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Abstract: In environmental studies, rhodamine dyes are commonly used to trace water movements
and pollutant dispersion. Remote sensing techniques offer a promising approach to detecting rho-
damine and estimating its concentration, enhancing our understanding of water dynamics. However,
research is needed to address more complex environments, particularly optically shallow waters,
where bottom reflectance can significantly influence the spectral response of the rhodamine. Therefore,
this study proposes a novel approach: transferring pre-trained classifiers to develop a generalizable
method across different environmental conditions without the need for in situ calibration. Various
samples incorporating distilled and seawater on light and dark backgrounds were analyzed. Spectral
analysis identified critical detection regions (400–500 nm and 550–650 nm) for estimating rhodamine
concentration. Significant spectral variations were observed between light and dark backgrounds,
highlighting the necessity for precise background characterization in shallow waters. Enhanced
by the Sequential Feature Selector, classification models achieved robust accuracy (>90%) in distin-
guishing rhodamine concentrations, particularly effective under controlled laboratory conditions.
While band transfer was successful (>80%), the transfer of pre-trained models posed a challenge.
Strategies such as combining diverse sample sets and applying the first derivative prevent overfitting
and improved model generalizability, surpassing 85% accuracy across three of the four scenarios.
Therefore, the methodology provides us with a generalizable classifier that can be used across various
scenarios without requiring recalibration. Future research aims to expand dataset variability and
enhance model applicability across diverse environmental conditions, thereby advancing remote
sensing capabilities in water dynamics, environmental monitoring and pollution control.

Keywords: dye tracking; rhodamine; artificial intelligence; band selection

1. Introduction

Understanding the water movement and particle transport in the ocean and rivers is cru-
cial for giving a fast response to environmental disasters. Although numerous mathematical
models predict how these agents are transported, they often come with high computational
costs and may not be adaptable to the highly variable conditions encountered in real-world
scenarios, limiting their effectiveness for quick responses [1]. Thus, to understand and track
hazardous agents in oceans and waterways, new techniques and tools are necessary [2].

Dye tracers offer a simpler and effective solution. They are widely used to study the
transport and dispersion of particles in aqueous environments, such as in the ocean [3],
coastal areas [4,5], rivers [6], and lakes [7]. Rhodamine is a synthetic dye commonly used
as a tracer in environmental studies due to its distinctive colour and high visibility. Its
applications include monitoring water flow, tracking pollutant dispersion, and studying
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hydrodynamic processes in aquatic environments. Rhodamine is a key tool for understand-
ing complex water movement and contamination patterns. Current methods of measuring
rhodamine concentration involve collecting samples for later laboratory analysis [8] or
using fluorimeters for in situ measurements [9]. However, these techniques are costly and
spatially limited, capturing information only at the local levels [10]. In this context, aerial
and near-field remote sensing emerges as a promising alternative, offering greater spatial
coverage than traditional in situ sampling methods [11].

Multispectral and hyperspectral remote sensing have proven to be effective in detect-
ing and mapping the concentrations of dye tracers in aquatic environments [12]. Several
studies successfully utilized multispectral and hyperspectral sensors onboard piloted aerial
platforms to identify rhodamine, also in diverse aquatic environments, including the
ocean [13–15], coasts [16], rivers [10,17], and lakes [1]. Some studies focused on comparing
the intensity of RGB images [18,19], while others utilized hyperspectral sensors to capture
surface reflectance [20]. Combining spectral technology with the emerging use of uncrewed
aerial vehicles (UAVs) allows for conducting studies in much detail, with greater flexibility
and detecting patterns at sub-meter resolution [12]. In addition, the development of lighter
and more specialized optical sensors represents an opportunity to have a sensor with
specialized spectral bands for rhodamine detection and concentration estimation at a low
price [21].

Despite these advancements, several knowledge gaps remain. The widely used Opti-
mum Band Ratio Analysis (OBRA) [10,22] method for selecting bands in hyperspectral and
multispectral sensors to detect rhodamine requires in situ concentration measurements for
calibration, limiting its transferability to different locations. Furthermore, most rhodamine
studies are conducted in controlled environments, such as experimental channels, water
tanks, or deep lakes, where the impact of background reflections is minimized (optically
deep waters) [12]. Only a few studies have analyzed real-world scenarios, such as rivers
with varying degrees of turbidity or optically shallow waters where the bottom reflects
light [12,22]. The optical characterization of rhodamine in aquatic environments presents
several challenges, especially in coastal areas, shallow rivers or turbid environments. As a
semi-transparent solution, its spectral signature captured by sensors is influenced by the
optical properties of suspended components and background reflections. However, more
in-depth work is needed to understand the effect of water properties and bottom reflections
of optically shallow waters on rhodamine’s spectral signature and the transferability of
detection models across varied conditions.

