, t) = (K − Asin(2πt))x − (1+K)u(x, y), (A.2) 

with u(x, y) given by (28). Note that u(x, y) itself is, conveniently, independent of the boundary fluxes. Substitution of (A.2) into the dimensionless 
interface motion equation (47) yields the interface motion equation specific for the boundary conditions (A.1): 

∂I
∂t

= ε
(

K − Asin(2πt) − (1+K)
∂

∂x
(u(x, I))

)

, (A.3) 

subject to the initial condition I(x, 0) = Iinit(x). Here ε = N0T
ηL is assumed to be a small parameter, so that a slow and fast timescale can be distinguished, 

according to 

τ = εt and s =
τ
ε = t (A.4) 

respectively. This allows us to write (A.3) as 

∂I
∂τ = K − (1 + K)

∂
∂x

{u(x, I)} − Asin(2πs). (A.5) 

The underlined part in (A.5) indicates the slow part, independent of s. To obtain a solution to (A.5), we consider a two-scale expansion of I(x, τ), for 
τ > 0 and 0 < s < 1, see e.g. van Duijn and van der Zee (2018). This approximation is of the form 

I(x, τ) = I0(x, τ, s) + εI1(x, τ, s) + ε2I2(x, τ, s) + …, (A.6) 
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where Ii for i = 0, 1, 2, … is 1-periodic with respect to s and where I0(x,0, 0) = Iinit(x) and Ii(x,0, 0) = 0 for i = 1, 2, …. When we differentiate I(x, τ) on 
the left hand side in (A.6) in τ, we differentiate the right hand side terms in (A.6) in ∂

∂τ +
1
ε

∂
∂s. We may then substitute (A.6) into (A.5) to obtain 

∂I0

∂τ +
1
ε

∂I0

∂s
+ ε ∂I1

∂τ +
∂I1

∂s
+ ε2∂I2

∂τ + ε ∂I2

∂s
+ ⋯ = K − (1 + K)

∂
∂x

{

u(x, I0) + ε ∂u
∂y

(x, I0)I1 + O
(
ε2)
}

− Asin(2πs). (A.7) 

If we consider the powers of ε in (A.7), we find 

i. ε− 1 :
∂I0

∂s
= 0

ii. ε0 :
∂I0

∂τ +
∂I1

∂s
= K − (1 + K)

∂
∂x

{u(x, I0)} − Asin(2πs)

iii. ε1 :
∂I1

∂τ +
∂I2

∂s
= − (1 + K)

∂
∂x

{
∂u
∂y

(x, I0) I1

}

(A.8) 

Clearly, (i) implies that I0 is a function of only x and τ and not of s, implying that the lowest order term is independent of the fast timescale. The 
underlined terms in (ii) are 1-periodic in s. Hence, integration of (ii) from s = 0 to s = 1 yields 

∂I0

∂τ = K − (1+K)
∂

∂x
{u(x, I0)}, (A.9) 

with I0(x,0) = Iinit(x). As u(x, I0) is known from (28), this gives us, in principle, I0(x,τ).
We also see from (ii) in (A.8) that 

∂I1

∂s
= − Asin(2πs) or I1 =

A
2π cos(2πs) + g(x, τ) (A.10) 

for 0 < s < 1, where g(x, τ) is an unknown integration constant which needs to be determined. Since I1(x,0, 0) = 0, given as initial condition, g(x, 0) =
− A/2π. An equation for g(x, τ) is found by substituting (A.10) into (A.8 iii). This gives 

∂g
∂τ +

∂I2

∂s
= − (1+K)

∂
∂x

⎧
⎨

⎩

∂u
∂y

(x, I0)

⎛

⎝ A
2π cos(2πs)+ g(x, τ)

⎞

⎠

⎫
⎬

⎭
. (A.11) 

The underlined terms again denote the parts which are 1-periodic in s. Also recall that I0 is a function of only x and τ. Integrating (A.11) from s =
0 to s = 1 yields 

∂g
∂τ = − (1+K)

∂
∂x

{a g(x, τ)}, (A.12) 

where a(x,τ) = ∂u
∂y (x,I0(x,τ)). This is a first order hyperbolic equation, with a characteristic speed given by (1 + K)a. Since u(0, y) = u(1, y) = 0 for all y 

< 0 (see (25)), it follows that a(0, τ) = a(1, τ) = 0 as well. This implies that the characteristics are in the τ direction at x = 0 and x = 1, and thus no 
boundary conditions are required in (A.12) (nor in (A.9)).

