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Abstract
Weather extremes can drive substantial crop losses. Farm-level management strategies play a
critical role in mitigating the impacts of and consequences for farmer livelihoods and food security.
While the impacts of extreme weather on crop yields are well documented in recent studies, these
predominantly focused on expansive geographical scales and commonly overlooked the critical
role of management practices in modulating the dynamics of weather-crop sensitivities. We fill this
gap in the literature by using a unique dataset that explores the timely relationship between
extreme weather and crop yields at farm level in the Netherlands. We cover 10 types of crops and
elucidate the role of soil types, irrigation and nutrient application in modulating the relationship
between extreme weather and crops, by estimating fixed-effects regression models. We show
substantial impacts from drought during the growing- and harvesting period and excessive
precipitation during the planting- and growing period. Severe droughts show significant
(p⩽ 0.05) reductions in yield for all crops, and lead to yield reductions up to 24 percent relative to
average yields during the growing period. Meanwhile, eight crops show significant reductions in
yield due to severe water excess during the planting period, with yield reductions up to 18 percent.
Soils such as sand or loess amplify the negative impact of drought on crop yield, while softening the
impact of excessive precipitation. Irrigation and to a lesser extent nutrient application are shown to
moderately decrease the impact of extreme weather on crop yield. Our findings contribute valuable
insights to guide local adaptation priorities which are critical given the projected increase in the
intensity and frequency of extreme weather under climate change.

1. Introduction

Arable crop farming is highly sensitive to variability
in weather conditions and in particular to weather
extremes [1]. As the climate warms, extreme wet and
dry conditions are expected to increase in frequency
and intensity [2]. Both excessive wetness and severe
dry spells can lead to substantial crop failures, with
important cascading impacts on national food pro-
duction and the associated socioeconomic conditions
[3–5].

Many studies have investigated the effects of cli-
mate extremes on crop yields [3, 6–10]. Most of the

existing studies focus on either national, sub-national
or regional levels, while only few study the effects on
a farm level [11]. Furthermore, few studies control
for other variables that could explain yield variabil-
ity, such as soil type and irrigation [11, 12], or invest-
igate the interaction effects of drought with vari-
ables that mitigate yield loss. However, in previous
studies, it has been recommended to include addi-
tional variables such as management practices and
irrigation [8, 13], and to further investigate the effects
of weather extremes on crop yields on a farm or field-
level scale [13, 14]. While farm-level management
strategies, such as irrigation and nutrient application,
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have the potential to alleviate the impacts of weather
extremes on crops [15, 16], these strategies have not
been sufficiently incorporated into existing evalu-
ations. To support adaptation measures that reduce
the potential impacts of the future challenges on cli-
mate adaptation, it is important to acquire a com-
prehensive quantitative understanding of the effect-
iveness of existing farm-level management strategies.
However, studies are often limited due to a lack of real
observed data regarding the aforementioned mediat-
ing variables and statistics on a farm- or field-level
scale.

This study deviates from prior research on the
effects of extreme weather on crop yields by using
a farm-level modeling approach instead of aggreg-
ated regional data. This method allows for a detailed
examination from a farmer’s perspective and the
investigation of various farm management strategies.
We define extreme weather as severe deviations
from normal meteorological conditions that influ-
ence water stress and potentially limit crop growth.
The added value of this study is to fill the explained
gap in the literature using a unique dataset contain-
ing farm-level statistics on production and manage-
ment practice obtained from farmers accountancy
data. We aim to answer the following research ques-
tion: How do climate extremes affect crop yields in
the Netherlands? Based on existing literature, it is
hypothesized that some crops are more affected by
climate extremes than others. Crops grown on soil
types such as sand and loess, which have a lower water
holding capacity [17, p 48], are expected to be more
affected by drought than crops grown on soil types
such as clay or peat. In addition, it is assumed that
the effects of drought are diminished by irrigation
use and increased nutrient application. Policymakers
and farm managers could use our findings to prior-
itize and implement targeted irrigation and nutrient
application strategies to mitigate the adverse impacts
of extreme weather on crop yields.

2. Material andmethods

2.1. Farm data
This study uses data collected in the framework of the
Dutch Minerals Policy Monitoring Program (LMM).
The LMM makes as much use as possible of the
data of farms that are affiliated to the Dutch Farm
Accountancy Data Network (FADN), collected by
Wageningen Economic Research. The FADN sample
is stratified according to farm type and standard eco-
nomic output (SO) [18]. In the LMM, soil type region
is also included in the stratification process. Hence,
additional farms are, if necessary, recruited for the
LMM. Farms with less than 10 hectares are excluded
from participation and therefore do not belong to the
target population of the LMM. An economic size of
at least EUR 25 000 SO is also required.

This dataset includes crop yields from 10 differ-
ent crops. For an overview of the variables and their
descriptive statistics see table A1. Besides crop yields,
the data also include soil type (indicated by fraction
sand or loess), irrigation quantity, nitrogen applica-
tion and phosphate application (from artificial fer-
tilizer, animal manure and other organic manure).
Farm data from 2006 until 2022 are used. However,
not all data are available for all farms in each year. For
example, irrigation data are only available from 2010
onwards.

2.2. Weather data
Weather data, including daily precipitation and
potential evapotranspiration (PET), are collected
from the Royal Netherlands Meteorological Institute
(KNMI)5. Precipitation data are sourced from 279
stations across the country, ensuring comprehensive
geographic coverage, whereas PET data are obtained
from 18 strategically placed weather stations, selected
based on their historical reliability and geograph-
ical distribution. PET is estimated by KNMI accord-
ing to the Makkink method [19]. Both variables are
obtained for stations that were present during the
years 1993 through 2022 and are aggregated to a
monthly level. An overview of the descriptive statist-
ics for the collected weather data are shown in table 1.
Figure 1 shows the locations of the precipitation and
weather stations that are used.

2.3. Estimation of climate variability
Field-level precipitation and PET are estimated by
assigning each field to the kp nearest precipitation sta-
tions and the kw nearest weather stations. In case field-
level coordinates are not available, farm coordinates
are used instead. For cases where farmers cultivate
a single crop on multiple fields, a weighted aver-
age of the precipitation and PET levels is calculated
based on the size of the fields. This is done to be
able to combine the weather data with the farm data,
which are collected at the crop level and not on a
field level. Subsequently, Inverse Distance Weighted
Interpolation (IDWI) is used, calculating a weighted
average of the climate variable based on their cor-
responding distances to the stations [20, pp 215–6].
Choosing appropriate values for kp and kw number
of nearest stations is done by applying leave-one-out
validation and selecting values that yield the smallest
mean squared error (MSE) [21, p 30]. See tables B1
and B2, and figure B1 for outcomes of the validation
procedure.

The Standardized Precipitation Evapo-
transpiration Index (SPEI) is used to quantify cli-
mate extremes [22]. The SPEI gives an indication
of the likelihood of a weather event occurring at
a certain location. The SPEI is based on the more
simplistic Standardized Precipitation Index (SPI)

5 Available via: https://www.knmi.nl/nederland-nu/klimatologie.
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Figure 1.Map of the Netherlands, indicating the locations of the KNMI precipitation (blue) and weather (orange) stations used
and the corresponding number of stations N.

Table 1. Descriptive statistics of KNMI weather and precipitation stations.