In this study, we conducted experiments to measure rhodamine concentrations with
the goal of improving detection methods. We first spectrally analyzed the rhodamine in
the laboratory with different backgrounds and water types. Using artificial intelligence
algorithms, specifically Sequential Feature Selection (SFS) and Random Forest (RF) models,
we identified the key spectral bands for rhodamine detection and concentration estimation.
We then evaluated the transferability of these bands and the trained classifiers across
different water types and backgrounds. This approach aimed to minimize the need for in
situ calibration and enhance the robustness of detection models.

In our paper, we present the identification of key spectral bands for rhodamine estima-
tion, the influence of background types on spectral signatures, and the transferability of
detection models. We found that combining all samples to train the classification model,
and also applying the first derivative [23] to favor the distinction of spectral signatures,
improved the transfer of the models to all samples. These findings provide valuable in-
sights for developing effective and affordable remote sensing tools to monitor rhodamine
and, by extension, other pollutants in aquatic environments, especially in optically shallow
waters. This research is particularly significant, as it supports the development of low-cost,
multispectral cameras for environmental monitoring, contributing to more efficient and
scalable pollution reduction strategies.
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2. Materials and Methods

The methodology followed in this experiment can be divided into preparing the
rhodamine samples, performing their spectral analysis, and employing the band selection
methodology for classifying rhodamine concentrations. Rhodamine samples were prepared
in beakers with distilled and seawater at concentrations of 1 mg/L, 15 mg/L, and 30 mg/L.
The spectral signatures of samples on two different backgrounds were obtained with
hyperspectral cameras. The spectral signatures of each concentration were provided to the
band selection algorithm to obtain the most influential bands for classifying the rhodamine
concentration.

2.1. Rhodamine Samples

The Rhodamine Water Tracer, hereafter referred to as rhodamine, is a fluorescent
dye primarily used as a tracer in aquatic environments. The company Elittoral [24] from
Las Palmas de Gran Canaria, Spain, has procured the rhodamine from ThermoFisher
Scientific [25] from Massachusetts, USA, identified by the chemical codes CAS 37299-86-
8 and 7732-18-5, with catalogue number 446971000. Initially, the rhodamine is highly
concentrated at 20%, or 200 g/L, requiring dilution in water to achieve an appropriate
concentration for its discharge into the sea. The beakers are from Labbox [26] in Barcelona,
Spain, reference BKT3-250-012. They have a measurable volume of 250 mL, an outer
diameter of 60 mm, and a height of 123 mm. When the beaker is filled with 250 mL of
liquid, the height of the fluid will be 100 mm.

This study uses 250 mL solutions of seawater and distilled water with varying con-
centrations of rhodamine provided by Elittoral. Solutions with different concentrations of
rhodamine are produced: 1 mg/L, 15 mg/L, and 30 mg/L (Figure 1). In addition to the
rhodamine dilutions, pure seawater and distilled water samples are also included in the
study. These pure samples serve as reference spectra and are essential for the comparative
analysis of rhodamine-contaminated samples.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Rhodamine samples for distilled and seawater at different concentrations. (a) Distilled
0 mg/L; (b) Distilled 1 mg/L; (c) Distilled 15 mg/L; (d) Distilled 30 mg/L; (e) Seawater 0 mg/L;
(f) Seawater 1 mg/L; (g) Seawater 15 mg/L; (h) Seawater 30 mg/L.
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Hyperspectral signatures of all samples were collected over two different backgrounds.
Since the rhodamine solutions are semi-transparent, the background signature likely influ-
ences the signature captured by the sensor. We placed two backgrounds underneath the
beaker to observe these differences: a white sheet of paper as the light background and a
low-reflective black foam material [27] as the dark background.