Summarizing, we now have obtained the expansion 

I(x, τ) = I0(x, τ) + ε
(

A
2π cos

(
2π τ

ε

)
+ g(x, τ)

)

+ O
(
ε2) (A.13) 

for 0 < x < 1 and τ > 0. This essentially gives us an expression for the interface with slow and fast terms: I0(x,τ) describes to leading order the slow 

movement of the interface, the term εg(x, τ) denotes a first order correction to I0 and εA
2π cos

(
2π τ

ε

)
is the fast oscillatory term due to the boundary 

conditions.
To evaluate (A.13) at each position between the drains, i.e. for arbitrary 0 ≤ x < L, is not straightforward. Fortunately, the situation simplifies 

midway between the drains, in the sense that at x = 0, Eqs. (A.9) and (A.12) can be handled by analytical techniques. The key point is that at x = 0 (see 
(25)), 

u(0, y) = 0 for all y < 0. (A.14) 

Hence, 

∂u
∂y

(0, y) = 0,
∂2u
∂y2 (0, y) = 0 for all y < 0. (A.15) 

Evaluating 

∂
∂x

{u(x, I0)} =
∂u
∂x

(x, I0) +
∂u
∂y

(x, y)
∂I0

∂x 

at x = 0, then gives 

∂
∂x

{u(x, I0)}|x=0 =
∂u
∂x

(0, I0). (A.16) 
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Next we introduce the notation 

h(τ) := I(0, τ) and h0(τ) := I0(0, τ). (A.17) 

Using (28) or (32) in (A.16) and (A.9), yields for h0 the initial value problem 
⎧
⎪⎨

⎪⎩

∂h0

∂τ = K − 2(1 + K)
eπh0

1 + eπh0
for τ > 0

h0(0) = Iinit(0)
. (A.18) 

To solve this problem, first rewrite (A.18) as 

∂h0

∂τ = − (2+K) + 2(1+K)
1

1 + eπh0
.

Multiplying both sides by eπh0 , we find for w = eπh0 

1
π

∂w
∂τ = − (2+K)w + 2(1+K)

w
1 + w

,

or 

1 + w
Kw − (2 + K)w2

∂w
∂τ = π 

or 
⎛

⎜
⎝

1
w
−

2(1 + K)
2 + K

1
w − K

2+K

⎞

⎟
⎠

∂w
∂τ = πK.

Straightforward integration yields 

⎛

⎜
⎝

⃒
⃒
⃒
⃒w(τ) − K

2+K

⃒
⃒
⃒
⃒

w(τ)

⎞

⎟
⎠

2(1+K)
2+K

=

⎛

⎜
⎝

⃒
⃒
⃒
⃒w(0) − K

2+K

⃒
⃒
⃒
⃒

w(0)

⎞

⎟
⎠

2(1+K)
2+K

e− πKτ. (A.19) 

In terms of h0 this reads as 
⃒
⃒
⃒
⃒e

πh0(τ) −
K

2 + K

⃒
⃒
⃒
⃒e

−
2+K

2(1+K) πh0(τ)
=

⃒
⃒
⃒
⃒e

πIinit (0) −
K

2 + K

⃒
⃒
⃒
⃒e

−
2+K

2(1+K) πIinit(0)e− π
K(2+K)
2(1+K) τ

. (A.20) 

Clearly, if Iinit = 1
π ln
(

K
2+K

)

, then h0(τ) = 1
π ln
(

K
2+K

)

for all τ > 0, and 

h0(τ)→
1
π ln
(

K
2 + K

)

as τ→∞ for any Iinit(0) < 0, (A.21) 

with exponential decay.
Next we consider (A.12). In this equation 

a(x, τ) = ∂u
∂y

(x, I0(x, τ))

and 

∂a
∂x

=
∂2u

∂x∂y
(x, I0) +

∂2u
∂y2 (x, I0)

∂I0

∂x
.

At x = 0, we apply (A.15) yielding 

a(0, τ) = 0 and
∂a
∂x

(0, τ) = ∂2u
∂x∂y

(0, I0).