Units N Stations Time range Min Median Mean St. Dev. Max Observations

PET mm 18 1993–2022 4 44.4 49.70 35.80 140.1 6480
Precipitation mm 279 1993–2022 0 66.9 71.93 39.62 320.0 100 440

[23]. The SPEI is chosen for its ease of interpreta-
tion and its capability to incorporate precipitation as
well as temperature, solar radiation and wind speed,
which determine PET, and subsequently affect crop
water uptake. While the SPI is merely a standardized
measure of precipitation, the SPEI considers the dif-
ference between monthly precipitation and PET, also
known as a precipitation surplus or deficit, calculated
by

Di,m,t = Pi,m,t − PETi,m,t, (1)

where Pi,m,t and PETi,m,t, denote precipitation and
PET for farm i, during month m, at year t, respect-
ively. Due to the memory characteristic of extreme
weather, it is important to take precipitation deficit
from previous months into account. Therefore, past

values of Di,m,t can be weighted according to a ker-
nel function. Here, a rectangular kernel is used, such
that all the previous months have equal weights [24].
Calculating the newly obtained variable xki,m,t, where s
denotes the specified time scale, then comes down to

xsi,m,t = s−1
i∑

l=m−s+1

Di,l,t. (2)

It is suggested to use the three-parameter log-
logistic probability distribution for calculation of
the SPEI [22]. The parameters of this distribu-
tion are estimated using the Probability Weighted
Moments (PWMs) procedure [25]. Instead of using
the plotting-position method [22, 25], an unbiased
version of the PWMs method is used [26], since this
is favorable for computing climate extremes [27].
Subsequently, the SPEI takes on values with mean
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Figure 2. Diagram showing the underlying causal assumptions of the models. The solid lines indicate the causal effects of interest.
The variables year and farm refer to unobserved year and farm specific variables. The variable X can be any of soil type, irrigation,
nitrogen application or phosphate application. SPEI refers to the indicators used to quantify weather extremities. The red variables
and lines are only relevant for estimating the interaction effects of SPEI and X on yield (equation (4)) and not for estimating the
total effects of SPEI on yield (equation (3)). As can be seen from the diagram, when estimating the total effects of SPEI on yield,
we need to control for the year specific effects in order to close any backdoor path that could lead to confounding. When
estimating the interaction effects, we also need to control for X itself. Controlling for X closes the backdoor paths
SPEI×X← X→ yield and SPEI×X← X← farm→ yield.

zero and standard deviation one. The SPEI is estim-
ated using the R package SPEI [24].

Drought and excessive water affect crop yields
differently across seasons [10, 14]. In order to cap-
ture these heterogeneous effects, the SPEI is estim-
ated for three periods (planting, growing and harvest-
ing) separately using time scale s= 3. The time peri-
ods included in the SPEI consist of March through
May, June through August, and September through
November. These might not correspond to the real-
ised dates, however, they should roughly capture the
planting, growing and harvesting periods, respect-
ively, for the Netherlands. No distinction is made
across crops. For some crops these dates are likely dif-
ferent. The selected growing period, however, largely
captures the growing period for all crops.

2.4. Model
We used two regression models. Firstly, with the aim
of identifying the total causal relations, we regress
yields on a polynomial function of SPEI. Using a
polynomial approach to model this relation allows
us to account for potentially nonlinear interactions
between the weather and crop yields. A graphical ana-
lysis indicated that extreme weather events, as repres-
ented by the tails of the SPEI, led to an exponential
reduction in crop yields, justifying the use of a poly-
nomial function. The regression model we adopt is

yieldi,t= β1speip,i,t +β2spei2p,i,t +β3speig,i,t
+β4spei2g,i,t +β5speih,i,t +β6spei2h,i,t
+µi + δt + εi,t,

(3)

where yieldi,t is the annual yield in kilograms per hec-
tare for the corresponding crop of farm i in year t.
speip,i,t is the climate index of farm i in the planting

season of year t. Here, the subscripts p, g and h rep-
resent the planting, growing, and harvesting periods,
respectively.

The second regression model aims at uncover-
ing the interactions between certain field character-
istics and farmers’ decisions. We allow for interac-
tions between SPEI and soil type, irrigation, nitrogen
application and phosphate application. Themodel we
adopt for this purpose is

yieldi,t= γ1speip,i,t + γ2spei2p,i,t + γ3speig,i,t
+γ4spei2g,i,t + γ5speih,i,t + γ6spei2h,i,t
+γ7Xi,t + γ8

(
speip,i,t ×Xi,t

)
+γ9

(
spei2p,i,t ×Xi,t

)
+ γ10

(
speig,i,t ×Xi,t

)
+γ11

(
spei2g,i,t ×Xi,t

)
+γ12 (speih,i,t ×Xi,t)+ γ13

(
spei2h,i,t ×Xi,t

)
+µi + δt + εi,t,

(4)
where Xi,t represents the variable that we are testing
the interactions of.

In both models, we allow for individual fixed
effects, represented by µi, to account for time-
invariant heterogeneity in crop yields across farms.
Moreover, we allow for fixed time-effects, represen-
ted by δt to capture the common effects of unobserved
shocks. Finally, εi,t represent the idiosyncratic shocks.
We use a two-way fixed effects approach to estim-
ate the models. For inference, the standard errors
we use are robust to potential serial correlation and
heteroskedasticity in the errors [28]. For computing
the robust standard errors, observations are clustered
at the group level and the HC3 weighting scheme
is used, which is recommended for linear regression
models [29]. The causal diagram that these models
assume are shown in figure 2.
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Figure 3. Predicted yield changes (% of average yield) in case of a drought (SPEI=−2; in red) and excessive rainfall (SPEI= 2; in
blue) across crops (x-axis) during the planting (top), growing (middle) and harvesting (bottom) period. The whiskers show the
90% confidence interval. The predicted changes are based on the model specifications from equation (3).

3. Results

3.1. Yield reductions as a consequence of extreme
weather
The fitted models from equation (3) show significant
effects of extreme weather on crop yields for eight out
of ten crops (p⩽ 0.01). The model shows significant
effects for starch potato (p⩽ 0.1), while the effects are
insignificant for grass seed. Notably, these two crops
have the lowest number of observations. The regres-
sion coefficients can be found in tables C1 and C2.
The first column of table C11 shows a joint F-test

statistics on all SPEI indicator coefficients for each
crop, which indicate a strong explanatory power of
the model.

To better understand the implications of the res-
ults, we predict changes in crop yields for different
values of the SPEI across all three periods. Figure 3
shows the predicted changes in case of a severe
drought (SPEI=−2) and a severe water excess (SPEI
= 2), for all ten crops. There are three main take-
aways from these figures. First, during the planting
period, excessive precipitation substantially reduces
crop yields. Figure 3(a) show yield reductions up to

5
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Figure 4. Predicted changes in crop yield compared to SPEI= 0 (y-axis) of sugar beet (left) and maize (right) vs. SPEI-3 (x-axis)
for the growing period. The different lines indicate the effects of drought for different soil types (light soil type refers to 100%
sand or loess and heavy soil type to 100% clay or peat). The shaded areas indicate a 90% confidence interval. The percentage yield
change refers to the change relative to the average yield for that crop.

19% compared to their average yield and for six out
of ten crops the predicted yield change is significantly
lower than zero (p⩽ 0.05). Meanwhile, drought dur-
ing the planting period is not shown to have major
impacts, only showing significant decrease for maize
and summer barley and even showing a slight increase
for sugar beet and winter wheat. Second, the most
important factor reducing crop yields seems to be a
dry growing period. Figure 3(b) shows that for eight
out of ten crops a significant decrease in crop yields is
observed with respect to the average yield. These yield
reductions range from 6% to 23%. However, excess-
ive precipitation during the growing period is also
shown to significantly reduce crop yields for six dif-
ferent crops. For the remaining four crops, a substan-
tial reduction is also observed, however, not statistic-
ally significant. Third, the estimated effects of extreme
weather during the harvesting period show mixed
results. For seed potato, sugar beet, summer barley
and ware potato, dry harvesting periods significantly
reduce crop yields. Conversely, for grass, seed potato
and summer barley, excessive precipitation during the
harvesting period significantly reduces yields.

3.2. Moderating role of soil density
The soil type on which crops are cultivated is shown
to play an important role in moderating the effects
of extreme weather on crop yield. Tables C3 and C4
show the regression output for the models including
fraction sand/loess soil and its interaction with the
SPEI variables. A joint F-test on the addition of soil
type shows that the coefficients are jointly signific-
antly different from zero for five out of ten crops at
p⩽ 0.05 (six at p⩽ 0.1).