2.2. Hyperspectral Setup

We took images of the rhodamine samples in the Hyperspectral Laboratory at IUMA [27]
in Las Palmas de Gran Canaria, Spain. The system shown in Figure 2 aims to acquire images
with pushbroom hyperspectral cameras. It includes a motorized linear stage for linear
motion and a light source emitting uniformly. Illumination comes from a 150 W Quartz
Tungsten-Halogen (QTH) lamp with broadband emission between 400 nm and 2500 nm
(VIS and NIR spectral range). Images were captured using a Specim FX10 camera (Konica
Minolta Company, Oulu, Finland) [28]. The FX10 is a hyperspectral camera covering
the visible and near-infrared range (VNIR) from 400 nm to 1000 nm, with 224 bands, a
spectral resolution of 5.5 nm, a spatial sampling of 1024 pixels, and a field of view (FoV) of
38 degrees. This spectral range was chosen because rhodamine has the greatest response in
the VNIR.

Figure 2. A 3D model of the acquisition system (adapted with permission from [27], under a Creative
Commons Attribution (CC BY) 4.0 license. Copyright 2022).

We performed single-point reflectance calibration (Equation (1)) before starting mea-
surements to avoid sensor saturation. This pre-processing involves white and dark
(0-photon) references to calculate the reflectance of each pixel from its radiance. The
white reference is a high-reflectance Zenith Polymer [29], and the dark reference is obtained
by covering the camera lens:

re f lectance =
radiance − dark

white − dark
(1)

The measurements are taken by scanning the FX10 camera over the different beakers.
Since the light source is positioned ahead of the camera as shown in Figure 2, this setup
produces glints on the beaker, shadows in certain areas, and increased intensity in others
due to internal reflections and external refractions of the glass.
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The datasets used for the artificial intelligence model are generated by extracting pixels
from the bottom areas of the beaker where no glints are present, while avoiding shadows.
However, due to the varying brightness within the beaker, the standard deviation of the
classes will be high, indicating variation in intensity, though not in the shape of the spectral
signature. The number of pixels per class will not be uniform, as shown in Table 1.

Table 1. Number of pixels per class.

Dark Background Light Background

Distilled Sea Distilled Sea Total

0 mg/L 346 624 233 299 1502

1 mg/L 857 668 821 545 2891

15 mg/L 1302 406 965 650 3323

30 mg/L 924 346 866 750 2886

Efforts have been made to balance the glints and shadowed areas within the beaker.
However, the primary goal of this study was to develop a generalizable classifier, and having
data with variability is advantageous, as it better reflects the reality of experimental conditions.

2.3. Methodology

The methodology is divided into training, result analysis, and transfer (Figure 3).
During training, data are provided to the band selection model. This model provides
evaluation metrics, which are analyzed to determine the optimal number of bands. The
band selection model [30] also identifies the best bands and provides pre-trained classifiers
for the optimal number of bands. The final stage involves transferring the best bands and
pre-trained models to other scenarios to assess their performance and determine if the
classifier is generalizable.

Figure 3. Methodology for transferring results and obtaining a generalizable classifier.

The methodology integrates hyperparameterized classifiers with feature selectors to
provide optimized bands of interest for classification [30]. The procedure is illustrated in
Figure 4. The data are divided into training sets for the feature selectors and classifiers,
as well as a validation set. Employing the information provided by the classifiers, the
feature selectors determine the bands of interest. Subsequently, the classifiers are retrained
exclusively with these bands. Finally, the performance of the updated classifiers is assessed
using the validation dataset to obtain classification metrics.
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Figure 4. Band selection method (adapted with permission from [30], Copyright 2024, IEEE).

For this study, we combined two feature selectors, Sequential Feature Selector (SFS)
and Select From Model (SFM) [31], with three classifiers, Random Forest (RF) [32], Logistic
Regression (LR) [33], and Linear Support Vector Machine (SVM) [34]. SFS is a sequential
search technique that iteratively adds or removes features to improve the classifier’s
performance. SFM ranks features based on a model’s coefficients or importance, facilitating
the selection of efficient feature subsets [31]. RF is a widely used classifier, employing
ensemble learning to combine predictions from multiple decision trees [35]. LR is a linear
model for binary classification [36]. Linear SVM identifies hyperplanes for optimal class
separation [37].

We evaluated the performance of rhodamine concentration classification using the
classification metrics on the validation dataset. The overall accuracy (OAC), also called
accuracy, represents the proportion of correct predictions out of the total samples [38]. The
F1 score is particularly useful with imbalanced class distributions, as it emphasizes the
accuracy of the smaller classes [39]. The Kappa statistic (κ) measures inter-rater agreement
for categorical items, adjusting for chance agreement, and is particularly relevant for
uneven datasets [40]. The confusion matrix provides a detailed decomposition of predicted
classification labels versus real labels [41].