Cross differentiating (28) and using the notation from (A.17) and g(τ) = g(0, τ), we obtain at x = 0 the problem 

∂g
∂τ = − 2π(1+K)

exp(πh0)

(1 + exp(πh0))
2 g for τ > 0, (A.22) 

with g(0) = − A/2π.
Using (A.18) we write (A.22) as 
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1
g

∂g
∂τ = π

(
∂h0

∂τ − K
)

1
1 + eπh0

= π
(

∂h0

∂τ − K
)(

1 −
eπh0

1 + eπh0

)

= π ∂
∂τ (h0 − Kτ) − π eπh0

1 + eπh0

∂h0

∂τ + πK
eπh0

1 + eπh0 

Again with (A.18): 

1
g

∂g
∂τ = π ∂

∂τ (h0 − Kτ) − π eπh0

1 + eπh0

∂h0

∂τ +
πK

2(1 + K)
∂
∂τ (h0 − Kτ).

Thus, we have found: 

∂
∂τ ln|g| = −

∂
∂τ ln

(
1+ eπh0

)
+

π(2 + K)
2(1 + K)

∂
∂τ (h0 − Kτ)

or 

g(τ) = −
A
2π

1 + eπIinit(0)

1 + eπh0(τ)
eπ 2+K

2(1+K) (h0(τ) − Iinit(0) − Kτ)
. (A.23) 

Hence, we have obtained an explicit solution for g in terms of h0.
Combining (A.23) and (A.21), it follows that 

g(τ) = O

⎛

⎜
⎝e− π

K(2+K)
2(1+K) τ

⎞

⎟
⎠ as τ→∞. (A.24) 

The special case Iinit(0) = 1
π ln
(

K
2+K

)

yields h0 = 1
π ln
(

K
2+K

)

and thus 

g(τ) = −
A
2πe− π

K(2+K)
2(1+K) τ

.

To summarize: midway between the drains the interface behaves according to 

h(τ) = h0(τ) +
εA
2π

⎛

⎜
⎝cos

(
2π τ

ε

)
−

1 + eπIinit (0)

1 + eπh0(τ)
e

(

π
(2+K)
2(1+K) (h0(τ) − Iinit(0) − Kτ)

)⎞

⎟
⎠+ O

(
ε2). (A.25) 

The slow variable h0(τ) needs to be resolved from (A.20). The large time behaviour is 

h(τ)→1
π ln
(

K
2 + K

)

+
εA
2π cos

(
2π τ

ε

)
+ O

(
ε2). (A.26) 

Appendix B. – Derivation of the mixing zone approximation

In this appendix we show the derivation of the mixing zone approximation. Starting point is the steady state form of the solute transport equation 
(3) where the density ρ and porosity η are assumed constant. For the solute mass fraction w [MM-1] results 

∇⋅(ρw q→) = ∇⋅
[
ηρ
(

DmI
̿
+D

̿ )
∇w
]
, (B.1) 

In the domain between the drains ( − L, L) × ( − ∞, 0), subject to the horizontal boundary conditions 

w(x, 0) = 0, w(x, − ∞) = wK for − L < x < L. (B.2) 

The conditions along the vertical boundaries {x = ±L} are zero-flux, but they do not play a role in the analysis below. Redefining Cr :=
w
wk

, and 
substituting in (B.1), now with boundary conditions 

Cr(x,0) = 0, Cr(x, − ∞) = 1 for − L < x < L, (B.3) 

allows us (since div q→ = 0) to write (B.1) as 

q→⋅∇Cr = ∇⋅
[
η
(

DmI
̿
+D

̿ )
∇Cr

]
, (B.4) 

where q→ is given by (30) and (31). We substitute q→= η v→ in (B.4) in the remainder of this appendix.
To clarify the role of the various model parameters, let us first rescale the equation (as we did in Appendix A) by setting 
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v̂
→

=
η
N

v→, x̂ =
x
L

and ŷ =
y
L
. (B.5) 

Then, from (30) and (31) 

remove equation 

v̂x = (1 + K)
sin(π x̂)

cos(πx̂) + cosh(π ŷ)

v̂y = −

(

1 + (1 + K)
sinh(π ŷ)

cos(π x̂) + cosh(π ŷ)