Heavy soils such as clay or peat are shown to be
more drought resistant than lighter soils. The estim-
ated yield reduction caused by a severe drought (SPEI
=−2) during the growing period are lower on heavy
soils than on light soils for eight out of ten crops.
Although this moderating property is shown formul-
tiple crops, the effect is most clearly illustrated for
weather extremes on sugar beet and maize fields dur-
ing the growing period, as shown in figure 4. The
figure shows the predicted yield changes (y-axis) for
different values of SPEI-3 (x-axis) during the grow-
ing period across different values of sand/loess frac-
tion for sugar beet (left) and maize (right). Note that
the direct effect of the soil type is not shown by the
figures. Focusing on the left side of figure 4(a), it can
be seen that for sugar beet the yield reduction during
a severe drought is approximately 19% for light soil
types, while approximately 11% for heavy soil types.
For maize (figure 4(b)) yield reduction is predicted
to be 4% on heavy soil types, while on light soil types
it is predicted to decrease by about 13%. This con-
firms our hypothesis that heavy soil types, which have
a higherwater holding capacity [17, p 48], are better at
mitigating the effects of drought than light soil types.

On the other hand, light soil types such as sand
or loess are shown to reduce the negative impact of
excessive precipitation on crop yield. The estimated
yield reductions caused by severe wetness (SPEI = 2)
during the growing period are lower on light soils
than on heavy soils for eight out of ten crops. If we
look at figure 4(a), we see that the sign of the mod-
erating effect of soil type switches at SPEI = 0 (the
‘normal’ situation). The differences between estim-
ated yield reduction on light versus heavy soil for
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Figure 5. Predicted changes in crop yield compared to SPEI= 0 (y-axis) of ware potato (top left), seed potato (top right) and
starch potato (bottom) vs. SPEI-3 (x-axis) for the growing period. The different lines indicate the effects of drought for no-,
medium- and high values of irrigation quantity. The medium and high values are subjective to the crop and based on the median
and 90th percentile of the nonzero irrigation values, respectively. The shaded areas indicate a 90% confidence interval. The
percentage yield change refers to the change relative to the average yield for that crop.

sugar beet is 8% (12%–4%). The difference formaize,
however, seems to be insignificant.

3.3. Drought mitigation through irrigation
For several crops, irrigation seems to play an import-
ant role in moderating the effects of drought on crop
yield. The regression output including irrigation and
its interaction with the SPEI variables are shown in
tables C5 and C6. F-tests for inclusion of irrigation
in the model, like shown in table C11 on the third
column, show that the irrigation terms are jointly
significantly different from zero for four out of ten
crops, with p⩽ 0.01. Irrigation seems mainly relev-
ant for onions, grass seeds, ware potatoes and starch
potatoes. In figure 5 we further investigate the role
of irrigation for three types of potatoes, due to their
dependence on irrigation water. The figure shows the

predicted yield change (y-axis) for different values of
SPEI-3 (x-axis) during the growing period across dif-
ferent irrigation quantities for ware potato (top left),
seed potato (top right) and starch potato (bottom).

From figure 5 it can be seen that for all three
potato types, predicted yield losses caused by drought
during the growing period are lower when irriga-
tion quantity is higher. The differences in predicted
yield losses between medium irrigation and no irrig-
ation during an extreme drought (SPEI =−2) are
3% (3%−0%), 2% (10%−8%) and 2% (19%−17%)
for ware-, seed- and starch potato, respectively. These
differences do not seem substantial for any of the
potato types. For high irrigation (90th percentile of
nonzero values) the difference with no irrigation does
seem quite substantial. Comparing high irrigation
with no irrigation, the differences in crop yield loss

7
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due to a severe drought (SPEI=−2) during the grow-
ing period are estimated to be 8% (3%+5%), 6%
(11%−5%) and 7% (19%−12%) for ware-, seed- and
starch potato, respectively. However, the confidence
intervals are also extremely wide, indicating that these
differences are very uncertain. This could be due to a
limited number of nonzero irrigation values. Another
possible explanation for the high variance is that the
timing and irrigation method are important factors
in determining the effectiveness of irrigation.

3.4. Modulating the effects of extreme weather with
fertilizer
The moderating role of nutrient application in the
relationship between extreme weather and crop yield
is not so evident. The regression output for the
models including nitrogen and the interaction with
SPEI variables are shown in tables C7 and C8, while
the regression output for the phosphate models are
given by tables C9 and C10. F-tests on the addition
of the nitrogen variables and their interaction with
the SPEI variables are significant for winter wheat,
grass and maize at p⩽ 0.01 and for sugar beet, grass
seed and seed potato at p⩽ 0.1. For the addition
of phosphate, only grass and maize show signific-
ance (p⩽ 0.05). A possible explanation for grass and
maize mainly benefiting from fertilization in mitig-
ating the effects of extreme weather could be that
a large share of grass and maize fertilization origin-
ates from animal manure rather than artificial fertil-
izer. Animal manure is known to increase soil organic
matter [30], which influences water holding capacity
by acting as a sponge to retain water [31, 32]. On
average, about 66% of nitrogen and 98% and phos-
phate application administered to grass are animal-
based and formaize 83%and 89%, respectively. These
numbers are higher for maize and grass than for the
other eight crops. Since the models only show signi-
ficant results for maize and grass, we will continue by
focusing on these two crops. For grass we will focus
on extreme weather during the growing period and
for maize during the planting period, since these are
the periods that have the most impact on their pro-
duction as discussed in section 3.1. Figure 6 shows
the predicted yield change (y-axis) for different values
of SPEI-3 (x-axis) during the growing period across
different nutrient application quantities for grass and
maize. For grass, both the nitrogen aswell as the phos-
phate model only show significant interaction effects
of nutrient application with SPEI during the grow-
ing period. For maize, however, both models only
show significant interaction terms of nutrient applic-
ation with SPEI for the planting- and harvesting peri-
ods. However, no direct effects of extreme weather
in the harvesting period for maize have been found.
Therefore, we investigate the growing period for grass
and the planting period for maize.

From figures 6(a) and (c) we can see that for
grass, both nitrogen and phosphate application are

able to mitigate a substantial amount of yield loss
caused by excess water during the growing period.
The yield change caused by severe excess water (SPEI
= 2) is estimated to be −11% when low amount of
nitrogen is applied, while it is estimated to increase
by 1% when high amounts of nitrogen are applied.
For phosphate these numbers are −8% and +1%,
respectively. Yield loss caused by drought during the
growing period, however, are only moderately mitig-
ated by increased phosphate application (from 13%
in case of low amounts of phosphate to 8% in case
of high amounts of phosphate) and not by nitrogen.
This could be related to a higher percentage of applic-
ation of phosphate originating from animal manure
than for nitrogen application.

The mitigating role of nutrient application in
yield loss due to extreme weather during the planting
period can be seen in figures 6(b) and (d). Yield loss
due to a severe water excess (SPEI = 2) are shown to
be substantially lower when high amounts of phos-
phate are applied (9%) compared to low amounts
(20%). For high amounts of nitrogen application,
however, yield loss is predicted to be 14% compared
to 16% when it is low and their respective confidence
bounds largely overlap, indicating no significant dif-
ference. Formaize, the drought mitigating patterns of
nitrogen and phosphate application during the plant-
ing period appear very similar. Yield loss in case of a
severe drought (SPEI =−2) are predicted to be 10%
for low nitrogen application compared to 3% when
it is high, and 8% when phosphate application is low
compared to 3% when it is high.

4. Discussion

Contrary to prior research on the effects of extreme
weather on crop yields, that predominantly util-
ize aggregated regional data, our farm-level model-
ing approach provides a unique perspective into the
nuanced effects of extreme weather on crop yields.
This approach allows us to take on a farmer’s per-
spective on this relationship and investigate moderat-
ing properties of several farmmanagement strategies.
Furthermore, we allow ourselves to discover variabil-
ity of this relationship between farmers. For example,
we find clear evidence of starch potato yield loss
caused by drought, however, high unexplained vari-
ance in this relationship shows us great heterogen-
eity in yield response. High variance in our data
also means that drawing conclusions based on signi-
ficance tests becomes more difficult and, therefore,
has to be compensated by a high number of obser-
vations. This stresses the importance of farm- and
field-level data collection. Part of this unexplained
variance can also be attributed to parameter uncer-
tainty. Our climate estimation approach allows us to
establish field-level climate indicators. Outcomes of
the leave-one-out validation procedure show that the
variance explained is quite high (98.1% and 99.9% for
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Figure 6. Predicted changes in crop yield compared to SPEI= 0 (y-axis) of grass (left) and maize (right) vs. SPEI-3 (x-axis). For
grass the effects during the growing period are shown, while for maize the effects during the planting period. The different lines
indicate the effects of drought for low, medium and high values of nitrogen (top) and phosphate (bottom) application, which are
subjective to the crop and based on the 10th percentile, the median and the 90th percentile of nitrogen and phosphate values,
respectively. The shaded areas indicate a 90% confidence interval. The percentage yield change refers to the change relative to the
average yield for that crop.

precipitation and PET, respectively), however these
predictions are not perfect. This means that there is
some uncertainty in the variables that are used for the
models.