The performance of all pairs of feature selectors and classifiers was evaluated for
different numbers of bands of the FX10 camera [28]. By plotting the accuracy values for
each band on a graph, we were able to use the elbow method [42] to determine the optimal
number of bands. This method selects the number of bands at the point where the curve
bends, forming an elbow and indicating a slowdown in accuracy improvement [42]. For
the optimal number of bands, all classification metrics were calculated.

We also analyzed whether the different feature selector–classifier pairs identify the
optimal bands in the same area of the electromagnetic spectrum. For this purpose, we
grouped the wavelengths into sections of 25 nm wide for several reasons. First, the spectral
signatures of different concentrations of rhodamine are continuous and do not exhibit
abrupt changes, making it practical to group the wavelengths for better visualization of
large-scale behavior. Second, grouping the bands helps us understand their potential
utility in multispectral sensors. The hyperspectral camera used in this study has a spectral
resolution of 5.5 nm [28], so it is appropriate to group them, given that multispectral sensors
typically have a bandwidth of approximately 20 nm or 30 nm. Third, several studies support
that a high level of spectral detail is unnecessary for rhodamine detection, indicating that
sensors with broader bands could still provide reliable concentration estimates [20,22].
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Finally, we can assess the transferability of the results to different scenarios. We can
define different levels of transfer, such as the transfer of the bands of interest or the transfer
of pre-trained classification models. Transferring the bands of interest is a straightforward
way to transmit part of the knowledge acquired from one sample to another. It involves
using the bands identified by the classification model in one scenario to train the classifier
(exclusively with those wavelengths) with another scenario, whether it has a different type
of water or a different background.

Transferring pre-trained classification models is more complex because these models
learn the specific characteristics of each scenario, i.e., the reflectance value of the spectral
signature. One strategy that can be employed to improve the transfer of pre-trained models
is to provide the classifier with a combination of samples from all types of water and
backgrounds for training. Another strategy is calculating the first derivative of the spectral
signatures, which helps identify variations and trends in the data, thereby aiding in the
differentiation of spectral signatures.

If the spectral behavior is similar enough across different scenarios, it is possible
to successfully transfer the models, and the classifiers can be used in multiple scenarios
without retraining. This would decrease the required in situ calibration measurements and
reduce computational time.

3. Results
3.1. Spectral Analysis—Beaker Influence

An important aspect to consider during the analysis of the results is the influence of
the beaker on the spectral signature of its liquid content. The reflections and refractions
caused by the glass lead to non-uniform spectral intensity throughout the beaker, resulting
in a higher standard deviation in the spectral signatures of each class.

To elaborate on the reflections caused by the beaker, Figure 5 compares the spectral
behaviour of the light and dark backgrounds, both with and without the beaker filled with
seawater. The results indicate that the primary effect of the background is to modulate the
intensity of the reflectance, with greater influence between 400 nm and 500 nm. Therefore,
the importance of this spectral range will vary depending on the illumination of the scene
and the scattering capacity of the water and the background. It should also be noted that
the reflectance value of the dark background increases when the beaker is placed, indicating
that reflections and refractions occur in the beaker, which increases the reflectance.

Figure 5. Mean spectral signature and standard deviation (shaded in the corresponding colour) of
the backgrounds with and without the beaker.
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3.2. Spectral Analysis—Rhodamine

We observed variations in spectral response to rhodamine concentrations at different
wavelengths (Figure 6). We had four samples that combined distilled and seawater with light
and dark backgrounds. In all samples, an increase in rhodamine concentration resulted in a
shift of the reflectance peak around 600 nm towards longer wavelengths, giving the solution
an increasingly orange hue. Initially, no differences were observed between distilled water and
seawater samples, but noticeable differences emerged between light and dark backgrounds,
especially at low rhodamine concentrations or when it was absent.

(a) (b)

(c) (d)

Figure 6. Mean spectra with standard deviation (shaded in the corresponding colour) for each
concentration and sample. (a) Distilled water with a dark background; (b) distilled water with a light
background; (c) sea water with a dark background; (d) sea water with a light background.

The most significant difference for both backgrounds was found at a concentration
of 15 mg/L, specifically in the wavelength range of 600 nm to 650 nm (Figure 7). The
samples exhibited a spectral difference of between 0.1 and 0.3 reflectance units; only the
15 mg/L sample with a light background with 0.37 reflectance units exceeded this value.
The spectral differences between the two types of water were insufficient to conclusively
distinguish between them.