) . (B.6) 

where K := K/N0 and N := N/N0 = 1.
Further, (B.4) becomes 

v̂x
∂Cr

∂x̂
+ v̂y

∂Cr

∂ŷ
=

αL

L
∂

∂x̂

(

(dxx(x̂, ŷ)+D∗)
∂Cr

∂x̂
+ dxy(x̂, ŷ)

∂Cr

∂ŷ

)

+
αL

L
∂

∂ŷ

(

dyx(x̂, ŷ)
∂Cr

∂x̂
+
(
dyy(x̂, ŷ)+D∗

) ∂Cr

∂ŷ

)

, (B.7) 

where 

remove eq.

dxx(x̂, ŷ) =

|v̂x(x̂, ŷ)|2 +
αT

αL

⃒
⃒v̂y(x̂, ŷ)

⃒
⃒2

v̂
→
(x̂, ŷ)

dyy(x̂, ŷ) =

αT

αL
|v̂x(x̂, ŷ)|2 +

⃒
⃒v̂y(x̂, ŷ)

⃒
⃒2

v̂
→
(x̂, ŷ)

dxy(x̂, ŷ) = dyx(x̂, ŷ) =
(

1 −
αT

αL

)
|v̂x(x̂, ŷ)|

⃒
⃒v̂y(x̂, ŷ)

⃒
⃒

v̂
→
(x̂, ŷ)

.

(B.8) 

remove eq.

We note that in (B.7) and (B.8), there appear four dimensionless groups: 

K∗ =
K
N
, α∗

L =
αL

L
, α∗

T =
αT

αL
and D∗ =

ηDm

NαL
. (B.9) 

In what follows we drop the ‘hat’ notation from the dimensionless formulation.
The objective is to derive an approximate equation for Cr(0,y), y < 0, and to solve this equation in terms of elementary functions. In the derivation 

we make use of the fact that the problem with the two drains is symmetric with respect to x = 0. Hence 

Cr(x, y) = Cr(− x, y) and thus
∂Cr

∂x
(0, y) = 0 for any y < 0. (B.10) 

The difficulty in finding an equation for Cr(0,y) is that the coefficient dxy(x,y) is not differentiable at x = 0, as sketched in (B.1). Hence we have to 
avoid taking derivatives in (B.7). Instead, we apply the operator 

lim
Θ↘0

1
2Θ

∫Θ

− Θ

…dx (B.11) 

to (B.7) for each fixed y < 0. We do this term by term. In some cases we use the well-known result that, if a function f = f(x) is continuous near x = 0, 
then 

lim
Θ↘0

1
2Θ

∫Θ

− Θ

f(x)dx = f(0). (B.12) 

Term 1: 

lim
Θ↘0

1
2Θ

∫Θ

− Θ

vx(x, y)
∂Cr

∂x
dx = vx(0, y)

∂Cr

∂x
(0, y) = 0.

Term 2: 
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lim
Θ↘0

1
2Θ

∫Θ

− Θ

vy(x, y)
∂Cr

∂y
dx = vy(0, y)

∂Cr

∂y
(0, y).

Term 3:

Here we use dxx(x,y) = dxx( − x, y) and, from (B.10), ∂Cr
∂x ( − x,y) = − ∂Cr

∂x (x,y). Then 

1
2Θ

∫Θ

− Θ

∂
∂x

(

(dxx(x, y)+D∗)
∂Cr

∂x
(x, y)

)

dx =

1
2Θ

(

(dxx(Θ, y)+D∗)
∂Cr

∂x
(Θ, y) − (dxx(− Θ, y)+D∗)

∂Cr

∂x
(− Θ, y)

)

=

1
2Θ

(dxx(Θ, y)+D∗)

(
∂Cr

∂x
(Θ, y) −

∂Cr

∂x
( − Θ, y)

)

For Θ↘0, we have (dxx(0,y) + D∗) ∂2Cr
∂x2 (0,y).

Term 4:

Here we use dxy(x,y) = dxy( − x, y) and, from (B.10), ∂Cr
∂y ( − x,y) = − ∂Cr

∂y (x,y). Then 

1
2Θ

∫Θ

− Θ

∂
∂x

(

dxy(x, y)
∂Cr

∂y
(x, y)

)

dx =

1
2Θ

(

dxy(Θ, y)
∂Cr

∂y
(Θ, y) − dxy(− Θ, y)

∂Cr

∂y
(− Θ, y)

)

= 0 

for all Θ > 0.