Using the SPEI as an indicator for extreme
weather seems to be widely supported in agricul-
tural drought research [6–9]. The choice of indic-
ator is backed by a study in which different indicat-
ors for agricultural drought are compared [33]. Using
SPEI as indicator for water excess is less common.
However, it is shown that the SPEI can also be used
to identify agricultural water excess relevant to wheat
production [3]. Furthermore, the SPEI incorpor-
ates both precipitation as well as temperature, which
have shown to be jointly detrimental for determin-
ing crop yield outcomes [34]. While the SPEI seems
to have good explanatory power when investigating
crop yield variability, many other potential indicat-
ors are not considered in this study. One issue with

our choice of indicator could be that even though
we account for differences in weather extremities
between planting-, growing- and harvesting period,
multiple extreme weather events could happen con-
secutively within one of these periods. The SPEI aver-
ages these events out when two opposing events (like
a flood and a short period of intense drought) occur
consecutively. Several studies investigate a variety of
other indicators for extreme weather in relation to
crop yields [15, 35]. While these approaches could
add significant explanatory power to the regression
function, including more indicators hurts the causal
interpretability of the model. Subsequently, we chose
not to include any other climate indicators. It could be
interesting to investigate thesemodel specifications in
a causal matter, for example by using recent advances
in causal machine learning [36].

In this study, we solely investigate the short term
effects of extreme weather, while the compound
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effects of prolonged drought or water excess could be
highly relevant to crop yield. In 2018, a dry harvest-
ing period following a dry growing period reduced
crop yields substantially higher than predicted by
our models. As frequencies of sustained periods of
weather extremes increase, it is worth investigating
these compound effects or even legacy effects occur-
ring over multiple years, instead of focusing only
on the harvesting year itself. This would require a
dynamic modelling approach and gives rise to new
issues due to movement of crop fields as consequence
of crop rotation and a loss of data due to farms drop-
ping out of the sample.

In order to compare the use of a farm-levelmodel-
ing approach with regional statistics, we compare our
results with other studies investigating the impacts of
climate extremes in the Netherlands from 2012 [37]
and 2023 [14]. First, in the 2012 study drought is
not identified as an extreme weather event that causes
negative potato yield anomalies in the Netherlands
[37]. They suggest this is due to ample irrigation and
a mild climate. This result strongly contradicts our
model outcomes, which show that potato yields are
significantly reduced by drought in both the growing-
as well as the harvesting period. Furthermore, natural
vegetation and drinking water availability might be at
risk as a result of prolonged drought due to a decrease
in groundwater levels [38]. This could pressure policy
makers to temporarily ban irrigation in order to pre-
serve water. Therefore, examining the effectiveness of
irrigation is key to informed decision-making when it
comes to drought adaptation for both farmers as well
as policy makers.

The 2023 study shows that the probability of
onions, ware- and seed potatoes experience extreme
yield loss as a consequence to having a dry growing
period is very high, while maize, winter wheat and
starch potatoes were not shown to have this property.
Sugar beet is shown to lie somewhere in between [14].
These findings are similar to ours, with onemajor dif-
ference. We show starch potato to be the most vul-
nerable crop to drought during the growing period.
Furthermore, the 2023 study did not find a correla-
tion between wet planting period and yield loss [14],
which is contradictory to the findings in this study.
Extreme water excess is shown to be especially relev-
ant during the planting period and to a lesser extent
also the growing- and harvesting periods. The differ-
ence in scale on which the studies focus could poten-
tially explain the differences in findings, since farm
specific characteristics cannot be accounted for when
using aggregates and high variability among farmers
is averaged out.

Improved farm management strategies improve
agricultural productivity, food security and contrib-
ute to economic stability and environmental sustain-
ability by optimizing resource use and mitigating the
adverse effects of climate change on agriculture. In

this study, we focus on farm management practices
that use inputs like water for irrigation and fertil-
izer for nutrient supply in order to mitigate effects of
extreme weather. Insights in the effectiveness of these
practices are important, not only to boost crop pro-
duction itself, but also to maximize input efficiencies.
Farmers in the Netherlands have had ample access
to high amounts of water for irrigation and fertilizer
input for nutrient application for many years [39].
However, restrictions on these inputs in efforts to
reduce agricultural emissions and protect fresh water
supplies force farmers to use them more efficiently
[40, 41]. Furthermore, these inputs come at an eco-
nomic cost, which could diminish profits. Our res-
ults could aid in these trade-off decisions. Other than
these high-input solutions to climate adaptation, low-
input solutions such as diversifying crop species, soil
management and changes to cultivation plans could
be considered [2] and should be studied in future
research.

The findings of the paper suggest that future
farming policies could prioritize targeted irriga-
tion and nutrient application strategies to mitig-
ate the adverse impacts of extreme weather on crop
yields, given that irrigation and nutrient applica-
tion are shown to moderately decrease the impact of
drought and excessive precipitation on crop yields.
Additionally, policies might focus on soil manage-
ment practices, as we show that heavy soils are more
drought-resistant, and light soils are superior dur-
ing excessive wetness, offering a basis for soil-specific
agricultural recommendations.

5. Conclusion

Given the rising frequency of extreme weather due
to climate change, its impact on arable crop yields
in the Netherlands is increasingly critical. This trend
poses significant challenges for future crop productiv-
ity and has broad economic implications for the
nation’s agricultural sector. Using a unique dataset
at farm level, we show that a dry growing period
has the highest impact on crop yields, followed by
an extremely wet planting period. Effects of extreme
weather on crop yields differ substantially across
crops, with onions and potatoes belonging to the
most affected group. Heavy soils are shown to be
more drought resistant than light soils in terms of
crop yield, while during excessive wetness light soils
are proven to be superior. Irrigation and to a lesser
extent nutrient application are shown to be a relevant
drought mitigation strategy for some crops.

Future research should focus on obtaining a
deeper understanding of climate adaptation, resili-
ence, awareness among farmers and changes in agri-
cultural practices induced by extreme weather. Policy
makers and farmers can use this information to
prepare themselves for the negative effects of climate
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extremes on crop production and avoid potentially
great yield losses. The results of this study could help
in isolating farms that are currently most vulnerable
to the effects of extreme weather.
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Appendix A. Farm descriptives

Table A1. Descriptive statistics of farm data per crop.

Crop Variable Min Max Median Mean St. Dev. Unique values Observations

Onion Farm ID 237 1990
Year 2006 2022 2015 2014.48 4.66 17 1990
Yield (kg ha−1) 0 103 253.1 50 000 48 903.95 16 759.06 1979 1990
Irrigation (m3 ha−1) 0 2000.12 0 158.82 321.32 487 1616
Nitrogen use (kg ha−1) 0 432 153.91 160.9 84.23 1842 1936
Phosphate use (kg ha−1 0 246.95 33.63 46.34 50.58 1473 1960
Sand/loess fraction 0 1 0 0.13 0.33 88 1990

Sugar beet Farm ID 442 4157
Year 2006 2022 2014 2013.82 4.83 17 4157
Yield (kg ha−1) 0.13 136 808.5 79 937.8 80 107.06 15 114.71 4156 4157
Irrigation (m3 ha−1) 0 2000.01 0 57.07 214.5 356 3150
Nitrogen use (kg ha−1) 0 458.86 162.56 174.5 82.39 3932 4101
Phosphate use (kg ha−1 0 246.05 51.38 55.76 53.67 2785 4085
Sand/loess fraction 0 1 0 0.42 0.48 335 4142