More significant differences were observed when comparing the same water sample on
the two different backgrounds, with discrepancies varying between 0.2 and 0.47 reflectance
units. In Figure 8, a substantial decrease in reflectance is observed in the samples on a
dark background, particularly pronounced in the red and near-infrared range (600 nm to
900 nm). The 15 mg/L and 30 mg/L samples show the most noticeable drops, reaching a
difference between the spectral signatures of 0.47 and 0.41 for distilled water. Additionally,
in the pure seawater samples, there is a reflectance peak associated with the blue colour,
around 450 nm, on the light background that is not observed on the dark background,
resulting in a difference in the spectral responses of 0.39.
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Figure 7. Spectral difference between distilled and seawater for the two backgrounds: (a) 0 mg/L;
(b) 1 mg/L; (c) 15 mg/L; (d) 30 mg/L.

Figure 8. Spectral difference between backgrounds: (a) 0 mg/L; (b) 1 mg/L; (c) 15 mg/L;
(d) 30 mg/L.

These findings highlight the influence of background type on the spectral signature
of rhodamine and emphasize the need to consider background effects in remote sensing
applications to improve rhodamine detection accuracy.

3.3. Classification

The first step is identifying the optimal number of bands for detecting rhodamine
concentrations. As illustrated in Figure 9, OAC increases with the number of bands
provided to each feature selector–classifier pair. The OAC achieved is above 80% with few
bands across all samples, demonstrating the strong differentiating power of the classifiers.
There is no apparent difference between the performance of distilled water and seawater.
The models performed better with a light background than with a dark one, achieving
greater accuracy faster. Additionally, it is evident that classifiers combined with the SFS
feature selector yielded more satisfactory OAC. The optimal number of bands for detecting
rhodamine using the elbow method [42] was two for all samples.

(a) (b)

Figure 9. OAC of all model combinations for dark (solid line) and light (dashed line) backgrounds.
(a) Distilled water; (b) seawater.
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The SFS feature selector outperformed SFM, and both RF and SVM classifiers demon-
strated excellent performance as Table 2 shows. For the light background, perfect perfor-
mance was achieved in the three metrics, indicating a correct classification of all pixels
in the validation subset. These results were to be expected, as the four classes are well
differentiated and the number of pixels is limited.

Table 2. Metrics for all models with two bands of interest. The best result for each sample is marked
in bold.

SFS SFM

OAC F1 κ OAC F1 κ

RF 0.992 0.992 0.989 0.800 0.797 0.716

LR 0.950 0.950 0.930 0.759 0.721 0.652Distilled water
Dark background

SVM 0.999 0.999 0.999 0.842 0.799 0.773

RF 1.000 1.000 1.000 1.000 1.000 1.000

LR 0.992 0.992 0.989 0.896 0.863 0.850Distilled water
Light background

SVM 0.998 0.998 0.997 0.946 0.941 0.923

RF 0.997 0.997 0.995 0.845 0.844 0.785

LR 0.995 0.995 0.993 0.853 0.854 0.798
Seawater

Dark background
SVM 0.997 0.997 0.995 0.837 0.838 0.775

RF 0.997 0.997 0.996 0.997 0.997 0.996

LR 1.000 1.000 1.000 0.822 0.764 0.748
Seawater

Light background
SVM 1.000 1.000 1.000 0.896 0.880 0.856

We identified the optimal bands for each model (Figure 10). Two spectral areas of
interest are highlighted, ranging from 400 nm to 500 nm and from 550 nm to 650 nm. These
findings align with the regions of interest identified in the spectral analysis of different
rhodamine concentrations. Samples with light backgrounds show more bands of interest in
the blue region of the spectrum, whereas those taken on dark backgrounds tend to have
significant bands in the yellow-orange region.

Figure 10. Spectral areas of interest, identified by grouping the two most significant bands for each
combination of SFS with RF, LR, and SVM.
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The background affects the spectral signature of the rhodamine and the band selection.
However, transferring the trained artificial intelligence model from one scenario to another
with a different background may be possible.

3.4. Transferability

We differentiated a section for the transfer of the bands of interest (Section 3.4.1) and
another for the transfer of the pre-trained models (Section 3.4.2). In addition, a third section
(Section 3.4.3) was included, where we improved the model transfer by combining all the
samples and calculating the first derivative to train the classifier.