Term 5: 

1
2Θ

∫Θ

− Θ

∂
∂y

(

dyx(x, y)
∂Cr

∂x
(x, y)

)

dx =

1
2Θ

∂
∂y

∫Θ

− Θ

dyx(x, y)
∂Cr

∂x
(x, y)dx 

As Θ↘0, there remains 

∂
∂y

dyx(0, y)
∂Cr

∂x
(0, y) = 0.

Term 6: 

lim
Θ↘0

1
2Θ

∫Θ

− Θ

∫Θ

− Θ

∂
∂y

(
(
dyy(x, y)+D∗

) ∂Cr

∂y
(x, y)

)

dx =

∂
∂y

(
(
dyy(0, y)+D∗

) ∂Cr

∂y
(0, y)

)

Combining these results we obtain from (B.7) and operator (B.11) 

vy(0, y)
∂Cr

∂y
(0, y) =

αL

L
(dxx(0, y)+D∗)

∂2Cr

∂x2 (0, y) +
αL

L
∂
∂y

(
(
dyy(0, y)+D∗

) ∂Cr

∂y
(0, y)

)

. (B.13) 

Note that 
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dxx(0, y) =
αT

αL

⃒
⃒vy(0, y)

⃒
⃒

and 

dyy(0, y) =
⃒
⃒vy(0, y)

⃒
⃒.

Hence, 

dxx(0, y) =
αT

αL
dyy(0, y). (B.14) 

Let us now consider the expected contributions of the right hand side terms in (B.13). Based on the numerical simulations in SUTRA, let us, for the 
sake of the argument, approximate the vertical concentration gradient at x = 0 by a normal Gaussian distribution. The terms ∂Cr

∂y (0, y) and ∂
2Cr
∂y2 (0, y) then 

take the following shape: 

∂Cr

∂y
(0, y) ≅

1
σ
̅̅̅̅̅̅̅
2π

√ e−
(y− I(0))2

2σ2 and
∂2Cr

∂y2 (0, y) ≅ −
(y − I(0))

σ3
̅̅̅̅̅̅
2π

√ e−
(y− I(0))2

2σ2 ,

with I(0) = 1
π ln
(

K
2+K

)

at x = 0 as given in (35). Let us also assume that the vertical concentration at x = Δx, with Δx being a small number, follows the 

same distribution, with the same standard deviation but a slight upward displacement, with the interface I(Δx) being resolved from (33). We can then 
approximate the term ∂2Cr

∂x (0, y) numerically, considering that the problem is symmetric with respect to x = 0.
Assuming a standard deviation σ = 0.085, N = K and all other parameters as in the reference simulation, Fig. B.1A shows that this normal Gaussian 

distribution approximates the mixing zone reasonably well for the given standard deviation.
From Fig. B.1B, we observe that within the mixing zone 

(dxx(0, y)+D∗)
∂2Cr

∂x2 (0, y)≪
⃒
⃒
⃒
⃒

(
dyy(0, y)+D∗

) ∂2Cr

∂y2 (0, y)
⃒
⃒
⃒
⃒,

except around the interface position itself, where ∂2Cr
∂y2 (0,y) = 0. However, we also note that at that position 

(dxx(0, y)+D∗)
∂2Cr

∂x2 (0, y)≪
∂dyy(0, y)

∂y
∂Cr

∂y
(0, y).

Hence, we may argue that the term αL
L (dxx(0, y)+D∗) ∂2Cr

∂x2 (0, y) can be omitted without large consequences.    