Winter wheat Farm ID 370 2977
Year 2006 2022 2014 2013.74 4.75 17 2977
Yield (kg ha−1) 0.13 15 092.57 9047.41 8806.33 1781.4 2950 2977
Irrigation (m3 ha−1) 0 1200 0 8.98 72.52 58 2268
Nitrogen use (kg ha−1) 0 539.14 226.89 229.33 90.12 2826 2944
Phosphate use (kg ha−1 0 221.29 25.26 39.37 45.67 1749 2951
Sand/loess fraction 0 1 0 0.21 0.39 269 2960

Grass seed Farm ID 132 920
Year 2006 2022 2014 2013.6 4.79 17 920
Yield (kg ha−1) 0.24 2892.21 1414.87 1416.6 449.89 919 920
Irrigation (m3 ha−1) 0 623.53 0 6.77 49.62 18 679
Nitrogen use (kg ha−1) 0 504.44 169.04 187.49 96.59 853 903
Phosphate use (kg ha−1 0 265.11 0 37.8 54.42 439 912
Sand/loess fraction 0 1 0 0.16 0.35 54 920

Ware potato Farm ID 286 2361
Year 2006 2022 2014 2013.89 4.72 17 2361
Yield (kg ha−1) 0.28 98 374.29 48 679.27 46 731.01 13 896.17 2334 2361
Irrigation (m3 ha−1) 0 2250.01 0 166.97 362.77 505 1822
Nitrogen use (kg ha−1) 0 724.23 248.19 256.92 136.11 2230 2333
Phosphate use (kg ha−1 0 292.94 61.39 72.76 61.79 1930 2301
Sand/loess fraction 0 1 0 0.3 0.44 177 2342

Summer barley Farm ID 243 1452
Year 2006 2022 2013 2013.3 4.83 17 1452
Yield (kg ha−1) 0.23 12 722.22 6401.13 6258.01 1693.74 1441 1452
Irrigation (m3 ha−1) 0 800.73 0 14.18 77.51 47 1037
Nitrogen use (kg ha−1) 0 254.91 95.85 101.41 46.87 1314 1408
Phosphate use (kg ha−1 0 149.12 0 21.64 29.92 661 1428
Sand/loess fraction 0 1 0.95 0.57 0.47 177 1452

Seed potato Farm ID 212 2037
Year 2006 2022 2014 2013.89 4.74 17 2037
Yield (kg ha−1) 0.4 56 639.82 33 233.6 32 814.28 8033.47 1859 2037
Irrigation (m3 ha−1) 0 1500.01 0 45.54 157.75 189 1568
Nitrogen use (kg ha−1) 0 430 131 143.37 84.56 1910 2005
Phosphate use (kg ha−1 0 248.29 58.36 65.4 50.66 1748 1999
Sand/loess fraction 0 1 0 0.31 0.45 117 2037

(Continued.)
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Table A1. (Continued.)

Crop Variable Min Max Median Mean St. Dev. Unique values Observations

Starch potato Farm ID 74 759
Year 2006 2022 2014 2014.18 4.76 17 759
Yield (kg ha−1) 15 367.51 61 778.9 42 070.67 41 641.15 6092.02 759 759
Irrigation (m3 ha−1) 0 1025.65 0 68.35 185.23 110 597
Nitrogen use (kg ha−1) 0 446.67 241.78 242.07 59.94 748 748
Phosphate use (kg ha−1 0 176.46 68.15 71.5 29.89 743 749
Sand/loess fraction 0 1 1 0.93 0.18 180 759

Grass Farm ID 683 5958
Year 2006 2022 2014 2013.79 4.84 17 5958
Yield (kg ha−1) 4000.73 19 873.35 9420.11 9612.05 2787.66 5956 5958
Irrigation (m3 ha−1) 0 1812.98 0 50.59 182.95 552 4473
Nitrogen use (kg ha−1) 0 689.66 385.38 376.93 95.04 5350 5351
Phosphate use (kg ha−1 0 158.89 82.43 82 20.66 5248 5250
Sand/loess fraction 0 1 0.75 0.56 0.45 1656 5958

Maize Farm ID 754 5495
Year 2006 2022 2014 2014.07 4.75 17 5495
Yield (kg ha−1) 5004.21 24 981.7 15 947.76 15 953.02 3678.05 4614 5495
Irrigation (m3 ha−1) 0 1400 0 34.38 140.45 369 4271
Nitrogen use (kg ha−1) 0 464.16 211.53 212.12 78.32 5267 5385
Phosphate use (kg ha−1 0 187.57 69.5 73.05 33.21 5125 5301
Sand/loess fraction 0 1 1 0.73 0.42 664 5495

Appendix B. Validation of climate variable estimation

Table B1. Leave-one-out validation results of precipitation imputation.

k= 2 k= 3 k= 4 k=5 k= 6 k= 7

RMSE 130.073 121.580 117.650 115.800 114.471 113.617
MAE 88.927 83.496 81.081 79.939 79.067 78.617
R-squared 0.975 0.978 0.979 0.980 0.981 0.981

Table B2. Leave-one-out validation results of potential evapotranspiration imputation.

k= 2 k= 3 k= 4 k= 5 k= 6 k= 7

RMSE 20.399 18.893 19.371 18.952 19.241 19.482
MAE 13.238 12.460 12.951 12.638 12.854 12.989
R-squared 0.999 0.999 0.999 0.999 0.999 0.999
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Figure B1. Plots of predicted vs. observed values of the leave-one-out validation for both climate variables.

Appendix C. Regression output

Table C1. FE panel data regression output with robust standard errors for onion, sugar beet, winter wheat, grass seed and ware potato
models, with only SPEI and SPEI2 for each period as regressors. The R-squared and F-statistic refer to the variance explained and F-test
on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Onion Sugar beet Winter wheat Grass seed Ware potato

SPEI-3 (May) −2176.171∗∗∗ −2195.560∗∗∗ −241.128∗∗∗ 29.198 −1362.004∗∗∗

(712.043) (336.029) (47.115) (29.044) (453.917)

SPEI-32 (May) −756.525 −446.835 −7.037 −28.147 −30.968
(567.807) (291.721) (39.288) (27.308) (397.432)

SPEI-3 (Aug) 1292.037 1518.513∗∗∗ 56.077 47.172 −214.408
(849.739) (477.523) (70.413) (37.164) (565.068)

SPEI-32 (Aug) −791.788 −2411.679∗∗∗ −94.265∗∗ −60.235∗∗∗ −466.338
(501.541) (286.483) (41.298) (21.906) (355.679)

SPEI-3 (Nov) −957.756 1964.288∗∗∗ 95.524 10.979 565.425
(950.416) (440.656) (66.068) (30.557) (587.553)

SPEI-32 (Nov) −298.839 −154.312 9.784 −8.942 −836.183∗∗∗

(490.933) (273.382) (38.418) (21.546) (323.940)

Observations 1990 4157 2977 920 2361
R2 0.014 0.037 0.011 0.012 0.009
F Statistic 4.420∗∗∗ 25.054∗∗∗ 6.838∗∗∗ 1.729 4.000∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C2. FE panel data regression output with robust standard errors for summer barley, seed potato, starch potato, grass and maize
models, with only SPEI and SPEI2 for each period as regressors. The R-squared and F-statistic refer to the variance explained and F-test
on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Summer barley Seed potato Starch potato Grass Maize

SPEI-3 (May) −118.907 127.797 −50.191 84.170 −359.808∗∗∗

(93.390) (300.202) (1094.012) (94.239) (114.149)

SPEI-32 (May) −229.698∗∗∗ −370.839 −875.341 −37.160 −401.803∗∗∗

(73.386) (227.261) (636.687) (65.526) (82.025)

SPEI-3 (Aug) −64.676 506.023 1603.411∗∗ 191.730∗∗ 169.916
(117.382) (311.044) (790.335) (95.623) (111.749)

SPEI-32 (Aug) −73.595 −415.936∗∗ −1567.909∗∗ −230.503∗∗∗ −310.503∗∗∗

(63.185) (184.681) (688.386) (53.069) (76.239)

SPEI-3 (Nov) −238.276∗∗ 806.609∗∗ 520.271 −120.533 −33.043
(106.040) (330.564) (1613.649) (101.304) (128.770)

SPEI-32 (Nov) −296.376∗∗∗ −1080.061∗∗∗ 764.497 −129.760∗∗ 121.072
(71.827) (184.143) (659.110) (57.904) (80.528)

Observations 1452 2037 759 5958 5495
R2 0.033 0.023 0.018 0.005 0.015
F Statistic 5.166∗∗∗ 8.685∗∗∗ 1.783∗ 4.231∗∗∗ 10.030∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C3. FE panel data regression output with robust standard errors for onion, sugar beet, winter wheat, grass seed and ware potato
models, including SPEI and SPEI2 for each period, as well as sand/loess fraction and its interaction with the SPEI variables as regressors.
The R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the
data.