3.4.1. Band Transfer

The two most influential bands obtained with each model and sample were transferred
to the rest of the samples to analyze the effectiveness of transferring spectral bands between
different samples in the dataset. Section 3.3 shows that combining SFS with different
classifiers led to the best results. Therefore, for this experiment, we exclusively analyzed
the results of the SFS-RF combination. The other classifier combinations yielded similar
results without a significant impact on the transferability of the bands and required more
computational time.

The band transfer was successful for all samples as shown in Figure 11. The best
results were obtained when validating the models with seawater samples, with superior
performance observed when transferring from models trained with dark background
samples. For distilled water samples, better performance was achieved when transferring
bands from models trained also with distilled water samples.

Figure 11. Accuracy obtained by transferring bands of interest from one sample to another. The
colours indicate performance: green tones for accuracies above 80%, yellowish for 60–80%, orange
for 40–60%, and red for accuracy below 40%.

3.4.2. Train Model Transfer

Transferring pre-trained classification models is complex due to the limited variability
in the training samples of the dataset, which can easily lead to overfitting and lack of gener-
alization. The accuracy results obtained differ significantly from those seen in band transfer.
As shown in Figure 12, the model trained on distilled water with a dark background is not
transferable to other samples, achieving an accuracy between 32% and 37%. However, the
model trained on distilled water with a light background transfers perfectly to seawater
with a light background, with an accuracy of 95%. This model also achieved 68% accuracy
when transferred to seawater with a dark background. The model trained on seawater
with a light background shows 97% accuracy when validated on distilled water with a
light background and 86% accuracy when validated on seawater with a dark background.
Meanwhile, the model trained on seawater with a dark background achieved 70% accuracy
on both distilled water samples but fell below 50% on seawater with a light background.

The average accuracy, considering all transferred models, was 70%. Models show
higher accuracy when transferring within the same background type, achieving 76% aver-
age accuracy for dark background samples and 98% accuracy for light ones. In contrast,
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models trained on dark backgrounds achieved only 47% accuracy when applied to light
background samples, and those trained on light backgrounds achieved 57% accuracy when
transferred to dark background samples. This indicates that model transfer is performed
effectively with the same background but different water types. Additionally, better results
are obtained with light backgrounds compared to dark backgrounds, whereas performance
decreases with different backgrounds.

Figure 12. Accuracy obtained by transferring trained classifiers from one sample to another. The
colours indicate performance: green tones for accuracies above 80%, yellowish for 60–80%, orange
for 40–60%, and red for accuracy below 40%.

3.4.3. Improving Model Transfer Combining the Samples and Applying the First Derivative

Two approaches improve the model transfer. The first involves creating a new dataset
that combines all types of samples with different water types and backgrounds, thereby
avoiding overfitting the classifier. Secondly, the first derivative highlights variations in
spectral signatures, enhancing the identification of concentrations. These new datasets will
be referred to as combined sample (CS) and combined derivative (CD), respectively.

Analyzing the average spectral signature of CS (Figure 13), we can already antici-
pate that distinguishing between the 15 mg/L and 30 mg/L samples will be challenging
because their spectral signatures are very similar. This similarity occurs because darker
backgrounds attenuate light reflection, causing the reflectance of the 30 mg/L sample on a
dark background to resemble the reflectance of the 15 mg/L sample on a light background.
In the average spectrum of the first derivative, 15 mg/L and 30 mg/L are the closest
concentrations, whereas the signature of the 1 mg/L concentration is well differentiated.
The bands of interest are 580 nm and 610 nm for the combined samples and 591 nm and
607 nm for their first derivative.

(a) (b)

Figure 13. Mean spectra and standard deviation (shaded in the corresponding colour). The two best
bands are indicated with black vertical lines. (a) Combined samples (580 and 610 nm); (b) the first
derivative of the combined samples (591 and 607 nm).
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The transfer of models trained with CS shows higher accuracy than the results pre-
sented in earlier sections. When applying the first derivative, the results are excellent,
surpassing 85% accuracy in all cases except for the distilled samples with a light back-
ground, which only reaches 50%.

The confusion matrices for the best and worst cases provide additional insight into
how the CS and the derivative influence classification (Figure 14). When training with
CS and validating with light background samples, there is significant misclassification
between the 15 mg/L and 30 mg/L, especially for distilled water. The separation of these
two concentrations improves notably when the derivative (CD) is applied.

(a) (b) (c)

Figure 14. Confusion matrix training with CS and CD for the best and worst scenarios in Figure 15. (a) CS
validating on distilled light; (b) CS validating on seawater light; (c) CD validating on seawater light.