Fig. B.1. (A) Vertical concentration profile midway between drains obtained from the reference SUTRA simulation and approximated as a normal Gaussian dis
tribution. Dotted lines indicate interface position plus and minus one standard deviation. (B) Absolute value of the second order derivatives of the concentration with 
respect to y midway between the drains for the SUTRA simulation (black dotted) and Gaussian distribution (blue), and second order derivative of the concentration 
with respect to x for the Gaussian distribution (red).
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What remains is a second order equation for Cr(0,y) in y. To simplify the notation we set C(y) = Cr(0,y) and 

v(y) = vy(0, y) = −

(

1 + (1 + K)
eπy − 1
eπy + 1

)

. (B.15) 

The resulting boundary value problem reads 

αL

L
d
dy

(

(|v(y)|+D∗)
dC
dy

)

− v(y)
dC
dy

= 0 (B.16) 

for − ∞ < y < 0, subject to 

C(0) = 0 and C(− ∞) = 1. (B.17) 

To solve (B.16), we introduce the (negative) flux 

J(y) = (|v(y)|+D∗)
dC
dy

, (B.18) 

which satisfies 

αL

L
dJ
dy

−
v(y)

|v(y)| + D∗
J = 0.

Integrating this equation yields 

J(y) = J(h) e

L
αL

∫y

h

v(ξ)
|v(ξ)|+D∗ dξ

. (B.19) 

Here h < 0 is the location of the interface at x = 0 and J(h) is the unknown salt flux at that position. Combining (B.18) and (B.19) results in 

C(y) = 1 + J(h)
∫y

− ∞

1
|v(ξ)| + D∗

e

L
αL

∫ξ

h

v(s)
|v(s)|+D∗ ds

dξ. (B.20) 

This expression satisfies the boundary condition C( − ∞) = 1. The idea is to choose J(h) such that C(0) = 0. To evaluate the integrals in (B.20) we 
note that 

|v(y)| = v(y) if y < h,

|v(y)| = − v(y) if y > h.

We computed (B.20) with the software of Mathematica (Wolfram Research, 2019). The result is as follows: 

C(y) = 1 + J(h) Re{B(y)} for − ∞ < y < h, (B.21) 

with 

B(y) = B3eB1y( − K+2(1+K) F(b1, b2; b3; b4(y)))
(
(1 − D∗)cosh

(πy
2

)
+ (1 + K)sinh

(πy
2

))B2
. (B.22) 

Here, F(b1,b2; b3; b4(y)) is the hypergeometrical function (e.g. Abramowitch and Stegun, 1964). Further, Bi and bi (i = 1, 2, 3) are constants and 
b4(y) is a function of y. They are specified in Table B.1. We take the real part of B(y) in (B.21) because some of the arguments in B(y) may be negative.

Similarly, we have 

C(y) = 1 + J(h) Re{A(y)+B(h) − A(h)} for h < y < 0, (B.23) 

with 

A(y) = A3e− A1y(K − 2(1+K) F(a1, a2; a3; a4(y)))
(
(1 + D∗)cosh

(πy
2

)
+ (1 + K)sinh

(πy
2

))A2
. (B.24) 

The constants Ai and ai (i = 1, 2, 3) and the function a4(y) are specified in Table B.1 as well.
Finally, the flux at the interface is obtained from the condition C(0) = 0: 

J(h) = −
1

Re{A(0) + B(h) − A(h)}
. (B.25) 
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Table B.1 
Expressions for the dimensionless constants and functions used in (B.22) and (B.24).

Parameter Expression

A1 = L
αL

(2 + K)K − D∗

(2 + K + D∗)(K − D∗)

A2 = 2
π

L
αL

(1 + K)D∗

(2 + K + D∗)(K − D∗)

A3 =

−
1

(2 + K)K

(
K

2 + K

)A1
π
(

D∗1 + K
K

̅̅̅̅̅̅̅̅̅̅̅̅
K

2 + K

√ )− A2

a1 = 1
a2 =

−
1
π

L
αL

2 + K
2 + K + D∗

a3 = 1 −
1
π

L
αL

K
K − D∗

a4 = 2 + K + D∗

K − D∗
eπy

B1 = L
αL

(2 + K)K + D∗

(2 + K − D∗)(K + D∗)

B2 = 2
π

L
αL

(1 + K)D∗

(2 + K − D∗)(K + D∗)

B3 = 1
(2 + K)K

(
K

2 + K

)−
B1
π
(

− D∗1 + K
K

̅̅̅̅̅̅̅̅̅̅̅̅
K

2 + K

√ )− B2

b1 = 1
b2 = 1

π
L
αL

2 + K
2 + K − D∗

b3 = 1+
1
π

L
αL

K
K + D∗

b4(y) = 2 + K − D∗

K + D∗
eπy
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