Dependent variable:

Yield (kg ha−1)
Onion Sugar beet Winter wheat Grass seed Ware potato

SPEI-3 (May) −2087.996∗∗∗ −2347.271∗∗∗ −192.594∗∗∗ 22.818 −1113.997∗∗

(723.261) (370.287) (51.780) (28.819) (476.225)

SPEI-32 (May) −1197.346∗∗ −453.028 −34.527 −10.637 473.706
(580.206) (323.262) (41.973) (31.453) (438.050)

SPEI-3 (Aug) 1050.811 −39.678 21.731 50.832 −730.822
(849.787) (450.245) (69.252) (39.560) (587.845)

SPEI-32 (Aug) −1090.755∗∗ −2293.074∗∗∗ −138.101∗∗∗ −61.873∗∗ −423.242
(519.512) (324.287) (45.901) (24.107) (371.277)

SPEI-3 (Nov) −925.867 1382.481∗∗∗ 113.021∗ 18.496 95.326
(941.818) (466.449) (68.055) (32.691) (602.110)

SPEI-32 (Nov) −98.641 −160.369 22.755 −6.343 −1118.131∗∗∗

(541.120) (328.363) (44.131) (23.340) (352.692)

Sand/loess fraction 1691.003 −3622.459∗ −479.939 −48.344 140.175
(4837.840) (2148.616) (369.180) (109.574) (3360.714)

SPEI-3 (May):Sand/loess fraction 813.198 −34.286 −30.933 12.269 −1013.032∗

(930.753) (412.194) (85.836) (45.499) (573.428)

SPEI-32 (May):Sand/loess fraction 1631.096 76.293 57.975 −45.557 −860.797∗∗

(1067.975) (330.424) (65.882) (32.308) (424.219)

SPEI-3 (Aug):Sand/loess fraction 297.396 2986.845∗∗∗ 86.681 −20.198 1199.897∗

(1265.506) (451.687) (76.761) (37.245) (640.919)

SPEI-32 (Aug):Sand/loess fraction 1850.374 −17.497 147.067∗ 25.239 103.676
(1209.241) (335.002) (76.436) (36.860) (421.696)

SPEI-3 (Nov):Sand/loess fraction −759.366 967.710∗∗ −105.041 −42.485 983.012
(1513.378) (409.118) (106.765) (40.526) (663.953)

SPEI-32 (Nov):Sand/loess fraction −1588.969 168.029 −104.111 −55.373 1349.575∗∗

(989.813) (438.712) (82.937) (49.051) (635.258)

Observations 1990 4142 2960 920 2342
R2 0.021 0.060 0.018 0.017 0.017
F Statistic 2.986∗∗∗ 16.578∗∗∗ 4.050∗∗∗ 1.244 3.533∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C4. FE panel data regression output with robust standard errors for summer barley, seed potato, starch potato, grass and maize
models, including SPEI and SPEI2 for each period, as well as sand/loess fraction and its interaction with the SPEI variables as regressors.
The R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the
data.

Dependent variable:

Yield (kg ha−1)
Summer barley Seed potato Starch potato Grass Maize

SPEI-3 (May) −108.032 275.786 −1162.354 −64.635 −382.365∗∗

(111.843) (320.440) (2238.264) (110.986) (150.962)

SPEI-32 (May) −225.050∗∗∗ −502.501∗∗ −2993.097∗∗ −22.786 −539.094∗∗∗

(78.745) (240.239) (1417.773) (73.401) (114.942)

SPEI-3 (Aug) −54.328 553.919∗ 711.386 70.397 −72.987
(119.352) (325.534) (2354.041) (106.038) (147.743)

SPEI-32 (Aug) −142.790∗ −488.611∗∗ −273.267 −254.770∗∗∗ −213.121∗∗

(81.022) (203.322) (1593.839) (61.707) (105.663)

SPEI-3 (Nov) −253.272∗∗ 914.269∗∗∗ −1487.584 −153.514 −114.278
(112.777) (347.789) (2651.637) (105.968) (157.754)

SPEI-32 (Nov) −185.481∗∗ −1194.560∗∗∗ 1987.229 −58.657 89.097
(94.357) (182.049) (1600.037) (68.573) (120.596)

Sand/loess fraction −46.501 559.149 2869.880 133.278 128.254
(332.776) (1176.749) (3549.461) (828.043) (469.827)

SPEI-3 (May):Sand/loess fraction 6.396 −323.446 956.813 231.493∗∗ −26.157
(112.481) (283.871) (2042.816) (103.829) (139.579)

SPEI-32 (May):Sand/loess fraction −10.726 207.007 2249.177 −18.318 203.115∗∗

(64.618) (191.417) (1375.293) (72.899) (103.541)

SPEI-3 (Aug):Sand/loess fraction −63.479 24.078 997.545 170.161∗∗ 332.065∗∗∗

(83.260) (288.642) (2397.669) (77.547) (115.383)

SPEI-32 (Aug):Sand/loess fraction 155.968∗∗ −221.557 −1349.161 70.324 −119.117
(75.942) (199.038) (1453.640) (63.079) (99.172)

SPEI-3 (Nov):Sand/loess fraction −36.917 −99.191 2097.029 8.411 117.445
(97.562) (255.824) (2287.740) (87.505) (127.056)

SPEI-32 (Nov):Sand/loess fraction −199.066∗ 966.219∗∗∗ −1334.917 −112.052 75.261
(110.185) (312.538) (1748.935) (86.654) (132.582)

Observations 1452 2037 759 5958 5495
R2 0.039 0.033 0.052 0.008 0.019
F Statistic 3.297∗∗∗ 6.614∗∗∗ 2.598∗∗∗ 2.988∗∗∗ 6.401∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C5. FE panel data regression with robust standard errors output for onion, sugar beet, winter wheat, grass seed and ware potato
models, including SPEI and SPEI2 for each period, as well as irrigation and its interaction with the SPEI variables as regressors. The
R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Onion Sugar beet Winter wheat Grass seed Ware potato

SPEI-3 (May) −3077.628∗∗∗ −2642.198∗∗∗ −316.050∗∗∗ 46.951 −1611.814∗∗∗

(813.411) (376.159) (50.022) (33.521) (505.338)

SPEI-32 (May) −1002.607 −276.217 −23.735 −29.448 −234.520
(613.796) (335.007) (44.330) (30.969) (437.245)

SPEI-3 (Aug) 2319.595∗∗ 900.282 33.198 43.788 −280.688
(982.802) (600.579) (71.334) (44.531) (695.318)

SPEI-32 (Aug) −1185.453∗ −2275.926∗∗∗ −95.600∗∗ −46.130∗ −530.539
(635.565) (345.468) (41.700) (27.839) (442.741)

SPEI-3 (Nov) 621.627 1415.679∗∗∗ 9.645 −8.440 935.248
(1061.854) (502.629) (67.748) (43.154) (638.484)

SPEI-32 (Nov) 232.908 −9.998 74.690∗∗ −9.894 −817.246∗∗

(556.600) (298.797) (37.318) (22.640) (372.354)

Irrigation (m3 ha−1) 7.673∗∗ −0.351 −0.313 −2.575 −1.952
(3.322) (2.798) (1.543) (5.403) (1.647)

SPEI-3 (May):Irrigation 2.035 −1.318 −4.249 −10.557∗ −0.661
(1.254) (2.735) (3.502) (6.304) (0.930)

SPEI-32 (May):Irrigation −0.265 −0.666 −2.138 −4.398∗∗ 0.964
(1.089) (1.415) (1.748) (1.940) (0.604)