This experiment again demonstrates that the background affects the reflectance of
translucent solution spectral signatures. However, training a model with varied samples
enhances classification performance, and using the first derivative aids in better identifying
rhodamine concentrations.

Figure 15. Accuracy obtained by transferring trained classifiers from the combined sample. The
colours indicate performance: green tones for accuracies above 80%, yellowish for 60–80%, orange
for 40–60%, and red for accuracy below 40%.

4. Discussion

Significant differences were observed in the spectral response of samples with light
and dark backgrounds in Section 3.2, with discrepancies of nearly 0.5 reflectance units.
Small differences were observed based on the water type, but they are not sufficiently
representative (between 0.1 and 0.3) to determine their influence. A curve around 810 nm
appeared in all samples, consistent with studies [12,22], likely due to a local minimum in
liquid water absorption common in shallow waters. The spectral regions most affected by
rhodamine concentration were between 550 nm and 650 nm and from 400 nm to 500 nm,
independently of the sample. These results aligned with the findings of Clark et al. [11],
who observed that upwelling spectral radiance from a water body containing dye decreases
in the green portion of the visible spectrum (530–570 nm) due to dye absorption and
increases in the red and near-infrared wavelengths (570–750 nm) due to dye reflectance.
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It should be noted that the influence of the 400 to 500 nm range is affected by the scene’s
illumination and the scattering properties of the water and the background. In our case
study, this range is particularly impacted by the high reflectance caused by the reflections
from the beaker.

The use of classifiers demonstrated high accuracy in differentiating rhodamine con-
centrations and determining that the optimal number of bands for the classification is two
(Section 3.3). Classifiers combined with the SFS feature selector yielded more satisfactory
results than SFM, with all classification metrics exceeding 90%. Several samples even
achieved 100% accuracy, indicating that all pixels in the validation subset were correctly
classified. These results were expected, as the dataset consists of controlled samples mea-
sured in a laboratory setting, with a limited number of pixels. This dataset will be extended
to include more variability in future work, leading to more realistic classification metrics.

The study identified that for all the samples, the two most influential spectral bands
were consistently within the 400–500 nm and 550–650 nm regions, corresponding to the
regions identified in the spectral analysis of Section 3.2. We combined the bands identified
by the best models (SFS + RF, LR, and SVM) to obtain enough data to determine if any pat-
terns emerged in the bands of interest. A notable difference was observed between samples
with light and dark backgrounds regardless of water type. Specifically, the 400–500 nm
wavelengths are more relevant on light backgrounds, while the 550–650 nm range is more
influential on dark backgrounds. This is a direct consequence of the background’s influence
and the rhodamine’s semi-transparency, which is more critical on dark backgrounds due to
lower reflection.

Transferring the results is a crucial phase of the study, as one of the primary objectives
is to estimate the rhodamine concentration without specific scene calibration (Section 3.4).
The successful transfer of bands of interest determined from one sample to another demon-
strated that band transfer is feasible. The transfer of pre-trained models has been highly
effective among light background samples, achieving an accuracy exceeding 95%. Nev-
ertheless, the transfer of models between samples with different background types was
not as effective, which was expected, given the difference in spectral areas of interest
between light and dark backgrounds analyzed in Section 3.3. Also, the spectral range
between 600 nm and 650 nm was both an area of interest for the classifiers and a region of
significant discrepancy between the spectral signatures of distilled and seawater as shown
in Section 3.2. This discrepancy further complicated the transfer between water types.

To overcome the impediments in model transfer caused by background reflectance
differences and spectral signature variations due to water type, two essential measures
were implemented: training the classifier with samples from different backgrounds and
water types, and calculating the first derivative. When applying this approach, accuracy
surpassed 85% in all cases except for the distilled light sample (50%). The optimal bands
were between 580 and 610 nm. The primary difficulty improved by the first derivative was
the differentiation between the 15 mg/L and 30 mg/L concentrations, as the reflectance of
the 30 mg/L samples on dark backgrounds decreased, making it resemble the 15 mg/L
samples on light backgrounds. This approach in Section 3.4.3 prevented overfitting in the
classifier and highlighted variations in the spectral trends, improving the generalizability
of the models.

This new proposed methodology can achieve a generalizable model that overcomes
the limitations of current models. Clark et al. [11] show that band ratio linearity with
rhodamine concentration becomes nonlinear above 0.03 mg/L, a problem that our method
overcomes. Additionally, the Optimum Band Ratio Analysis (OBRA) [20], the most widely
used method for determining rhodamine concentration, still requires on-site calibration for
each specific scenario. Furthermore, the identified spectral areas of interest (400–500 nm
and 550–650 nm) and the transfer of models had direct applications in the design and
optimization of multispectral cameras [21]. These findings can be integrated into existing
camera systems to enhance the detection and quantification of dye concentrations, which is
crucial for applications such as tracking pollutant dispersion in water bodies.
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Another approach to consider is radiative transfer models (RTMs), such as Hydro-
light [43], which simulate light propagation through water and provide insights into
environmental factors like depth, bottom types, and constituent concentrations. These
models can be useful for predicting the behavior of substances like rhodamine in various
aquatic environments, but they rely on precise input parameters that may not fully capture
real-world complexity [44]. While complementary to laboratory measurements, which
offer controlled and empirical data, RTMs may struggle with the complexity of optically
shallow environments, where factors like bottom reflectance and water column effects
introduce significant variability [2]. Given these challenges, we chose to rely on laboratory
measurements combined with artificial intelligence models in our study. This approach
allowed us to more effectively manage the inherent variability and complexity of optically
shallow environments, providing a more robust and generalizable method for detecting
and analyzing rhodamine in such settings.

Our study presents an exhaustive spectral analysis of different water types and back-
grounds to improve the identification of various rhodamine concentrations. The key
findings reveal significant spectral discrepancies based on the background type, highlight-
ing the importance of considering background reflectivity in optically shallow waters. The
transfer of bands of interest was successful, ensuring that multispectral cameras with a
few bands can effectively determine rhodamine concentration. Additionally, training the
classification model with combined samples and applying the first derivative enabled the
successful transfer of pre-trained classification models. This advancement aimed to develop
a classifier that works in several scenarios without the need for on-site calibration, bringing
us one step closer to improving the remote detection of dye in aquatic environments.

Future research should focus on further refining the classification models by incorpo-
rating more diverse sample types and environmental conditions. Additionally, there is an
interest in testing the implementation of a regressor to estimate rhodamine concentration
and conducting experiments with lower concentrations in real-world scenarios. Exploring
advanced machine learning techniques and integrating them with hyperspectral imaging
can provide deeper insights and better transference. Expanding the spectral analysis to
include other fluorescent dyes and pollutants can broaden the applicability of this research.
Moreover, the development of real-time monitoring systems using these enhanced mod-
els could significantly benefit environmental monitoring, pollution control, and water
quality assessment.

5. Conclusions

This study provided new insights into the generalization of spectral semi-transparent
solutions detection across different water types and backgrounds. The spectral analysis
identified relevant regions for rhodamine classification between 400 nm and 500 nm, and
550 nm and 600 nm, related to solution concentration. These wavelengths are commonly
found in sensors and satellites such as Landsat 8 [45], Sentinel-2 [46], and WorldView-2 [47].
The significant differences observed between samples on dark and light backgrounds,
especially with maximum reflectance captured, underscore the necessity of the spectral
characterization of backgrounds when using rhodamine in optically shallow waters.

The classification results are promising, indicating the feasibility of transferring clas-
sification results with high accuracy, especially when integrated with the SFS feature
selector. Our study identified the two most influential spectral bands consistently within
the 400–500 nm and 550–650 nm regions for all samples, correlating with regions identi-
fied in the spectral analysis. While the transfer of spectral bands was successful (>80%),
the transfer of trained models was only successful among light background samples. To
improve these results, a model was trained by combining all samples to avoid overfitting,
and applying the first derivative to enhance the identification of variations in the spectral
signature. As a result, accuracy surpassed 85% in all cases except for the distilled light
sample, where the concentrations of 15mg/L and 30mg/L were misclassified.
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Therefore, the transfer of pre-trained classifiers between different backgrounds is
feasible. This would potentially eliminate the need for on-site calibration each time rho-
damine dispersion is studied in aquatic environments, saving materials and providing
a generalizable classifier. Future research will focus on extending the dataset to include
more variability and backgrounds, exploring the practical applicability of the models in
outdoor scenarios. This expansion will ensure that the model can accurately generalize
across diverse aquatic environments. By doing so, we can advance towards establishing
standardized protocols for remote sensing and monitoring solutions dispersion, facilitating
broader applications in environmental monitoring and water dynamics.
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