SPEI-3 (Aug):Irrigation −7.786∗∗∗ 1.189 −0.478 0.677 −1.281
(2.610) (1.770) (0.949) (0.636) (0.919)

SPEI-32 (Aug):Irrigation −4.301∗ 0.300 0.071 −0.186 0.175
(2.312) (1.287) (0.878) (0.532) (0.878)

SPEI-3 (Nov):Irrigation −2.816∗∗ 2.710 −1.192 1.576 0.074
(1.434) (1.827) (0.814) (0.987) (0.823)

SPEI-32 (Nov):Irrigation −1.631 1.602 0.138 1.140 1.799∗∗

(1.427) (1.671) (1.213) (1.727) (0.714)

Observations 1616 3150 2268 679 1822
R2 0.046 0.036 0.028 0.053 0.043
F Statistic 4.521∗∗∗ 8.794∗∗∗ 5.029∗∗∗ 7.574∗∗∗ 4.287∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C6. FE panel data regression output with robust standard errors for summer barley, seed potato, starch potato, grass and maize
models, including SPEI and SPEI2 for each period, as well as irrigation and its interaction with the SPEI variables as regressors. The
R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Summer barley Seed potato Starch potato Grass Maize

SPEI-3 (May) −364.155∗∗∗ −295.061 −1109.023 6.678 −629.118∗∗∗

(124.246) (359.639) (1208.536) (103.799) (130.217)

SPEI-32 (May) −243.169∗∗∗ −483.837∗∗ −620.838 24.120 −567.116∗∗∗

(92.069) (242.118) (608.464) (76.219) (104.955)

SPEI-3 (Aug) −68.128 711.245∗∗ 1190.186 338.608∗∗∗ −61.620
(146.560) (311.641) (1056.075) (106.927) (128.422)

SPEI-32 (Aug) −33.334 −540.543∗∗∗ −1419.971∗ −236.514∗∗∗ −276.395∗∗∗

(84.189) (193.550) (774.260) (60.977) (85.399)

SPEI-3 (Nov) −195.290 1287.818∗∗∗ −1386.888 −96.241 119.063
(151.173) (338.504) (1498.525) (117.019) (154.672)

SPEI-32 (Nov) −179.398∗∗ −989.214∗∗∗ 486.877 −118.922∗ 140.585
(78.654) (198.461) (673.593) (63.048) (86.870)

Irrigation (m3 ha−1) 1.373 −0.948 6.350∗∗∗ 1.542∗∗ 0.482
(2.583) (1.430) (2.340) (0.704) (1.656)

SPEI-3 (May):Irrigation −1.714 −0.333 0.996 0.266 0.961
(3.853) (0.976) (2.801) (0.779) (1.038)

SPEI-32 (May):Irrigation −0.906 0.702 −1.374 −0.220 0.426
(1.459) (0.848) (1.372) (0.416) (0.562)

SPEI-3 (Aug):Irrigation 0.053 −0.509 0.404 −0.112 −0.157
(0.683) (1.649) (3.307) (0.260) (0.838)

SPEI-32 (Aug):Irrigation 0.584 0.429 1.084 −0.040 0.417
(0.490) (1.143) (1.954) (0.227) (0.531)

SPEI-3 (Nov):Irrigation 0.239 1.129 −0.854 −0.265 −0.139
(0.900) (0.855) (0.965) (0.387) (0.638)

SPEI-32 (Nov):Irrigation −0.955 0.092 −1.088 −0.238 −0.311
(0.758) (0.903) (1.683) (0.293) (0.631)

Observations 1037 1568 597 4473 4271
R2 0.048 0.033 0.068 0.010 0.026
F Statistic 3.644∗∗∗ 4.319∗∗∗ 3.382∗∗∗ 2.521∗∗∗ 5.917∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C7. FE panel data regression with robust standard errors output for onion, sugar beet, winter wheat, grass seed and ware potato
models, including SPEI and SPEI2 for each period, as well as nitrogen use and its interaction with the SPEI variables as regressors. The
R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Onion Sugar beet Winter wheat Grass seed Ware potato

SPEI-3 (May) −2505.572∗∗∗ −1968.120∗∗∗ −119.813 88.030∗ −1730.544∗∗

(936.011) (527.793) (107.482) (46.699) (803.458)

SPEI-32 (May) −606.957 −1027.126∗∗ −93.995 7.033 −238.971
(756.440) (483.530) (84.169) (42.849) (559.315)

SPEI-3 (Aug) 1467.825 1330.128∗∗ 148.991 17.682 −401.899
(1059.996) (630.600) (102.883) (53.170) (854.305)

SPEI-32 (Aug) −1376.399∗ −1908.518∗∗∗ 18.077 −27.465 −1057.894∗∗

(809.200) (473.014) (79.597) (38.834) (511.521)

SPEI-3 (Nov) −1125.151 2644.284∗∗∗ 116.545 12.587 492.899
(1127.792) (659.135) (109.223) (48.886) (796.022)

SPEI-32 (Nov) 208.008 −295.798 7.287 −37.331 −777.176
(768.831) (487.612) (79.987) (39.416) (594.646)

Nitrogen use (kg ha−1) 13.109∗ 5.340 1.484∗∗∗ 0.505∗∗ 2.152
(7.436) (3.703) (0.576) (0.206) (2.753)

SPEI-3 (May):Nitrogen 2.087 −0.971 −0.512 −0.310 1.960
(4.589) (2.246) (0.406) (0.201) (2.277)

SPEI-32 (May):Nitrogen 0.092 2.869 0.340 −0.193 0.336
(3.128) (1.994) (0.313) (0.136) (1.365)

SPEI-3 (Aug):Nitrogen −0.975 0.395 −0.349 0.125 0.613
(4.126) (2.556) (0.324) (0.143) (2.064)

SPEI-32 (Aug):Nitrogen 4.515 −3.324 −0.546∗ −0.163 2.549∗

(3.989) (2.038) (0.279) (0.137) (1.492)

SPEI-3 (Nov):Nitrogen 1.071 −3.365 −0.009 −0.003 1.430
(3.903) (2.561) (0.333) (0.165) (1.924)

SPEI-32 (Nov):Nitrogen −2.834 0.582 0.032 0.141 −0.179
(3.701) (2.459) (0.292) (0.163) (2.072)

Observations 1936 4101 2944 903 2333
R2 0.022 0.043 0.025 0.030 0.014
F Statistic 3.297∗∗∗ 13.049∗∗∗ 5.546∗∗∗ 2.288∗∗∗ 2.561∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C8. FE panel data regression output with robust standard errors for summer barley, seed potato, starch potato, grass and maize
models, including SPEI and SPEI2 for each period, as well as nitrogen use and its interaction with the SPEI variables as regressors. The
R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Summer barley Seed potato Starch potato Grass Maize

SPEI-3 (May) −241.825 168.228 333.641 −90.736 −161.405
(154.875) (372.028) (1576.164) (226.698) (207.887)

SPEI-32 (May) −265.159∗∗∗ −92.790 −1165.303 52.208 −638.586∗∗∗

(97.697) (253.287) (868.269) (124.205) (152.546)

SPEI-3 (Aug) 64.918 515.848 2106.619 −372.988∗∗ 372.119∗∗

(172.447) (396.649) (1344.326) (153.677) (164.911)

SPEI-32 (Aug) −159.133 −563.691∗∗ −1887.143∗ −367.003∗∗∗ −471.512∗∗∗

(110.256) (264.764) (1045.965) (129.976) (146.697)

SPEI-3 (Nov) −375.163∗∗ 1079.481∗∗∗ 206.017 −220.383 −420.348∗∗

(164.803) (377.928) (1782.986) (187.496) (201.335)

SPEI-32 (Nov) −398.495∗∗∗ −758.064∗∗∗ 721.523 −21.301 −211.083
(126.508) (290.719) (1234.628) (154.259) (168.633)

Nitrogen use (kg ha−1) −1.445 6.065∗∗ −0.062 8.533∗∗∗ −2.851∗∗∗

(1.637) (2.535) (5.598) (0.919) (1.013)

SPEI-3 (May):Nitrogen 1.226 −0.051 −0.910 0.308 −0.962
(1.172) (2.068) (4.175) (0.546) (0.815)

SPEI-32 (May):Nitrogen 1.027 −2.322∗ 1.130 −0.328 1.000∗

(0.750) (1.271) (2.597) (0.320) (0.581)

SPEI-3 (Aug):Nitrogen −0.728 −0.325 −2.272 1.408∗∗∗ −0.924
(0.995) (1.722) (4.349) (0.361) (0.580)

SPEI-32 (Aug):Nitrogen 0.453 0.949 1.650 0.507 0.698
(0.894) (1.226) (3.370) (0.319) (0.534)

SPEI-3 (Nov):Nitrogen 1.540 −2.210 0.333 0.374 1.816∗∗

(1.105) (1.537) (3.874) (0.401) (0.730)

SPEI-32 (Nov):Nitrogen 1.320 −2.294 2.193 −0.294 1.462∗∗

(1.186) (1.606) (5.025) (0.404) (0.668)

Observations 1408 2005 748 5351 5385
R2 0.034 0.028 0.025 0.051 0.022
F Statistic 2.381∗∗∗ 5.693∗∗∗ 1.628∗ 13.076∗∗∗ 7.508∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C9. FE panel data regression with robust standard errors output for onion, sugar beet, winter wheat, grass seed and ware potato
models, including SPEI and SPEI2 for each period, as well as phosphate use and its interaction with the SPEI variables as regressors. The
R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Onion Sugar beet Winter wheat Grass seed Ware potato

SPEI-3 (May) −2057.215∗∗∗ −2214.967∗∗∗ −247.258∗∗∗ 36.082 −974.984
(764.239) (396.295) (56.893) (31.058) (595.939)

SPEI-32 (May) −886.795 −779.642∗∗ −45.850 −22.157 117.093
(629.179) (361.111) (45.255) (29.560) (482.807)

SPEI-3 (Aug) 1563.394∗ 1174.928∗∗ 103.572 44.107 37.491
(906.481) (509.988) (73.364) (40.389) (696.586)

SPEI-32 (Aug) −797.199 −2416.397∗∗∗ −74.764 −55.009∗∗ −618.795
(585.632) (365.895) (46.495) (26.224) (420.668)

SPEI-3 (Nov) −1264.314 1811.523∗∗∗ 87.891 14.776 557.672
(989.639) (502.224) (79.948) (36.225) (669.885)

SPEI-32 (Nov) −385.513 −346.366 −3.127 −2.494 −653.027
(593.662) (342.092) (45.263) (25.757) (446.425)

Phosphate use (kg ha−1) 9.320 −0.676 0.255 0.645∗∗ 7.259
(12.460) (7.140) (0.953) (0.316) (6.029)

SPEI-3 (May):Phosphate 2.040 1.187 0.445 −0.250 −5.642
(8.244) (3.688) (0.780) (0.339) (5.024)

SPEI-32 (May):Phosphate 4.226 5.765∗ 0.969 −0.171 −3.988
(5.648) (3.259) (0.627) (0.226) (3.048)

SPEI-3 (Aug):Phosphate −3.257 4.585 −1.086∗ −0.023 −7.423
(6.430) (4.666) (0.618) (0.236) (4.733)

SPEI-32 (Aug):Phosphate 1.653 −0.096 −0.641 −0.027 3.914
(6.340) (3.664) (0.484) (0.203) (3.511)

SPEI-3 (Nov):Phosphate 8.019 3.716 0.209 −0.094 0.237
(7.196) (3.999) (0.722) (0.307) (4.742)

SPEI-32 (Nov):Phosphate 3.680 4.522 0.364 −0.211 −2.017
(6.988) (4.178) (0.590) (0.262) (4.655)

Observations 1960 4085 2951 912 2301
R2 0.018 0.041 0.016 0.015 0.014
F Statistic 2.862∗∗∗ 12.251∗∗∗ 4.531∗∗∗ 1.278 3.002∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C10. FE panel data regression output with robust standard errors for summer barley, seed potato, starch potato, grass and maize
models, including SPEI and SPEI2 for each period, as well as phosphate use and its interaction with the SPEI variables as regressors. The
R-squared and F-statistic refer to the variance explained and F-test on the explanatory variables, respectively, after demeaning the data.

Dependent variable:

Yield (kg ha−1)
Summer barley Seed potato Starch potato Grass Maize

SPEI-3 (May) −105.635 247.435 −658.377 −7.949 −577.140∗∗∗

(98.521) (329.537) (1494.862) (234.095) (182.955)

SPEI-32 (May) −232.733∗∗∗ −377.954 −905.008 48.508 −723.309∗∗∗

(75.167) (237.956) (678.007) (160.442) (127.913)

SPEI-3 (Aug) −39.166 606.974∗ 2423.355∗∗ 3.127 207.295
(124.210) (352.090) (1140.752) (181.700) (157.144)

SPEI-32 (Aug) −96.169 −215.433 −1804.942∗∗ −417.895∗∗∗ −455.520∗∗∗

(67.522) (223.109) (833.261) (144.755) (129.077)

SPEI-3 (Nov) −253.641∗∗ 713.536∗∗ 458.568 39.225 −355.437∗

(114.408) (333.860) (1762.772) (226.123) (188.769)

SPEI-32 (Nov) −296.706∗∗∗ −951.313∗∗∗ 1060.145 −219.940 −35.863
(82.447) (242.538) (1058.767) (185.789) (152.156)

Phosphate use (kg ha−1) −2.102 6.153 −5.696 17.031∗∗∗ −6.414∗∗∗

(1.797) (4.159) (13.981) (3.680) (2.287)

SPEI-3 (May):Phosphate −0.328 −1.007 6.216 0.409 3.011
(1.857) (3.561) (10.601) (2.449) (1.976)

SPEI-32 (May):Phosphate −0.050 −0.203 2.601 −1.581 4.208∗∗∗

(1.266) (2.152) (6.623) (1.777) (1.342)

SPEI-3 (Aug):Phosphate 0.127 −1.768 −14.029 1.903 −0.362
(1.435) (2.884) (10.115) (1.921) (1.476)

SPEI-32 (Aug):Phosphate 0.427 −2.817 5.598 3.087∗ 1.783
(1.251) (2.089) (7.544) (1.635) (1.265)

SPEI-3 (Nov):Phosphate 1.025 −0.560 −0.433 −1.855 4.653∗∗

(1.922) (2.691) (8.355) (2.403) (1.815)

SPEI-32 (Nov):Phosphate −0.302 −1.502 −4.275 0.860 2.041
(2.049) (2.845) (12.072) (2.189) (1.730)

Observations 1428 1999 749 5250 5301
R2 0.035 0.023 0.025 0.026 0.019
F Statistic 2.591∗∗∗ 3.799∗∗∗ 1.142 6.438∗∗∗ 5.864∗∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C11. Outcomes of F-test testing the addition of variables to the basic model for each model-crop combination. For the basic
model, the F-tests test the joint probability of all the SPEI coefficients to be nonzero. For the other models, it tests the joint probability of
the additional coefficients to be nonzero.

Basic Soil Irrigation Nitrogen Phosphate

Onion 4.420∗∗∗ 1.246 3.871∗∗∗ 1.615 1.188
Sugar beet 25.054∗∗∗ 8.619∗∗∗ 0.551 1.987∗ 1.251
Winter wheat 6.838∗∗∗ 2.179∗∗ 1.600 3.430∗∗∗ 1.224
Grass seed 1.729 0.606 8.995∗∗∗ 1.744∗ 0.619
Ware potato 4.000∗∗∗ 2.401∗∗ 4.777∗∗∗ 1.210 1.339
Summer barley 5.166∗∗∗ 0.850 1.608 0.782 0.374
Seed potato 8.685∗∗∗ 3.171∗∗∗ 0.578 2.013∗ 0.568
Starch potato 1.783∗ 0.925 4.466∗∗∗ 0.649 0.558
Grass 4.231∗∗∗ 1.882∗ 1.527 21.727∗∗∗ 9.289∗∗∗

Maize 10.030∗∗∗ 2.824∗∗∗ 1.107 4.497∗∗∗ 2.387∗∗

Note: ∗p< 0.1; ∗∗p< 0.05; ∗∗∗p< 0.01.
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